Abstract

We experimentally demonstrate a digital-to-analog-converter-less (DAC-less) vestigial sideband (VSB) 4-level pulse amplitude modulation (PAM4) transmission system for data center interconnects (DCIs) using a silicon photonic (SiP) multi-electrode Mach-Zehnder modulator (ME-MZM) based DAC-less transmitter and a VSB self-coherent receiver. The impacts of linear and nonlinear impairments on the proposed system and their mitigation methods are comprehensively studied. By using Kramer-Kronig (KK) detection, frequency domain chromatic dispersion compensation, and short-memory time domain Volterra equalization at the receiver, we report a 112 Gb/s PAM4 transmission over 40 km standard single mode fiber (SSMF) with a bit error rate (BER) below the 7% overhead (OH) hard-decision forward error correction threshold of 3.8 × 10−3, and a 120 Gb/s PAM4 transmission over 80 km SSMF with a BER below the 20% OH soft-decision forward error correction threshold of 2 × 10−2, without any transmitter side digital signal processing such as pre-emphasis and pulse shaping.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
100 Gbit/s VSB-PAM-n IM/DD transmission system based on 10 GHz DML with optical filtering and joint nonlinear equalization

Jiao Zhang, Jianjun Yu, Xinying Li, Yiran Wei, Kaihui Wang, Li Zhao, Wen Zhou, Miao Kong, Xiaolong Pan, Bo Liu, and Xiangjun Xin
Opt. Express 27(5) 6098-6105 (2019)

Silicon photonic dual-drive MIM based 56 Gb/s DAC-less and DSP-free PAM-4 transmission

Rui Li, David Patel, Eslam El-Fiky, Alireza Samani, Zhenping Xing, Yun Wang, and David V. Plant
Opt. Express 26(5) 5395-5407 (2018)

Experimental parametric study of 128 Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach Zehnder modulator

Alireza Samani, David Patel, Mathieu Chagnon, Eslam El-Fiky, Rui Li, Maxime Jacques, Nicolás Abadía, Venkat Veerasubramanian, and David V. Plant
Opt. Express 25(12) 13252-13262 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Cisco white paper, “Cisco Global Cloud Index: Forecast and Methodology, 2016–2021,” (Cisco, 2018), https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.pdf .
  2. T. Shi, T. Su, N. Zhang, C. Hong, and D. Pan, “Silicon Photonics Platform for 400G Data Center Applications,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper M3F.4.
    [Crossref]
  3. L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Device to Systems (Cambridge University, 2015).
  4. A. Samani, M. Chagnon, D. Patel, V. Veerasubramanian, S. Ghosh, M. Osman, Q. Zhong, and D. V. Plant, “A low-Voltage 35-GHz silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photonics J. 7(3), 7901413 (2015).
    [Crossref]
  5. R. Dubé-Demers, S. LaRochelle, and W. Shi, “Ultrafast pulse-amplitude modulation with a femtojoule silicon photonic modulator,” Optica 3(6), 622–627 (2016).
    [Crossref]
  6. Z. Yong, S. Shopov, J. C. Mikkelsen, R. Mallard, J. C. C. Mak, S. P. Voinigescu, and J. K. S. Poon, “Flip-chip integrated silicon Mach-Zehnder modulator with a 28nm fully depleted silicon-on-insulator CMOS driver,” Opt. Express 25(6), 6112–6121 (2017).
    [Crossref] [PubMed]
  7. H. Zwickel, S. Wolf, C. Kieninger, Y. Kutuvantavida, M. Lauermann, T. de Keulenaer, A. Vyncke, R. Vaernewyck, J. Luo, A. K. Y. Jen, W. Freude, J. Bauwelinck, S. Randel, and C. Koos, “Silicon-organic hybrid (SOH) modulators for intensity-modulation / direct-detection links with line rates of up to 120 Gbit/s,” Opt. Express 25(20), 23784–23800 (2017).
    [Crossref] [PubMed]
  8. J. Verbist, M. Verplaetse, S. A. Srivinasan, P. De Heyn, T. De Keulenaer, R. Pierco, R. Vaernewyck, A. Vyncke, P. Absil, G. Torfs, X. Yin, G. Roelkens, J. Van Campenhout, and J. Bauwelinck, “First Real-Time 100-Gb/s NRZ-OOK Transmission over 2 km with a Silicon Photonic Electro-Absorption Modulator,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2017), paper Th5C.4.
    [Crossref]
  9. M. H. Eiselt, N. Eiselt, and A. Dochhan, “Direct Detection Solutions for 100G and Beyond,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper Tu3I.3.
    [Crossref]
  10. Z. Li, M. S. Erkilinc, K. Shi, E. Sillekens, L. Galdino, B. C. Thomsen, P. Bayvel, and R. I. Killey, “SSBI mitigation and Kramers-Kronig scheme in single-sideband direct-detection transmission with receiver-based electronic dispersion compensation,” J. Lightwave Technol. 35(10), 1887–1893 (2017).
    [Crossref]
  11. S. T. Le, K. Schuh, M. Chagnon, F. Buchali, R. Dischler, V. Aref, H. Buelow, and K. Engenhardt, “8x256 Gbps virtual-carrier assisted WDM direct-detection transmission over a single span of 200km,” in Proceedings of European Conference on Optical Communication (ECOC) (Institute of Electrical and Electronics Engineers, 2017), paper Th.PDP.B1.
  12. T. M. Hoang, Q. Zhuge, Z. Xing, M. Sowailem, M. Morsy-Osman, and D. V. Plant, “Single Wavelength 480 Gb/s Direct Detection Transmission Over 80 km SSMF Enabled by Stokes Vector Receiver and Reduced-Complexity SSBI Cancellation,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper W4E.7.
    [Crossref]
  13. A. Mecozzi, C. Antonelli, and M. Shtaif, “Kramers-Kronig coherent receiver,” Optica 3(11), 1220–1227 (2016).
    [Crossref]
  14. X. Chen, C. Antonelli, S. Chandrasekhar, G. Raybon, A. Mecozzi, M. Shtaif, and P. Winzer, “4x240 Gb/s dense WDM and PDM Kramers-Kronig detection with 125-km SSMF transmission,” in Proceedings of European Conference on Optical Communication (ECOC) (Institute of Electrical and Electronics Engineers, 2017), paper W.2.D.4.
  15. X. Ruan, K. Li, D. J. Thomson, C. Lacava, F. Meng, I. Demirtzioglou, P. Petropoulos, Y. Zhu, G. T. Reed, and F. Zhang, “Experimental comparison of direct detection Nyquist SSB transmission based on silicon dual-drive and IQ Mach-Zehnder modulators with electrical packaging,” Opt. Express 25(16), 19332–19342 (2017).
    [Crossref] [PubMed]
  16. M. Zhu, J. Zhang, X. Yi, H. Ying, X. Li, M. Luo, Y. Song, X. Huang, and K. Qiu, “Optical single side-band Nyquist PAM-4 transmission using dual-drive MZM modulation and direct detection,” Opt. Express 26(6), 6629–6638 (2018).
    [Crossref] [PubMed]
  17. Z. Wan, J. Li, L. Shu, M. Luo, X. Li, S. Fu, and K. Xu, “Nonlinear equalization based on pruned artificial neural networks for 112-Gb/s SSB-PAM4 transmission over 80-km SSMF,” Opt. Express 26(8), 10631–10642 (2018).
    [Crossref] [PubMed]
  18. N. Kaneda, J. Lee, and Y. Chen, “Nonlinear Equalizer for 112-Gb/s SSB-PAM4 in 80-km Dispersion Uncompensated Link,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper Tu2D.5.
    [Crossref]
  19. H. Y. Chen, N. Kaneda, J. Lee, J. Chen, and Y. K. Chen, “Optical filter requirements in an EML-based single-sideband PAM4 intensity-modulation and direct-detection transmission system,” Opt. Express 25(6), 5852–5860 (2017).
    [Crossref] [PubMed]
  20. P. Dong, J. Lee, Y. K. Chen, L. L. Buhl, J. H. Sinsky, and K. Kim, “Four-channel vestigial sideband discrete multi-tone modulation using silicon photonic integrated circuits,” in Proceedings of European Conference on Optical Communication (ECOC) (Institute of Electrical and Electronics Engineers, 2015), paper Th.1.A.2.
    [Crossref]
  21. Z. Xing, D. Patel, T. M. Hoang, M. Qiu, R. Li, E. El-Fiky, M. Xiang, and D. V. Plant, “100Gb/s 16-QAM Transmission over 80 km SSMF Using a Silicon Photonic Modulator Enabled VSB-IM/DD System,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper M2C.7.
    [Crossref]
  22. K. Sekine, N. Kikuchi, S. Sasaki, S. Hayase, C. Hasegawa, and T. Sugawara, “40 Gbit/s, 16-ary (4 bit/symbol) optical modulation/demodulation scheme,” Electron. Lett. 41(7), 430–432 (2005).
    [Crossref]
  23. T. Sakamoto and A. Chiba, “Coherent synthesis of optical multilevel signals by electrooptic digital-to-analog conversion using multiparallel modulator,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1140–1149 (2010).
    [Crossref]
  24. A. Aimone, I. G. Lopez, S. Alreesh, P. Rito, T. Brast, V. Höhns, G. Fiol, M. Gruner, J. K. Fischer, J. Honecker, A. G. Steffan, D. Kissinger, A. C. Ulusoy, and M. Schell, “DAC-free Ultra-Low-Power Dual-Polarization 64-QAM Transmission with InP IQ Segmented MZM Module,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th5C.6.
    [Crossref]
  25. M. Mazzini, M. Traverso, M. Webster, C. Muzio, S. Anderson, P. Sun, D. Siadat, D. Conti, A. Cervasio, S. Pfnuer, J. Stayt, M. Nyland, C. Togami, K. Yanushefski, and T. Daugherty, “25GBaud PAM-4 Error Free Transmission over both Single Mode Fiber and Multimode Fiber in a QSFP form factor based on Silicon Photonics,” in Optical Fiber Communication Conference Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5B.3.
  26. D. Patel, A. Samani, V. Veerasubramanian, S. Ghosh, and D. Plant, “Silicon photonic segmented modulator-based electro-optic DAC for 100 Gb/s PAM-4 generation,” IEEE Photonics Technol. Lett. 27(23), 2433–2436 (2015).
    [Crossref]
  27. R. Li, D. Patel, A. Samani, E. El-Fiky, Z. Xing, M. Morsy-Osman, and D. V. Plant, “Silicon photonic ring-assisted MZI for 50 Gb/s DAC-less and DSP-free PAM-4 transmission,” IEEE Photonics Technol. Lett. 29(12), 1046–1049 (2017).
    [Crossref]
  28. R. Li, D. Patel, E. El-Fiky, A. Samani, Z. Xing, Y. Wang, and D. V. Plant, “Silicon photonic dual-drive MIM based 56 Gb/s DAC-less and DSP-free PAM-4 transmission,” Opt. Express 26(5), 5395–5407 (2018).
    [Crossref] [PubMed]
  29. A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. V. Plant, “A silicon photonic PAM-4 modulator based on dual-parallel Mach-Zehnder interferometers,” IEEE Photonics J. 8(1), 7800610 (2016).
    [Crossref]
  30. R. Dubé-Demers, S. LaRochelle, and W. Shi, “Low-power DAC-less PAM-4 transmitter using a cascaded microring modulator,” Opt. Lett. 41(22), 5369–5372 (2016).
    [Crossref] [PubMed]
  31. A. Samani, D. Patel, M. Chagnon, E. El-Fiky, R. Li, M. Jacques, N. Abadía, V. Veerasubramanian, and D. V. Plant, “Experimental parametric study of 128 Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach Zehnder modulator,” Opt. Express 25(12), 13252–13262 (2017).
    [Crossref] [PubMed]
  32. G. Agrawal, Lightwave Technology: Components and Devices (John Wiley & Sons, 2004).
  33. K. Kikuchi, “Fundamentals of Coherent Optical Fiber Communications,” J. Lightwave Technol. 34(1), 157–179 (2016).
    [Crossref]

2018 (3)

2017 (7)

H. Y. Chen, N. Kaneda, J. Lee, J. Chen, and Y. K. Chen, “Optical filter requirements in an EML-based single-sideband PAM4 intensity-modulation and direct-detection transmission system,” Opt. Express 25(6), 5852–5860 (2017).
[Crossref] [PubMed]

Z. Yong, S. Shopov, J. C. Mikkelsen, R. Mallard, J. C. C. Mak, S. P. Voinigescu, and J. K. S. Poon, “Flip-chip integrated silicon Mach-Zehnder modulator with a 28nm fully depleted silicon-on-insulator CMOS driver,” Opt. Express 25(6), 6112–6121 (2017).
[Crossref] [PubMed]

Z. Li, M. S. Erkilinc, K. Shi, E. Sillekens, L. Galdino, B. C. Thomsen, P. Bayvel, and R. I. Killey, “SSBI mitigation and Kramers-Kronig scheme in single-sideband direct-detection transmission with receiver-based electronic dispersion compensation,” J. Lightwave Technol. 35(10), 1887–1893 (2017).
[Crossref]

A. Samani, D. Patel, M. Chagnon, E. El-Fiky, R. Li, M. Jacques, N. Abadía, V. Veerasubramanian, and D. V. Plant, “Experimental parametric study of 128 Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach Zehnder modulator,” Opt. Express 25(12), 13252–13262 (2017).
[Crossref] [PubMed]

X. Ruan, K. Li, D. J. Thomson, C. Lacava, F. Meng, I. Demirtzioglou, P. Petropoulos, Y. Zhu, G. T. Reed, and F. Zhang, “Experimental comparison of direct detection Nyquist SSB transmission based on silicon dual-drive and IQ Mach-Zehnder modulators with electrical packaging,” Opt. Express 25(16), 19332–19342 (2017).
[Crossref] [PubMed]

H. Zwickel, S. Wolf, C. Kieninger, Y. Kutuvantavida, M. Lauermann, T. de Keulenaer, A. Vyncke, R. Vaernewyck, J. Luo, A. K. Y. Jen, W. Freude, J. Bauwelinck, S. Randel, and C. Koos, “Silicon-organic hybrid (SOH) modulators for intensity-modulation / direct-detection links with line rates of up to 120 Gbit/s,” Opt. Express 25(20), 23784–23800 (2017).
[Crossref] [PubMed]

R. Li, D. Patel, A. Samani, E. El-Fiky, Z. Xing, M. Morsy-Osman, and D. V. Plant, “Silicon photonic ring-assisted MZI for 50 Gb/s DAC-less and DSP-free PAM-4 transmission,” IEEE Photonics Technol. Lett. 29(12), 1046–1049 (2017).
[Crossref]

2016 (5)

2015 (2)

A. Samani, M. Chagnon, D. Patel, V. Veerasubramanian, S. Ghosh, M. Osman, Q. Zhong, and D. V. Plant, “A low-Voltage 35-GHz silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photonics J. 7(3), 7901413 (2015).
[Crossref]

D. Patel, A. Samani, V. Veerasubramanian, S. Ghosh, and D. Plant, “Silicon photonic segmented modulator-based electro-optic DAC for 100 Gb/s PAM-4 generation,” IEEE Photonics Technol. Lett. 27(23), 2433–2436 (2015).
[Crossref]

2010 (1)

T. Sakamoto and A. Chiba, “Coherent synthesis of optical multilevel signals by electrooptic digital-to-analog conversion using multiparallel modulator,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1140–1149 (2010).
[Crossref]

2005 (1)

K. Sekine, N. Kikuchi, S. Sasaki, S. Hayase, C. Hasegawa, and T. Sugawara, “40 Gbit/s, 16-ary (4 bit/symbol) optical modulation/demodulation scheme,” Electron. Lett. 41(7), 430–432 (2005).
[Crossref]

Abadía, N.

Antonelli, C.

Bauwelinck, J.

Bayvel, P.

Chagnon, M.

A. Samani, D. Patel, M. Chagnon, E. El-Fiky, R. Li, M. Jacques, N. Abadía, V. Veerasubramanian, and D. V. Plant, “Experimental parametric study of 128 Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach Zehnder modulator,” Opt. Express 25(12), 13252–13262 (2017).
[Crossref] [PubMed]

A. Samani, M. Chagnon, D. Patel, V. Veerasubramanian, S. Ghosh, M. Osman, Q. Zhong, and D. V. Plant, “A low-Voltage 35-GHz silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photonics J. 7(3), 7901413 (2015).
[Crossref]

Chen, H. Y.

Chen, J.

Chen, Y. K.

Chiba, A.

T. Sakamoto and A. Chiba, “Coherent synthesis of optical multilevel signals by electrooptic digital-to-analog conversion using multiparallel modulator,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1140–1149 (2010).
[Crossref]

de Keulenaer, T.

Demirtzioglou, I.

Dubé-Demers, R.

El-Fiky, E.

R. Li, D. Patel, E. El-Fiky, A. Samani, Z. Xing, Y. Wang, and D. V. Plant, “Silicon photonic dual-drive MIM based 56 Gb/s DAC-less and DSP-free PAM-4 transmission,” Opt. Express 26(5), 5395–5407 (2018).
[Crossref] [PubMed]

A. Samani, D. Patel, M. Chagnon, E. El-Fiky, R. Li, M. Jacques, N. Abadía, V. Veerasubramanian, and D. V. Plant, “Experimental parametric study of 128 Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach Zehnder modulator,” Opt. Express 25(12), 13252–13262 (2017).
[Crossref] [PubMed]

R. Li, D. Patel, A. Samani, E. El-Fiky, Z. Xing, M. Morsy-Osman, and D. V. Plant, “Silicon photonic ring-assisted MZI for 50 Gb/s DAC-less and DSP-free PAM-4 transmission,” IEEE Photonics Technol. Lett. 29(12), 1046–1049 (2017).
[Crossref]

A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. V. Plant, “A silicon photonic PAM-4 modulator based on dual-parallel Mach-Zehnder interferometers,” IEEE Photonics J. 8(1), 7800610 (2016).
[Crossref]

Erkilinc, M. S.

Freude, W.

Fu, S.

Galdino, L.

Ghosh, S.

A. Samani, M. Chagnon, D. Patel, V. Veerasubramanian, S. Ghosh, M. Osman, Q. Zhong, and D. V. Plant, “A low-Voltage 35-GHz silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photonics J. 7(3), 7901413 (2015).
[Crossref]

D. Patel, A. Samani, V. Veerasubramanian, S. Ghosh, and D. Plant, “Silicon photonic segmented modulator-based electro-optic DAC for 100 Gb/s PAM-4 generation,” IEEE Photonics Technol. Lett. 27(23), 2433–2436 (2015).
[Crossref]

Hasegawa, C.

K. Sekine, N. Kikuchi, S. Sasaki, S. Hayase, C. Hasegawa, and T. Sugawara, “40 Gbit/s, 16-ary (4 bit/symbol) optical modulation/demodulation scheme,” Electron. Lett. 41(7), 430–432 (2005).
[Crossref]

Hayase, S.

K. Sekine, N. Kikuchi, S. Sasaki, S. Hayase, C. Hasegawa, and T. Sugawara, “40 Gbit/s, 16-ary (4 bit/symbol) optical modulation/demodulation scheme,” Electron. Lett. 41(7), 430–432 (2005).
[Crossref]

Huang, X.

Jacques, M.

Jen, A. K. Y.

Kaneda, N.

Kieninger, C.

Kikuchi, K.

Kikuchi, N.

K. Sekine, N. Kikuchi, S. Sasaki, S. Hayase, C. Hasegawa, and T. Sugawara, “40 Gbit/s, 16-ary (4 bit/symbol) optical modulation/demodulation scheme,” Electron. Lett. 41(7), 430–432 (2005).
[Crossref]

Killey, R. I.

Koos, C.

Kutuvantavida, Y.

Lacava, C.

LaRochelle, S.

Lauermann, M.

Lee, J.

Li, J.

Li, K.

Li, R.

Li, X.

Li, Z.

Luo, J.

Luo, M.

Mak, J. C. C.

Mallard, R.

Mecozzi, A.

Meng, F.

Mikkelsen, J. C.

Morsy-Osman, M.

R. Li, D. Patel, A. Samani, E. El-Fiky, Z. Xing, M. Morsy-Osman, and D. V. Plant, “Silicon photonic ring-assisted MZI for 50 Gb/s DAC-less and DSP-free PAM-4 transmission,” IEEE Photonics Technol. Lett. 29(12), 1046–1049 (2017).
[Crossref]

Osman, M.

A. Samani, M. Chagnon, D. Patel, V. Veerasubramanian, S. Ghosh, M. Osman, Q. Zhong, and D. V. Plant, “A low-Voltage 35-GHz silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photonics J. 7(3), 7901413 (2015).
[Crossref]

Patel, D.

R. Li, D. Patel, E. El-Fiky, A. Samani, Z. Xing, Y. Wang, and D. V. Plant, “Silicon photonic dual-drive MIM based 56 Gb/s DAC-less and DSP-free PAM-4 transmission,” Opt. Express 26(5), 5395–5407 (2018).
[Crossref] [PubMed]

R. Li, D. Patel, A. Samani, E. El-Fiky, Z. Xing, M. Morsy-Osman, and D. V. Plant, “Silicon photonic ring-assisted MZI for 50 Gb/s DAC-less and DSP-free PAM-4 transmission,” IEEE Photonics Technol. Lett. 29(12), 1046–1049 (2017).
[Crossref]

A. Samani, D. Patel, M. Chagnon, E. El-Fiky, R. Li, M. Jacques, N. Abadía, V. Veerasubramanian, and D. V. Plant, “Experimental parametric study of 128 Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach Zehnder modulator,” Opt. Express 25(12), 13252–13262 (2017).
[Crossref] [PubMed]

A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. V. Plant, “A silicon photonic PAM-4 modulator based on dual-parallel Mach-Zehnder interferometers,” IEEE Photonics J. 8(1), 7800610 (2016).
[Crossref]

D. Patel, A. Samani, V. Veerasubramanian, S. Ghosh, and D. Plant, “Silicon photonic segmented modulator-based electro-optic DAC for 100 Gb/s PAM-4 generation,” IEEE Photonics Technol. Lett. 27(23), 2433–2436 (2015).
[Crossref]

A. Samani, M. Chagnon, D. Patel, V. Veerasubramanian, S. Ghosh, M. Osman, Q. Zhong, and D. V. Plant, “A low-Voltage 35-GHz silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photonics J. 7(3), 7901413 (2015).
[Crossref]

Petropoulos, P.

Plant, D.

D. Patel, A. Samani, V. Veerasubramanian, S. Ghosh, and D. Plant, “Silicon photonic segmented modulator-based electro-optic DAC for 100 Gb/s PAM-4 generation,” IEEE Photonics Technol. Lett. 27(23), 2433–2436 (2015).
[Crossref]

Plant, D. V.

R. Li, D. Patel, E. El-Fiky, A. Samani, Z. Xing, Y. Wang, and D. V. Plant, “Silicon photonic dual-drive MIM based 56 Gb/s DAC-less and DSP-free PAM-4 transmission,” Opt. Express 26(5), 5395–5407 (2018).
[Crossref] [PubMed]

R. Li, D. Patel, A. Samani, E. El-Fiky, Z. Xing, M. Morsy-Osman, and D. V. Plant, “Silicon photonic ring-assisted MZI for 50 Gb/s DAC-less and DSP-free PAM-4 transmission,” IEEE Photonics Technol. Lett. 29(12), 1046–1049 (2017).
[Crossref]

A. Samani, D. Patel, M. Chagnon, E. El-Fiky, R. Li, M. Jacques, N. Abadía, V. Veerasubramanian, and D. V. Plant, “Experimental parametric study of 128 Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach Zehnder modulator,” Opt. Express 25(12), 13252–13262 (2017).
[Crossref] [PubMed]

A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. V. Plant, “A silicon photonic PAM-4 modulator based on dual-parallel Mach-Zehnder interferometers,” IEEE Photonics J. 8(1), 7800610 (2016).
[Crossref]

A. Samani, M. Chagnon, D. Patel, V. Veerasubramanian, S. Ghosh, M. Osman, Q. Zhong, and D. V. Plant, “A low-Voltage 35-GHz silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photonics J. 7(3), 7901413 (2015).
[Crossref]

Poon, J. K. S.

Qiu, K.

Randel, S.

Reed, G. T.

Ruan, X.

Sakamoto, T.

T. Sakamoto and A. Chiba, “Coherent synthesis of optical multilevel signals by electrooptic digital-to-analog conversion using multiparallel modulator,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1140–1149 (2010).
[Crossref]

Samani, A.

R. Li, D. Patel, E. El-Fiky, A. Samani, Z. Xing, Y. Wang, and D. V. Plant, “Silicon photonic dual-drive MIM based 56 Gb/s DAC-less and DSP-free PAM-4 transmission,” Opt. Express 26(5), 5395–5407 (2018).
[Crossref] [PubMed]

A. Samani, D. Patel, M. Chagnon, E. El-Fiky, R. Li, M. Jacques, N. Abadía, V. Veerasubramanian, and D. V. Plant, “Experimental parametric study of 128 Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach Zehnder modulator,” Opt. Express 25(12), 13252–13262 (2017).
[Crossref] [PubMed]

R. Li, D. Patel, A. Samani, E. El-Fiky, Z. Xing, M. Morsy-Osman, and D. V. Plant, “Silicon photonic ring-assisted MZI for 50 Gb/s DAC-less and DSP-free PAM-4 transmission,” IEEE Photonics Technol. Lett. 29(12), 1046–1049 (2017).
[Crossref]

A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. V. Plant, “A silicon photonic PAM-4 modulator based on dual-parallel Mach-Zehnder interferometers,” IEEE Photonics J. 8(1), 7800610 (2016).
[Crossref]

D. Patel, A. Samani, V. Veerasubramanian, S. Ghosh, and D. Plant, “Silicon photonic segmented modulator-based electro-optic DAC for 100 Gb/s PAM-4 generation,” IEEE Photonics Technol. Lett. 27(23), 2433–2436 (2015).
[Crossref]

A. Samani, M. Chagnon, D. Patel, V. Veerasubramanian, S. Ghosh, M. Osman, Q. Zhong, and D. V. Plant, “A low-Voltage 35-GHz silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photonics J. 7(3), 7901413 (2015).
[Crossref]

Sasaki, S.

K. Sekine, N. Kikuchi, S. Sasaki, S. Hayase, C. Hasegawa, and T. Sugawara, “40 Gbit/s, 16-ary (4 bit/symbol) optical modulation/demodulation scheme,” Electron. Lett. 41(7), 430–432 (2005).
[Crossref]

Sekine, K.

K. Sekine, N. Kikuchi, S. Sasaki, S. Hayase, C. Hasegawa, and T. Sugawara, “40 Gbit/s, 16-ary (4 bit/symbol) optical modulation/demodulation scheme,” Electron. Lett. 41(7), 430–432 (2005).
[Crossref]

Shi, K.

Shi, W.

Shopov, S.

Shtaif, M.

Shu, L.

Sillekens, E.

Song, Y.

Sugawara, T.

K. Sekine, N. Kikuchi, S. Sasaki, S. Hayase, C. Hasegawa, and T. Sugawara, “40 Gbit/s, 16-ary (4 bit/symbol) optical modulation/demodulation scheme,” Electron. Lett. 41(7), 430–432 (2005).
[Crossref]

Thomsen, B. C.

Thomson, D. J.

Vaernewyck, R.

Veerasubramanian, V.

A. Samani, D. Patel, M. Chagnon, E. El-Fiky, R. Li, M. Jacques, N. Abadía, V. Veerasubramanian, and D. V. Plant, “Experimental parametric study of 128 Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach Zehnder modulator,” Opt. Express 25(12), 13252–13262 (2017).
[Crossref] [PubMed]

A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. V. Plant, “A silicon photonic PAM-4 modulator based on dual-parallel Mach-Zehnder interferometers,” IEEE Photonics J. 8(1), 7800610 (2016).
[Crossref]

D. Patel, A. Samani, V. Veerasubramanian, S. Ghosh, and D. Plant, “Silicon photonic segmented modulator-based electro-optic DAC for 100 Gb/s PAM-4 generation,” IEEE Photonics Technol. Lett. 27(23), 2433–2436 (2015).
[Crossref]

A. Samani, M. Chagnon, D. Patel, V. Veerasubramanian, S. Ghosh, M. Osman, Q. Zhong, and D. V. Plant, “A low-Voltage 35-GHz silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photonics J. 7(3), 7901413 (2015).
[Crossref]

Voinigescu, S. P.

Vyncke, A.

Wan, Z.

Wang, Y.

Wolf, S.

Xing, Z.

R. Li, D. Patel, E. El-Fiky, A. Samani, Z. Xing, Y. Wang, and D. V. Plant, “Silicon photonic dual-drive MIM based 56 Gb/s DAC-less and DSP-free PAM-4 transmission,” Opt. Express 26(5), 5395–5407 (2018).
[Crossref] [PubMed]

R. Li, D. Patel, A. Samani, E. El-Fiky, Z. Xing, M. Morsy-Osman, and D. V. Plant, “Silicon photonic ring-assisted MZI for 50 Gb/s DAC-less and DSP-free PAM-4 transmission,” IEEE Photonics Technol. Lett. 29(12), 1046–1049 (2017).
[Crossref]

Xu, K.

Yi, X.

Ying, H.

Yong, Z.

Zhang, F.

Zhang, J.

Zhong, Q.

A. Samani, M. Chagnon, D. Patel, V. Veerasubramanian, S. Ghosh, M. Osman, Q. Zhong, and D. V. Plant, “A low-Voltage 35-GHz silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photonics J. 7(3), 7901413 (2015).
[Crossref]

Zhu, M.

Zhu, Y.

Zwickel, H.

Electron. Lett. (1)

K. Sekine, N. Kikuchi, S. Sasaki, S. Hayase, C. Hasegawa, and T. Sugawara, “40 Gbit/s, 16-ary (4 bit/symbol) optical modulation/demodulation scheme,” Electron. Lett. 41(7), 430–432 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Sakamoto and A. Chiba, “Coherent synthesis of optical multilevel signals by electrooptic digital-to-analog conversion using multiparallel modulator,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1140–1149 (2010).
[Crossref]

IEEE Photonics J. (2)

A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. V. Plant, “A silicon photonic PAM-4 modulator based on dual-parallel Mach-Zehnder interferometers,” IEEE Photonics J. 8(1), 7800610 (2016).
[Crossref]

A. Samani, M. Chagnon, D. Patel, V. Veerasubramanian, S. Ghosh, M. Osman, Q. Zhong, and D. V. Plant, “A low-Voltage 35-GHz silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photonics J. 7(3), 7901413 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (2)

D. Patel, A. Samani, V. Veerasubramanian, S. Ghosh, and D. Plant, “Silicon photonic segmented modulator-based electro-optic DAC for 100 Gb/s PAM-4 generation,” IEEE Photonics Technol. Lett. 27(23), 2433–2436 (2015).
[Crossref]

R. Li, D. Patel, A. Samani, E. El-Fiky, Z. Xing, M. Morsy-Osman, and D. V. Plant, “Silicon photonic ring-assisted MZI for 50 Gb/s DAC-less and DSP-free PAM-4 transmission,” IEEE Photonics Technol. Lett. 29(12), 1046–1049 (2017).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (8)

X. Ruan, K. Li, D. J. Thomson, C. Lacava, F. Meng, I. Demirtzioglou, P. Petropoulos, Y. Zhu, G. T. Reed, and F. Zhang, “Experimental comparison of direct detection Nyquist SSB transmission based on silicon dual-drive and IQ Mach-Zehnder modulators with electrical packaging,” Opt. Express 25(16), 19332–19342 (2017).
[Crossref] [PubMed]

M. Zhu, J. Zhang, X. Yi, H. Ying, X. Li, M. Luo, Y. Song, X. Huang, and K. Qiu, “Optical single side-band Nyquist PAM-4 transmission using dual-drive MZM modulation and direct detection,” Opt. Express 26(6), 6629–6638 (2018).
[Crossref] [PubMed]

Z. Wan, J. Li, L. Shu, M. Luo, X. Li, S. Fu, and K. Xu, “Nonlinear equalization based on pruned artificial neural networks for 112-Gb/s SSB-PAM4 transmission over 80-km SSMF,” Opt. Express 26(8), 10631–10642 (2018).
[Crossref] [PubMed]

Z. Yong, S. Shopov, J. C. Mikkelsen, R. Mallard, J. C. C. Mak, S. P. Voinigescu, and J. K. S. Poon, “Flip-chip integrated silicon Mach-Zehnder modulator with a 28nm fully depleted silicon-on-insulator CMOS driver,” Opt. Express 25(6), 6112–6121 (2017).
[Crossref] [PubMed]

H. Zwickel, S. Wolf, C. Kieninger, Y. Kutuvantavida, M. Lauermann, T. de Keulenaer, A. Vyncke, R. Vaernewyck, J. Luo, A. K. Y. Jen, W. Freude, J. Bauwelinck, S. Randel, and C. Koos, “Silicon-organic hybrid (SOH) modulators for intensity-modulation / direct-detection links with line rates of up to 120 Gbit/s,” Opt. Express 25(20), 23784–23800 (2017).
[Crossref] [PubMed]

A. Samani, D. Patel, M. Chagnon, E. El-Fiky, R. Li, M. Jacques, N. Abadía, V. Veerasubramanian, and D. V. Plant, “Experimental parametric study of 128 Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach Zehnder modulator,” Opt. Express 25(12), 13252–13262 (2017).
[Crossref] [PubMed]

R. Li, D. Patel, E. El-Fiky, A. Samani, Z. Xing, Y. Wang, and D. V. Plant, “Silicon photonic dual-drive MIM based 56 Gb/s DAC-less and DSP-free PAM-4 transmission,” Opt. Express 26(5), 5395–5407 (2018).
[Crossref] [PubMed]

H. Y. Chen, N. Kaneda, J. Lee, J. Chen, and Y. K. Chen, “Optical filter requirements in an EML-based single-sideband PAM4 intensity-modulation and direct-detection transmission system,” Opt. Express 25(6), 5852–5860 (2017).
[Crossref] [PubMed]

Opt. Lett. (1)

Optica (2)

Other (14)

X. Chen, C. Antonelli, S. Chandrasekhar, G. Raybon, A. Mecozzi, M. Shtaif, and P. Winzer, “4x240 Gb/s dense WDM and PDM Kramers-Kronig detection with 125-km SSMF transmission,” in Proceedings of European Conference on Optical Communication (ECOC) (Institute of Electrical and Electronics Engineers, 2017), paper W.2.D.4.

S. T. Le, K. Schuh, M. Chagnon, F. Buchali, R. Dischler, V. Aref, H. Buelow, and K. Engenhardt, “8x256 Gbps virtual-carrier assisted WDM direct-detection transmission over a single span of 200km,” in Proceedings of European Conference on Optical Communication (ECOC) (Institute of Electrical and Electronics Engineers, 2017), paper Th.PDP.B1.

T. M. Hoang, Q. Zhuge, Z. Xing, M. Sowailem, M. Morsy-Osman, and D. V. Plant, “Single Wavelength 480 Gb/s Direct Detection Transmission Over 80 km SSMF Enabled by Stokes Vector Receiver and Reduced-Complexity SSBI Cancellation,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper W4E.7.
[Crossref]

N. Kaneda, J. Lee, and Y. Chen, “Nonlinear Equalizer for 112-Gb/s SSB-PAM4 in 80-km Dispersion Uncompensated Link,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper Tu2D.5.
[Crossref]

Cisco white paper, “Cisco Global Cloud Index: Forecast and Methodology, 2016–2021,” (Cisco, 2018), https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.pdf .

T. Shi, T. Su, N. Zhang, C. Hong, and D. Pan, “Silicon Photonics Platform for 400G Data Center Applications,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper M3F.4.
[Crossref]

L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Device to Systems (Cambridge University, 2015).

J. Verbist, M. Verplaetse, S. A. Srivinasan, P. De Heyn, T. De Keulenaer, R. Pierco, R. Vaernewyck, A. Vyncke, P. Absil, G. Torfs, X. Yin, G. Roelkens, J. Van Campenhout, and J. Bauwelinck, “First Real-Time 100-Gb/s NRZ-OOK Transmission over 2 km with a Silicon Photonic Electro-Absorption Modulator,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2017), paper Th5C.4.
[Crossref]

M. H. Eiselt, N. Eiselt, and A. Dochhan, “Direct Detection Solutions for 100G and Beyond,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper Tu3I.3.
[Crossref]

G. Agrawal, Lightwave Technology: Components and Devices (John Wiley & Sons, 2004).

P. Dong, J. Lee, Y. K. Chen, L. L. Buhl, J. H. Sinsky, and K. Kim, “Four-channel vestigial sideband discrete multi-tone modulation using silicon photonic integrated circuits,” in Proceedings of European Conference on Optical Communication (ECOC) (Institute of Electrical and Electronics Engineers, 2015), paper Th.1.A.2.
[Crossref]

Z. Xing, D. Patel, T. M. Hoang, M. Qiu, R. Li, E. El-Fiky, M. Xiang, and D. V. Plant, “100Gb/s 16-QAM Transmission over 80 km SSMF Using a Silicon Photonic Modulator Enabled VSB-IM/DD System,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper M2C.7.
[Crossref]

A. Aimone, I. G. Lopez, S. Alreesh, P. Rito, T. Brast, V. Höhns, G. Fiol, M. Gruner, J. K. Fischer, J. Honecker, A. G. Steffan, D. Kissinger, A. C. Ulusoy, and M. Schell, “DAC-free Ultra-Low-Power Dual-Polarization 64-QAM Transmission with InP IQ Segmented MZM Module,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th5C.6.
[Crossref]

M. Mazzini, M. Traverso, M. Webster, C. Muzio, S. Anderson, P. Sun, D. Siadat, D. Conti, A. Cervasio, S. Pfnuer, J. Stayt, M. Nyland, C. Togami, K. Yanushefski, and T. Daugherty, “25GBaud PAM-4 Error Free Transmission over both Single Mode Fiber and Multimode Fiber in a QSFP form factor based on Silicon Photonics,” in Optical Fiber Communication Conference Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5B.3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the SiP ME-MZM. Vi and Vbi (i = 1 or 2) are the alternating current (AC) driving signals and direct current (DC) bias voltages applied to the two phase shifting segments. Vw is a DC voltage applied to the thermal phase shifter to adjust the default phase difference between the two arms of the MZM. Ein and Eout represent the optical input and output.
Fig. 2
Fig. 2 Principle of CD post-compensation in SSB/VSB PAM4 systems. FD-CDC and TDE represents frequency-domain CD compensation and time domain equalization, respectively.
Fig. 3
Fig. 3 (a) Experimental Setup, inset shows the spectrum of a 56 GBaud signal before filtering, the OBPF response and the spectrum of a 56 GBaud signal after filtering, and (b) receiver-side DSP blocks.
Fig. 4
Fig. 4 (a) BER of 56 GBaud DAC-less PAM4 at B2B versus oversampling ratio when processed with KK and FFE, and (b) typical linear FFE taps converged for 56 GBaud PAM4 at B2B, 80km without FD-CDC and 80 km with FD-CDC using KK detection.
Fig. 5
Fig. 5 (a) BERs as functions of nonlinear kernel memory lengths with different DSP combinations for a 56 GBaud PAM4 at B2B with a launch power of −3 dBm, (b) BERs as functions of nonlinear kernel memory lengths with different DSP combinations for a 56 GBaud PAM4 at 80km with a launch power of 8 dBm and (c) transmission performances of different DSP combinations with 56 GBaud PAM4 at 80 km.
Fig. 6
Fig. 6 (a) BERs as functions of symbol rate at B2B, 40 km and 80 km with 7 dBm received power and (b) Receiver sensitivity requirements for a 56 GBaud PAM4 signal at B2B, 40 km, and 80 km, when processed with 1) KK detection and short memory VOL, 2) KK detection, FD-CDC and short memory VOL.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

[ C+S( t ) ] * [ C+S( t ) ]= C * C+2Re{ C * S( t ) }+ S * ( t )S( t ),
y[ n ]= k 1 = L 1 L 1 h 1 [ k 1 ]x[ n k 1 ] + k 1 = L 2 L 2 k 2 = L 2 L 2 h 2 [ k 1 , k 2 ]x[ n k 1 ]x[ n k 2 ] ,
y[ n ]= k 1 = L 1 L 1 h 1 [ k 1 ]x[ n k 1 ] + k 1 = L 1 L 1 h 2 [ k 1 ] x 2 [ n k 1 ] ,

Metrics