Abstract

In the field of hybrid organic-inorganic perovskite based photovoltaics, there is a growing interest in the exploration of novel and smarter ways to improve the cells light harvesting efficiency at targeted wavelength ranges within the minimum volume possible, as well as in the development of colored and/or semitransparent devices that could pave the way both to their architectonic integration and to their use in the flowering field of tandem solar cells. The work herein presented targets these different goals by means of the theoretical optimization of the optical design of standard opaque and semitransparent perovskite solar cells. In order to do so, we focus on the effect of harmless, compatible and commercially available dielectric inclusions within the absorbing material, methylammonium lead iodide (MAPI). Following a gradual and systematic process of analysis, we are capable of identifying the appearance of collective and hybrid (both localized and extended) photonic resonances which allow to significantly improve light harvesting and thus the overall efficiency of the standard device by above 10% with respect to the reference value while keeping the semiconductor film thickness to a minimum. We believe our results will be particularly relevant in the promising field of perovskite solar cell based tandem photovoltaic devices, which has posed new challenges to the solar energy community in order to maximize the performance of semitransparent cells, but also for applications focusing on architectonic integration.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
4-fold photocurrent enhancement in ultrathin nanoplasmonic perovskite solar cells

Boyuan Cai, Yong Peng, Yi-Bing Cheng, and Min Gu
Opt. Express 23(24) A1700-A1706 (2015)

Efficient and environmental-friendly perovskite solar cells via embedding plasmonic nanoparticles: an optical simulation study on realistic device architectures

George Perrakis, George Kakavelakis, George Kenanakis, Constantinos Petridis, Emmanuel Stratakis, Maria Kafesaki, and Emmanuel Kymakis
Opt. Express 27(22) 31144-31163 (2019)

Wide-angle polarization-free plasmon-enhanced light absorption in perovskite films using silver nanowires

Geng Wang, Ke Meng, Zhen He, Longlong Wu, Zhou Liu, Xiao Wang, Wenqin Li, Renzhong Tai, Shu-Hong Yu, and Gang Chen
Opt. Express 25(4) 3594-3604 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338(6107), 643–647 (2012).
    [Crossref] [PubMed]
  2. M. A. Green, A. Ho-Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nat. Photonics 8(7), 506–514 (2014).
    [Crossref]
  3. S.-H. Bae, H. Zhao, Y.-T. Hsieh, L. Zuo, N. De Marco, Y. S. Rim, G. Li, and Y. Yang, “Printable Solar Cells from Advanced Solution-Processible Materials,” Chem 1(2), 197–219 (2016).
    [Crossref]
  4. https://www.nrel.gov/pv/assets/images/efficiency-chart.png (accessed: July 11, 2018).
  5. J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells,” Nano Lett. 13(4), 1764–1769 (2013).
    [Crossref] [PubMed]
  6. W. Zhang, M. Anaya, G. Lozano, M. E. Calvo, M. B. Johnston, H. Míguez, and H. J. Snaith, “Highly efficient perovskite solar cells with tunable structural color,” Nano Lett. 15(3), 1698–1702 (2015).
    [Crossref] [PubMed]
  7. G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herza, and H. J. Snaith, “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells,” Energy Environ. Sci. 7(3), 982–988 (2014).
    [Crossref]
  8. C. Roldan-Carmona, O. Malinkiewicz, R. Betancur, G. Longo, C. Momblona, F. Jaramillo, L. Camacho, and H. Bolink, “Flexible high efficiency perovskite solar cells,” Energy Environ. Sci. 7(3), 994–997 (2014).
    [Crossref]
  9. J.-W. Lee, Y.-T. Hsieh, N. De Marco, S.-H. Bae, Q. Han, and Y. Yang, “Halide perovskites for tandem solar cells,” J. Phys. Chem. Lett. 8(9), 1999–2011 (2017).
    [Crossref] [PubMed]
  10. N. C. Jeong, C. Prasittichai, and J. T. Hupp, “Photocurrent enhancement by surface plasmon resonance of silver nanoparticles in highly porous dye-sensitized solar cells,” Langmuir 27(23), 14609–14614 (2011).
    [Crossref] [PubMed]
  11. Z. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, “Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell,” Coord. Chem. Rev. 248(13–14), 1381–1389 (2004).
    [Crossref]
  12. O. K. Varghese, M. Paulose, and C. A. Grimes, “Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells,” Nat. Nanotechnol. 4(9), 592–597 (2009).
    [Crossref] [PubMed]
  13. S. Jang, J. Yoon, K. Ha, M.-C. Kim, D. H. Kim, S. M. Kim, S. M. Kang, S. J. Park, H. S. Jung, and M. Choi, “Facile fabrication of three-dimensional TiO2 structures for highly efficient perovskite solar cells,” Nano Energy 22, 499–506 (2016).
    [Crossref]
  14. S. M. Kang, S. Jang, J.-K. Lee, J. Yoon, D.-E. Yoo, J.-W. Lee, M. Choi, and N.-G. Park, “Moth-Eye TiO2 Layer for Improving Light Harvesting Efficiency in Perovskite Solar Cells,” Small 12(18), 2443–2449 (2016).
    [Crossref] [PubMed]
  15. J. Yin, H. Qu, J. Cao, H. Tai, J. Li, and N. Zheng, “Light absorption enhancement by embedding submicron scattering TiO2 nanoparticles in perovskite solar cells,” RSC Advances 6(29), 24596–24602 (2016).
    [Crossref]
  16. S. M. Kang, N. Ahn, J.-W. Lee, M. Choi, and N.-G. Park, “Water-Repellent Perovskite Solar Cell,” J. Mater. Chem. A Mater. Energy Sustain. 2(47), 20017–20021 (2014).
    [Crossref]
  17. H.-L. Hsu, T.-Y. Juang, C.-P. Chen, C.-M. Hsieh, C.-C. Yang, C.-L. Huang, and R.-J. Jeng, “Enhanced efficiency of organic and perovskite photovoltaics from shape-dependent broadband plasmonic effects of silver nanoplates,” Sol. Energy Mater. Sol. Cells 140, 224–231 (2015).
    [Crossref]
  18. R. S. Wu, B. C. Yang, C. J. Zhang, Y. L. Huang, Y. X. Cui, P. Liu, C. H. Zhou, Y. Y. Hao, Y. L. Gao, and J. L. Yang, “Prominent efficiency enhancement in perovskite solar cells employing silica-coated gold nanorods,” J. Phys. Chem. C 120(13), 6996–7004 (2016).
    [Crossref]
  19. W. Zhang, M. Saliba, S. D. Stranks, Y. Sun, X. Shi, U. Wiesner, and H. J. Snaith, “Enhancement of perovskite-based solar cells employing core-shell metal nanoparticles,” Nano Lett. 13(9), 4505–4510 (2013).
    [Crossref] [PubMed]
  20. Z. Lu, X. Pan, Y. Ma, Y. Li, L. Zheng, D. Zhang, Q. Xu, Z. Chen, S. Wang, B. Qu, F. Liu, Y. Huang, L. Xiao, and G. Qihuang, “Plasmonic-enhanced perovskite solar cells using alloy popcorn nanoparticles,” RSC Advances 5 (15), 11175–11179 (2015).
    [Crossref]
  21. S. Carretero-Palacios, M. E. Calvo, and H. Míguez, “Absorption enhancement in organic–inorganic halide perovskite films with embedded plasmonic gold nanoparticles,” J Phys Chem C Nanomater Interfaces 119(32), 18635–18640 (2015).
    [Crossref] [PubMed]
  22. S. Carretero-Palacios, A. Jiménez-Solano, and H. Míguez, “Plasmonic nanoparticles as light-harvesting enhancers in perovskite solar cells: a user’s guide,” ACS Energy Lett. 1 (1), 323–331 (2016).
  23. I. Rodriguez, L. Shi, X. Lu, B. A. Korgel, R. A. Álvarez-Puebla, and F. Meseguer, “Silicon nanoparticles as Raman scattering enhancers,” Nanoscale 6(11), 5666–5670 (2014).
    [Crossref] [PubMed]
  24. U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5(1), 3402 (2014).
    [Crossref] [PubMed]
  25. J. M. Miranda-Muñoz, S. Carretero-Palacios, A. Jiménez-Solano, Y. Li, G. Lozano, and H. Míguez, “Efficient bifacial dye-sensitized solar cells through disorder by design,” J Mater Chem A Mater 4(5), 1953–1961 (2016).
    [Crossref] [PubMed]
  26. J. M. Miranda-Muñoz, G. Lozano, and H. Míguez, “Design and realization of a novel optically disordered material: a demonstration of a Mie glass,” Adv. Opt. Mater. 5(10), 1700025 (2017).
    [Crossref]
  27. M. Anaya, G. Lozano, M. E. Calvo, W. Zhang, M. B. Johnston, H. J. Snaith, and H. Míguez, “Optical description of mesostructured organic–inorganic halide perovskite solar cells,” J. Phys. Chem. Lett. 6(1), 48–53 (2015).
    [Crossref] [PubMed]
  28. L. Solutions, Inc. http://www.lumerical.com/tcad-products/fdtd/ (accessed: April 4, 2018).
  29. J. P. Correa-Baena, M. Anaya, G. Lozano, W. Tress, K. Domanski, M. Saliba, T. Matsui, T. J. Jacobsson, M. E. Calvo, A. Abate, M. Grätzel, H. Míguez, and A. Hagfeldt, “Unbroken perovskite: interplay of morphology, electro-optical properties and ionic movement,” Adv. Mater. 28(25), 5031–5037 (2016).
    [Crossref] [PubMed]
  30. P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S. J. Moon, J. H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
    [Crossref] [PubMed]
  31. M. Anaya, G. Lozano, M. E. Calvo, and H. Míguez, “ABX3 perovskites for tandem solar cells,” Joule 1(4), 769–793 (2017).
    [Crossref]
  32. H. W. Deckman and J. H. Dunsmuir, “Natural lithography,” Appl. Phys. Lett. 41(4), 377–379 (1982).
    [Crossref]
  33. A. van Blaaderen, R. Ruel, and P. Wiltzius, “Template-directed colloidal crystallization,” Nature 385(6614), 321–324 (1997).
    [Crossref]
  34. P. Jiang, T. Prasad, M. J. McFarland, and V. L. Colvin, “Two-dimensional nonclose-packed colloidal crystals formed by spincoating,” Appl. Phys. Lett. 89(1), 011908 (2006).
    [Crossref]
  35. R. Guerra, I. Marri, R. Magri, L. Martin-Samos, O. Pulci, E. Degoli, and S. Ossicini, “Optical properties of silicon nanocrystallites in SiO2 matrix: crystalline vs. amorphous case,” Superlattices Microstruct. 46(1–2), 246–252 (2009).
    [Crossref]
  36. S. Wippermann, M. Vörös, A. Gali, F. Gygi, G. T. Zimanyi, and G. Galli, “Solar nanocomposites with complementary charge extraction pathways for electrons and holes: Si embedded in ZnS,” Phys. Rev. Lett. 112(10), 106801 (2014).
    [Crossref] [PubMed]
  37. E. Tiguntseva, A. Chebykin, A. Ishteev, R. Haroldson, B. Balachandran, E. Ushakova, F. Komissarenko, H. Wang, V. Milichko, A. Tsypkin, D. Zuev, W. Hu, S. Makarov, and A. Zakhidov, “Resonant silicon nanoparticles for enhancement of light absorption and photoluminescence from hybrid perovskite films and metasurfaces,” Nanoscale 9(34), 12486–12493 (2017).
    [Crossref] [PubMed]
  38. M. L. Petrus, J. Schlipf, C. Li, T. P. Gujar, N. Giesbrecht, P. Müller-Buschbaum, M. Thelakkat, T. Bein, S. Hüttner, and P. Docampo, “Capturing the Sun: A Review of the Challenges and Perspectives of Perovskite Solar Cells,” Adv. Energy Mater. 7(16), 1700264 (2017).
    [Crossref]
  39. O. E. Semonin, G. A. Elbaz, D. B. Straus, T. D. Hull, D. W. Paley, A. M. van der Zande, J. C. Hone, I. Kymissis, C. R. Kagan, X. Roy, and J. S. Owen, “Limits of Carrier Diffusion in n-Type and p-Type CH3NH3PbI3 Perovskite Single Crystals,” J. Phys. Chem. Lett. 7(17), 3510–3518 (2016).
    [Crossref] [PubMed]
  40. W. Tian, C. Zhao, J. Leng, R. Cui, and S. Jin, “Visualizing Carrier Diffusion in Individual Single-Crystal Organolead Halide Perovskite Nanowires and Nanoplates,” J. Am. Chem. Soc. 137(39), 12458–12461 (2015).
    [Crossref] [PubMed]
  41. K. Handloser, N. Giesbrecht, T. Bein, P. Docampo, M. Handloser, and A. Hartschuh, “Contactless Visualization of Fast Charge Carrier Diffusion in Hybrid Halide Perovskite Thin Films,” ACS Photonics 3(2), 255–261 (2016).
    [Crossref]
  42. A. Jiménez-Solano, J. F. Galisteo-López, and H. Míguez, “Absorption and Emission of Light in Optoelectronic Nanomaterials: The Role of the Local Optical Environment,” J. Phys. Chem. Lett. 9(8), 2077–2084 (2018).
    [Crossref] [PubMed]
  43. R. L. Milot, G. E. Eperon, H. J. Snaith, M. B. Johnston, and L. M. Herz, “Temperature-Dependent Charge-Carrier Dynamics in CH3NH3PbI3 Perovskite Thin Films,” Adv. Funct. Mater. 25(39), 6218–6227 (2015).
    [Crossref]

2018 (1)

A. Jiménez-Solano, J. F. Galisteo-López, and H. Míguez, “Absorption and Emission of Light in Optoelectronic Nanomaterials: The Role of the Local Optical Environment,” J. Phys. Chem. Lett. 9(8), 2077–2084 (2018).
[Crossref] [PubMed]

2017 (5)

J.-W. Lee, Y.-T. Hsieh, N. De Marco, S.-H. Bae, Q. Han, and Y. Yang, “Halide perovskites for tandem solar cells,” J. Phys. Chem. Lett. 8(9), 1999–2011 (2017).
[Crossref] [PubMed]

J. M. Miranda-Muñoz, G. Lozano, and H. Míguez, “Design and realization of a novel optically disordered material: a demonstration of a Mie glass,” Adv. Opt. Mater. 5(10), 1700025 (2017).
[Crossref]

M. Anaya, G. Lozano, M. E. Calvo, and H. Míguez, “ABX3 perovskites for tandem solar cells,” Joule 1(4), 769–793 (2017).
[Crossref]

E. Tiguntseva, A. Chebykin, A. Ishteev, R. Haroldson, B. Balachandran, E. Ushakova, F. Komissarenko, H. Wang, V. Milichko, A. Tsypkin, D. Zuev, W. Hu, S. Makarov, and A. Zakhidov, “Resonant silicon nanoparticles for enhancement of light absorption and photoluminescence from hybrid perovskite films and metasurfaces,” Nanoscale 9(34), 12486–12493 (2017).
[Crossref] [PubMed]

M. L. Petrus, J. Schlipf, C. Li, T. P. Gujar, N. Giesbrecht, P. Müller-Buschbaum, M. Thelakkat, T. Bein, S. Hüttner, and P. Docampo, “Capturing the Sun: A Review of the Challenges and Perspectives of Perovskite Solar Cells,” Adv. Energy Mater. 7(16), 1700264 (2017).
[Crossref]

2016 (9)

O. E. Semonin, G. A. Elbaz, D. B. Straus, T. D. Hull, D. W. Paley, A. M. van der Zande, J. C. Hone, I. Kymissis, C. R. Kagan, X. Roy, and J. S. Owen, “Limits of Carrier Diffusion in n-Type and p-Type CH3NH3PbI3 Perovskite Single Crystals,” J. Phys. Chem. Lett. 7(17), 3510–3518 (2016).
[Crossref] [PubMed]

J. M. Miranda-Muñoz, S. Carretero-Palacios, A. Jiménez-Solano, Y. Li, G. Lozano, and H. Míguez, “Efficient bifacial dye-sensitized solar cells through disorder by design,” J Mater Chem A Mater 4(5), 1953–1961 (2016).
[Crossref] [PubMed]

J. P. Correa-Baena, M. Anaya, G. Lozano, W. Tress, K. Domanski, M. Saliba, T. Matsui, T. J. Jacobsson, M. E. Calvo, A. Abate, M. Grätzel, H. Míguez, and A. Hagfeldt, “Unbroken perovskite: interplay of morphology, electro-optical properties and ionic movement,” Adv. Mater. 28(25), 5031–5037 (2016).
[Crossref] [PubMed]

S.-H. Bae, H. Zhao, Y.-T. Hsieh, L. Zuo, N. De Marco, Y. S. Rim, G. Li, and Y. Yang, “Printable Solar Cells from Advanced Solution-Processible Materials,” Chem 1(2), 197–219 (2016).
[Crossref]

S. Jang, J. Yoon, K. Ha, M.-C. Kim, D. H. Kim, S. M. Kim, S. M. Kang, S. J. Park, H. S. Jung, and M. Choi, “Facile fabrication of three-dimensional TiO2 structures for highly efficient perovskite solar cells,” Nano Energy 22, 499–506 (2016).
[Crossref]

S. M. Kang, S. Jang, J.-K. Lee, J. Yoon, D.-E. Yoo, J.-W. Lee, M. Choi, and N.-G. Park, “Moth-Eye TiO2 Layer for Improving Light Harvesting Efficiency in Perovskite Solar Cells,” Small 12(18), 2443–2449 (2016).
[Crossref] [PubMed]

J. Yin, H. Qu, J. Cao, H. Tai, J. Li, and N. Zheng, “Light absorption enhancement by embedding submicron scattering TiO2 nanoparticles in perovskite solar cells,” RSC Advances 6(29), 24596–24602 (2016).
[Crossref]

R. S. Wu, B. C. Yang, C. J. Zhang, Y. L. Huang, Y. X. Cui, P. Liu, C. H. Zhou, Y. Y. Hao, Y. L. Gao, and J. L. Yang, “Prominent efficiency enhancement in perovskite solar cells employing silica-coated gold nanorods,” J. Phys. Chem. C 120(13), 6996–7004 (2016).
[Crossref]

K. Handloser, N. Giesbrecht, T. Bein, P. Docampo, M. Handloser, and A. Hartschuh, “Contactless Visualization of Fast Charge Carrier Diffusion in Hybrid Halide Perovskite Thin Films,” ACS Photonics 3(2), 255–261 (2016).
[Crossref]

2015 (8)

R. L. Milot, G. E. Eperon, H. J. Snaith, M. B. Johnston, and L. M. Herz, “Temperature-Dependent Charge-Carrier Dynamics in CH3NH3PbI3 Perovskite Thin Films,” Adv. Funct. Mater. 25(39), 6218–6227 (2015).
[Crossref]

H.-L. Hsu, T.-Y. Juang, C.-P. Chen, C.-M. Hsieh, C.-C. Yang, C.-L. Huang, and R.-J. Jeng, “Enhanced efficiency of organic and perovskite photovoltaics from shape-dependent broadband plasmonic effects of silver nanoplates,” Sol. Energy Mater. Sol. Cells 140, 224–231 (2015).
[Crossref]

W. Zhang, M. Anaya, G. Lozano, M. E. Calvo, M. B. Johnston, H. Míguez, and H. J. Snaith, “Highly efficient perovskite solar cells with tunable structural color,” Nano Lett. 15(3), 1698–1702 (2015).
[Crossref] [PubMed]

P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S. J. Moon, J. H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
[Crossref] [PubMed]

M. Anaya, G. Lozano, M. E. Calvo, W. Zhang, M. B. Johnston, H. J. Snaith, and H. Míguez, “Optical description of mesostructured organic–inorganic halide perovskite solar cells,” J. Phys. Chem. Lett. 6(1), 48–53 (2015).
[Crossref] [PubMed]

Z. Lu, X. Pan, Y. Ma, Y. Li, L. Zheng, D. Zhang, Q. Xu, Z. Chen, S. Wang, B. Qu, F. Liu, Y. Huang, L. Xiao, and G. Qihuang, “Plasmonic-enhanced perovskite solar cells using alloy popcorn nanoparticles,” RSC Advances 5 (15), 11175–11179 (2015).
[Crossref]

S. Carretero-Palacios, M. E. Calvo, and H. Míguez, “Absorption enhancement in organic–inorganic halide perovskite films with embedded plasmonic gold nanoparticles,” J Phys Chem C Nanomater Interfaces 119(32), 18635–18640 (2015).
[Crossref] [PubMed]

W. Tian, C. Zhao, J. Leng, R. Cui, and S. Jin, “Visualizing Carrier Diffusion in Individual Single-Crystal Organolead Halide Perovskite Nanowires and Nanoplates,” J. Am. Chem. Soc. 137(39), 12458–12461 (2015).
[Crossref] [PubMed]

2014 (7)

I. Rodriguez, L. Shi, X. Lu, B. A. Korgel, R. A. Álvarez-Puebla, and F. Meseguer, “Silicon nanoparticles as Raman scattering enhancers,” Nanoscale 6(11), 5666–5670 (2014).
[Crossref] [PubMed]

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5(1), 3402 (2014).
[Crossref] [PubMed]

G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herza, and H. J. Snaith, “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells,” Energy Environ. Sci. 7(3), 982–988 (2014).
[Crossref]

C. Roldan-Carmona, O. Malinkiewicz, R. Betancur, G. Longo, C. Momblona, F. Jaramillo, L. Camacho, and H. Bolink, “Flexible high efficiency perovskite solar cells,” Energy Environ. Sci. 7(3), 994–997 (2014).
[Crossref]

M. A. Green, A. Ho-Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nat. Photonics 8(7), 506–514 (2014).
[Crossref]

S. M. Kang, N. Ahn, J.-W. Lee, M. Choi, and N.-G. Park, “Water-Repellent Perovskite Solar Cell,” J. Mater. Chem. A Mater. Energy Sustain. 2(47), 20017–20021 (2014).
[Crossref]

S. Wippermann, M. Vörös, A. Gali, F. Gygi, G. T. Zimanyi, and G. Galli, “Solar nanocomposites with complementary charge extraction pathways for electrons and holes: Si embedded in ZnS,” Phys. Rev. Lett. 112(10), 106801 (2014).
[Crossref] [PubMed]

2013 (2)

W. Zhang, M. Saliba, S. D. Stranks, Y. Sun, X. Shi, U. Wiesner, and H. J. Snaith, “Enhancement of perovskite-based solar cells employing core-shell metal nanoparticles,” Nano Lett. 13(9), 4505–4510 (2013).
[Crossref] [PubMed]

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells,” Nano Lett. 13(4), 1764–1769 (2013).
[Crossref] [PubMed]

2012 (1)

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338(6107), 643–647 (2012).
[Crossref] [PubMed]

2011 (1)

N. C. Jeong, C. Prasittichai, and J. T. Hupp, “Photocurrent enhancement by surface plasmon resonance of silver nanoparticles in highly porous dye-sensitized solar cells,” Langmuir 27(23), 14609–14614 (2011).
[Crossref] [PubMed]

2009 (2)

O. K. Varghese, M. Paulose, and C. A. Grimes, “Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells,” Nat. Nanotechnol. 4(9), 592–597 (2009).
[Crossref] [PubMed]

R. Guerra, I. Marri, R. Magri, L. Martin-Samos, O. Pulci, E. Degoli, and S. Ossicini, “Optical properties of silicon nanocrystallites in SiO2 matrix: crystalline vs. amorphous case,” Superlattices Microstruct. 46(1–2), 246–252 (2009).
[Crossref]

2006 (1)

P. Jiang, T. Prasad, M. J. McFarland, and V. L. Colvin, “Two-dimensional nonclose-packed colloidal crystals formed by spincoating,” Appl. Phys. Lett. 89(1), 011908 (2006).
[Crossref]

2004 (1)

Z. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, “Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell,” Coord. Chem. Rev. 248(13–14), 1381–1389 (2004).
[Crossref]

1997 (1)

A. van Blaaderen, R. Ruel, and P. Wiltzius, “Template-directed colloidal crystallization,” Nature 385(6614), 321–324 (1997).
[Crossref]

1982 (1)

H. W. Deckman and J. H. Dunsmuir, “Natural lithography,” Appl. Phys. Lett. 41(4), 377–379 (1982).
[Crossref]

Abate, A.

J. P. Correa-Baena, M. Anaya, G. Lozano, W. Tress, K. Domanski, M. Saliba, T. Matsui, T. J. Jacobsson, M. E. Calvo, A. Abate, M. Grätzel, H. Míguez, and A. Hagfeldt, “Unbroken perovskite: interplay of morphology, electro-optical properties and ionic movement,” Adv. Mater. 28(25), 5031–5037 (2016).
[Crossref] [PubMed]

Ahn, N.

S. M. Kang, N. Ahn, J.-W. Lee, M. Choi, and N.-G. Park, “Water-Repellent Perovskite Solar Cell,” J. Mater. Chem. A Mater. Energy Sustain. 2(47), 20017–20021 (2014).
[Crossref]

Álvarez-Puebla, R. A.

I. Rodriguez, L. Shi, X. Lu, B. A. Korgel, R. A. Álvarez-Puebla, and F. Meseguer, “Silicon nanoparticles as Raman scattering enhancers,” Nanoscale 6(11), 5666–5670 (2014).
[Crossref] [PubMed]

Anaya, M.

M. Anaya, G. Lozano, M. E. Calvo, and H. Míguez, “ABX3 perovskites for tandem solar cells,” Joule 1(4), 769–793 (2017).
[Crossref]

J. P. Correa-Baena, M. Anaya, G. Lozano, W. Tress, K. Domanski, M. Saliba, T. Matsui, T. J. Jacobsson, M. E. Calvo, A. Abate, M. Grätzel, H. Míguez, and A. Hagfeldt, “Unbroken perovskite: interplay of morphology, electro-optical properties and ionic movement,” Adv. Mater. 28(25), 5031–5037 (2016).
[Crossref] [PubMed]

M. Anaya, G. Lozano, M. E. Calvo, W. Zhang, M. B. Johnston, H. J. Snaith, and H. Míguez, “Optical description of mesostructured organic–inorganic halide perovskite solar cells,” J. Phys. Chem. Lett. 6(1), 48–53 (2015).
[Crossref] [PubMed]

W. Zhang, M. Anaya, G. Lozano, M. E. Calvo, M. B. Johnston, H. Míguez, and H. J. Snaith, “Highly efficient perovskite solar cells with tunable structural color,” Nano Lett. 15(3), 1698–1702 (2015).
[Crossref] [PubMed]

Arakawa, H.

Z. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, “Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell,” Coord. Chem. Rev. 248(13–14), 1381–1389 (2004).
[Crossref]

Bae, S.-H.

J.-W. Lee, Y.-T. Hsieh, N. De Marco, S.-H. Bae, Q. Han, and Y. Yang, “Halide perovskites for tandem solar cells,” J. Phys. Chem. Lett. 8(9), 1999–2011 (2017).
[Crossref] [PubMed]

S.-H. Bae, H. Zhao, Y.-T. Hsieh, L. Zuo, N. De Marco, Y. S. Rim, G. Li, and Y. Yang, “Printable Solar Cells from Advanced Solution-Processible Materials,” Chem 1(2), 197–219 (2016).
[Crossref]

Balachandran, B.

E. Tiguntseva, A. Chebykin, A. Ishteev, R. Haroldson, B. Balachandran, E. Ushakova, F. Komissarenko, H. Wang, V. Milichko, A. Tsypkin, D. Zuev, W. Hu, S. Makarov, and A. Zakhidov, “Resonant silicon nanoparticles for enhancement of light absorption and photoluminescence from hybrid perovskite films and metasurfaces,” Nanoscale 9(34), 12486–12493 (2017).
[Crossref] [PubMed]

Ballif, C.

P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S. J. Moon, J. H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
[Crossref] [PubMed]

Bein, T.

M. L. Petrus, J. Schlipf, C. Li, T. P. Gujar, N. Giesbrecht, P. Müller-Buschbaum, M. Thelakkat, T. Bein, S. Hüttner, and P. Docampo, “Capturing the Sun: A Review of the Challenges and Perspectives of Perovskite Solar Cells,” Adv. Energy Mater. 7(16), 1700264 (2017).
[Crossref]

K. Handloser, N. Giesbrecht, T. Bein, P. Docampo, M. Handloser, and A. Hartschuh, “Contactless Visualization of Fast Charge Carrier Diffusion in Hybrid Halide Perovskite Thin Films,” ACS Photonics 3(2), 255–261 (2016).
[Crossref]

Betancur, R.

C. Roldan-Carmona, O. Malinkiewicz, R. Betancur, G. Longo, C. Momblona, F. Jaramillo, L. Camacho, and H. Bolink, “Flexible high efficiency perovskite solar cells,” Energy Environ. Sci. 7(3), 994–997 (2014).
[Crossref]

Bolink, H.

C. Roldan-Carmona, O. Malinkiewicz, R. Betancur, G. Longo, C. Momblona, F. Jaramillo, L. Camacho, and H. Bolink, “Flexible high efficiency perovskite solar cells,” Energy Environ. Sci. 7(3), 994–997 (2014).
[Crossref]

Calvo, M. E.

M. Anaya, G. Lozano, M. E. Calvo, and H. Míguez, “ABX3 perovskites for tandem solar cells,” Joule 1(4), 769–793 (2017).
[Crossref]

J. P. Correa-Baena, M. Anaya, G. Lozano, W. Tress, K. Domanski, M. Saliba, T. Matsui, T. J. Jacobsson, M. E. Calvo, A. Abate, M. Grätzel, H. Míguez, and A. Hagfeldt, “Unbroken perovskite: interplay of morphology, electro-optical properties and ionic movement,” Adv. Mater. 28(25), 5031–5037 (2016).
[Crossref] [PubMed]

M. Anaya, G. Lozano, M. E. Calvo, W. Zhang, M. B. Johnston, H. J. Snaith, and H. Míguez, “Optical description of mesostructured organic–inorganic halide perovskite solar cells,” J. Phys. Chem. Lett. 6(1), 48–53 (2015).
[Crossref] [PubMed]

W. Zhang, M. Anaya, G. Lozano, M. E. Calvo, M. B. Johnston, H. Míguez, and H. J. Snaith, “Highly efficient perovskite solar cells with tunable structural color,” Nano Lett. 15(3), 1698–1702 (2015).
[Crossref] [PubMed]

S. Carretero-Palacios, M. E. Calvo, and H. Míguez, “Absorption enhancement in organic–inorganic halide perovskite films with embedded plasmonic gold nanoparticles,” J Phys Chem C Nanomater Interfaces 119(32), 18635–18640 (2015).
[Crossref] [PubMed]

Camacho, L.

C. Roldan-Carmona, O. Malinkiewicz, R. Betancur, G. Longo, C. Momblona, F. Jaramillo, L. Camacho, and H. Bolink, “Flexible high efficiency perovskite solar cells,” Energy Environ. Sci. 7(3), 994–997 (2014).
[Crossref]

Cao, J.

J. Yin, H. Qu, J. Cao, H. Tai, J. Li, and N. Zheng, “Light absorption enhancement by embedding submicron scattering TiO2 nanoparticles in perovskite solar cells,” RSC Advances 6(29), 24596–24602 (2016).
[Crossref]

Carretero-Palacios, S.

J. M. Miranda-Muñoz, S. Carretero-Palacios, A. Jiménez-Solano, Y. Li, G. Lozano, and H. Míguez, “Efficient bifacial dye-sensitized solar cells through disorder by design,” J Mater Chem A Mater 4(5), 1953–1961 (2016).
[Crossref] [PubMed]

S. Carretero-Palacios, M. E. Calvo, and H. Míguez, “Absorption enhancement in organic–inorganic halide perovskite films with embedded plasmonic gold nanoparticles,” J Phys Chem C Nanomater Interfaces 119(32), 18635–18640 (2015).
[Crossref] [PubMed]

Chebykin, A.

E. Tiguntseva, A. Chebykin, A. Ishteev, R. Haroldson, B. Balachandran, E. Ushakova, F. Komissarenko, H. Wang, V. Milichko, A. Tsypkin, D. Zuev, W. Hu, S. Makarov, and A. Zakhidov, “Resonant silicon nanoparticles for enhancement of light absorption and photoluminescence from hybrid perovskite films and metasurfaces,” Nanoscale 9(34), 12486–12493 (2017).
[Crossref] [PubMed]

Chen, C.-P.

H.-L. Hsu, T.-Y. Juang, C.-P. Chen, C.-M. Hsieh, C.-C. Yang, C.-L. Huang, and R.-J. Jeng, “Enhanced efficiency of organic and perovskite photovoltaics from shape-dependent broadband plasmonic effects of silver nanoplates,” Sol. Energy Mater. Sol. Cells 140, 224–231 (2015).
[Crossref]

Chen, Z.

Z. Lu, X. Pan, Y. Ma, Y. Li, L. Zheng, D. Zhang, Q. Xu, Z. Chen, S. Wang, B. Qu, F. Liu, Y. Huang, L. Xiao, and G. Qihuang, “Plasmonic-enhanced perovskite solar cells using alloy popcorn nanoparticles,” RSC Advances 5 (15), 11175–11179 (2015).
[Crossref]

Chichkov, B. N.

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5(1), 3402 (2014).
[Crossref] [PubMed]

Choi, M.

S. M. Kang, S. Jang, J.-K. Lee, J. Yoon, D.-E. Yoo, J.-W. Lee, M. Choi, and N.-G. Park, “Moth-Eye TiO2 Layer for Improving Light Harvesting Efficiency in Perovskite Solar Cells,” Small 12(18), 2443–2449 (2016).
[Crossref] [PubMed]

S. Jang, J. Yoon, K. Ha, M.-C. Kim, D. H. Kim, S. M. Kim, S. M. Kang, S. J. Park, H. S. Jung, and M. Choi, “Facile fabrication of three-dimensional TiO2 structures for highly efficient perovskite solar cells,” Nano Energy 22, 499–506 (2016).
[Crossref]

S. M. Kang, N. Ahn, J.-W. Lee, M. Choi, and N.-G. Park, “Water-Repellent Perovskite Solar Cell,” J. Mater. Chem. A Mater. Energy Sustain. 2(47), 20017–20021 (2014).
[Crossref]

Colvin, V. L.

P. Jiang, T. Prasad, M. J. McFarland, and V. L. Colvin, “Two-dimensional nonclose-packed colloidal crystals formed by spincoating,” Appl. Phys. Lett. 89(1), 011908 (2006).
[Crossref]

Correa-Baena, J. P.

J. P. Correa-Baena, M. Anaya, G. Lozano, W. Tress, K. Domanski, M. Saliba, T. Matsui, T. J. Jacobsson, M. E. Calvo, A. Abate, M. Grätzel, H. Míguez, and A. Hagfeldt, “Unbroken perovskite: interplay of morphology, electro-optical properties and ionic movement,” Adv. Mater. 28(25), 5031–5037 (2016).
[Crossref] [PubMed]

Cui, R.

W. Tian, C. Zhao, J. Leng, R. Cui, and S. Jin, “Visualizing Carrier Diffusion in Individual Single-Crystal Organolead Halide Perovskite Nanowires and Nanoplates,” J. Am. Chem. Soc. 137(39), 12458–12461 (2015).
[Crossref] [PubMed]

Cui, Y. X.

R. S. Wu, B. C. Yang, C. J. Zhang, Y. L. Huang, Y. X. Cui, P. Liu, C. H. Zhou, Y. Y. Hao, Y. L. Gao, and J. L. Yang, “Prominent efficiency enhancement in perovskite solar cells employing silica-coated gold nanorods,” J. Phys. Chem. C 120(13), 6996–7004 (2016).
[Crossref]

De Marco, N.

J.-W. Lee, Y.-T. Hsieh, N. De Marco, S.-H. Bae, Q. Han, and Y. Yang, “Halide perovskites for tandem solar cells,” J. Phys. Chem. Lett. 8(9), 1999–2011 (2017).
[Crossref] [PubMed]

S.-H. Bae, H. Zhao, Y.-T. Hsieh, L. Zuo, N. De Marco, Y. S. Rim, G. Li, and Y. Yang, “Printable Solar Cells from Advanced Solution-Processible Materials,” Chem 1(2), 197–219 (2016).
[Crossref]

De Wolf, S.

P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S. J. Moon, J. H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
[Crossref] [PubMed]

Deckman, H. W.

H. W. Deckman and J. H. Dunsmuir, “Natural lithography,” Appl. Phys. Lett. 41(4), 377–379 (1982).
[Crossref]

Degoli, E.

R. Guerra, I. Marri, R. Magri, L. Martin-Samos, O. Pulci, E. Degoli, and S. Ossicini, “Optical properties of silicon nanocrystallites in SiO2 matrix: crystalline vs. amorphous case,” Superlattices Microstruct. 46(1–2), 246–252 (2009).
[Crossref]

Docampo, P.

M. L. Petrus, J. Schlipf, C. Li, T. P. Gujar, N. Giesbrecht, P. Müller-Buschbaum, M. Thelakkat, T. Bein, S. Hüttner, and P. Docampo, “Capturing the Sun: A Review of the Challenges and Perspectives of Perovskite Solar Cells,” Adv. Energy Mater. 7(16), 1700264 (2017).
[Crossref]

K. Handloser, N. Giesbrecht, T. Bein, P. Docampo, M. Handloser, and A. Hartschuh, “Contactless Visualization of Fast Charge Carrier Diffusion in Hybrid Halide Perovskite Thin Films,” ACS Photonics 3(2), 255–261 (2016).
[Crossref]

Domanski, K.

J. P. Correa-Baena, M. Anaya, G. Lozano, W. Tress, K. Domanski, M. Saliba, T. Matsui, T. J. Jacobsson, M. E. Calvo, A. Abate, M. Grätzel, H. Míguez, and A. Hagfeldt, “Unbroken perovskite: interplay of morphology, electro-optical properties and ionic movement,” Adv. Mater. 28(25), 5031–5037 (2016).
[Crossref] [PubMed]

Dunsmuir, J. H.

H. W. Deckman and J. H. Dunsmuir, “Natural lithography,” Appl. Phys. Lett. 41(4), 377–379 (1982).
[Crossref]

Elbaz, G. A.

O. E. Semonin, G. A. Elbaz, D. B. Straus, T. D. Hull, D. W. Paley, A. M. van der Zande, J. C. Hone, I. Kymissis, C. R. Kagan, X. Roy, and J. S. Owen, “Limits of Carrier Diffusion in n-Type and p-Type CH3NH3PbI3 Perovskite Single Crystals,” J. Phys. Chem. Lett. 7(17), 3510–3518 (2016).
[Crossref] [PubMed]

Eperon, G. E.

R. L. Milot, G. E. Eperon, H. J. Snaith, M. B. Johnston, and L. M. Herz, “Temperature-Dependent Charge-Carrier Dynamics in CH3NH3PbI3 Perovskite Thin Films,” Adv. Funct. Mater. 25(39), 6218–6227 (2015).
[Crossref]

G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herza, and H. J. Snaith, “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells,” Energy Environ. Sci. 7(3), 982–988 (2014).
[Crossref]

Evlyukhin, A. B.

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5(1), 3402 (2014).
[Crossref] [PubMed]

Filipic, M.

P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S. J. Moon, J. H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
[Crossref] [PubMed]

Gali, A.

S. Wippermann, M. Vörös, A. Gali, F. Gygi, G. T. Zimanyi, and G. Galli, “Solar nanocomposites with complementary charge extraction pathways for electrons and holes: Si embedded in ZnS,” Phys. Rev. Lett. 112(10), 106801 (2014).
[Crossref] [PubMed]

Galisteo-López, J. F.

A. Jiménez-Solano, J. F. Galisteo-López, and H. Míguez, “Absorption and Emission of Light in Optoelectronic Nanomaterials: The Role of the Local Optical Environment,” J. Phys. Chem. Lett. 9(8), 2077–2084 (2018).
[Crossref] [PubMed]

Galli, G.

S. Wippermann, M. Vörös, A. Gali, F. Gygi, G. T. Zimanyi, and G. Galli, “Solar nanocomposites with complementary charge extraction pathways for electrons and holes: Si embedded in ZnS,” Phys. Rev. Lett. 112(10), 106801 (2014).
[Crossref] [PubMed]

Gao, Y. L.

R. S. Wu, B. C. Yang, C. J. Zhang, Y. L. Huang, Y. X. Cui, P. Liu, C. H. Zhou, Y. Y. Hao, Y. L. Gao, and J. L. Yang, “Prominent efficiency enhancement in perovskite solar cells employing silica-coated gold nanorods,” J. Phys. Chem. C 120(13), 6996–7004 (2016).
[Crossref]

Giesbrecht, N.

M. L. Petrus, J. Schlipf, C. Li, T. P. Gujar, N. Giesbrecht, P. Müller-Buschbaum, M. Thelakkat, T. Bein, S. Hüttner, and P. Docampo, “Capturing the Sun: A Review of the Challenges and Perspectives of Perovskite Solar Cells,” Adv. Energy Mater. 7(16), 1700264 (2017).
[Crossref]

K. Handloser, N. Giesbrecht, T. Bein, P. Docampo, M. Handloser, and A. Hartschuh, “Contactless Visualization of Fast Charge Carrier Diffusion in Hybrid Halide Perovskite Thin Films,” ACS Photonics 3(2), 255–261 (2016).
[Crossref]

Grätzel, M.

J. P. Correa-Baena, M. Anaya, G. Lozano, W. Tress, K. Domanski, M. Saliba, T. Matsui, T. J. Jacobsson, M. E. Calvo, A. Abate, M. Grätzel, H. Míguez, and A. Hagfeldt, “Unbroken perovskite: interplay of morphology, electro-optical properties and ionic movement,” Adv. Mater. 28(25), 5031–5037 (2016).
[Crossref] [PubMed]

Green, M. A.

M. A. Green, A. Ho-Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nat. Photonics 8(7), 506–514 (2014).
[Crossref]

Grimes, C. A.

O. K. Varghese, M. Paulose, and C. A. Grimes, “Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells,” Nat. Nanotechnol. 4(9), 592–597 (2009).
[Crossref] [PubMed]

Guerra, R.

R. Guerra, I. Marri, R. Magri, L. Martin-Samos, O. Pulci, E. Degoli, and S. Ossicini, “Optical properties of silicon nanocrystallites in SiO2 matrix: crystalline vs. amorphous case,” Superlattices Microstruct. 46(1–2), 246–252 (2009).
[Crossref]

Gujar, T. P.

M. L. Petrus, J. Schlipf, C. Li, T. P. Gujar, N. Giesbrecht, P. Müller-Buschbaum, M. Thelakkat, T. Bein, S. Hüttner, and P. Docampo, “Capturing the Sun: A Review of the Challenges and Perspectives of Perovskite Solar Cells,” Adv. Energy Mater. 7(16), 1700264 (2017).
[Crossref]

Gygi, F.

S. Wippermann, M. Vörös, A. Gali, F. Gygi, G. T. Zimanyi, and G. Galli, “Solar nanocomposites with complementary charge extraction pathways for electrons and holes: Si embedded in ZnS,” Phys. Rev. Lett. 112(10), 106801 (2014).
[Crossref] [PubMed]

Ha, K.

S. Jang, J. Yoon, K. Ha, M.-C. Kim, D. H. Kim, S. M. Kim, S. M. Kang, S. J. Park, H. S. Jung, and M. Choi, “Facile fabrication of three-dimensional TiO2 structures for highly efficient perovskite solar cells,” Nano Energy 22, 499–506 (2016).
[Crossref]

Hagfeldt, A.

J. P. Correa-Baena, M. Anaya, G. Lozano, W. Tress, K. Domanski, M. Saliba, T. Matsui, T. J. Jacobsson, M. E. Calvo, A. Abate, M. Grätzel, H. Míguez, and A. Hagfeldt, “Unbroken perovskite: interplay of morphology, electro-optical properties and ionic movement,” Adv. Mater. 28(25), 5031–5037 (2016).
[Crossref] [PubMed]

Han, Q.

J.-W. Lee, Y.-T. Hsieh, N. De Marco, S.-H. Bae, Q. Han, and Y. Yang, “Halide perovskites for tandem solar cells,” J. Phys. Chem. Lett. 8(9), 1999–2011 (2017).
[Crossref] [PubMed]

Handloser, K.

K. Handloser, N. Giesbrecht, T. Bein, P. Docampo, M. Handloser, and A. Hartschuh, “Contactless Visualization of Fast Charge Carrier Diffusion in Hybrid Halide Perovskite Thin Films,” ACS Photonics 3(2), 255–261 (2016).
[Crossref]

Handloser, M.

K. Handloser, N. Giesbrecht, T. Bein, P. Docampo, M. Handloser, and A. Hartschuh, “Contactless Visualization of Fast Charge Carrier Diffusion in Hybrid Halide Perovskite Thin Films,” ACS Photonics 3(2), 255–261 (2016).
[Crossref]

Hao, Y. Y.

R. S. Wu, B. C. Yang, C. J. Zhang, Y. L. Huang, Y. X. Cui, P. Liu, C. H. Zhou, Y. Y. Hao, Y. L. Gao, and J. L. Yang, “Prominent efficiency enhancement in perovskite solar cells employing silica-coated gold nanorods,” J. Phys. Chem. C 120(13), 6996–7004 (2016).
[Crossref]

Haroldson, R.

E. Tiguntseva, A. Chebykin, A. Ishteev, R. Haroldson, B. Balachandran, E. Ushakova, F. Komissarenko, H. Wang, V. Milichko, A. Tsypkin, D. Zuev, W. Hu, S. Makarov, and A. Zakhidov, “Resonant silicon nanoparticles for enhancement of light absorption and photoluminescence from hybrid perovskite films and metasurfaces,” Nanoscale 9(34), 12486–12493 (2017).
[Crossref] [PubMed]

Hartschuh, A.

K. Handloser, N. Giesbrecht, T. Bein, P. Docampo, M. Handloser, and A. Hartschuh, “Contactless Visualization of Fast Charge Carrier Diffusion in Hybrid Halide Perovskite Thin Films,” ACS Photonics 3(2), 255–261 (2016).
[Crossref]

Heo, J. H.

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells,” Nano Lett. 13(4), 1764–1769 (2013).
[Crossref] [PubMed]

Herz, L. M.

R. L. Milot, G. E. Eperon, H. J. Snaith, M. B. Johnston, and L. M. Herz, “Temperature-Dependent Charge-Carrier Dynamics in CH3NH3PbI3 Perovskite Thin Films,” Adv. Funct. Mater. 25(39), 6218–6227 (2015).
[Crossref]

Herza, L. M.

G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herza, and H. J. Snaith, “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells,” Energy Environ. Sci. 7(3), 982–988 (2014).
[Crossref]

Ho-Baillie, A.

M. A. Green, A. Ho-Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nat. Photonics 8(7), 506–514 (2014).
[Crossref]

Hone, J. C.

O. E. Semonin, G. A. Elbaz, D. B. Straus, T. D. Hull, D. W. Paley, A. M. van der Zande, J. C. Hone, I. Kymissis, C. R. Kagan, X. Roy, and J. S. Owen, “Limits of Carrier Diffusion in n-Type and p-Type CH3NH3PbI3 Perovskite Single Crystals,” J. Phys. Chem. Lett. 7(17), 3510–3518 (2016).
[Crossref] [PubMed]

Hsieh, C.-M.

H.-L. Hsu, T.-Y. Juang, C.-P. Chen, C.-M. Hsieh, C.-C. Yang, C.-L. Huang, and R.-J. Jeng, “Enhanced efficiency of organic and perovskite photovoltaics from shape-dependent broadband plasmonic effects of silver nanoplates,” Sol. Energy Mater. Sol. Cells 140, 224–231 (2015).
[Crossref]

Hsieh, Y.-T.

J.-W. Lee, Y.-T. Hsieh, N. De Marco, S.-H. Bae, Q. Han, and Y. Yang, “Halide perovskites for tandem solar cells,” J. Phys. Chem. Lett. 8(9), 1999–2011 (2017).
[Crossref] [PubMed]

S.-H. Bae, H. Zhao, Y.-T. Hsieh, L. Zuo, N. De Marco, Y. S. Rim, G. Li, and Y. Yang, “Printable Solar Cells from Advanced Solution-Processible Materials,” Chem 1(2), 197–219 (2016).
[Crossref]

Hsu, H.-L.

H.-L. Hsu, T.-Y. Juang, C.-P. Chen, C.-M. Hsieh, C.-C. Yang, C.-L. Huang, and R.-J. Jeng, “Enhanced efficiency of organic and perovskite photovoltaics from shape-dependent broadband plasmonic effects of silver nanoplates,” Sol. Energy Mater. Sol. Cells 140, 224–231 (2015).
[Crossref]

Hu, W.

E. Tiguntseva, A. Chebykin, A. Ishteev, R. Haroldson, B. Balachandran, E. Ushakova, F. Komissarenko, H. Wang, V. Milichko, A. Tsypkin, D. Zuev, W. Hu, S. Makarov, and A. Zakhidov, “Resonant silicon nanoparticles for enhancement of light absorption and photoluminescence from hybrid perovskite films and metasurfaces,” Nanoscale 9(34), 12486–12493 (2017).
[Crossref] [PubMed]

Huang, C.-L.

H.-L. Hsu, T.-Y. Juang, C.-P. Chen, C.-M. Hsieh, C.-C. Yang, C.-L. Huang, and R.-J. Jeng, “Enhanced efficiency of organic and perovskite photovoltaics from shape-dependent broadband plasmonic effects of silver nanoplates,” Sol. Energy Mater. Sol. Cells 140, 224–231 (2015).
[Crossref]

Huang, Y.

Z. Lu, X. Pan, Y. Ma, Y. Li, L. Zheng, D. Zhang, Q. Xu, Z. Chen, S. Wang, B. Qu, F. Liu, Y. Huang, L. Xiao, and G. Qihuang, “Plasmonic-enhanced perovskite solar cells using alloy popcorn nanoparticles,” RSC Advances 5 (15), 11175–11179 (2015).
[Crossref]

Huang, Y. L.

R. S. Wu, B. C. Yang, C. J. Zhang, Y. L. Huang, Y. X. Cui, P. Liu, C. H. Zhou, Y. Y. Hao, Y. L. Gao, and J. L. Yang, “Prominent efficiency enhancement in perovskite solar cells employing silica-coated gold nanorods,” J. Phys. Chem. C 120(13), 6996–7004 (2016).
[Crossref]

Hull, T. D.

O. E. Semonin, G. A. Elbaz, D. B. Straus, T. D. Hull, D. W. Paley, A. M. van der Zande, J. C. Hone, I. Kymissis, C. R. Kagan, X. Roy, and J. S. Owen, “Limits of Carrier Diffusion in n-Type and p-Type CH3NH3PbI3 Perovskite Single Crystals,” J. Phys. Chem. Lett. 7(17), 3510–3518 (2016).
[Crossref] [PubMed]

Hupp, J. T.

N. C. Jeong, C. Prasittichai, and J. T. Hupp, “Photocurrent enhancement by surface plasmon resonance of silver nanoparticles in highly porous dye-sensitized solar cells,” Langmuir 27(23), 14609–14614 (2011).
[Crossref] [PubMed]

Hüttner, S.

M. L. Petrus, J. Schlipf, C. Li, T. P. Gujar, N. Giesbrecht, P. Müller-Buschbaum, M. Thelakkat, T. Bein, S. Hüttner, and P. Docampo, “Capturing the Sun: A Review of the Challenges and Perspectives of Perovskite Solar Cells,” Adv. Energy Mater. 7(16), 1700264 (2017).
[Crossref]

Im, S. H.

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells,” Nano Lett. 13(4), 1764–1769 (2013).
[Crossref] [PubMed]

Ishteev, A.

E. Tiguntseva, A. Chebykin, A. Ishteev, R. Haroldson, B. Balachandran, E. Ushakova, F. Komissarenko, H. Wang, V. Milichko, A. Tsypkin, D. Zuev, W. Hu, S. Makarov, and A. Zakhidov, “Resonant silicon nanoparticles for enhancement of light absorption and photoluminescence from hybrid perovskite films and metasurfaces,” Nanoscale 9(34), 12486–12493 (2017).
[Crossref] [PubMed]

Jacobsson, T. J.

J. P. Correa-Baena, M. Anaya, G. Lozano, W. Tress, K. Domanski, M. Saliba, T. Matsui, T. J. Jacobsson, M. E. Calvo, A. Abate, M. Grätzel, H. Míguez, and A. Hagfeldt, “Unbroken perovskite: interplay of morphology, electro-optical properties and ionic movement,” Adv. Mater. 28(25), 5031–5037 (2016).
[Crossref] [PubMed]

Jang, S.

S. Jang, J. Yoon, K. Ha, M.-C. Kim, D. H. Kim, S. M. Kim, S. M. Kang, S. J. Park, H. S. Jung, and M. Choi, “Facile fabrication of three-dimensional TiO2 structures for highly efficient perovskite solar cells,” Nano Energy 22, 499–506 (2016).
[Crossref]

S. M. Kang, S. Jang, J.-K. Lee, J. Yoon, D.-E. Yoo, J.-W. Lee, M. Choi, and N.-G. Park, “Moth-Eye TiO2 Layer for Improving Light Harvesting Efficiency in Perovskite Solar Cells,” Small 12(18), 2443–2449 (2016).
[Crossref] [PubMed]

Jaramillo, F.

C. Roldan-Carmona, O. Malinkiewicz, R. Betancur, G. Longo, C. Momblona, F. Jaramillo, L. Camacho, and H. Bolink, “Flexible high efficiency perovskite solar cells,” Energy Environ. Sci. 7(3), 994–997 (2014).
[Crossref]

Jeng, R.-J.

H.-L. Hsu, T.-Y. Juang, C.-P. Chen, C.-M. Hsieh, C.-C. Yang, C.-L. Huang, and R.-J. Jeng, “Enhanced efficiency of organic and perovskite photovoltaics from shape-dependent broadband plasmonic effects of silver nanoplates,” Sol. Energy Mater. Sol. Cells 140, 224–231 (2015).
[Crossref]

Jeong, N. C.

N. C. Jeong, C. Prasittichai, and J. T. Hupp, “Photocurrent enhancement by surface plasmon resonance of silver nanoparticles in highly porous dye-sensitized solar cells,” Langmuir 27(23), 14609–14614 (2011).
[Crossref] [PubMed]

Jiang, P.

P. Jiang, T. Prasad, M. J. McFarland, and V. L. Colvin, “Two-dimensional nonclose-packed colloidal crystals formed by spincoating,” Appl. Phys. Lett. 89(1), 011908 (2006).
[Crossref]

Jiménez-Solano, A.

A. Jiménez-Solano, J. F. Galisteo-López, and H. Míguez, “Absorption and Emission of Light in Optoelectronic Nanomaterials: The Role of the Local Optical Environment,” J. Phys. Chem. Lett. 9(8), 2077–2084 (2018).
[Crossref] [PubMed]

J. M. Miranda-Muñoz, S. Carretero-Palacios, A. Jiménez-Solano, Y. Li, G. Lozano, and H. Míguez, “Efficient bifacial dye-sensitized solar cells through disorder by design,” J Mater Chem A Mater 4(5), 1953–1961 (2016).
[Crossref] [PubMed]

Jin, S.

W. Tian, C. Zhao, J. Leng, R. Cui, and S. Jin, “Visualizing Carrier Diffusion in Individual Single-Crystal Organolead Halide Perovskite Nanowires and Nanoplates,” J. Am. Chem. Soc. 137(39), 12458–12461 (2015).
[Crossref] [PubMed]

Johnston, M. B.

R. L. Milot, G. E. Eperon, H. J. Snaith, M. B. Johnston, and L. M. Herz, “Temperature-Dependent Charge-Carrier Dynamics in CH3NH3PbI3 Perovskite Thin Films,” Adv. Funct. Mater. 25(39), 6218–6227 (2015).
[Crossref]

M. Anaya, G. Lozano, M. E. Calvo, W. Zhang, M. B. Johnston, H. J. Snaith, and H. Míguez, “Optical description of mesostructured organic–inorganic halide perovskite solar cells,” J. Phys. Chem. Lett. 6(1), 48–53 (2015).
[Crossref] [PubMed]

W. Zhang, M. Anaya, G. Lozano, M. E. Calvo, M. B. Johnston, H. Míguez, and H. J. Snaith, “Highly efficient perovskite solar cells with tunable structural color,” Nano Lett. 15(3), 1698–1702 (2015).
[Crossref] [PubMed]

G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herza, and H. J. Snaith, “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells,” Energy Environ. Sci. 7(3), 982–988 (2014).
[Crossref]

Juang, T.-Y.

H.-L. Hsu, T.-Y. Juang, C.-P. Chen, C.-M. Hsieh, C.-C. Yang, C.-L. Huang, and R.-J. Jeng, “Enhanced efficiency of organic and perovskite photovoltaics from shape-dependent broadband plasmonic effects of silver nanoplates,” Sol. Energy Mater. Sol. Cells 140, 224–231 (2015).
[Crossref]

Jung, H. S.

S. Jang, J. Yoon, K. Ha, M.-C. Kim, D. H. Kim, S. M. Kim, S. M. Kang, S. J. Park, H. S. Jung, and M. Choi, “Facile fabrication of three-dimensional TiO2 structures for highly efficient perovskite solar cells,” Nano Energy 22, 499–506 (2016).
[Crossref]

Kagan, C. R.

O. E. Semonin, G. A. Elbaz, D. B. Straus, T. D. Hull, D. W. Paley, A. M. van der Zande, J. C. Hone, I. Kymissis, C. R. Kagan, X. Roy, and J. S. Owen, “Limits of Carrier Diffusion in n-Type and p-Type CH3NH3PbI3 Perovskite Single Crystals,” J. Phys. Chem. Lett. 7(17), 3510–3518 (2016).
[Crossref] [PubMed]

Kang, S. M.

S. M. Kang, S. Jang, J.-K. Lee, J. Yoon, D.-E. Yoo, J.-W. Lee, M. Choi, and N.-G. Park, “Moth-Eye TiO2 Layer for Improving Light Harvesting Efficiency in Perovskite Solar Cells,” Small 12(18), 2443–2449 (2016).
[Crossref] [PubMed]

S. Jang, J. Yoon, K. Ha, M.-C. Kim, D. H. Kim, S. M. Kim, S. M. Kang, S. J. Park, H. S. Jung, and M. Choi, “Facile fabrication of three-dimensional TiO2 structures for highly efficient perovskite solar cells,” Nano Energy 22, 499–506 (2016).
[Crossref]

S. M. Kang, N. Ahn, J.-W. Lee, M. Choi, and N.-G. Park, “Water-Repellent Perovskite Solar Cell,” J. Mater. Chem. A Mater. Energy Sustain. 2(47), 20017–20021 (2014).
[Crossref]

Kashima, T.

Z. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, “Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell,” Coord. Chem. Rev. 248(13–14), 1381–1389 (2004).
[Crossref]

Kawauchi, H.

Z. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, “Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell,” Coord. Chem. Rev. 248(13–14), 1381–1389 (2004).
[Crossref]

Kim, D. H.

S. Jang, J. Yoon, K. Ha, M.-C. Kim, D. H. Kim, S. M. Kim, S. M. Kang, S. J. Park, H. S. Jung, and M. Choi, “Facile fabrication of three-dimensional TiO2 structures for highly efficient perovskite solar cells,” Nano Energy 22, 499–506 (2016).
[Crossref]

Kim, M.-C.

S. Jang, J. Yoon, K. Ha, M.-C. Kim, D. H. Kim, S. M. Kim, S. M. Kang, S. J. Park, H. S. Jung, and M. Choi, “Facile fabrication of three-dimensional TiO2 structures for highly efficient perovskite solar cells,” Nano Energy 22, 499–506 (2016).
[Crossref]

Kim, S. M.

S. Jang, J. Yoon, K. Ha, M.-C. Kim, D. H. Kim, S. M. Kim, S. M. Kang, S. J. Park, H. S. Jung, and M. Choi, “Facile fabrication of three-dimensional TiO2 structures for highly efficient perovskite solar cells,” Nano Energy 22, 499–506 (2016).
[Crossref]

Komissarenko, F.

E. Tiguntseva, A. Chebykin, A. Ishteev, R. Haroldson, B. Balachandran, E. Ushakova, F. Komissarenko, H. Wang, V. Milichko, A. Tsypkin, D. Zuev, W. Hu, S. Makarov, and A. Zakhidov, “Resonant silicon nanoparticles for enhancement of light absorption and photoluminescence from hybrid perovskite films and metasurfaces,” Nanoscale 9(34), 12486–12493 (2017).
[Crossref] [PubMed]

Korgel, B. A.

I. Rodriguez, L. Shi, X. Lu, B. A. Korgel, R. A. Álvarez-Puebla, and F. Meseguer, “Silicon nanoparticles as Raman scattering enhancers,” Nanoscale 6(11), 5666–5670 (2014).
[Crossref] [PubMed]

Kymissis, I.

O. E. Semonin, G. A. Elbaz, D. B. Straus, T. D. Hull, D. W. Paley, A. M. van der Zande, J. C. Hone, I. Kymissis, C. R. Kagan, X. Roy, and J. S. Owen, “Limits of Carrier Diffusion in n-Type and p-Type CH3NH3PbI3 Perovskite Single Crystals,” J. Phys. Chem. Lett. 7(17), 3510–3518 (2016).
[Crossref] [PubMed]

Lee, J.-K.

S. M. Kang, S. Jang, J.-K. Lee, J. Yoon, D.-E. Yoo, J.-W. Lee, M. Choi, and N.-G. Park, “Moth-Eye TiO2 Layer for Improving Light Harvesting Efficiency in Perovskite Solar Cells,” Small 12(18), 2443–2449 (2016).
[Crossref] [PubMed]

Lee, J.-W.

J.-W. Lee, Y.-T. Hsieh, N. De Marco, S.-H. Bae, Q. Han, and Y. Yang, “Halide perovskites for tandem solar cells,” J. Phys. Chem. Lett. 8(9), 1999–2011 (2017).
[Crossref] [PubMed]

S. M. Kang, S. Jang, J.-K. Lee, J. Yoon, D.-E. Yoo, J.-W. Lee, M. Choi, and N.-G. Park, “Moth-Eye TiO2 Layer for Improving Light Harvesting Efficiency in Perovskite Solar Cells,” Small 12(18), 2443–2449 (2016).
[Crossref] [PubMed]

S. M. Kang, N. Ahn, J.-W. Lee, M. Choi, and N.-G. Park, “Water-Repellent Perovskite Solar Cell,” J. Mater. Chem. A Mater. Energy Sustain. 2(47), 20017–20021 (2014).
[Crossref]

Lee, M. M.

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338(6107), 643–647 (2012).
[Crossref] [PubMed]

Leng, J.

W. Tian, C. Zhao, J. Leng, R. Cui, and S. Jin, “Visualizing Carrier Diffusion in Individual Single-Crystal Organolead Halide Perovskite Nanowires and Nanoplates,” J. Am. Chem. Soc. 137(39), 12458–12461 (2015).
[Crossref] [PubMed]

Li, C.

M. L. Petrus, J. Schlipf, C. Li, T. P. Gujar, N. Giesbrecht, P. Müller-Buschbaum, M. Thelakkat, T. Bein, S. Hüttner, and P. Docampo, “Capturing the Sun: A Review of the Challenges and Perspectives of Perovskite Solar Cells,” Adv. Energy Mater. 7(16), 1700264 (2017).
[Crossref]

Li, G.

S.-H. Bae, H. Zhao, Y.-T. Hsieh, L. Zuo, N. De Marco, Y. S. Rim, G. Li, and Y. Yang, “Printable Solar Cells from Advanced Solution-Processible Materials,” Chem 1(2), 197–219 (2016).
[Crossref]

Li, J.

J. Yin, H. Qu, J. Cao, H. Tai, J. Li, and N. Zheng, “Light absorption enhancement by embedding submicron scattering TiO2 nanoparticles in perovskite solar cells,” RSC Advances 6(29), 24596–24602 (2016).
[Crossref]

Li, Y.

J. M. Miranda-Muñoz, S. Carretero-Palacios, A. Jiménez-Solano, Y. Li, G. Lozano, and H. Míguez, “Efficient bifacial dye-sensitized solar cells through disorder by design,” J Mater Chem A Mater 4(5), 1953–1961 (2016).
[Crossref] [PubMed]

Z. Lu, X. Pan, Y. Ma, Y. Li, L. Zheng, D. Zhang, Q. Xu, Z. Chen, S. Wang, B. Qu, F. Liu, Y. Huang, L. Xiao, and G. Qihuang, “Plasmonic-enhanced perovskite solar cells using alloy popcorn nanoparticles,” RSC Advances 5 (15), 11175–11179 (2015).
[Crossref]

Liu, F.

Z. Lu, X. Pan, Y. Ma, Y. Li, L. Zheng, D. Zhang, Q. Xu, Z. Chen, S. Wang, B. Qu, F. Liu, Y. Huang, L. Xiao, and G. Qihuang, “Plasmonic-enhanced perovskite solar cells using alloy popcorn nanoparticles,” RSC Advances 5 (15), 11175–11179 (2015).
[Crossref]

Liu, P.

R. S. Wu, B. C. Yang, C. J. Zhang, Y. L. Huang, Y. X. Cui, P. Liu, C. H. Zhou, Y. Y. Hao, Y. L. Gao, and J. L. Yang, “Prominent efficiency enhancement in perovskite solar cells employing silica-coated gold nanorods,” J. Phys. Chem. C 120(13), 6996–7004 (2016).
[Crossref]

Longo, G.

C. Roldan-Carmona, O. Malinkiewicz, R. Betancur, G. Longo, C. Momblona, F. Jaramillo, L. Camacho, and H. Bolink, “Flexible high efficiency perovskite solar cells,” Energy Environ. Sci. 7(3), 994–997 (2014).
[Crossref]

Löper, P.

P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S. J. Moon, J. H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
[Crossref] [PubMed]

Lozano, G.

M. Anaya, G. Lozano, M. E. Calvo, and H. Míguez, “ABX3 perovskites for tandem solar cells,” Joule 1(4), 769–793 (2017).
[Crossref]

J. M. Miranda-Muñoz, G. Lozano, and H. Míguez, “Design and realization of a novel optically disordered material: a demonstration of a Mie glass,” Adv. Opt. Mater. 5(10), 1700025 (2017).
[Crossref]

J. P. Correa-Baena, M. Anaya, G. Lozano, W. Tress, K. Domanski, M. Saliba, T. Matsui, T. J. Jacobsson, M. E. Calvo, A. Abate, M. Grätzel, H. Míguez, and A. Hagfeldt, “Unbroken perovskite: interplay of morphology, electro-optical properties and ionic movement,” Adv. Mater. 28(25), 5031–5037 (2016).
[Crossref] [PubMed]

J. M. Miranda-Muñoz, S. Carretero-Palacios, A. Jiménez-Solano, Y. Li, G. Lozano, and H. Míguez, “Efficient bifacial dye-sensitized solar cells through disorder by design,” J Mater Chem A Mater 4(5), 1953–1961 (2016).
[Crossref] [PubMed]

W. Zhang, M. Anaya, G. Lozano, M. E. Calvo, M. B. Johnston, H. Míguez, and H. J. Snaith, “Highly efficient perovskite solar cells with tunable structural color,” Nano Lett. 15(3), 1698–1702 (2015).
[Crossref] [PubMed]

M. Anaya, G. Lozano, M. E. Calvo, W. Zhang, M. B. Johnston, H. J. Snaith, and H. Míguez, “Optical description of mesostructured organic–inorganic halide perovskite solar cells,” J. Phys. Chem. Lett. 6(1), 48–53 (2015).
[Crossref] [PubMed]

Lu, X.

I. Rodriguez, L. Shi, X. Lu, B. A. Korgel, R. A. Álvarez-Puebla, and F. Meseguer, “Silicon nanoparticles as Raman scattering enhancers,” Nanoscale 6(11), 5666–5670 (2014).
[Crossref] [PubMed]

Lu, Z.

Z. Lu, X. Pan, Y. Ma, Y. Li, L. Zheng, D. Zhang, Q. Xu, Z. Chen, S. Wang, B. Qu, F. Liu, Y. Huang, L. Xiao, and G. Qihuang, “Plasmonic-enhanced perovskite solar cells using alloy popcorn nanoparticles,” RSC Advances 5 (15), 11175–11179 (2015).
[Crossref]

Ma, Y.

Z. Lu, X. Pan, Y. Ma, Y. Li, L. Zheng, D. Zhang, Q. Xu, Z. Chen, S. Wang, B. Qu, F. Liu, Y. Huang, L. Xiao, and G. Qihuang, “Plasmonic-enhanced perovskite solar cells using alloy popcorn nanoparticles,” RSC Advances 5 (15), 11175–11179 (2015).
[Crossref]

Magri, R.

R. Guerra, I. Marri, R. Magri, L. Martin-Samos, O. Pulci, E. Degoli, and S. Ossicini, “Optical properties of silicon nanocrystallites in SiO2 matrix: crystalline vs. amorphous case,” Superlattices Microstruct. 46(1–2), 246–252 (2009).
[Crossref]

Makarov, S.

E. Tiguntseva, A. Chebykin, A. Ishteev, R. Haroldson, B. Balachandran, E. Ushakova, F. Komissarenko, H. Wang, V. Milichko, A. Tsypkin, D. Zuev, W. Hu, S. Makarov, and A. Zakhidov, “Resonant silicon nanoparticles for enhancement of light absorption and photoluminescence from hybrid perovskite films and metasurfaces,” Nanoscale 9(34), 12486–12493 (2017).
[Crossref] [PubMed]

Malinkiewicz, O.

C. Roldan-Carmona, O. Malinkiewicz, R. Betancur, G. Longo, C. Momblona, F. Jaramillo, L. Camacho, and H. Bolink, “Flexible high efficiency perovskite solar cells,” Energy Environ. Sci. 7(3), 994–997 (2014).
[Crossref]

Mandal, T. N.

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells,” Nano Lett. 13(4), 1764–1769 (2013).
[Crossref] [PubMed]

Marri, I.

R. Guerra, I. Marri, R. Magri, L. Martin-Samos, O. Pulci, E. Degoli, and S. Ossicini, “Optical properties of silicon nanocrystallites in SiO2 matrix: crystalline vs. amorphous case,” Superlattices Microstruct. 46(1–2), 246–252 (2009).
[Crossref]

Martin-Samos, L.

R. Guerra, I. Marri, R. Magri, L. Martin-Samos, O. Pulci, E. Degoli, and S. Ossicini, “Optical properties of silicon nanocrystallites in SiO2 matrix: crystalline vs. amorphous case,” Superlattices Microstruct. 46(1–2), 246–252 (2009).
[Crossref]

Matsui, T.

J. P. Correa-Baena, M. Anaya, G. Lozano, W. Tress, K. Domanski, M. Saliba, T. Matsui, T. J. Jacobsson, M. E. Calvo, A. Abate, M. Grätzel, H. Míguez, and A. Hagfeldt, “Unbroken perovskite: interplay of morphology, electro-optical properties and ionic movement,” Adv. Mater. 28(25), 5031–5037 (2016).
[Crossref] [PubMed]

McFarland, M. J.

P. Jiang, T. Prasad, M. J. McFarland, and V. L. Colvin, “Two-dimensional nonclose-packed colloidal crystals formed by spincoating,” Appl. Phys. Lett. 89(1), 011908 (2006).
[Crossref]

Menelaou, C.

G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herza, and H. J. Snaith, “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells,” Energy Environ. Sci. 7(3), 982–988 (2014).
[Crossref]

Meseguer, F.

I. Rodriguez, L. Shi, X. Lu, B. A. Korgel, R. A. Álvarez-Puebla, and F. Meseguer, “Silicon nanoparticles as Raman scattering enhancers,” Nanoscale 6(11), 5666–5670 (2014).
[Crossref] [PubMed]

Míguez, H.

A. Jiménez-Solano, J. F. Galisteo-López, and H. Míguez, “Absorption and Emission of Light in Optoelectronic Nanomaterials: The Role of the Local Optical Environment,” J. Phys. Chem. Lett. 9(8), 2077–2084 (2018).
[Crossref] [PubMed]

M. Anaya, G. Lozano, M. E. Calvo, and H. Míguez, “ABX3 perovskites for tandem solar cells,” Joule 1(4), 769–793 (2017).
[Crossref]

J. M. Miranda-Muñoz, G. Lozano, and H. Míguez, “Design and realization of a novel optically disordered material: a demonstration of a Mie glass,” Adv. Opt. Mater. 5(10), 1700025 (2017).
[Crossref]

J. P. Correa-Baena, M. Anaya, G. Lozano, W. Tress, K. Domanski, M. Saliba, T. Matsui, T. J. Jacobsson, M. E. Calvo, A. Abate, M. Grätzel, H. Míguez, and A. Hagfeldt, “Unbroken perovskite: interplay of morphology, electro-optical properties and ionic movement,” Adv. Mater. 28(25), 5031–5037 (2016).
[Crossref] [PubMed]

J. M. Miranda-Muñoz, S. Carretero-Palacios, A. Jiménez-Solano, Y. Li, G. Lozano, and H. Míguez, “Efficient bifacial dye-sensitized solar cells through disorder by design,” J Mater Chem A Mater 4(5), 1953–1961 (2016).
[Crossref] [PubMed]

S. Carretero-Palacios, M. E. Calvo, and H. Míguez, “Absorption enhancement in organic–inorganic halide perovskite films with embedded plasmonic gold nanoparticles,” J Phys Chem C Nanomater Interfaces 119(32), 18635–18640 (2015).
[Crossref] [PubMed]

W. Zhang, M. Anaya, G. Lozano, M. E. Calvo, M. B. Johnston, H. Míguez, and H. J. Snaith, “Highly efficient perovskite solar cells with tunable structural color,” Nano Lett. 15(3), 1698–1702 (2015).
[Crossref] [PubMed]

M. Anaya, G. Lozano, M. E. Calvo, W. Zhang, M. B. Johnston, H. J. Snaith, and H. Míguez, “Optical description of mesostructured organic–inorganic halide perovskite solar cells,” J. Phys. Chem. Lett. 6(1), 48–53 (2015).
[Crossref] [PubMed]

Milichko, V.

E. Tiguntseva, A. Chebykin, A. Ishteev, R. Haroldson, B. Balachandran, E. Ushakova, F. Komissarenko, H. Wang, V. Milichko, A. Tsypkin, D. Zuev, W. Hu, S. Makarov, and A. Zakhidov, “Resonant silicon nanoparticles for enhancement of light absorption and photoluminescence from hybrid perovskite films and metasurfaces,” Nanoscale 9(34), 12486–12493 (2017).
[Crossref] [PubMed]

Milot, R. L.

R. L. Milot, G. E. Eperon, H. J. Snaith, M. B. Johnston, and L. M. Herz, “Temperature-Dependent Charge-Carrier Dynamics in CH3NH3PbI3 Perovskite Thin Films,” Adv. Funct. Mater. 25(39), 6218–6227 (2015).
[Crossref]

Miranda-Muñoz, J. M.

J. M. Miranda-Muñoz, G. Lozano, and H. Míguez, “Design and realization of a novel optically disordered material: a demonstration of a Mie glass,” Adv. Opt. Mater. 5(10), 1700025 (2017).
[Crossref]

J. M. Miranda-Muñoz, S. Carretero-Palacios, A. Jiménez-Solano, Y. Li, G. Lozano, and H. Míguez, “Efficient bifacial dye-sensitized solar cells through disorder by design,” J Mater Chem A Mater 4(5), 1953–1961 (2016).
[Crossref] [PubMed]

Miyasaka, T.

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338(6107), 643–647 (2012).
[Crossref] [PubMed]

Momblona, C.

C. Roldan-Carmona, O. Malinkiewicz, R. Betancur, G. Longo, C. Momblona, F. Jaramillo, L. Camacho, and H. Bolink, “Flexible high efficiency perovskite solar cells,” Energy Environ. Sci. 7(3), 994–997 (2014).
[Crossref]

Moon, S. J.

P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S. J. Moon, J. H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
[Crossref] [PubMed]

Müller-Buschbaum, P.

M. L. Petrus, J. Schlipf, C. Li, T. P. Gujar, N. Giesbrecht, P. Müller-Buschbaum, M. Thelakkat, T. Bein, S. Hüttner, and P. Docampo, “Capturing the Sun: A Review of the Challenges and Perspectives of Perovskite Solar Cells,” Adv. Energy Mater. 7(16), 1700264 (2017).
[Crossref]

Murakami, T. N.

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338(6107), 643–647 (2012).
[Crossref] [PubMed]

Niesen, B.

P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S. J. Moon, J. H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
[Crossref] [PubMed]

Noh, J. H.

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells,” Nano Lett. 13(4), 1764–1769 (2013).
[Crossref] [PubMed]

Ossicini, S.

R. Guerra, I. Marri, R. Magri, L. Martin-Samos, O. Pulci, E. Degoli, and S. Ossicini, “Optical properties of silicon nanocrystallites in SiO2 matrix: crystalline vs. amorphous case,” Superlattices Microstruct. 46(1–2), 246–252 (2009).
[Crossref]

Owen, J. S.

O. E. Semonin, G. A. Elbaz, D. B. Straus, T. D. Hull, D. W. Paley, A. M. van der Zande, J. C. Hone, I. Kymissis, C. R. Kagan, X. Roy, and J. S. Owen, “Limits of Carrier Diffusion in n-Type and p-Type CH3NH3PbI3 Perovskite Single Crystals,” J. Phys. Chem. Lett. 7(17), 3510–3518 (2016).
[Crossref] [PubMed]

Paley, D. W.

O. E. Semonin, G. A. Elbaz, D. B. Straus, T. D. Hull, D. W. Paley, A. M. van der Zande, J. C. Hone, I. Kymissis, C. R. Kagan, X. Roy, and J. S. Owen, “Limits of Carrier Diffusion in n-Type and p-Type CH3NH3PbI3 Perovskite Single Crystals,” J. Phys. Chem. Lett. 7(17), 3510–3518 (2016).
[Crossref] [PubMed]

Pan, X.

Z. Lu, X. Pan, Y. Ma, Y. Li, L. Zheng, D. Zhang, Q. Xu, Z. Chen, S. Wang, B. Qu, F. Liu, Y. Huang, L. Xiao, and G. Qihuang, “Plasmonic-enhanced perovskite solar cells using alloy popcorn nanoparticles,” RSC Advances 5 (15), 11175–11179 (2015).
[Crossref]

Park, N.-G.

S. M. Kang, S. Jang, J.-K. Lee, J. Yoon, D.-E. Yoo, J.-W. Lee, M. Choi, and N.-G. Park, “Moth-Eye TiO2 Layer for Improving Light Harvesting Efficiency in Perovskite Solar Cells,” Small 12(18), 2443–2449 (2016).
[Crossref] [PubMed]

S. M. Kang, N. Ahn, J.-W. Lee, M. Choi, and N.-G. Park, “Water-Repellent Perovskite Solar Cell,” J. Mater. Chem. A Mater. Energy Sustain. 2(47), 20017–20021 (2014).
[Crossref]

Park, S. J.

S. Jang, J. Yoon, K. Ha, M.-C. Kim, D. H. Kim, S. M. Kim, S. M. Kang, S. J. Park, H. S. Jung, and M. Choi, “Facile fabrication of three-dimensional TiO2 structures for highly efficient perovskite solar cells,” Nano Energy 22, 499–506 (2016).
[Crossref]

Paulose, M.

O. K. Varghese, M. Paulose, and C. A. Grimes, “Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells,” Nat. Nanotechnol. 4(9), 592–597 (2009).
[Crossref] [PubMed]

Petrus, M. L.

M. L. Petrus, J. Schlipf, C. Li, T. P. Gujar, N. Giesbrecht, P. Müller-Buschbaum, M. Thelakkat, T. Bein, S. Hüttner, and P. Docampo, “Capturing the Sun: A Review of the Challenges and Perspectives of Perovskite Solar Cells,” Adv. Energy Mater. 7(16), 1700264 (2017).
[Crossref]

Prasad, T.

P. Jiang, T. Prasad, M. J. McFarland, and V. L. Colvin, “Two-dimensional nonclose-packed colloidal crystals formed by spincoating,” Appl. Phys. Lett. 89(1), 011908 (2006).
[Crossref]

Prasittichai, C.

N. C. Jeong, C. Prasittichai, and J. T. Hupp, “Photocurrent enhancement by surface plasmon resonance of silver nanoparticles in highly porous dye-sensitized solar cells,” Langmuir 27(23), 14609–14614 (2011).
[Crossref] [PubMed]

Pulci, O.

R. Guerra, I. Marri, R. Magri, L. Martin-Samos, O. Pulci, E. Degoli, and S. Ossicini, “Optical properties of silicon nanocrystallites in SiO2 matrix: crystalline vs. amorphous case,” Superlattices Microstruct. 46(1–2), 246–252 (2009).
[Crossref]

Qihuang, G.

Z. Lu, X. Pan, Y. Ma, Y. Li, L. Zheng, D. Zhang, Q. Xu, Z. Chen, S. Wang, B. Qu, F. Liu, Y. Huang, L. Xiao, and G. Qihuang, “Plasmonic-enhanced perovskite solar cells using alloy popcorn nanoparticles,” RSC Advances 5 (15), 11175–11179 (2015).
[Crossref]

Qu, B.

Z. Lu, X. Pan, Y. Ma, Y. Li, L. Zheng, D. Zhang, Q. Xu, Z. Chen, S. Wang, B. Qu, F. Liu, Y. Huang, L. Xiao, and G. Qihuang, “Plasmonic-enhanced perovskite solar cells using alloy popcorn nanoparticles,” RSC Advances 5 (15), 11175–11179 (2015).
[Crossref]

Qu, H.

J. Yin, H. Qu, J. Cao, H. Tai, J. Li, and N. Zheng, “Light absorption enhancement by embedding submicron scattering TiO2 nanoparticles in perovskite solar cells,” RSC Advances 6(29), 24596–24602 (2016).
[Crossref]

Reinhardt, C.

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5(1), 3402 (2014).
[Crossref] [PubMed]

Rim, Y. S.

S.-H. Bae, H. Zhao, Y.-T. Hsieh, L. Zuo, N. De Marco, Y. S. Rim, G. Li, and Y. Yang, “Printable Solar Cells from Advanced Solution-Processible Materials,” Chem 1(2), 197–219 (2016).
[Crossref]

Rodriguez, I.

I. Rodriguez, L. Shi, X. Lu, B. A. Korgel, R. A. Álvarez-Puebla, and F. Meseguer, “Silicon nanoparticles as Raman scattering enhancers,” Nanoscale 6(11), 5666–5670 (2014).
[Crossref] [PubMed]

Roldan-Carmona, C.

C. Roldan-Carmona, O. Malinkiewicz, R. Betancur, G. Longo, C. Momblona, F. Jaramillo, L. Camacho, and H. Bolink, “Flexible high efficiency perovskite solar cells,” Energy Environ. Sci. 7(3), 994–997 (2014).
[Crossref]

Roy, X.

O. E. Semonin, G. A. Elbaz, D. B. Straus, T. D. Hull, D. W. Paley, A. M. van der Zande, J. C. Hone, I. Kymissis, C. R. Kagan, X. Roy, and J. S. Owen, “Limits of Carrier Diffusion in n-Type and p-Type CH3NH3PbI3 Perovskite Single Crystals,” J. Phys. Chem. Lett. 7(17), 3510–3518 (2016).
[Crossref] [PubMed]

Ruel, R.

A. van Blaaderen, R. Ruel, and P. Wiltzius, “Template-directed colloidal crystallization,” Nature 385(6614), 321–324 (1997).
[Crossref]

Saliba, M.

J. P. Correa-Baena, M. Anaya, G. Lozano, W. Tress, K. Domanski, M. Saliba, T. Matsui, T. J. Jacobsson, M. E. Calvo, A. Abate, M. Grätzel, H. Míguez, and A. Hagfeldt, “Unbroken perovskite: interplay of morphology, electro-optical properties and ionic movement,” Adv. Mater. 28(25), 5031–5037 (2016).
[Crossref] [PubMed]

W. Zhang, M. Saliba, S. D. Stranks, Y. Sun, X. Shi, U. Wiesner, and H. J. Snaith, “Enhancement of perovskite-based solar cells employing core-shell metal nanoparticles,” Nano Lett. 13(9), 4505–4510 (2013).
[Crossref] [PubMed]

Schlipf, J.

M. L. Petrus, J. Schlipf, C. Li, T. P. Gujar, N. Giesbrecht, P. Müller-Buschbaum, M. Thelakkat, T. Bein, S. Hüttner, and P. Docampo, “Capturing the Sun: A Review of the Challenges and Perspectives of Perovskite Solar Cells,” Adv. Energy Mater. 7(16), 1700264 (2017).
[Crossref]

Semonin, O. E.

O. E. Semonin, G. A. Elbaz, D. B. Straus, T. D. Hull, D. W. Paley, A. M. van der Zande, J. C. Hone, I. Kymissis, C. R. Kagan, X. Roy, and J. S. Owen, “Limits of Carrier Diffusion in n-Type and p-Type CH3NH3PbI3 Perovskite Single Crystals,” J. Phys. Chem. Lett. 7(17), 3510–3518 (2016).
[Crossref] [PubMed]

Seok, S. I.

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells,” Nano Lett. 13(4), 1764–1769 (2013).
[Crossref] [PubMed]

Shi, L.

I. Rodriguez, L. Shi, X. Lu, B. A. Korgel, R. A. Álvarez-Puebla, and F. Meseguer, “Silicon nanoparticles as Raman scattering enhancers,” Nanoscale 6(11), 5666–5670 (2014).
[Crossref] [PubMed]

Shi, X.

W. Zhang, M. Saliba, S. D. Stranks, Y. Sun, X. Shi, U. Wiesner, and H. J. Snaith, “Enhancement of perovskite-based solar cells employing core-shell metal nanoparticles,” Nano Lett. 13(9), 4505–4510 (2013).
[Crossref] [PubMed]

Snaith, H. J.

W. Zhang, M. Anaya, G. Lozano, M. E. Calvo, M. B. Johnston, H. Míguez, and H. J. Snaith, “Highly efficient perovskite solar cells with tunable structural color,” Nano Lett. 15(3), 1698–1702 (2015).
[Crossref] [PubMed]

R. L. Milot, G. E. Eperon, H. J. Snaith, M. B. Johnston, and L. M. Herz, “Temperature-Dependent Charge-Carrier Dynamics in CH3NH3PbI3 Perovskite Thin Films,” Adv. Funct. Mater. 25(39), 6218–6227 (2015).
[Crossref]

M. Anaya, G. Lozano, M. E. Calvo, W. Zhang, M. B. Johnston, H. J. Snaith, and H. Míguez, “Optical description of mesostructured organic–inorganic halide perovskite solar cells,” J. Phys. Chem. Lett. 6(1), 48–53 (2015).
[Crossref] [PubMed]

G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herza, and H. J. Snaith, “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells,” Energy Environ. Sci. 7(3), 982–988 (2014).
[Crossref]

M. A. Green, A. Ho-Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nat. Photonics 8(7), 506–514 (2014).
[Crossref]

W. Zhang, M. Saliba, S. D. Stranks, Y. Sun, X. Shi, U. Wiesner, and H. J. Snaith, “Enhancement of perovskite-based solar cells employing core-shell metal nanoparticles,” Nano Lett. 13(9), 4505–4510 (2013).
[Crossref] [PubMed]

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338(6107), 643–647 (2012).
[Crossref] [PubMed]

Stranks, S. D.

G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herza, and H. J. Snaith, “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells,” Energy Environ. Sci. 7(3), 982–988 (2014).
[Crossref]

W. Zhang, M. Saliba, S. D. Stranks, Y. Sun, X. Shi, U. Wiesner, and H. J. Snaith, “Enhancement of perovskite-based solar cells employing core-shell metal nanoparticles,” Nano Lett. 13(9), 4505–4510 (2013).
[Crossref] [PubMed]

Straus, D. B.

O. E. Semonin, G. A. Elbaz, D. B. Straus, T. D. Hull, D. W. Paley, A. M. van der Zande, J. C. Hone, I. Kymissis, C. R. Kagan, X. Roy, and J. S. Owen, “Limits of Carrier Diffusion in n-Type and p-Type CH3NH3PbI3 Perovskite Single Crystals,” J. Phys. Chem. Lett. 7(17), 3510–3518 (2016).
[Crossref] [PubMed]

Stuckelberger, M.

P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S. J. Moon, J. H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
[Crossref] [PubMed]

Sun, Y.

W. Zhang, M. Saliba, S. D. Stranks, Y. Sun, X. Shi, U. Wiesner, and H. J. Snaith, “Enhancement of perovskite-based solar cells employing core-shell metal nanoparticles,” Nano Lett. 13(9), 4505–4510 (2013).
[Crossref] [PubMed]

Tai, H.

J. Yin, H. Qu, J. Cao, H. Tai, J. Li, and N. Zheng, “Light absorption enhancement by embedding submicron scattering TiO2 nanoparticles in perovskite solar cells,” RSC Advances 6(29), 24596–24602 (2016).
[Crossref]

Teuscher, J.

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338(6107), 643–647 (2012).
[Crossref] [PubMed]

Thelakkat, M.

M. L. Petrus, J. Schlipf, C. Li, T. P. Gujar, N. Giesbrecht, P. Müller-Buschbaum, M. Thelakkat, T. Bein, S. Hüttner, and P. Docampo, “Capturing the Sun: A Review of the Challenges and Perspectives of Perovskite Solar Cells,” Adv. Energy Mater. 7(16), 1700264 (2017).
[Crossref]

Tian, W.

W. Tian, C. Zhao, J. Leng, R. Cui, and S. Jin, “Visualizing Carrier Diffusion in Individual Single-Crystal Organolead Halide Perovskite Nanowires and Nanoplates,” J. Am. Chem. Soc. 137(39), 12458–12461 (2015).
[Crossref] [PubMed]

Tiguntseva, E.

E. Tiguntseva, A. Chebykin, A. Ishteev, R. Haroldson, B. Balachandran, E. Ushakova, F. Komissarenko, H. Wang, V. Milichko, A. Tsypkin, D. Zuev, W. Hu, S. Makarov, and A. Zakhidov, “Resonant silicon nanoparticles for enhancement of light absorption and photoluminescence from hybrid perovskite films and metasurfaces,” Nanoscale 9(34), 12486–12493 (2017).
[Crossref] [PubMed]

Topic, M.

P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S. J. Moon, J. H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
[Crossref] [PubMed]

Tress, W.

J. P. Correa-Baena, M. Anaya, G. Lozano, W. Tress, K. Domanski, M. Saliba, T. Matsui, T. J. Jacobsson, M. E. Calvo, A. Abate, M. Grätzel, H. Míguez, and A. Hagfeldt, “Unbroken perovskite: interplay of morphology, electro-optical properties and ionic movement,” Adv. Mater. 28(25), 5031–5037 (2016).
[Crossref] [PubMed]

Tsypkin, A.

E. Tiguntseva, A. Chebykin, A. Ishteev, R. Haroldson, B. Balachandran, E. Ushakova, F. Komissarenko, H. Wang, V. Milichko, A. Tsypkin, D. Zuev, W. Hu, S. Makarov, and A. Zakhidov, “Resonant silicon nanoparticles for enhancement of light absorption and photoluminescence from hybrid perovskite films and metasurfaces,” Nanoscale 9(34), 12486–12493 (2017).
[Crossref] [PubMed]

Ushakova, E.

E. Tiguntseva, A. Chebykin, A. Ishteev, R. Haroldson, B. Balachandran, E. Ushakova, F. Komissarenko, H. Wang, V. Milichko, A. Tsypkin, D. Zuev, W. Hu, S. Makarov, and A. Zakhidov, “Resonant silicon nanoparticles for enhancement of light absorption and photoluminescence from hybrid perovskite films and metasurfaces,” Nanoscale 9(34), 12486–12493 (2017).
[Crossref] [PubMed]

van Blaaderen, A.

A. van Blaaderen, R. Ruel, and P. Wiltzius, “Template-directed colloidal crystallization,” Nature 385(6614), 321–324 (1997).
[Crossref]

van der Zande, A. M.

O. E. Semonin, G. A. Elbaz, D. B. Straus, T. D. Hull, D. W. Paley, A. M. van der Zande, J. C. Hone, I. Kymissis, C. R. Kagan, X. Roy, and J. S. Owen, “Limits of Carrier Diffusion in n-Type and p-Type CH3NH3PbI3 Perovskite Single Crystals,” J. Phys. Chem. Lett. 7(17), 3510–3518 (2016).
[Crossref] [PubMed]

Varghese, O. K.

O. K. Varghese, M. Paulose, and C. A. Grimes, “Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells,” Nat. Nanotechnol. 4(9), 592–597 (2009).
[Crossref] [PubMed]

Vörös, M.

S. Wippermann, M. Vörös, A. Gali, F. Gygi, G. T. Zimanyi, and G. Galli, “Solar nanocomposites with complementary charge extraction pathways for electrons and holes: Si embedded in ZnS,” Phys. Rev. Lett. 112(10), 106801 (2014).
[Crossref] [PubMed]

Wang, H.

E. Tiguntseva, A. Chebykin, A. Ishteev, R. Haroldson, B. Balachandran, E. Ushakova, F. Komissarenko, H. Wang, V. Milichko, A. Tsypkin, D. Zuev, W. Hu, S. Makarov, and A. Zakhidov, “Resonant silicon nanoparticles for enhancement of light absorption and photoluminescence from hybrid perovskite films and metasurfaces,” Nanoscale 9(34), 12486–12493 (2017).
[Crossref] [PubMed]

Wang, S.

Z. Lu, X. Pan, Y. Ma, Y. Li, L. Zheng, D. Zhang, Q. Xu, Z. Chen, S. Wang, B. Qu, F. Liu, Y. Huang, L. Xiao, and G. Qihuang, “Plasmonic-enhanced perovskite solar cells using alloy popcorn nanoparticles,” RSC Advances 5 (15), 11175–11179 (2015).
[Crossref]

Wang, Z.

Z. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, “Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell,” Coord. Chem. Rev. 248(13–14), 1381–1389 (2004).
[Crossref]

Werner, J.

P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S. J. Moon, J. H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
[Crossref] [PubMed]

Wiesner, U.

W. Zhang, M. Saliba, S. D. Stranks, Y. Sun, X. Shi, U. Wiesner, and H. J. Snaith, “Enhancement of perovskite-based solar cells employing core-shell metal nanoparticles,” Nano Lett. 13(9), 4505–4510 (2013).
[Crossref] [PubMed]

Wiltzius, P.

A. van Blaaderen, R. Ruel, and P. Wiltzius, “Template-directed colloidal crystallization,” Nature 385(6614), 321–324 (1997).
[Crossref]

Wippermann, S.

S. Wippermann, M. Vörös, A. Gali, F. Gygi, G. T. Zimanyi, and G. Galli, “Solar nanocomposites with complementary charge extraction pathways for electrons and holes: Si embedded in ZnS,” Phys. Rev. Lett. 112(10), 106801 (2014).
[Crossref] [PubMed]

Wu, R. S.

R. S. Wu, B. C. Yang, C. J. Zhang, Y. L. Huang, Y. X. Cui, P. Liu, C. H. Zhou, Y. Y. Hao, Y. L. Gao, and J. L. Yang, “Prominent efficiency enhancement in perovskite solar cells employing silica-coated gold nanorods,” J. Phys. Chem. C 120(13), 6996–7004 (2016).
[Crossref]

Xiao, L.

Z. Lu, X. Pan, Y. Ma, Y. Li, L. Zheng, D. Zhang, Q. Xu, Z. Chen, S. Wang, B. Qu, F. Liu, Y. Huang, L. Xiao, and G. Qihuang, “Plasmonic-enhanced perovskite solar cells using alloy popcorn nanoparticles,” RSC Advances 5 (15), 11175–11179 (2015).
[Crossref]

Xu, Q.

Z. Lu, X. Pan, Y. Ma, Y. Li, L. Zheng, D. Zhang, Q. Xu, Z. Chen, S. Wang, B. Qu, F. Liu, Y. Huang, L. Xiao, and G. Qihuang, “Plasmonic-enhanced perovskite solar cells using alloy popcorn nanoparticles,” RSC Advances 5 (15), 11175–11179 (2015).
[Crossref]

Yang, B. C.

R. S. Wu, B. C. Yang, C. J. Zhang, Y. L. Huang, Y. X. Cui, P. Liu, C. H. Zhou, Y. Y. Hao, Y. L. Gao, and J. L. Yang, “Prominent efficiency enhancement in perovskite solar cells employing silica-coated gold nanorods,” J. Phys. Chem. C 120(13), 6996–7004 (2016).
[Crossref]

Yang, C.-C.

H.-L. Hsu, T.-Y. Juang, C.-P. Chen, C.-M. Hsieh, C.-C. Yang, C.-L. Huang, and R.-J. Jeng, “Enhanced efficiency of organic and perovskite photovoltaics from shape-dependent broadband plasmonic effects of silver nanoplates,” Sol. Energy Mater. Sol. Cells 140, 224–231 (2015).
[Crossref]

Yang, J. L.

R. S. Wu, B. C. Yang, C. J. Zhang, Y. L. Huang, Y. X. Cui, P. Liu, C. H. Zhou, Y. Y. Hao, Y. L. Gao, and J. L. Yang, “Prominent efficiency enhancement in perovskite solar cells employing silica-coated gold nanorods,” J. Phys. Chem. C 120(13), 6996–7004 (2016).
[Crossref]

Yang, Y.

J.-W. Lee, Y.-T. Hsieh, N. De Marco, S.-H. Bae, Q. Han, and Y. Yang, “Halide perovskites for tandem solar cells,” J. Phys. Chem. Lett. 8(9), 1999–2011 (2017).
[Crossref] [PubMed]

S.-H. Bae, H. Zhao, Y.-T. Hsieh, L. Zuo, N. De Marco, Y. S. Rim, G. Li, and Y. Yang, “Printable Solar Cells from Advanced Solution-Processible Materials,” Chem 1(2), 197–219 (2016).
[Crossref]

Yin, J.

J. Yin, H. Qu, J. Cao, H. Tai, J. Li, and N. Zheng, “Light absorption enhancement by embedding submicron scattering TiO2 nanoparticles in perovskite solar cells,” RSC Advances 6(29), 24596–24602 (2016).
[Crossref]

Yoo, D.-E.

S. M. Kang, S. Jang, J.-K. Lee, J. Yoon, D.-E. Yoo, J.-W. Lee, M. Choi, and N.-G. Park, “Moth-Eye TiO2 Layer for Improving Light Harvesting Efficiency in Perovskite Solar Cells,” Small 12(18), 2443–2449 (2016).
[Crossref] [PubMed]

Yoon, J.

S. M. Kang, S. Jang, J.-K. Lee, J. Yoon, D.-E. Yoo, J.-W. Lee, M. Choi, and N.-G. Park, “Moth-Eye TiO2 Layer for Improving Light Harvesting Efficiency in Perovskite Solar Cells,” Small 12(18), 2443–2449 (2016).
[Crossref] [PubMed]

S. Jang, J. Yoon, K. Ha, M.-C. Kim, D. H. Kim, S. M. Kim, S. M. Kang, S. J. Park, H. S. Jung, and M. Choi, “Facile fabrication of three-dimensional TiO2 structures for highly efficient perovskite solar cells,” Nano Energy 22, 499–506 (2016).
[Crossref]

Yum, J. H.

P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S. J. Moon, J. H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
[Crossref] [PubMed]

Zakhidov, A.

E. Tiguntseva, A. Chebykin, A. Ishteev, R. Haroldson, B. Balachandran, E. Ushakova, F. Komissarenko, H. Wang, V. Milichko, A. Tsypkin, D. Zuev, W. Hu, S. Makarov, and A. Zakhidov, “Resonant silicon nanoparticles for enhancement of light absorption and photoluminescence from hybrid perovskite films and metasurfaces,” Nanoscale 9(34), 12486–12493 (2017).
[Crossref] [PubMed]

Zhang, C. J.

R. S. Wu, B. C. Yang, C. J. Zhang, Y. L. Huang, Y. X. Cui, P. Liu, C. H. Zhou, Y. Y. Hao, Y. L. Gao, and J. L. Yang, “Prominent efficiency enhancement in perovskite solar cells employing silica-coated gold nanorods,” J. Phys. Chem. C 120(13), 6996–7004 (2016).
[Crossref]

Zhang, D.

Z. Lu, X. Pan, Y. Ma, Y. Li, L. Zheng, D. Zhang, Q. Xu, Z. Chen, S. Wang, B. Qu, F. Liu, Y. Huang, L. Xiao, and G. Qihuang, “Plasmonic-enhanced perovskite solar cells using alloy popcorn nanoparticles,” RSC Advances 5 (15), 11175–11179 (2015).
[Crossref]

Zhang, W.

W. Zhang, M. Anaya, G. Lozano, M. E. Calvo, M. B. Johnston, H. Míguez, and H. J. Snaith, “Highly efficient perovskite solar cells with tunable structural color,” Nano Lett. 15(3), 1698–1702 (2015).
[Crossref] [PubMed]

M. Anaya, G. Lozano, M. E. Calvo, W. Zhang, M. B. Johnston, H. J. Snaith, and H. Míguez, “Optical description of mesostructured organic–inorganic halide perovskite solar cells,” J. Phys. Chem. Lett. 6(1), 48–53 (2015).
[Crossref] [PubMed]

W. Zhang, M. Saliba, S. D. Stranks, Y. Sun, X. Shi, U. Wiesner, and H. J. Snaith, “Enhancement of perovskite-based solar cells employing core-shell metal nanoparticles,” Nano Lett. 13(9), 4505–4510 (2013).
[Crossref] [PubMed]

Zhao, C.

W. Tian, C. Zhao, J. Leng, R. Cui, and S. Jin, “Visualizing Carrier Diffusion in Individual Single-Crystal Organolead Halide Perovskite Nanowires and Nanoplates,” J. Am. Chem. Soc. 137(39), 12458–12461 (2015).
[Crossref] [PubMed]

Zhao, H.

S.-H. Bae, H. Zhao, Y.-T. Hsieh, L. Zuo, N. De Marco, Y. S. Rim, G. Li, and Y. Yang, “Printable Solar Cells from Advanced Solution-Processible Materials,” Chem 1(2), 197–219 (2016).
[Crossref]

Zheng, L.

Z. Lu, X. Pan, Y. Ma, Y. Li, L. Zheng, D. Zhang, Q. Xu, Z. Chen, S. Wang, B. Qu, F. Liu, Y. Huang, L. Xiao, and G. Qihuang, “Plasmonic-enhanced perovskite solar cells using alloy popcorn nanoparticles,” RSC Advances 5 (15), 11175–11179 (2015).
[Crossref]

Zheng, N.

J. Yin, H. Qu, J. Cao, H. Tai, J. Li, and N. Zheng, “Light absorption enhancement by embedding submicron scattering TiO2 nanoparticles in perovskite solar cells,” RSC Advances 6(29), 24596–24602 (2016).
[Crossref]

Zhou, C. H.

R. S. Wu, B. C. Yang, C. J. Zhang, Y. L. Huang, Y. X. Cui, P. Liu, C. H. Zhou, Y. Y. Hao, Y. L. Gao, and J. L. Yang, “Prominent efficiency enhancement in perovskite solar cells employing silica-coated gold nanorods,” J. Phys. Chem. C 120(13), 6996–7004 (2016).
[Crossref]

Zimanyi, G. T.

S. Wippermann, M. Vörös, A. Gali, F. Gygi, G. T. Zimanyi, and G. Galli, “Solar nanocomposites with complementary charge extraction pathways for electrons and holes: Si embedded in ZnS,” Phys. Rev. Lett. 112(10), 106801 (2014).
[Crossref] [PubMed]

Zuev, D.

E. Tiguntseva, A. Chebykin, A. Ishteev, R. Haroldson, B. Balachandran, E. Ushakova, F. Komissarenko, H. Wang, V. Milichko, A. Tsypkin, D. Zuev, W. Hu, S. Makarov, and A. Zakhidov, “Resonant silicon nanoparticles for enhancement of light absorption and photoluminescence from hybrid perovskite films and metasurfaces,” Nanoscale 9(34), 12486–12493 (2017).
[Crossref] [PubMed]

Zuo, L.

S.-H. Bae, H. Zhao, Y.-T. Hsieh, L. Zuo, N. De Marco, Y. S. Rim, G. Li, and Y. Yang, “Printable Solar Cells from Advanced Solution-Processible Materials,” Chem 1(2), 197–219 (2016).
[Crossref]

Zywietz, U.

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5(1), 3402 (2014).
[Crossref] [PubMed]

ACS Photonics (1)

K. Handloser, N. Giesbrecht, T. Bein, P. Docampo, M. Handloser, and A. Hartschuh, “Contactless Visualization of Fast Charge Carrier Diffusion in Hybrid Halide Perovskite Thin Films,” ACS Photonics 3(2), 255–261 (2016).
[Crossref]

Adv. Energy Mater. (1)

M. L. Petrus, J. Schlipf, C. Li, T. P. Gujar, N. Giesbrecht, P. Müller-Buschbaum, M. Thelakkat, T. Bein, S. Hüttner, and P. Docampo, “Capturing the Sun: A Review of the Challenges and Perspectives of Perovskite Solar Cells,” Adv. Energy Mater. 7(16), 1700264 (2017).
[Crossref]

Adv. Funct. Mater. (1)

R. L. Milot, G. E. Eperon, H. J. Snaith, M. B. Johnston, and L. M. Herz, “Temperature-Dependent Charge-Carrier Dynamics in CH3NH3PbI3 Perovskite Thin Films,” Adv. Funct. Mater. 25(39), 6218–6227 (2015).
[Crossref]

Adv. Mater. (1)

J. P. Correa-Baena, M. Anaya, G. Lozano, W. Tress, K. Domanski, M. Saliba, T. Matsui, T. J. Jacobsson, M. E. Calvo, A. Abate, M. Grätzel, H. Míguez, and A. Hagfeldt, “Unbroken perovskite: interplay of morphology, electro-optical properties and ionic movement,” Adv. Mater. 28(25), 5031–5037 (2016).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

J. M. Miranda-Muñoz, G. Lozano, and H. Míguez, “Design and realization of a novel optically disordered material: a demonstration of a Mie glass,” Adv. Opt. Mater. 5(10), 1700025 (2017).
[Crossref]

Appl. Phys. Lett. (2)

H. W. Deckman and J. H. Dunsmuir, “Natural lithography,” Appl. Phys. Lett. 41(4), 377–379 (1982).
[Crossref]

P. Jiang, T. Prasad, M. J. McFarland, and V. L. Colvin, “Two-dimensional nonclose-packed colloidal crystals formed by spincoating,” Appl. Phys. Lett. 89(1), 011908 (2006).
[Crossref]

Chem (1)

S.-H. Bae, H. Zhao, Y.-T. Hsieh, L. Zuo, N. De Marco, Y. S. Rim, G. Li, and Y. Yang, “Printable Solar Cells from Advanced Solution-Processible Materials,” Chem 1(2), 197–219 (2016).
[Crossref]

Coord. Chem. Rev. (1)

Z. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, “Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell,” Coord. Chem. Rev. 248(13–14), 1381–1389 (2004).
[Crossref]

Energy Environ. Sci. (2)

G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herza, and H. J. Snaith, “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells,” Energy Environ. Sci. 7(3), 982–988 (2014).
[Crossref]

C. Roldan-Carmona, O. Malinkiewicz, R. Betancur, G. Longo, C. Momblona, F. Jaramillo, L. Camacho, and H. Bolink, “Flexible high efficiency perovskite solar cells,” Energy Environ. Sci. 7(3), 994–997 (2014).
[Crossref]

J Mater Chem A Mater (1)

J. M. Miranda-Muñoz, S. Carretero-Palacios, A. Jiménez-Solano, Y. Li, G. Lozano, and H. Míguez, “Efficient bifacial dye-sensitized solar cells through disorder by design,” J Mater Chem A Mater 4(5), 1953–1961 (2016).
[Crossref] [PubMed]

J Phys Chem C Nanomater Interfaces (1)

S. Carretero-Palacios, M. E. Calvo, and H. Míguez, “Absorption enhancement in organic–inorganic halide perovskite films with embedded plasmonic gold nanoparticles,” J Phys Chem C Nanomater Interfaces 119(32), 18635–18640 (2015).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

W. Tian, C. Zhao, J. Leng, R. Cui, and S. Jin, “Visualizing Carrier Diffusion in Individual Single-Crystal Organolead Halide Perovskite Nanowires and Nanoplates,” J. Am. Chem. Soc. 137(39), 12458–12461 (2015).
[Crossref] [PubMed]

J. Mater. Chem. A Mater. Energy Sustain. (1)

S. M. Kang, N. Ahn, J.-W. Lee, M. Choi, and N.-G. Park, “Water-Repellent Perovskite Solar Cell,” J. Mater. Chem. A Mater. Energy Sustain. 2(47), 20017–20021 (2014).
[Crossref]

J. Phys. Chem. C (1)

R. S. Wu, B. C. Yang, C. J. Zhang, Y. L. Huang, Y. X. Cui, P. Liu, C. H. Zhou, Y. Y. Hao, Y. L. Gao, and J. L. Yang, “Prominent efficiency enhancement in perovskite solar cells employing silica-coated gold nanorods,” J. Phys. Chem. C 120(13), 6996–7004 (2016).
[Crossref]

J. Phys. Chem. Lett. (5)

M. Anaya, G. Lozano, M. E. Calvo, W. Zhang, M. B. Johnston, H. J. Snaith, and H. Míguez, “Optical description of mesostructured organic–inorganic halide perovskite solar cells,” J. Phys. Chem. Lett. 6(1), 48–53 (2015).
[Crossref] [PubMed]

P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S. J. Moon, J. H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015).
[Crossref] [PubMed]

J.-W. Lee, Y.-T. Hsieh, N. De Marco, S.-H. Bae, Q. Han, and Y. Yang, “Halide perovskites for tandem solar cells,” J. Phys. Chem. Lett. 8(9), 1999–2011 (2017).
[Crossref] [PubMed]

A. Jiménez-Solano, J. F. Galisteo-López, and H. Míguez, “Absorption and Emission of Light in Optoelectronic Nanomaterials: The Role of the Local Optical Environment,” J. Phys. Chem. Lett. 9(8), 2077–2084 (2018).
[Crossref] [PubMed]

O. E. Semonin, G. A. Elbaz, D. B. Straus, T. D. Hull, D. W. Paley, A. M. van der Zande, J. C. Hone, I. Kymissis, C. R. Kagan, X. Roy, and J. S. Owen, “Limits of Carrier Diffusion in n-Type and p-Type CH3NH3PbI3 Perovskite Single Crystals,” J. Phys. Chem. Lett. 7(17), 3510–3518 (2016).
[Crossref] [PubMed]

Joule (1)

M. Anaya, G. Lozano, M. E. Calvo, and H. Míguez, “ABX3 perovskites for tandem solar cells,” Joule 1(4), 769–793 (2017).
[Crossref]

Langmuir (1)

N. C. Jeong, C. Prasittichai, and J. T. Hupp, “Photocurrent enhancement by surface plasmon resonance of silver nanoparticles in highly porous dye-sensitized solar cells,” Langmuir 27(23), 14609–14614 (2011).
[Crossref] [PubMed]

Nano Energy (1)

S. Jang, J. Yoon, K. Ha, M.-C. Kim, D. H. Kim, S. M. Kim, S. M. Kang, S. J. Park, H. S. Jung, and M. Choi, “Facile fabrication of three-dimensional TiO2 structures for highly efficient perovskite solar cells,” Nano Energy 22, 499–506 (2016).
[Crossref]

Nano Lett. (3)

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells,” Nano Lett. 13(4), 1764–1769 (2013).
[Crossref] [PubMed]

W. Zhang, M. Anaya, G. Lozano, M. E. Calvo, M. B. Johnston, H. Míguez, and H. J. Snaith, “Highly efficient perovskite solar cells with tunable structural color,” Nano Lett. 15(3), 1698–1702 (2015).
[Crossref] [PubMed]

W. Zhang, M. Saliba, S. D. Stranks, Y. Sun, X. Shi, U. Wiesner, and H. J. Snaith, “Enhancement of perovskite-based solar cells employing core-shell metal nanoparticles,” Nano Lett. 13(9), 4505–4510 (2013).
[Crossref] [PubMed]

Nanoscale (2)

I. Rodriguez, L. Shi, X. Lu, B. A. Korgel, R. A. Álvarez-Puebla, and F. Meseguer, “Silicon nanoparticles as Raman scattering enhancers,” Nanoscale 6(11), 5666–5670 (2014).
[Crossref] [PubMed]

E. Tiguntseva, A. Chebykin, A. Ishteev, R. Haroldson, B. Balachandran, E. Ushakova, F. Komissarenko, H. Wang, V. Milichko, A. Tsypkin, D. Zuev, W. Hu, S. Makarov, and A. Zakhidov, “Resonant silicon nanoparticles for enhancement of light absorption and photoluminescence from hybrid perovskite films and metasurfaces,” Nanoscale 9(34), 12486–12493 (2017).
[Crossref] [PubMed]

Nat. Commun. (1)

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5(1), 3402 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

O. K. Varghese, M. Paulose, and C. A. Grimes, “Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells,” Nat. Nanotechnol. 4(9), 592–597 (2009).
[Crossref] [PubMed]

Nat. Photonics (1)

M. A. Green, A. Ho-Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nat. Photonics 8(7), 506–514 (2014).
[Crossref]

Nature (1)

A. van Blaaderen, R. Ruel, and P. Wiltzius, “Template-directed colloidal crystallization,” Nature 385(6614), 321–324 (1997).
[Crossref]

Phys. Rev. Lett. (1)

S. Wippermann, M. Vörös, A. Gali, F. Gygi, G. T. Zimanyi, and G. Galli, “Solar nanocomposites with complementary charge extraction pathways for electrons and holes: Si embedded in ZnS,” Phys. Rev. Lett. 112(10), 106801 (2014).
[Crossref] [PubMed]

RSC Advances (2)

J. Yin, H. Qu, J. Cao, H. Tai, J. Li, and N. Zheng, “Light absorption enhancement by embedding submicron scattering TiO2 nanoparticles in perovskite solar cells,” RSC Advances 6(29), 24596–24602 (2016).
[Crossref]

Z. Lu, X. Pan, Y. Ma, Y. Li, L. Zheng, D. Zhang, Q. Xu, Z. Chen, S. Wang, B. Qu, F. Liu, Y. Huang, L. Xiao, and G. Qihuang, “Plasmonic-enhanced perovskite solar cells using alloy popcorn nanoparticles,” RSC Advances 5 (15), 11175–11179 (2015).
[Crossref]

Science (1)

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338(6107), 643–647 (2012).
[Crossref] [PubMed]

Small (1)

S. M. Kang, S. Jang, J.-K. Lee, J. Yoon, D.-E. Yoo, J.-W. Lee, M. Choi, and N.-G. Park, “Moth-Eye TiO2 Layer for Improving Light Harvesting Efficiency in Perovskite Solar Cells,” Small 12(18), 2443–2449 (2016).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

H.-L. Hsu, T.-Y. Juang, C.-P. Chen, C.-M. Hsieh, C.-C. Yang, C.-L. Huang, and R.-J. Jeng, “Enhanced efficiency of organic and perovskite photovoltaics from shape-dependent broadband plasmonic effects of silver nanoplates,” Sol. Energy Mater. Sol. Cells 140, 224–231 (2015).
[Crossref]

Superlattices Microstruct. (1)

R. Guerra, I. Marri, R. Magri, L. Martin-Samos, O. Pulci, E. Degoli, and S. Ossicini, “Optical properties of silicon nanocrystallites in SiO2 matrix: crystalline vs. amorphous case,” Superlattices Microstruct. 46(1–2), 246–252 (2009).
[Crossref]

Other (3)

L. Solutions, Inc. http://www.lumerical.com/tcad-products/fdtd/ (accessed: April 4, 2018).

S. Carretero-Palacios, A. Jiménez-Solano, and H. Míguez, “Plasmonic nanoparticles as light-harvesting enhancers in perovskite solar cells: a user’s guide,” ACS Energy Lett. 1 (1), 323–331 (2016).

https://www.nrel.gov/pv/assets/images/efficiency-chart.png (accessed: July 11, 2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Schematics of the simple system under study: a particle array is placed at the interface between a glass substrate and a MAPI film, having a hole-transporting material (HTM) as a cover. The system is illuminated by a plane wave injected from the glass substrate. The particle size is defined by the radius, r, and the lattice parameters by the period, p. The MAPI film thickness is characterized by h. (b) Scheme of the architecture of the simulated device: glass substrate, 500 nm of FTO layer, 10 nm of TiO2 compact layer, 100 nm of 50% porous TiO2 scaffold fully infiltrated by perovskite, 300 nm of perovskite capping layer with array particles at the bottom surface, 80 nm of spiro-OMeTAD, and 80 nm of gold contact (for the standard cell) or 100 nm of ITO contact (for the semi-transparent cell).
Fig. 2
Fig. 2 (a-b) Integrated solar absorption enhancement, η, for MAPI films of h=300 nm thickness, as a function of the period, p, for SiO2 (a) and TiO2 (b) particles of radius r=100 nm (blue), r=110 nm (red), r=120 nm (yellow), r=130 nm (purple) and r=140 nm (green) in square lattice arrangements.
Fig. 3
Fig. 3 (a) Solar spectrum weighted integrated absorptance (SSWIA) versus MAPI film thickness. (b) Integrated solar absorption enhancement, η, for MAPI films of h=500 nm thickness, as a function of the period, p, for SiO2 particles of radius r=120 nm (blue), r=130 nm (red), r=140 nm (yellow), r=150 nm (purple), r=160 nm (green) and r=170 nm (cyan) in square lattice arrangements.
Fig. 4
Fig. 4 (a) Perovskite absorptance spectra of a reference bared MAPI film of h=300 nm thickness (black dash line), and of the same film containing SiO2 particles of radius r=140 nm arranged in a square lattice of p=340 nm (blue line), p=380 nm (red line) or p=410 nm (yellow line). Results for a MAPI film of the same thickness and containing disordered particles of equal radius with a concentration of ff=26% (equivalent to the concentration of an array with p= 380 nm) are draw with a green dash line. (b) Perovskite absorptance spectra of a MAPI film containing SiO2 particles of radius r=100 nm (purple line), r=120 nm (green line), and r=140 nm (yellow line) arranged in a square lattice of p=410 nm.
Fig. 5
Fig. 5 Top panels show the electric field distribution | E( x,y,z,ω ) | 2 of a unit cell of a h=300 nm thickness MAPI film containing SiO2 particles of r=140 nm arranged in a square lattice of p=410 nm at the resonant wavelengths λ 1 =699 nm (a), λ 2 =710 nm (b) and λ 3 =784 nm (c). Bottom panels display corresponding results of the absorbed power per unit volume at the same wavelengths. White lines are used to guide the eye distinguishing amongst different materials (substrate ( z<0 nm), cover ( z>300 nm), MAPI film (0 nm z300 nm), and particle).
Fig. 6
Fig. 6 Integrated solar absorption enhancement, η, for MAPI films of h=300 nm thickness, as a function of the period, p, for SiO2 particles of radius r=110 nm (blue), r =120 nm (red),  r=130 nm (yellow), and r=140 nm (purple) in hexagonal lattice arrangements
Fig. 7
Fig. 7 (a) Integrated solar absorption enhancement, η , for MAPI films of h=300 nm thickness as a function of the period, p, for Si particles of radius r=80 nm (blue), r=90 nm (red), r=100 nm (yellow), r=110 nm (purple), and r=120 nm (green) in square lattice arrangements. (b) Absorptance spectra of a reference MAPI film (black dash line) without any particle inside, and that of the optimum system attained in panel (a), i.e., a MAPI film containing Si particles of radius r=100 nm arranged in an array with p=300 nm. Red line corresponds to the MAPI film, and blue line to the Si absorptance.
Fig. 8
Fig. 8 Electric field distribution | E( x,y,z,ω ) | 2 , top panels, of a unit cell of a h=300 nm thickness MAPI film containing Si particles of r=100 nm arranged in a square lattice of p=320 nm at the resonant wavelengths λ 1 =546 nm (a), λ 2 =640 nm (b) and λ 3 =773 nm (c). Bottom panels display corresponding results of the absorbed power per unit volume at the same wavelengths. White lines are used to guide the eye distinguishing amongst different materials (substrate, cover, MAPI film, and particle).
Fig. 9
Fig. 9 (a) Integrated solar absorption enhancement, η, for an opaque solar cell (having an 80 nm gold contact) as in the configuration described in Fig. 1(b), as a function of the period, p, for Si particles of radius r=80 nm (garnet), r=90 nm (blue), r=100 nm (red), r=110 nm (yellow), r=120 nm (purple), r=130 nm (green) and r=140 nm (cyan) in square lattice arrangements. (b) Same calculations as in panel (a) but in a semi-transparent solar cell (having a 100 nm ITO contact). (c) Productive absorptance spectra of a MAPI film embedding an optimized design of Si particles (red dashed line) of radius r=130 nm arranged in an array with p=370 nm. Partial absorptances of all materials are shown according to the colors indicated in the figure. For the sake of comparison, the absorptance of a MAPI film of similar thickness without any particle inside (black dashed line) is also shown.
Fig. 10
Fig. 10 Electric field distribution | E( x,y,z,ω ) | 2 , top panels, of a unit cell of a h=300 nm thickness MAPI film containing Si particles of r=130 nm and p=370 nm at the localized resonances emerging at long wavelengths λ=609 nm (a), λ=686 nm (b), and λ=763 nm (c). Bottom panels display corresponding results of the absorbed power per unit volume.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η= 400 780 A p ( λ )AM1.5D( λ )dλ 400 780 A Ref ( λ )AM1.5D( λ )dλ .
A p ( λ )=1R( λ )T( λ ),
A j ( λ )= 1 P 0  [ω ε 0 | E( x,y,z,ω ) | 2 n j ( ω ) k j ( ω )d V j ]

Metrics