H. Rueda, C. Fu, D. L. Lau, and G. R. Arce, “Single Aperture Spectral+ ToF Compressive Camera: Toward Hyperspectral+ Depth Imagery,” IEEE Journal of Selected Topics in Signal Processing 11(7), 992–1003 (2017).

[Crossref]

J. D. Li, K. W. Cheng, S. H. Wang, F. Morstatter, R. P. Trevino, J. L. Tang, and H. A. Liu, “Feature selection: A data perspective,” ACM Computing Surveys (CSUR) 6(50), 94 (2017).

A. Cuadros and G. R. Arce, “Coded aperture optimization in compressive X-ray tomography: a gradient descent approach,” Opt. Express 25(20), 23833–23849 (2017).

[Crossref]
[PubMed]

M. Hassan, J. A. Greenberg, and D. J. Brady, “Snapshot fan beam coded aperture coherent scatter tomography,” Opt. Express 24(16), 18277–18289 (2016).

[Crossref]
[PubMed]

W. V. Aarle, W. J. Palenstijn, J. Cant, E. Janssens, F. Bleichrodt, A. Dabravolski, J. D. Beenhouwer, K. J. Batenburg, and J. Sijbers, “Fast and flexible X-ray tomography using the ASTRA toolbox,” Opt. Express 24, 25129–25147 (2016).

[Crossref]
[PubMed]

H. Dai, G. Gu, W. He, L. Ye, T. Mao, and Q. Chen, “Adaptive compressed photon counting 3D imaging based on wavelet trees and depth map sparse representation,” Opt. Express 24(23), 26080–26096 (2016).

[Crossref]
[PubMed]

J. Tan, Y. Ma, H. Rueda, D. Baron, and G. R. Arce, “Compressive Hyperspectral Imaging via Approximate Message Passing,” IEEE Journal of Selected Topics in Signal Processing, 10(2), 389–401 (2016).

[Crossref]

K. O. Khadivi, “Computed tomography: fundamentals, system technology, image quality, applications,” Medical Physics 33(8), 3076 (2016).

[Crossref]

J. Greenberg, K. Krishnamurthy, and D. Brady, “Compressive single-pixel snapshot x-ray diffraction imaging,” Opt. Lett. 39(1), 111–114 (2014).

[Crossref]

Y. Kaganovsky, D. Li, A. Holmgren, H. Jeon, K. P. MacCabe, D. G. Politte, J. A. O’Sullivan, L. Carin, and D. J. Brady, “Compressed sampling strategies for tomography,” J. Opt. Soc. Am. A 31(7), 1369–1394 (2014).

[Crossref]

H. Dai, G. Gu, W. He, F. Liao, J. Zhuang, X. Liu, and Q. Chen, “Adaptive compressed sampling based on extended wavelet trees,” Appl. Opt. 53(29), 6619–6628 (2014).

[Crossref]
[PubMed]

G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “Compressive coded aperture spectral imaging: An Introduction,” IEEE Signal Process. Mag 31(1), 105–115 (2014).

[Crossref]

J. S. Jorgensen, E. Y. Sidky, and X. Pan, “Quantifying admissible undersampling for sparsity-exploiting iterative image reconstruction in X-ray CT,” IEEE Trans. Medical Imaging 32(2), 460–473 (2013).

[Crossref]

K. Choi and D. J. Brady, “Coded aperture computed tomography,” Proc. SPIE 7468, 74680B (2009).

R. S. Bindman, J. Lipson, R. Marcus, K. P. Kim, M. Mahesh, R. Gould, A. B. De Gonzalez, and D. L. Miglioretti, “Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer,” Archives of internal medicine 169(22), 2078–2086 (2009)

[Crossref]

X. Pan, E.Y. Sidky, and M. Vannier, “Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?” Inverse problems 25(12), 123009 (2009).

[Crossref]

A. Wagadarikar, R. John, R. Willett, and D. Brady, “Single disperser design for coded aperture snapshot spectral imaging,” Appl. Opt. 41(10), B44–B51 (2008).

[Crossref]

E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag 25(2), 21–30 (2008).

[Crossref]

R. G. Baraniuk, “Compressive sensing [lecture notes],” IEEE Signal Process. Mag 24(4), 118–121 (2007).

[Crossref]

M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems,” IEEE Journal of Selected Topics in Signal Processing 1(4), 586–597 (2007).

[Crossref]

G. Y. Isabelle and A. Elisseeff, “An introduction to variable and feature selection,” Journal of Machine Learning Research 3, 1157–1182 (2003).

F. Natterer, “Inversion of the attenuated Radon transform,” Inverse problems 17(1), 113 (2001).

[Crossref]

A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast X-ray computed tomography for observing biological soft tissues,” Nature Medicine 2(4), 473–475 (1996).

[Crossref]
[PubMed]

F. T. Lin, Y. K. Cheng, and C. H. Ching, “Applying the genetic approach to simulated annealing in solving some NP-hard problems,” IEEE Trans. Systems, Man, and Cybernetics 23(6), 1752–1767 (1993)

[Crossref]

T. L. Moore, “Using Euler’s formula to solve plane separation problems,” The College Mathematics Journal 22(2), 125–130 (1991).

[Crossref]

B. D. Smith, “Image reconstruction from cone-beam projections: necessary and sufficient conditions and reconstruction methods,” IEEE Trans. Medical Imaging 4(1), 14–25 (1985).

[Crossref]
[PubMed]

K. H. Tuy, “An inversion formula for cone-beam reconstruction,” SIAM Journal on Applied Mathematics 43(3), 546–552 (1983).

[Crossref]

K. Kouris, H. Tuy, A. Lent, G. T. Herman, and R. M. Lewitt, “Reconstruction from sparsely sampled data by art with interpolated rays,” IEEE Trans. Medical Imaging 1(3), 161–167 (1982).

[Crossref]
[PubMed]

K. C. Tam and Victor Perez-Mendez, “Tomographical imaging with limited-angle input,” J. Opt. Soc. Am. A 71(5), 582–592 (1981).

[Crossref]

W. V. Aarle, W. J. Palenstijn, J. Cant, E. Janssens, F. Bleichrodt, A. Dabravolski, J. D. Beenhouwer, K. J. Batenburg, and J. Sijbers, “Fast and flexible X-ray tomography using the ASTRA toolbox,” Opt. Express 24, 25129–25147 (2016).

[Crossref]
[PubMed]

A. Cuadros and G. R. Arce, “Coded aperture optimization in compressive X-ray tomography: a gradient descent approach,” Opt. Express 25(20), 23833–23849 (2017).

[Crossref]
[PubMed]

H. Rueda, C. Fu, D. L. Lau, and G. R. Arce, “Single Aperture Spectral+ ToF Compressive Camera: Toward Hyperspectral+ Depth Imagery,” IEEE Journal of Selected Topics in Signal Processing 11(7), 992–1003 (2017).

[Crossref]

J. Tan, Y. Ma, H. Rueda, D. Baron, and G. R. Arce, “Compressive Hyperspectral Imaging via Approximate Message Passing,” IEEE Journal of Selected Topics in Signal Processing, 10(2), 389–401 (2016).

[Crossref]

A. Cuadros, C. Peitsch, H. Arguello, and G. R. Arce, “Coded aperture optimization for compressive X-ray tomosynthesis,” Opt. Express 23(25), 32788–32802 (2015).

[Crossref]
[PubMed]

G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “Compressive coded aperture spectral imaging: An Introduction,” IEEE Signal Process. Mag 31(1), 105–115 (2014).

[Crossref]

A. P. Cuadros, K. Wang, C. Peitsch, H. Arguello, and G. R. Arce, “Coded aperture design for compressive X-ray tomosynthesis,” in Imaging and Applied Optics 2015, OSA Technical Digest, Optical Society of America, paper CW2F.2.

A. Cuadros and G. R. Arce, “Coded aperture compressive X-ray spectral CT,” in Proceedings of IEEE Conference on Sampling Theory and Applications (IEEE2017), pp. 548–551.

A. Cuadros, C. Peitsch, H. Arguello, and G. R. Arce, “Coded aperture optimization for compressive X-ray tomosynthesis,” Opt. Express 23(25), 32788–32802 (2015).

[Crossref]
[PubMed]

G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “Compressive coded aperture spectral imaging: An Introduction,” IEEE Signal Process. Mag 31(1), 105–115 (2014).

[Crossref]

A. P. Cuadros, K. Wang, C. Peitsch, H. Arguello, and G. R. Arce, “Coded aperture design for compressive X-ray tomosynthesis,” in Imaging and Applied Optics 2015, OSA Technical Digest, Optical Society of America, paper CW2F.2.

R. G. Baraniuk, “Compressive sensing [lecture notes],” IEEE Signal Process. Mag 24(4), 118–121 (2007).

[Crossref]

J. Tan, Y. Ma, H. Rueda, D. Baron, and G. R. Arce, “Compressive Hyperspectral Imaging via Approximate Message Passing,” IEEE Journal of Selected Topics in Signal Processing, 10(2), 389–401 (2016).

[Crossref]

W. V. Aarle, W. J. Palenstijn, J. Cant, E. Janssens, F. Bleichrodt, A. Dabravolski, J. D. Beenhouwer, K. J. Batenburg, and J. Sijbers, “Fast and flexible X-ray tomography using the ASTRA toolbox,” Opt. Express 24, 25129–25147 (2016).

[Crossref]
[PubMed]

W. V. Aarle, W. J. Palenstijn, J. Cant, E. Janssens, F. Bleichrodt, A. Dabravolski, J. D. Beenhouwer, K. J. Batenburg, and J. Sijbers, “Fast and flexible X-ray tomography using the ASTRA toolbox,” Opt. Express 24, 25129–25147 (2016).

[Crossref]
[PubMed]

R. S. Bindman, J. Lipson, R. Marcus, K. P. Kim, M. Mahesh, R. Gould, A. B. De Gonzalez, and D. L. Miglioretti, “Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer,” Archives of internal medicine 169(22), 2078–2086 (2009)

[Crossref]

W. V. Aarle, W. J. Palenstijn, J. Cant, E. Janssens, F. Bleichrodt, A. Dabravolski, J. D. Beenhouwer, K. J. Batenburg, and J. Sijbers, “Fast and flexible X-ray tomography using the ASTRA toolbox,” Opt. Express 24, 25129–25147 (2016).

[Crossref]
[PubMed]

A. G. Bluman, Elementary Statistics (McGraw Hill2013).

J. Greenberg, K. Krishnamurthy, and D. Brady, “Compressive single-pixel snapshot x-ray diffraction imaging,” Opt. Lett. 39(1), 111–114 (2014).

[Crossref]

A. Wagadarikar, R. John, R. Willett, and D. Brady, “Single disperser design for coded aperture snapshot spectral imaging,” Appl. Opt. 41(10), B44–B51 (2008).

[Crossref]

M. Hassan, J. A. Greenberg, and D. J. Brady, “Snapshot fan beam coded aperture coherent scatter tomography,” Opt. Express 24(16), 18277–18289 (2016).

[Crossref]
[PubMed]

Y. Kaganovsky, D. Li, A. Holmgren, H. Jeon, K. P. MacCabe, D. G. Politte, J. A. O’Sullivan, L. Carin, and D. J. Brady, “Compressed sampling strategies for tomography,” J. Opt. Soc. Am. A 31(7), 1369–1394 (2014).

[Crossref]

G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “Compressive coded aperture spectral imaging: An Introduction,” IEEE Signal Process. Mag 31(1), 105–115 (2014).

[Crossref]

K. Choi and D. J. Brady, “Coded aperture computed tomography,” Proc. SPIE 7468, 74680B (2009).

E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag 25(2), 21–30 (2008).

[Crossref]

W. V. Aarle, W. J. Palenstijn, J. Cant, E. Janssens, F. Bleichrodt, A. Dabravolski, J. D. Beenhouwer, K. J. Batenburg, and J. Sijbers, “Fast and flexible X-ray tomography using the ASTRA toolbox,” Opt. Express 24, 25129–25147 (2016).

[Crossref]
[PubMed]

Y. Kaganovsky, D. Li, A. Holmgren, H. Jeon, K. P. MacCabe, D. G. Politte, J. A. O’Sullivan, L. Carin, and D. J. Brady, “Compressed sampling strategies for tomography,” J. Opt. Soc. Am. A 31(7), 1369–1394 (2014).

[Crossref]

G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “Compressive coded aperture spectral imaging: An Introduction,” IEEE Signal Process. Mag 31(1), 105–115 (2014).

[Crossref]

H. Dai, G. Gu, W. He, L. Ye, T. Mao, and Q. Chen, “Adaptive compressed photon counting 3D imaging based on wavelet trees and depth map sparse representation,” Opt. Express 24(23), 26080–26096 (2016).

[Crossref]
[PubMed]

H. Dai, G. Gu, W. He, F. Liao, J. Zhuang, X. Liu, and Q. Chen, “Adaptive compressed sampling based on extended wavelet trees,” Appl. Opt. 53(29), 6619–6628 (2014).

[Crossref]
[PubMed]

J. D. Li, K. W. Cheng, S. H. Wang, F. Morstatter, R. P. Trevino, J. L. Tang, and H. A. Liu, “Feature selection: A data perspective,” ACM Computing Surveys (CSUR) 6(50), 94 (2017).

F. T. Lin, Y. K. Cheng, and C. H. Ching, “Applying the genetic approach to simulated annealing in solving some NP-hard problems,” IEEE Trans. Systems, Man, and Cybernetics 23(6), 1752–1767 (1993)

[Crossref]

F. T. Lin, Y. K. Cheng, and C. H. Ching, “Applying the genetic approach to simulated annealing in solving some NP-hard problems,” IEEE Trans. Systems, Man, and Cybernetics 23(6), 1752–1767 (1993)

[Crossref]

K. Choi and D. J. Brady, “Coded aperture computed tomography,” Proc. SPIE 7468, 74680B (2009).

A. Cuadros and G. R. Arce, “Coded aperture optimization in compressive X-ray tomography: a gradient descent approach,” Opt. Express 25(20), 23833–23849 (2017).

[Crossref]
[PubMed]

A. Cuadros, C. Peitsch, H. Arguello, and G. R. Arce, “Coded aperture optimization for compressive X-ray tomosynthesis,” Opt. Express 23(25), 32788–32802 (2015).

[Crossref]
[PubMed]

A. Cuadros and G. R. Arce, “Coded aperture compressive X-ray spectral CT,” in Proceedings of IEEE Conference on Sampling Theory and Applications (IEEE2017), pp. 548–551.

A. P. Cuadros, K. Wang, C. Peitsch, H. Arguello, and G. R. Arce, “Coded aperture design for compressive X-ray tomosynthesis,” in Imaging and Applied Optics 2015, OSA Technical Digest, Optical Society of America, paper CW2F.2.

W. V. Aarle, W. J. Palenstijn, J. Cant, E. Janssens, F. Bleichrodt, A. Dabravolski, J. D. Beenhouwer, K. J. Batenburg, and J. Sijbers, “Fast and flexible X-ray tomography using the ASTRA toolbox,” Opt. Express 24, 25129–25147 (2016).

[Crossref]
[PubMed]

H. Dai, G. Gu, W. He, L. Ye, T. Mao, and Q. Chen, “Adaptive compressed photon counting 3D imaging based on wavelet trees and depth map sparse representation,” Opt. Express 24(23), 26080–26096 (2016).

[Crossref]
[PubMed]

H. Dai, G. Gu, W. He, F. Liao, J. Zhuang, X. Liu, and Q. Chen, “Adaptive compressed sampling based on extended wavelet trees,” Appl. Opt. 53(29), 6619–6628 (2014).

[Crossref]
[PubMed]

R. S. Bindman, J. Lipson, R. Marcus, K. P. Kim, M. Mahesh, R. Gould, A. B. De Gonzalez, and D. L. Miglioretti, “Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer,” Archives of internal medicine 169(22), 2078–2086 (2009)

[Crossref]

G. Y. Isabelle and A. Elisseeff, “An introduction to variable and feature selection,” Journal of Machine Learning Research 3, 1157–1182 (2003).

M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems,” IEEE Journal of Selected Topics in Signal Processing 1(4), 586–597 (2007).

[Crossref]

S. Foucart and H. Rauhut, A mathematical introduction to compressive sensing (Springer2013).

[Crossref]

H. Rueda, C. Fu, D. L. Lau, and G. R. Arce, “Single Aperture Spectral+ ToF Compressive Camera: Toward Hyperspectral+ Depth Imagery,” IEEE Journal of Selected Topics in Signal Processing 11(7), 992–1003 (2017).

[Crossref]

R. S. Bindman, J. Lipson, R. Marcus, K. P. Kim, M. Mahesh, R. Gould, A. B. De Gonzalez, and D. L. Miglioretti, “Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer,” Archives of internal medicine 169(22), 2078–2086 (2009)

[Crossref]

H. Dai, G. Gu, W. He, L. Ye, T. Mao, and Q. Chen, “Adaptive compressed photon counting 3D imaging based on wavelet trees and depth map sparse representation,” Opt. Express 24(23), 26080–26096 (2016).

[Crossref]
[PubMed]

H. Dai, G. Gu, W. He, F. Liao, J. Zhuang, X. Liu, and Q. Chen, “Adaptive compressed sampling based on extended wavelet trees,” Appl. Opt. 53(29), 6619–6628 (2014).

[Crossref]
[PubMed]

M. A. Hall, “Correlation-based Feature Selection for Machine Learning,” https://www.cs.waikato.ac.nz/~mhall/thesis.pdf

H. Dai, G. Gu, W. He, L. Ye, T. Mao, and Q. Chen, “Adaptive compressed photon counting 3D imaging based on wavelet trees and depth map sparse representation,” Opt. Express 24(23), 26080–26096 (2016).

[Crossref]
[PubMed]

H. Dai, G. Gu, W. He, F. Liao, J. Zhuang, X. Liu, and Q. Chen, “Adaptive compressed sampling based on extended wavelet trees,” Appl. Opt. 53(29), 6619–6628 (2014).

[Crossref]
[PubMed]

K. Kouris, H. Tuy, A. Lent, G. T. Herman, and R. M. Lewitt, “Reconstruction from sparsely sampled data by art with interpolated rays,” IEEE Trans. Medical Imaging 1(3), 161–167 (1982).

[Crossref]
[PubMed]

A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast X-ray computed tomography for observing biological soft tissues,” Nature Medicine 2(4), 473–475 (1996).

[Crossref]
[PubMed]

Y. Kaganovsky, D. Li, A. Holmgren, H. Jeon, K. P. MacCabe, D. G. Politte, J. A. O’Sullivan, L. Carin, and D. J. Brady, “Compressed sampling strategies for tomography,” J. Opt. Soc. Am. A 31(7), 1369–1394 (2014).

[Crossref]

J. Hsieh, Computed tomography: principles, Design, Artifacts, and Recent Advances (SPIE2015).

G. Y. Isabelle and A. Elisseeff, “An introduction to variable and feature selection,” Journal of Machine Learning Research 3, 1157–1182 (2003).

A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast X-ray computed tomography for observing biological soft tissues,” Nature Medicine 2(4), 473–475 (1996).

[Crossref]
[PubMed]

W. V. Aarle, W. J. Palenstijn, J. Cant, E. Janssens, F. Bleichrodt, A. Dabravolski, J. D. Beenhouwer, K. J. Batenburg, and J. Sijbers, “Fast and flexible X-ray tomography using the ASTRA toolbox,” Opt. Express 24, 25129–25147 (2016).

[Crossref]
[PubMed]

Y. Kaganovsky, D. Li, A. Holmgren, H. Jeon, K. P. MacCabe, D. G. Politte, J. A. O’Sullivan, L. Carin, and D. J. Brady, “Compressed sampling strategies for tomography,” J. Opt. Soc. Am. A 31(7), 1369–1394 (2014).

[Crossref]

A. Wagadarikar, R. John, R. Willett, and D. Brady, “Single disperser design for coded aperture snapshot spectral imaging,” Appl. Opt. 41(10), B44–B51 (2008).

[Crossref]

J. S. Jorgensen, E. Y. Sidky, and X. Pan, “Quantifying admissible undersampling for sparsity-exploiting iterative image reconstruction in X-ray CT,” IEEE Trans. Medical Imaging 32(2), 460–473 (2013).

[Crossref]

Y. Kaganovsky, D. Li, A. Holmgren, H. Jeon, K. P. MacCabe, D. G. Politte, J. A. O’Sullivan, L. Carin, and D. J. Brady, “Compressed sampling strategies for tomography,” J. Opt. Soc. Am. A 31(7), 1369–1394 (2014).

[Crossref]

K. O. Khadivi, “Computed tomography: fundamentals, system technology, image quality, applications,” Medical Physics 33(8), 3076 (2016).

[Crossref]

R. S. Bindman, J. Lipson, R. Marcus, K. P. Kim, M. Mahesh, R. Gould, A. B. De Gonzalez, and D. L. Miglioretti, “Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer,” Archives of internal medicine 169(22), 2078–2086 (2009)

[Crossref]

S. J. Kisner, “Image Reconstruction for X-ray Computed Tomography in Security Screening Applications,” Purdue University (2013).

G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “Compressive coded aperture spectral imaging: An Introduction,” IEEE Signal Process. Mag 31(1), 105–115 (2014).

[Crossref]

K. Kouris, H. Tuy, A. Lent, G. T. Herman, and R. M. Lewitt, “Reconstruction from sparsely sampled data by art with interpolated rays,” IEEE Trans. Medical Imaging 1(3), 161–167 (1982).

[Crossref]
[PubMed]

H. Rueda, C. Fu, D. L. Lau, and G. R. Arce, “Single Aperture Spectral+ ToF Compressive Camera: Toward Hyperspectral+ Depth Imagery,” IEEE Journal of Selected Topics in Signal Processing 11(7), 992–1003 (2017).

[Crossref]

K. Kouris, H. Tuy, A. Lent, G. T. Herman, and R. M. Lewitt, “Reconstruction from sparsely sampled data by art with interpolated rays,” IEEE Trans. Medical Imaging 1(3), 161–167 (1982).

[Crossref]
[PubMed]

K. Kouris, H. Tuy, A. Lent, G. T. Herman, and R. M. Lewitt, “Reconstruction from sparsely sampled data by art with interpolated rays,” IEEE Trans. Medical Imaging 1(3), 161–167 (1982).

[Crossref]
[PubMed]

Y. Kaganovsky, D. Li, A. Holmgren, H. Jeon, K. P. MacCabe, D. G. Politte, J. A. O’Sullivan, L. Carin, and D. J. Brady, “Compressed sampling strategies for tomography,” J. Opt. Soc. Am. A 31(7), 1369–1394 (2014).

[Crossref]

J. D. Li, K. W. Cheng, S. H. Wang, F. Morstatter, R. P. Trevino, J. L. Tang, and H. A. Liu, “Feature selection: A data perspective,” ACM Computing Surveys (CSUR) 6(50), 94 (2017).

F. Wang, Y. Yang, X. Lv, J. Xu, and L. Li, “Feature selection using feature ranking, correlation analysis and chaotic binary particle swarm optimization,” in Proceedings of IEEE Conference on Software Engineering and Service Science (IEEE2014), pp. 305–309.

F. T. Lin, Y. K. Cheng, and C. H. Ching, “Applying the genetic approach to simulated annealing in solving some NP-hard problems,” IEEE Trans. Systems, Man, and Cybernetics 23(6), 1752–1767 (1993)

[Crossref]

R. S. Bindman, J. Lipson, R. Marcus, K. P. Kim, M. Mahesh, R. Gould, A. B. De Gonzalez, and D. L. Miglioretti, “Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer,” Archives of internal medicine 169(22), 2078–2086 (2009)

[Crossref]

J. D. Li, K. W. Cheng, S. H. Wang, F. Morstatter, R. P. Trevino, J. L. Tang, and H. A. Liu, “Feature selection: A data perspective,” ACM Computing Surveys (CSUR) 6(50), 94 (2017).

F. Wang, Y. Yang, X. Lv, J. Xu, and L. Li, “Feature selection using feature ranking, correlation analysis and chaotic binary particle swarm optimization,” in Proceedings of IEEE Conference on Software Engineering and Service Science (IEEE2014), pp. 305–309.

J. Tan, Y. Ma, H. Rueda, D. Baron, and G. R. Arce, “Compressive Hyperspectral Imaging via Approximate Message Passing,” IEEE Journal of Selected Topics in Signal Processing, 10(2), 389–401 (2016).

[Crossref]

Y. Kaganovsky, D. Li, A. Holmgren, H. Jeon, K. P. MacCabe, D. G. Politte, J. A. O’Sullivan, L. Carin, and D. J. Brady, “Compressed sampling strategies for tomography,” J. Opt. Soc. Am. A 31(7), 1369–1394 (2014).

[Crossref]

R. S. Bindman, J. Lipson, R. Marcus, K. P. Kim, M. Mahesh, R. Gould, A. B. De Gonzalez, and D. L. Miglioretti, “Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer,” Archives of internal medicine 169(22), 2078–2086 (2009)

[Crossref]

R. S. Bindman, J. Lipson, R. Marcus, K. P. Kim, M. Mahesh, R. Gould, A. B. De Gonzalez, and D. L. Miglioretti, “Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer,” Archives of internal medicine 169(22), 2078–2086 (2009)

[Crossref]

R. S. Bindman, J. Lipson, R. Marcus, K. P. Kim, M. Mahesh, R. Gould, A. B. De Gonzalez, and D. L. Miglioretti, “Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer,” Archives of internal medicine 169(22), 2078–2086 (2009)

[Crossref]

A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast X-ray computed tomography for observing biological soft tissues,” Nature Medicine 2(4), 473–475 (1996).

[Crossref]
[PubMed]

T. L. Moore, “Using Euler’s formula to solve plane separation problems,” The College Mathematics Journal 22(2), 125–130 (1991).

[Crossref]

J. D. Li, K. W. Cheng, S. H. Wang, F. Morstatter, R. P. Trevino, J. L. Tang, and H. A. Liu, “Feature selection: A data perspective,” ACM Computing Surveys (CSUR) 6(50), 94 (2017).

F. Natterer, “Inversion of the attenuated Radon transform,” Inverse problems 17(1), 113 (2001).

[Crossref]

M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems,” IEEE Journal of Selected Topics in Signal Processing 1(4), 586–597 (2007).

[Crossref]

Y. Kaganovsky, D. Li, A. Holmgren, H. Jeon, K. P. MacCabe, D. G. Politte, J. A. O’Sullivan, L. Carin, and D. J. Brady, “Compressed sampling strategies for tomography,” J. Opt. Soc. Am. A 31(7), 1369–1394 (2014).

[Crossref]

W. V. Aarle, W. J. Palenstijn, J. Cant, E. Janssens, F. Bleichrodt, A. Dabravolski, J. D. Beenhouwer, K. J. Batenburg, and J. Sijbers, “Fast and flexible X-ray tomography using the ASTRA toolbox,” Opt. Express 24, 25129–25147 (2016).

[Crossref]
[PubMed]

J. S. Jorgensen, E. Y. Sidky, and X. Pan, “Quantifying admissible undersampling for sparsity-exploiting iterative image reconstruction in X-ray CT,” IEEE Trans. Medical Imaging 32(2), 460–473 (2013).

[Crossref]

X. Pan, E.Y. Sidky, and M. Vannier, “Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?” Inverse problems 25(12), 123009 (2009).

[Crossref]

A. Cuadros, C. Peitsch, H. Arguello, and G. R. Arce, “Coded aperture optimization for compressive X-ray tomosynthesis,” Opt. Express 23(25), 32788–32802 (2015).

[Crossref]
[PubMed]

A. P. Cuadros, K. Wang, C. Peitsch, H. Arguello, and G. R. Arce, “Coded aperture design for compressive X-ray tomosynthesis,” in Imaging and Applied Optics 2015, OSA Technical Digest, Optical Society of America, paper CW2F.2.

K. C. Tam and Victor Perez-Mendez, “Tomographical imaging with limited-angle input,” J. Opt. Soc. Am. A 71(5), 582–592 (1981).

[Crossref]

Y. Kaganovsky, D. Li, A. Holmgren, H. Jeon, K. P. MacCabe, D. G. Politte, J. A. O’Sullivan, L. Carin, and D. J. Brady, “Compressed sampling strategies for tomography,” J. Opt. Soc. Am. A 31(7), 1369–1394 (2014).

[Crossref]

S. Foucart and H. Rauhut, A mathematical introduction to compressive sensing (Springer2013).

[Crossref]

H. Rueda, C. Fu, D. L. Lau, and G. R. Arce, “Single Aperture Spectral+ ToF Compressive Camera: Toward Hyperspectral+ Depth Imagery,” IEEE Journal of Selected Topics in Signal Processing 11(7), 992–1003 (2017).

[Crossref]

J. Tan, Y. Ma, H. Rueda, D. Baron, and G. R. Arce, “Compressive Hyperspectral Imaging via Approximate Message Passing,” IEEE Journal of Selected Topics in Signal Processing, 10(2), 389–401 (2016).

[Crossref]

J. S. Jorgensen, E. Y. Sidky, and X. Pan, “Quantifying admissible undersampling for sparsity-exploiting iterative image reconstruction in X-ray CT,” IEEE Trans. Medical Imaging 32(2), 460–473 (2013).

[Crossref]

X. Pan, E.Y. Sidky, and M. Vannier, “Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?” Inverse problems 25(12), 123009 (2009).

[Crossref]

W. V. Aarle, W. J. Palenstijn, J. Cant, E. Janssens, F. Bleichrodt, A. Dabravolski, J. D. Beenhouwer, K. J. Batenburg, and J. Sijbers, “Fast and flexible X-ray tomography using the ASTRA toolbox,” Opt. Express 24, 25129–25147 (2016).

[Crossref]
[PubMed]

B. D. Smith, “Image reconstruction from cone-beam projections: necessary and sufficient conditions and reconstruction methods,” IEEE Trans. Medical Imaging 4(1), 14–25 (1985).

[Crossref]
[PubMed]

A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast X-ray computed tomography for observing biological soft tissues,” Nature Medicine 2(4), 473–475 (1996).

[Crossref]
[PubMed]

K. C. Tam and Victor Perez-Mendez, “Tomographical imaging with limited-angle input,” J. Opt. Soc. Am. A 71(5), 582–592 (1981).

[Crossref]

J. Tan, Y. Ma, H. Rueda, D. Baron, and G. R. Arce, “Compressive Hyperspectral Imaging via Approximate Message Passing,” IEEE Journal of Selected Topics in Signal Processing, 10(2), 389–401 (2016).

[Crossref]

J. D. Li, K. W. Cheng, S. H. Wang, F. Morstatter, R. P. Trevino, J. L. Tang, and H. A. Liu, “Feature selection: A data perspective,” ACM Computing Surveys (CSUR) 6(50), 94 (2017).

J. D. Li, K. W. Cheng, S. H. Wang, F. Morstatter, R. P. Trevino, J. L. Tang, and H. A. Liu, “Feature selection: A data perspective,” ACM Computing Surveys (CSUR) 6(50), 94 (2017).

K. Kouris, H. Tuy, A. Lent, G. T. Herman, and R. M. Lewitt, “Reconstruction from sparsely sampled data by art with interpolated rays,” IEEE Trans. Medical Imaging 1(3), 161–167 (1982).

[Crossref]
[PubMed]

K. H. Tuy, “An inversion formula for cone-beam reconstruction,” SIAM Journal on Applied Mathematics 43(3), 546–552 (1983).

[Crossref]

X. Pan, E.Y. Sidky, and M. Vannier, “Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?” Inverse problems 25(12), 123009 (2009).

[Crossref]

A. Wagadarikar, R. John, R. Willett, and D. Brady, “Single disperser design for coded aperture snapshot spectral imaging,” Appl. Opt. 41(10), B44–B51 (2008).

[Crossref]

E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag 25(2), 21–30 (2008).

[Crossref]

F. Wang, Y. Yang, X. Lv, J. Xu, and L. Li, “Feature selection using feature ranking, correlation analysis and chaotic binary particle swarm optimization,” in Proceedings of IEEE Conference on Software Engineering and Service Science (IEEE2014), pp. 305–309.

A. P. Cuadros, K. Wang, C. Peitsch, H. Arguello, and G. R. Arce, “Coded aperture design for compressive X-ray tomosynthesis,” in Imaging and Applied Optics 2015, OSA Technical Digest, Optical Society of America, paper CW2F.2.

J. D. Li, K. W. Cheng, S. H. Wang, F. Morstatter, R. P. Trevino, J. L. Tang, and H. A. Liu, “Feature selection: A data perspective,” ACM Computing Surveys (CSUR) 6(50), 94 (2017).

A. Wagadarikar, R. John, R. Willett, and D. Brady, “Single disperser design for coded aperture snapshot spectral imaging,” Appl. Opt. 41(10), B44–B51 (2008).

[Crossref]

M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems,” IEEE Journal of Selected Topics in Signal Processing 1(4), 586–597 (2007).

[Crossref]

F. Wang, Y. Yang, X. Lv, J. Xu, and L. Li, “Feature selection using feature ranking, correlation analysis and chaotic binary particle swarm optimization,” in Proceedings of IEEE Conference on Software Engineering and Service Science (IEEE2014), pp. 305–309.

F. Wang, Y. Yang, X. Lv, J. Xu, and L. Li, “Feature selection using feature ranking, correlation analysis and chaotic binary particle swarm optimization,” in Proceedings of IEEE Conference on Software Engineering and Service Science (IEEE2014), pp. 305–309.

J. D. Li, K. W. Cheng, S. H. Wang, F. Morstatter, R. P. Trevino, J. L. Tang, and H. A. Liu, “Feature selection: A data perspective,” ACM Computing Surveys (CSUR) 6(50), 94 (2017).

A. Wagadarikar, R. John, R. Willett, and D. Brady, “Single disperser design for coded aperture snapshot spectral imaging,” Appl. Opt. 41(10), B44–B51 (2008).

[Crossref]

H. Dai, G. Gu, W. He, F. Liao, J. Zhuang, X. Liu, and Q. Chen, “Adaptive compressed sampling based on extended wavelet trees,” Appl. Opt. 53(29), 6619–6628 (2014).

[Crossref]
[PubMed]

R. S. Bindman, J. Lipson, R. Marcus, K. P. Kim, M. Mahesh, R. Gould, A. B. De Gonzalez, and D. L. Miglioretti, “Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer,” Archives of internal medicine 169(22), 2078–2086 (2009)

[Crossref]

H. Rueda, C. Fu, D. L. Lau, and G. R. Arce, “Single Aperture Spectral+ ToF Compressive Camera: Toward Hyperspectral+ Depth Imagery,” IEEE Journal of Selected Topics in Signal Processing 11(7), 992–1003 (2017).

[Crossref]

M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems,” IEEE Journal of Selected Topics in Signal Processing 1(4), 586–597 (2007).

[Crossref]

J. Tan, Y. Ma, H. Rueda, D. Baron, and G. R. Arce, “Compressive Hyperspectral Imaging via Approximate Message Passing,” IEEE Journal of Selected Topics in Signal Processing, 10(2), 389–401 (2016).

[Crossref]

G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “Compressive coded aperture spectral imaging: An Introduction,” IEEE Signal Process. Mag 31(1), 105–115 (2014).

[Crossref]

R. G. Baraniuk, “Compressive sensing [lecture notes],” IEEE Signal Process. Mag 24(4), 118–121 (2007).

[Crossref]

E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag 25(2), 21–30 (2008).

[Crossref]

K. Kouris, H. Tuy, A. Lent, G. T. Herman, and R. M. Lewitt, “Reconstruction from sparsely sampled data by art with interpolated rays,” IEEE Trans. Medical Imaging 1(3), 161–167 (1982).

[Crossref]
[PubMed]

J. S. Jorgensen, E. Y. Sidky, and X. Pan, “Quantifying admissible undersampling for sparsity-exploiting iterative image reconstruction in X-ray CT,” IEEE Trans. Medical Imaging 32(2), 460–473 (2013).

[Crossref]

B. D. Smith, “Image reconstruction from cone-beam projections: necessary and sufficient conditions and reconstruction methods,” IEEE Trans. Medical Imaging 4(1), 14–25 (1985).

[Crossref]
[PubMed]

F. T. Lin, Y. K. Cheng, and C. H. Ching, “Applying the genetic approach to simulated annealing in solving some NP-hard problems,” IEEE Trans. Systems, Man, and Cybernetics 23(6), 1752–1767 (1993)

[Crossref]

F. Natterer, “Inversion of the attenuated Radon transform,” Inverse problems 17(1), 113 (2001).

[Crossref]

X. Pan, E.Y. Sidky, and M. Vannier, “Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?” Inverse problems 25(12), 123009 (2009).

[Crossref]

K. C. Tam and Victor Perez-Mendez, “Tomographical imaging with limited-angle input,” J. Opt. Soc. Am. A 71(5), 582–592 (1981).

[Crossref]

Y. Kaganovsky, D. Li, A. Holmgren, H. Jeon, K. P. MacCabe, D. G. Politte, J. A. O’Sullivan, L. Carin, and D. J. Brady, “Compressed sampling strategies for tomography,” J. Opt. Soc. Am. A 31(7), 1369–1394 (2014).

[Crossref]

G. Y. Isabelle and A. Elisseeff, “An introduction to variable and feature selection,” Journal of Machine Learning Research 3, 1157–1182 (2003).

K. O. Khadivi, “Computed tomography: fundamentals, system technology, image quality, applications,” Medical Physics 33(8), 3076 (2016).

[Crossref]

A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast X-ray computed tomography for observing biological soft tissues,” Nature Medicine 2(4), 473–475 (1996).

[Crossref]
[PubMed]

M. Hassan, J. A. Greenberg, and D. J. Brady, “Snapshot fan beam coded aperture coherent scatter tomography,” Opt. Express 24(16), 18277–18289 (2016).

[Crossref]
[PubMed]

A. Cuadros, C. Peitsch, H. Arguello, and G. R. Arce, “Coded aperture optimization for compressive X-ray tomosynthesis,” Opt. Express 23(25), 32788–32802 (2015).

[Crossref]
[PubMed]

A. Cuadros and G. R. Arce, “Coded aperture optimization in compressive X-ray tomography: a gradient descent approach,” Opt. Express 25(20), 23833–23849 (2017).

[Crossref]
[PubMed]

W. V. Aarle, W. J. Palenstijn, J. Cant, E. Janssens, F. Bleichrodt, A. Dabravolski, J. D. Beenhouwer, K. J. Batenburg, and J. Sijbers, “Fast and flexible X-ray tomography using the ASTRA toolbox,” Opt. Express 24, 25129–25147 (2016).

[Crossref]
[PubMed]

H. Dai, G. Gu, W. He, L. Ye, T. Mao, and Q. Chen, “Adaptive compressed photon counting 3D imaging based on wavelet trees and depth map sparse representation,” Opt. Express 24(23), 26080–26096 (2016).

[Crossref]
[PubMed]

K. Choi and D. J. Brady, “Coded aperture computed tomography,” Proc. SPIE 7468, 74680B (2009).

K. H. Tuy, “An inversion formula for cone-beam reconstruction,” SIAM Journal on Applied Mathematics 43(3), 546–552 (1983).

[Crossref]

T. L. Moore, “Using Euler’s formula to solve plane separation problems,” The College Mathematics Journal 22(2), 125–130 (1991).

[Crossref]

K. Hamalainen, A. Harhanen, A. Kallonen, A. Kujanpaa, E. Niemi, and S. Siltanen, “Tomographic X-ray data of a walnut,” http://arxiv.org/abs/1502.04064 .

Y. Adam, C. Thrampoulidis, and G. Wornell, “Analysis and Optimization of Aperture Design in Computational Imaging,” https://arxiv.org/pdf/1712.04541.pdf

T. A. Bubba, A. Hauptmann, S. Huotari, J. Rimpelainen, and S. Siltanen, “Tomographic x-ray data of a lotus root filled with attenuating objects,” https://arxiv.org/abs/1609.07299 .

A. G. Bluman, Elementary Statistics (McGraw Hill2013).

S. J. Kisner, “Image Reconstruction for X-ray Computed Tomography in Security Screening Applications,” Purdue University (2013).

J. Hsieh, Computed tomography: principles, Design, Artifacts, and Recent Advances (SPIE2015).

R. Stempert and D. Boye, “Volumetric Radiography of Watermarks,” http://digitome.davidson.edu/wp-content/uploads/2018/01/Volumetric-Radiography-of-Watermarks.pdf .

D. Boye, R. Garner, and R. Kozlowski, “Examining paintings on wood or canvas using 3D X-ray imaging with Digitome,” http://digitome.davidson.edu/wp-content/uploads/2018/01/Examining-paintings-using-3DX-ray.pdf .

A. P. Cuadros, K. Wang, C. Peitsch, H. Arguello, and G. R. Arce, “Coded aperture design for compressive X-ray tomosynthesis,” in Imaging and Applied Optics 2015, OSA Technical Digest, Optical Society of America, paper CW2F.2.

A. Cuadros and G. R. Arce, “Coded aperture compressive X-ray spectral CT,” in Proceedings of IEEE Conference on Sampling Theory and Applications (IEEE2017), pp. 548–551.

S. Foucart and H. Rauhut, A mathematical introduction to compressive sensing (Springer2013).

[Crossref]

F. Wang, Y. Yang, X. Lv, J. Xu, and L. Li, “Feature selection using feature ranking, correlation analysis and chaotic binary particle swarm optimization,” in Proceedings of IEEE Conference on Software Engineering and Service Science (IEEE2014), pp. 305–309.

M. A. Hall, “Correlation-based Feature Selection for Machine Learning,” https://www.cs.waikato.ac.nz/~mhall/thesis.pdf