Abstract

Recent experimental work on the application of graphene for novel illumination motivated us to present a theoretical study of the blackbody radiation emission from a freely suspended graphene driven by a dc electric field. Strong terahertz (THz) emission, with intensity up to mW/cm2, can be generated with increasing electric field strength due to the heating of electrons in graphene. We show that the intensity of the THz emission generated electrically from graphene depends rather sensitively on the lattice temperature in relatively weak electric fields, whereas it is less sensitive to the lattice temperature in relative strong electric fields. Our study highlights the practical application of graphene as intense THz source where the radiation is generated electrically.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Emission of terahertz plasmons from driven electrons in grated graphene

Chengxiang Zhao, Yan Liu, Yuan Qie, Fangwei Han, Hu Yang, and Haiming Dong
Opt. Express 27(19) 26569-26578 (2019)

Modulation of terahertz radiation from graphene surface plasmon polaritons via surface acoustic wave

Sichen Jin, Xinke Wang, Peng Han, Wenfeng Sun, Shengfei Feng, Jiasheng Ye, Chao Zhang, and Yan Zhang
Opt. Express 27(8) 11137-11151 (2019)

Terahertz radiation in graphene hyperbolic medium excited by an electric dipole

Xiaodong Feng, Sen Gong, Renbin Zhong, Tao Zhao, Min Hu, Chao Zhang, and Shenggang Liu
Opt. Lett. 43(5) 1187-1190 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Berciaud, M. Y. Han, K. F. Mak, L. E. Brus, P. Kim, and T. F. Heinz, “Electron and Optical Phonon Temperatures in Electrically Biased Graphene,” Phys. Rev. Lett. 104(22), 227401 (2010).
    [Crossref] [PubMed]
  2. M. Freitag, H. Y. Chiu, M. Steiner, V. Perebeinos, and P. Avouris, “Thermal infrared emission from biased graphene,” Nat. Nanotechnol. 5(7), 497–501 (2010).
    [Crossref] [PubMed]
  3. C. H. Lui, K. F. Mak, J. Shan, and T. F. Heinz, “Ultrafast Photoluminescence from Graphene,” Phys. Rev. Lett. 105(12), 127404 (2010).
    [Crossref] [PubMed]
  4. D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, and M. Polini, “Ultrafast collinear scattering and carrier multiplication in graphene,” Nat. Commun. 4(3), 1987 (2013).
    [Crossref] [PubMed]
  5. V. E. Dorgan, A. Behnam, H. J. Conley, K. I. Bolotin, and E. Pop, “High-Field Electrical and Thermal Transport in Suspended Graphene,” Nano Lett. 13(10), 4581–4586 (2013).
    [Crossref] [PubMed]
  6. X. M. Wang, H. Tian, M. Ali Mohammad, C. Li, C. Wu, Y. Yang, and T. L. Ren, “A spectrally tunable all-graphene-based flexible field-effect light-emitting device,” Nature Communications 6(2), 7767 (2015).
    [Crossref] [PubMed]
  7. Y. D. Kim, H. Kim, and Y. J. Cho, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
    [Crossref] [PubMed]
  8. D. S. Yu and L. M. Dai, “Voltage-induced incandescent light emission from large-area graphene films,” Appl. Phys. Lett. 96(14), 143107 (2010).
    [Crossref]
  9. S.K. Son, M. Šiškins, and C. Mullan, “Graphene hot-electron light bulb: incandescence from hBN-encapsulated graphene in air,” 2D Mater. 5(1), 011006 (2018).
    [Crossref]
  10. H. M. Dong, W. Xu, and F.M. Peeters, “High-field transport properties of graphene,” J. Appl. Phys. 110(6), 063704 (2011).
    [Crossref]
  11. I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, “Current saturation in zero-bandgap, topgated graphene field-effect transistors,” Nat. Nanotechnol. 3(11), 654–659 (2008).
    [Crossref] [PubMed]
  12. A. Barreiro, M. Lazzeri, J. Moser, F. Mauri, and A. Bachtold, “Transport Properties of Graphene in the High-Current Limit,” Phys. Rev. Lett. 103(7), 076601 (2009).
    [Crossref] [PubMed]
  13. T. Gunst, K. Kaasbjerg, and M. Brandbyge, “Flexural-Phonon Scattering Induced by Electrostatic Gating in Graphene,” Phys. Rev. Lett. 118(4), 046601 (2017).
    [Crossref] [PubMed]
  14. M. S. Foster and Igor L. Aleiner, “Slow imbalance relaxation and thermoelectric transport in graphene”, Phys. Rev. B 79(8), 085415 (2009).
    [Crossref]
  15. K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the Optical Conductivity of Graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
    [Crossref] [PubMed]
  16. K. Nomura and A. H. MacDonald, “Quantum Transport of Massless Dirac Fermions,” Phys. Rev. Lett. 98(7), 0766022007.
    [PubMed]
  17. K. Hirakawa, M. Grayson, D. C. Tsui, and C. Kurdak, “Blackbody radiation from hot two-dimensional electrons in AlxGa1−xAs/GaAs heterojunctions,” Phys. Rev. B 47(24), 16651 (1993).
    [Crossref]
  18. V. A. Shalygin, L. E. Vorobjev, D. A. Firsov, A. N. Sofronov, G. A. Melentyev, W. V. Lundin, A. E. Nikolaev, A. V. Sakharov, and A. F. Tsatsulnikov, “Blackbody-like emission of terahertz radiation from AlGaN/GaN heterostructure under electron heating in lateral electric field,” J. Appl. Phys. 109(7), 073108 (2011).
    [Crossref]
  19. F. T. Vasko and V. Ryzhii, “Voltage and temperature dependencies of conductivity in gated graphene,” Phys. Rev. B 76(23), 233404 (2007).
    [Crossref]
  20. T. Low, V. Perebeinos, R. Kim, M. Freitag, and Phaedon Avouris, “Cooling of photoexcited carriers in graphene by internal and substrate phonons,” Phys. Rev. B 86(4), 045413 (2012).
    [Crossref]
  21. C. Monte, B. Gutschwager, A. Adibekyan, and J. Hollandt, “A Terahertz Blackbody Radiation Standard Based on Emissivity Measurements and a Monte-Carlo Simulation,” J. Infrared Milli. Terahz. Waves 35, 649–658 (2014).
    [Crossref]

2018 (1)

S.K. Son, M. Šiškins, and C. Mullan, “Graphene hot-electron light bulb: incandescence from hBN-encapsulated graphene in air,” 2D Mater. 5(1), 011006 (2018).
[Crossref]

2017 (1)

T. Gunst, K. Kaasbjerg, and M. Brandbyge, “Flexural-Phonon Scattering Induced by Electrostatic Gating in Graphene,” Phys. Rev. Lett. 118(4), 046601 (2017).
[Crossref] [PubMed]

2015 (2)

X. M. Wang, H. Tian, M. Ali Mohammad, C. Li, C. Wu, Y. Yang, and T. L. Ren, “A spectrally tunable all-graphene-based flexible field-effect light-emitting device,” Nature Communications 6(2), 7767 (2015).
[Crossref] [PubMed]

Y. D. Kim, H. Kim, and Y. J. Cho, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

2014 (1)

C. Monte, B. Gutschwager, A. Adibekyan, and J. Hollandt, “A Terahertz Blackbody Radiation Standard Based on Emissivity Measurements and a Monte-Carlo Simulation,” J. Infrared Milli. Terahz. Waves 35, 649–658 (2014).
[Crossref]

2013 (2)

D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, and M. Polini, “Ultrafast collinear scattering and carrier multiplication in graphene,” Nat. Commun. 4(3), 1987 (2013).
[Crossref] [PubMed]

V. E. Dorgan, A. Behnam, H. J. Conley, K. I. Bolotin, and E. Pop, “High-Field Electrical and Thermal Transport in Suspended Graphene,” Nano Lett. 13(10), 4581–4586 (2013).
[Crossref] [PubMed]

2012 (1)

T. Low, V. Perebeinos, R. Kim, M. Freitag, and Phaedon Avouris, “Cooling of photoexcited carriers in graphene by internal and substrate phonons,” Phys. Rev. B 86(4), 045413 (2012).
[Crossref]

2011 (2)

V. A. Shalygin, L. E. Vorobjev, D. A. Firsov, A. N. Sofronov, G. A. Melentyev, W. V. Lundin, A. E. Nikolaev, A. V. Sakharov, and A. F. Tsatsulnikov, “Blackbody-like emission of terahertz radiation from AlGaN/GaN heterostructure under electron heating in lateral electric field,” J. Appl. Phys. 109(7), 073108 (2011).
[Crossref]

H. M. Dong, W. Xu, and F.M. Peeters, “High-field transport properties of graphene,” J. Appl. Phys. 110(6), 063704 (2011).
[Crossref]

2010 (4)

D. S. Yu and L. M. Dai, “Voltage-induced incandescent light emission from large-area graphene films,” Appl. Phys. Lett. 96(14), 143107 (2010).
[Crossref]

S. Berciaud, M. Y. Han, K. F. Mak, L. E. Brus, P. Kim, and T. F. Heinz, “Electron and Optical Phonon Temperatures in Electrically Biased Graphene,” Phys. Rev. Lett. 104(22), 227401 (2010).
[Crossref] [PubMed]

M. Freitag, H. Y. Chiu, M. Steiner, V. Perebeinos, and P. Avouris, “Thermal infrared emission from biased graphene,” Nat. Nanotechnol. 5(7), 497–501 (2010).
[Crossref] [PubMed]

C. H. Lui, K. F. Mak, J. Shan, and T. F. Heinz, “Ultrafast Photoluminescence from Graphene,” Phys. Rev. Lett. 105(12), 127404 (2010).
[Crossref] [PubMed]

2009 (2)

A. Barreiro, M. Lazzeri, J. Moser, F. Mauri, and A. Bachtold, “Transport Properties of Graphene in the High-Current Limit,” Phys. Rev. Lett. 103(7), 076601 (2009).
[Crossref] [PubMed]

M. S. Foster and Igor L. Aleiner, “Slow imbalance relaxation and thermoelectric transport in graphene”, Phys. Rev. B 79(8), 085415 (2009).
[Crossref]

2008 (2)

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the Optical Conductivity of Graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
[Crossref] [PubMed]

I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, “Current saturation in zero-bandgap, topgated graphene field-effect transistors,” Nat. Nanotechnol. 3(11), 654–659 (2008).
[Crossref] [PubMed]

2007 (2)

K. Nomura and A. H. MacDonald, “Quantum Transport of Massless Dirac Fermions,” Phys. Rev. Lett. 98(7), 0766022007.
[PubMed]

F. T. Vasko and V. Ryzhii, “Voltage and temperature dependencies of conductivity in gated graphene,” Phys. Rev. B 76(23), 233404 (2007).
[Crossref]

1993 (1)

K. Hirakawa, M. Grayson, D. C. Tsui, and C. Kurdak, “Blackbody radiation from hot two-dimensional electrons in AlxGa1−xAs/GaAs heterojunctions,” Phys. Rev. B 47(24), 16651 (1993).
[Crossref]

Adibekyan, A.

C. Monte, B. Gutschwager, A. Adibekyan, and J. Hollandt, “A Terahertz Blackbody Radiation Standard Based on Emissivity Measurements and a Monte-Carlo Simulation,” J. Infrared Milli. Terahz. Waves 35, 649–658 (2014).
[Crossref]

Aleiner, Igor L.

M. S. Foster and Igor L. Aleiner, “Slow imbalance relaxation and thermoelectric transport in graphene”, Phys. Rev. B 79(8), 085415 (2009).
[Crossref]

Ali Mohammad, M.

X. M. Wang, H. Tian, M. Ali Mohammad, C. Li, C. Wu, Y. Yang, and T. L. Ren, “A spectrally tunable all-graphene-based flexible field-effect light-emitting device,” Nature Communications 6(2), 7767 (2015).
[Crossref] [PubMed]

Avouris, P.

M. Freitag, H. Y. Chiu, M. Steiner, V. Perebeinos, and P. Avouris, “Thermal infrared emission from biased graphene,” Nat. Nanotechnol. 5(7), 497–501 (2010).
[Crossref] [PubMed]

Avouris, Phaedon

T. Low, V. Perebeinos, R. Kim, M. Freitag, and Phaedon Avouris, “Cooling of photoexcited carriers in graphene by internal and substrate phonons,” Phys. Rev. B 86(4), 045413 (2012).
[Crossref]

Bachtold, A.

A. Barreiro, M. Lazzeri, J. Moser, F. Mauri, and A. Bachtold, “Transport Properties of Graphene in the High-Current Limit,” Phys. Rev. Lett. 103(7), 076601 (2009).
[Crossref] [PubMed]

Barreiro, A.

A. Barreiro, M. Lazzeri, J. Moser, F. Mauri, and A. Bachtold, “Transport Properties of Graphene in the High-Current Limit,” Phys. Rev. Lett. 103(7), 076601 (2009).
[Crossref] [PubMed]

Behnam, A.

V. E. Dorgan, A. Behnam, H. J. Conley, K. I. Bolotin, and E. Pop, “High-Field Electrical and Thermal Transport in Suspended Graphene,” Nano Lett. 13(10), 4581–4586 (2013).
[Crossref] [PubMed]

Berciaud, S.

S. Berciaud, M. Y. Han, K. F. Mak, L. E. Brus, P. Kim, and T. F. Heinz, “Electron and Optical Phonon Temperatures in Electrically Biased Graphene,” Phys. Rev. Lett. 104(22), 227401 (2010).
[Crossref] [PubMed]

Bolotin, K. I.

V. E. Dorgan, A. Behnam, H. J. Conley, K. I. Bolotin, and E. Pop, “High-Field Electrical and Thermal Transport in Suspended Graphene,” Nano Lett. 13(10), 4581–4586 (2013).
[Crossref] [PubMed]

Brandbyge, M.

T. Gunst, K. Kaasbjerg, and M. Brandbyge, “Flexural-Phonon Scattering Induced by Electrostatic Gating in Graphene,” Phys. Rev. Lett. 118(4), 046601 (2017).
[Crossref] [PubMed]

Brida, D.

D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, and M. Polini, “Ultrafast collinear scattering and carrier multiplication in graphene,” Nat. Commun. 4(3), 1987 (2013).
[Crossref] [PubMed]

Brus, L. E.

S. Berciaud, M. Y. Han, K. F. Mak, L. E. Brus, P. Kim, and T. F. Heinz, “Electron and Optical Phonon Temperatures in Electrically Biased Graphene,” Phys. Rev. Lett. 104(22), 227401 (2010).
[Crossref] [PubMed]

Cerullo, G.

D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, and M. Polini, “Ultrafast collinear scattering and carrier multiplication in graphene,” Nat. Commun. 4(3), 1987 (2013).
[Crossref] [PubMed]

Chiu, H. Y.

M. Freitag, H. Y. Chiu, M. Steiner, V. Perebeinos, and P. Avouris, “Thermal infrared emission from biased graphene,” Nat. Nanotechnol. 5(7), 497–501 (2010).
[Crossref] [PubMed]

Cho, Y. J.

Y. D. Kim, H. Kim, and Y. J. Cho, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

Conley, H. J.

V. E. Dorgan, A. Behnam, H. J. Conley, K. I. Bolotin, and E. Pop, “High-Field Electrical and Thermal Transport in Suspended Graphene,” Nano Lett. 13(10), 4581–4586 (2013).
[Crossref] [PubMed]

Dai, L. M.

D. S. Yu and L. M. Dai, “Voltage-induced incandescent light emission from large-area graphene films,” Appl. Phys. Lett. 96(14), 143107 (2010).
[Crossref]

Dong, H. M.

H. M. Dong, W. Xu, and F.M. Peeters, “High-field transport properties of graphene,” J. Appl. Phys. 110(6), 063704 (2011).
[Crossref]

Dorgan, V. E.

V. E. Dorgan, A. Behnam, H. J. Conley, K. I. Bolotin, and E. Pop, “High-Field Electrical and Thermal Transport in Suspended Graphene,” Nano Lett. 13(10), 4581–4586 (2013).
[Crossref] [PubMed]

Ferrari, A. C.

D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, and M. Polini, “Ultrafast collinear scattering and carrier multiplication in graphene,” Nat. Commun. 4(3), 1987 (2013).
[Crossref] [PubMed]

Firsov, D. A.

V. A. Shalygin, L. E. Vorobjev, D. A. Firsov, A. N. Sofronov, G. A. Melentyev, W. V. Lundin, A. E. Nikolaev, A. V. Sakharov, and A. F. Tsatsulnikov, “Blackbody-like emission of terahertz radiation from AlGaN/GaN heterostructure under electron heating in lateral electric field,” J. Appl. Phys. 109(7), 073108 (2011).
[Crossref]

Foster, M. S.

M. S. Foster and Igor L. Aleiner, “Slow imbalance relaxation and thermoelectric transport in graphene”, Phys. Rev. B 79(8), 085415 (2009).
[Crossref]

Freitag, M.

T. Low, V. Perebeinos, R. Kim, M. Freitag, and Phaedon Avouris, “Cooling of photoexcited carriers in graphene by internal and substrate phonons,” Phys. Rev. B 86(4), 045413 (2012).
[Crossref]

M. Freitag, H. Y. Chiu, M. Steiner, V. Perebeinos, and P. Avouris, “Thermal infrared emission from biased graphene,” Nat. Nanotechnol. 5(7), 497–501 (2010).
[Crossref] [PubMed]

Grayson, M.

K. Hirakawa, M. Grayson, D. C. Tsui, and C. Kurdak, “Blackbody radiation from hot two-dimensional electrons in AlxGa1−xAs/GaAs heterojunctions,” Phys. Rev. B 47(24), 16651 (1993).
[Crossref]

Gunst, T.

T. Gunst, K. Kaasbjerg, and M. Brandbyge, “Flexural-Phonon Scattering Induced by Electrostatic Gating in Graphene,” Phys. Rev. Lett. 118(4), 046601 (2017).
[Crossref] [PubMed]

Gutschwager, B.

C. Monte, B. Gutschwager, A. Adibekyan, and J. Hollandt, “A Terahertz Blackbody Radiation Standard Based on Emissivity Measurements and a Monte-Carlo Simulation,” J. Infrared Milli. Terahz. Waves 35, 649–658 (2014).
[Crossref]

Han, M. Y.

S. Berciaud, M. Y. Han, K. F. Mak, L. E. Brus, P. Kim, and T. F. Heinz, “Electron and Optical Phonon Temperatures in Electrically Biased Graphene,” Phys. Rev. Lett. 104(22), 227401 (2010).
[Crossref] [PubMed]

I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, “Current saturation in zero-bandgap, topgated graphene field-effect transistors,” Nat. Nanotechnol. 3(11), 654–659 (2008).
[Crossref] [PubMed]

Heinz, T. F.

S. Berciaud, M. Y. Han, K. F. Mak, L. E. Brus, P. Kim, and T. F. Heinz, “Electron and Optical Phonon Temperatures in Electrically Biased Graphene,” Phys. Rev. Lett. 104(22), 227401 (2010).
[Crossref] [PubMed]

C. H. Lui, K. F. Mak, J. Shan, and T. F. Heinz, “Ultrafast Photoluminescence from Graphene,” Phys. Rev. Lett. 105(12), 127404 (2010).
[Crossref] [PubMed]

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the Optical Conductivity of Graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
[Crossref] [PubMed]

Hirakawa, K.

K. Hirakawa, M. Grayson, D. C. Tsui, and C. Kurdak, “Blackbody radiation from hot two-dimensional electrons in AlxGa1−xAs/GaAs heterojunctions,” Phys. Rev. B 47(24), 16651 (1993).
[Crossref]

Hollandt, J.

C. Monte, B. Gutschwager, A. Adibekyan, and J. Hollandt, “A Terahertz Blackbody Radiation Standard Based on Emissivity Measurements and a Monte-Carlo Simulation,” J. Infrared Milli. Terahz. Waves 35, 649–658 (2014).
[Crossref]

Kaasbjerg, K.

T. Gunst, K. Kaasbjerg, and M. Brandbyge, “Flexural-Phonon Scattering Induced by Electrostatic Gating in Graphene,” Phys. Rev. Lett. 118(4), 046601 (2017).
[Crossref] [PubMed]

Kim, H.

Y. D. Kim, H. Kim, and Y. J. Cho, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

Kim, P.

S. Berciaud, M. Y. Han, K. F. Mak, L. E. Brus, P. Kim, and T. F. Heinz, “Electron and Optical Phonon Temperatures in Electrically Biased Graphene,” Phys. Rev. Lett. 104(22), 227401 (2010).
[Crossref] [PubMed]

I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, “Current saturation in zero-bandgap, topgated graphene field-effect transistors,” Nat. Nanotechnol. 3(11), 654–659 (2008).
[Crossref] [PubMed]

Kim, R.

T. Low, V. Perebeinos, R. Kim, M. Freitag, and Phaedon Avouris, “Cooling of photoexcited carriers in graphene by internal and substrate phonons,” Phys. Rev. B 86(4), 045413 (2012).
[Crossref]

Kim, Y. D.

Y. D. Kim, H. Kim, and Y. J. Cho, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

Kim, Y. J.

D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, and M. Polini, “Ultrafast collinear scattering and carrier multiplication in graphene,” Nat. Commun. 4(3), 1987 (2013).
[Crossref] [PubMed]

Kurdak, C.

K. Hirakawa, M. Grayson, D. C. Tsui, and C. Kurdak, “Blackbody radiation from hot two-dimensional electrons in AlxGa1−xAs/GaAs heterojunctions,” Phys. Rev. B 47(24), 16651 (1993).
[Crossref]

Lazzeri, M.

A. Barreiro, M. Lazzeri, J. Moser, F. Mauri, and A. Bachtold, “Transport Properties of Graphene in the High-Current Limit,” Phys. Rev. Lett. 103(7), 076601 (2009).
[Crossref] [PubMed]

Li, C.

X. M. Wang, H. Tian, M. Ali Mohammad, C. Li, C. Wu, Y. Yang, and T. L. Ren, “A spectrally tunable all-graphene-based flexible field-effect light-emitting device,” Nature Communications 6(2), 7767 (2015).
[Crossref] [PubMed]

Lombardo, A.

D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, and M. Polini, “Ultrafast collinear scattering and carrier multiplication in graphene,” Nat. Commun. 4(3), 1987 (2013).
[Crossref] [PubMed]

Low, T.

T. Low, V. Perebeinos, R. Kim, M. Freitag, and Phaedon Avouris, “Cooling of photoexcited carriers in graphene by internal and substrate phonons,” Phys. Rev. B 86(4), 045413 (2012).
[Crossref]

Lui, C. H.

C. H. Lui, K. F. Mak, J. Shan, and T. F. Heinz, “Ultrafast Photoluminescence from Graphene,” Phys. Rev. Lett. 105(12), 127404 (2010).
[Crossref] [PubMed]

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the Optical Conductivity of Graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
[Crossref] [PubMed]

Lundin, W. V.

V. A. Shalygin, L. E. Vorobjev, D. A. Firsov, A. N. Sofronov, G. A. Melentyev, W. V. Lundin, A. E. Nikolaev, A. V. Sakharov, and A. F. Tsatsulnikov, “Blackbody-like emission of terahertz radiation from AlGaN/GaN heterostructure under electron heating in lateral electric field,” J. Appl. Phys. 109(7), 073108 (2011).
[Crossref]

MacDonald, A. H.

K. Nomura and A. H. MacDonald, “Quantum Transport of Massless Dirac Fermions,” Phys. Rev. Lett. 98(7), 0766022007.
[PubMed]

Mak, K. F.

C. H. Lui, K. F. Mak, J. Shan, and T. F. Heinz, “Ultrafast Photoluminescence from Graphene,” Phys. Rev. Lett. 105(12), 127404 (2010).
[Crossref] [PubMed]

S. Berciaud, M. Y. Han, K. F. Mak, L. E. Brus, P. Kim, and T. F. Heinz, “Electron and Optical Phonon Temperatures in Electrically Biased Graphene,” Phys. Rev. Lett. 104(22), 227401 (2010).
[Crossref] [PubMed]

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the Optical Conductivity of Graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
[Crossref] [PubMed]

Manzoni, C.

D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, and M. Polini, “Ultrafast collinear scattering and carrier multiplication in graphene,” Nat. Commun. 4(3), 1987 (2013).
[Crossref] [PubMed]

Mauri, F.

A. Barreiro, M. Lazzeri, J. Moser, F. Mauri, and A. Bachtold, “Transport Properties of Graphene in the High-Current Limit,” Phys. Rev. Lett. 103(7), 076601 (2009).
[Crossref] [PubMed]

Melentyev, G. A.

V. A. Shalygin, L. E. Vorobjev, D. A. Firsov, A. N. Sofronov, G. A. Melentyev, W. V. Lundin, A. E. Nikolaev, A. V. Sakharov, and A. F. Tsatsulnikov, “Blackbody-like emission of terahertz radiation from AlGaN/GaN heterostructure under electron heating in lateral electric field,” J. Appl. Phys. 109(7), 073108 (2011).
[Crossref]

Meric, I.

I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, “Current saturation in zero-bandgap, topgated graphene field-effect transistors,” Nat. Nanotechnol. 3(11), 654–659 (2008).
[Crossref] [PubMed]

Milana, S.

D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, and M. Polini, “Ultrafast collinear scattering and carrier multiplication in graphene,” Nat. Commun. 4(3), 1987 (2013).
[Crossref] [PubMed]

Misewich, J. A.

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the Optical Conductivity of Graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
[Crossref] [PubMed]

Monte, C.

C. Monte, B. Gutschwager, A. Adibekyan, and J. Hollandt, “A Terahertz Blackbody Radiation Standard Based on Emissivity Measurements and a Monte-Carlo Simulation,” J. Infrared Milli. Terahz. Waves 35, 649–658 (2014).
[Crossref]

Moser, J.

A. Barreiro, M. Lazzeri, J. Moser, F. Mauri, and A. Bachtold, “Transport Properties of Graphene in the High-Current Limit,” Phys. Rev. Lett. 103(7), 076601 (2009).
[Crossref] [PubMed]

Mullan, C.

S.K. Son, M. Šiškins, and C. Mullan, “Graphene hot-electron light bulb: incandescence from hBN-encapsulated graphene in air,” 2D Mater. 5(1), 011006 (2018).
[Crossref]

Nair, R. R.

D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, and M. Polini, “Ultrafast collinear scattering and carrier multiplication in graphene,” Nat. Commun. 4(3), 1987 (2013).
[Crossref] [PubMed]

Nikolaev, A. E.

V. A. Shalygin, L. E. Vorobjev, D. A. Firsov, A. N. Sofronov, G. A. Melentyev, W. V. Lundin, A. E. Nikolaev, A. V. Sakharov, and A. F. Tsatsulnikov, “Blackbody-like emission of terahertz radiation from AlGaN/GaN heterostructure under electron heating in lateral electric field,” J. Appl. Phys. 109(7), 073108 (2011).
[Crossref]

Nomura, K.

K. Nomura and A. H. MacDonald, “Quantum Transport of Massless Dirac Fermions,” Phys. Rev. Lett. 98(7), 0766022007.
[PubMed]

Novoselov, K. S.

D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, and M. Polini, “Ultrafast collinear scattering and carrier multiplication in graphene,” Nat. Commun. 4(3), 1987 (2013).
[Crossref] [PubMed]

Ozyilmaz, B.

I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, “Current saturation in zero-bandgap, topgated graphene field-effect transistors,” Nat. Nanotechnol. 3(11), 654–659 (2008).
[Crossref] [PubMed]

Peeters, F.M.

H. M. Dong, W. Xu, and F.M. Peeters, “High-field transport properties of graphene,” J. Appl. Phys. 110(6), 063704 (2011).
[Crossref]

Perebeinos, V.

T. Low, V. Perebeinos, R. Kim, M. Freitag, and Phaedon Avouris, “Cooling of photoexcited carriers in graphene by internal and substrate phonons,” Phys. Rev. B 86(4), 045413 (2012).
[Crossref]

M. Freitag, H. Y. Chiu, M. Steiner, V. Perebeinos, and P. Avouris, “Thermal infrared emission from biased graphene,” Nat. Nanotechnol. 5(7), 497–501 (2010).
[Crossref] [PubMed]

Polini, M.

D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, and M. Polini, “Ultrafast collinear scattering and carrier multiplication in graphene,” Nat. Commun. 4(3), 1987 (2013).
[Crossref] [PubMed]

Pop, E.

V. E. Dorgan, A. Behnam, H. J. Conley, K. I. Bolotin, and E. Pop, “High-Field Electrical and Thermal Transport in Suspended Graphene,” Nano Lett. 13(10), 4581–4586 (2013).
[Crossref] [PubMed]

Ren, T. L.

X. M. Wang, H. Tian, M. Ali Mohammad, C. Li, C. Wu, Y. Yang, and T. L. Ren, “A spectrally tunable all-graphene-based flexible field-effect light-emitting device,” Nature Communications 6(2), 7767 (2015).
[Crossref] [PubMed]

Ryzhii, V.

F. T. Vasko and V. Ryzhii, “Voltage and temperature dependencies of conductivity in gated graphene,” Phys. Rev. B 76(23), 233404 (2007).
[Crossref]

Sakharov, A. V.

V. A. Shalygin, L. E. Vorobjev, D. A. Firsov, A. N. Sofronov, G. A. Melentyev, W. V. Lundin, A. E. Nikolaev, A. V. Sakharov, and A. F. Tsatsulnikov, “Blackbody-like emission of terahertz radiation from AlGaN/GaN heterostructure under electron heating in lateral electric field,” J. Appl. Phys. 109(7), 073108 (2011).
[Crossref]

Sfeir, M. Y.

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the Optical Conductivity of Graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
[Crossref] [PubMed]

Shalygin, V. A.

V. A. Shalygin, L. E. Vorobjev, D. A. Firsov, A. N. Sofronov, G. A. Melentyev, W. V. Lundin, A. E. Nikolaev, A. V. Sakharov, and A. F. Tsatsulnikov, “Blackbody-like emission of terahertz radiation from AlGaN/GaN heterostructure under electron heating in lateral electric field,” J. Appl. Phys. 109(7), 073108 (2011).
[Crossref]

Shan, J.

C. H. Lui, K. F. Mak, J. Shan, and T. F. Heinz, “Ultrafast Photoluminescence from Graphene,” Phys. Rev. Lett. 105(12), 127404 (2010).
[Crossref] [PubMed]

Shepard, K. L.

I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, “Current saturation in zero-bandgap, topgated graphene field-effect transistors,” Nat. Nanotechnol. 3(11), 654–659 (2008).
[Crossref] [PubMed]

Šiškins, M.

S.K. Son, M. Šiškins, and C. Mullan, “Graphene hot-electron light bulb: incandescence from hBN-encapsulated graphene in air,” 2D Mater. 5(1), 011006 (2018).
[Crossref]

Sofronov, A. N.

V. A. Shalygin, L. E. Vorobjev, D. A. Firsov, A. N. Sofronov, G. A. Melentyev, W. V. Lundin, A. E. Nikolaev, A. V. Sakharov, and A. F. Tsatsulnikov, “Blackbody-like emission of terahertz radiation from AlGaN/GaN heterostructure under electron heating in lateral electric field,” J. Appl. Phys. 109(7), 073108 (2011).
[Crossref]

Son, S.K.

S.K. Son, M. Šiškins, and C. Mullan, “Graphene hot-electron light bulb: incandescence from hBN-encapsulated graphene in air,” 2D Mater. 5(1), 011006 (2018).
[Crossref]

Steiner, M.

M. Freitag, H. Y. Chiu, M. Steiner, V. Perebeinos, and P. Avouris, “Thermal infrared emission from biased graphene,” Nat. Nanotechnol. 5(7), 497–501 (2010).
[Crossref] [PubMed]

Tian, H.

X. M. Wang, H. Tian, M. Ali Mohammad, C. Li, C. Wu, Y. Yang, and T. L. Ren, “A spectrally tunable all-graphene-based flexible field-effect light-emitting device,” Nature Communications 6(2), 7767 (2015).
[Crossref] [PubMed]

Tomadin, A.

D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, and M. Polini, “Ultrafast collinear scattering and carrier multiplication in graphene,” Nat. Commun. 4(3), 1987 (2013).
[Crossref] [PubMed]

Tsatsulnikov, A. F.

V. A. Shalygin, L. E. Vorobjev, D. A. Firsov, A. N. Sofronov, G. A. Melentyev, W. V. Lundin, A. E. Nikolaev, A. V. Sakharov, and A. F. Tsatsulnikov, “Blackbody-like emission of terahertz radiation from AlGaN/GaN heterostructure under electron heating in lateral electric field,” J. Appl. Phys. 109(7), 073108 (2011).
[Crossref]

Tsui, D. C.

K. Hirakawa, M. Grayson, D. C. Tsui, and C. Kurdak, “Blackbody radiation from hot two-dimensional electrons in AlxGa1−xAs/GaAs heterojunctions,” Phys. Rev. B 47(24), 16651 (1993).
[Crossref]

Vasko, F. T.

F. T. Vasko and V. Ryzhii, “Voltage and temperature dependencies of conductivity in gated graphene,” Phys. Rev. B 76(23), 233404 (2007).
[Crossref]

Vorobjev, L. E.

V. A. Shalygin, L. E. Vorobjev, D. A. Firsov, A. N. Sofronov, G. A. Melentyev, W. V. Lundin, A. E. Nikolaev, A. V. Sakharov, and A. F. Tsatsulnikov, “Blackbody-like emission of terahertz radiation from AlGaN/GaN heterostructure under electron heating in lateral electric field,” J. Appl. Phys. 109(7), 073108 (2011).
[Crossref]

Wang, X. M.

X. M. Wang, H. Tian, M. Ali Mohammad, C. Li, C. Wu, Y. Yang, and T. L. Ren, “A spectrally tunable all-graphene-based flexible field-effect light-emitting device,” Nature Communications 6(2), 7767 (2015).
[Crossref] [PubMed]

Wu, C.

X. M. Wang, H. Tian, M. Ali Mohammad, C. Li, C. Wu, Y. Yang, and T. L. Ren, “A spectrally tunable all-graphene-based flexible field-effect light-emitting device,” Nature Communications 6(2), 7767 (2015).
[Crossref] [PubMed]

Wu, Y.

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the Optical Conductivity of Graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
[Crossref] [PubMed]

Xu, W.

H. M. Dong, W. Xu, and F.M. Peeters, “High-field transport properties of graphene,” J. Appl. Phys. 110(6), 063704 (2011).
[Crossref]

Yang, Y.

X. M. Wang, H. Tian, M. Ali Mohammad, C. Li, C. Wu, Y. Yang, and T. L. Ren, “A spectrally tunable all-graphene-based flexible field-effect light-emitting device,” Nature Communications 6(2), 7767 (2015).
[Crossref] [PubMed]

Young, A. F.

I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, “Current saturation in zero-bandgap, topgated graphene field-effect transistors,” Nat. Nanotechnol. 3(11), 654–659 (2008).
[Crossref] [PubMed]

Yu, D. S.

D. S. Yu and L. M. Dai, “Voltage-induced incandescent light emission from large-area graphene films,” Appl. Phys. Lett. 96(14), 143107 (2010).
[Crossref]

2D Mater. (1)

S.K. Son, M. Šiškins, and C. Mullan, “Graphene hot-electron light bulb: incandescence from hBN-encapsulated graphene in air,” 2D Mater. 5(1), 011006 (2018).
[Crossref]

Appl. Phys. Lett. (1)

D. S. Yu and L. M. Dai, “Voltage-induced incandescent light emission from large-area graphene films,” Appl. Phys. Lett. 96(14), 143107 (2010).
[Crossref]

J. Appl. Phys. (2)

H. M. Dong, W. Xu, and F.M. Peeters, “High-field transport properties of graphene,” J. Appl. Phys. 110(6), 063704 (2011).
[Crossref]

V. A. Shalygin, L. E. Vorobjev, D. A. Firsov, A. N. Sofronov, G. A. Melentyev, W. V. Lundin, A. E. Nikolaev, A. V. Sakharov, and A. F. Tsatsulnikov, “Blackbody-like emission of terahertz radiation from AlGaN/GaN heterostructure under electron heating in lateral electric field,” J. Appl. Phys. 109(7), 073108 (2011).
[Crossref]

J. Infrared Milli. Terahz. Waves (1)

C. Monte, B. Gutschwager, A. Adibekyan, and J. Hollandt, “A Terahertz Blackbody Radiation Standard Based on Emissivity Measurements and a Monte-Carlo Simulation,” J. Infrared Milli. Terahz. Waves 35, 649–658 (2014).
[Crossref]

Nano Lett. (1)

V. E. Dorgan, A. Behnam, H. J. Conley, K. I. Bolotin, and E. Pop, “High-Field Electrical and Thermal Transport in Suspended Graphene,” Nano Lett. 13(10), 4581–4586 (2013).
[Crossref] [PubMed]

Nat. Commun. (1)

D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, and M. Polini, “Ultrafast collinear scattering and carrier multiplication in graphene,” Nat. Commun. 4(3), 1987 (2013).
[Crossref] [PubMed]

Nat. Nanotechnol. (3)

M. Freitag, H. Y. Chiu, M. Steiner, V. Perebeinos, and P. Avouris, “Thermal infrared emission from biased graphene,” Nat. Nanotechnol. 5(7), 497–501 (2010).
[Crossref] [PubMed]

Y. D. Kim, H. Kim, and Y. J. Cho, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, “Current saturation in zero-bandgap, topgated graphene field-effect transistors,” Nat. Nanotechnol. 3(11), 654–659 (2008).
[Crossref] [PubMed]

Nature Communications (1)

X. M. Wang, H. Tian, M. Ali Mohammad, C. Li, C. Wu, Y. Yang, and T. L. Ren, “A spectrally tunable all-graphene-based flexible field-effect light-emitting device,” Nature Communications 6(2), 7767 (2015).
[Crossref] [PubMed]

Phys. Rev. B (4)

F. T. Vasko and V. Ryzhii, “Voltage and temperature dependencies of conductivity in gated graphene,” Phys. Rev. B 76(23), 233404 (2007).
[Crossref]

T. Low, V. Perebeinos, R. Kim, M. Freitag, and Phaedon Avouris, “Cooling of photoexcited carriers in graphene by internal and substrate phonons,” Phys. Rev. B 86(4), 045413 (2012).
[Crossref]

M. S. Foster and Igor L. Aleiner, “Slow imbalance relaxation and thermoelectric transport in graphene”, Phys. Rev. B 79(8), 085415 (2009).
[Crossref]

K. Hirakawa, M. Grayson, D. C. Tsui, and C. Kurdak, “Blackbody radiation from hot two-dimensional electrons in AlxGa1−xAs/GaAs heterojunctions,” Phys. Rev. B 47(24), 16651 (1993).
[Crossref]

Phys. Rev. Lett. (6)

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the Optical Conductivity of Graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
[Crossref] [PubMed]

K. Nomura and A. H. MacDonald, “Quantum Transport of Massless Dirac Fermions,” Phys. Rev. Lett. 98(7), 0766022007.
[PubMed]

A. Barreiro, M. Lazzeri, J. Moser, F. Mauri, and A. Bachtold, “Transport Properties of Graphene in the High-Current Limit,” Phys. Rev. Lett. 103(7), 076601 (2009).
[Crossref] [PubMed]

T. Gunst, K. Kaasbjerg, and M. Brandbyge, “Flexural-Phonon Scattering Induced by Electrostatic Gating in Graphene,” Phys. Rev. Lett. 118(4), 046601 (2017).
[Crossref] [PubMed]

C. H. Lui, K. F. Mak, J. Shan, and T. F. Heinz, “Ultrafast Photoluminescence from Graphene,” Phys. Rev. Lett. 105(12), 127404 (2010).
[Crossref] [PubMed]

S. Berciaud, M. Y. Han, K. F. Mak, L. E. Brus, P. Kim, and T. F. Heinz, “Electron and Optical Phonon Temperatures in Electrically Biased Graphene,” Phys. Rev. Lett. 104(22), 227401 (2010).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 The electron temperature Te (upper panel) and the electron drift velocity vx (lower panel) as a function of electric field strength Fx for different lattice temperatures T as indicated.
Fig. 2
Fig. 2 The spectrum of light emission I0 for different electric field strengths Fx (upper panel) and for different lattice temperatures T (lower panel).
Fig. 3
Fig. 3 The intensity of light emission from graphene Ie as a function of electric field strength Fx for different lattice temperatures T.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

e F x = 16 n e v , k , q q x f ( K ) W ( k , k + q ) ,
e F x k E ( k ) f ( K ) k x = 4 v , k , q ω v f ( K ) W ( k , k + q ) .
σ ( ω , T e ) = e 2 8 [ tanh ( ω + 2 μ 4 k B T e ) + tanh ( ω 2 μ 4 k B T e ) ] + i D π ( ω + i Γ ) .
A ( ω , T e ) = 4 Re [ y ] | 1 + κ s + y | 2 , y = 4 π c σ ( ω , T e ) ,
I ( ω , T e ) = 0 2 π ω 2 A ( ω , T e ) cos θ 4 π 2 c 2 [ exp ( ω / k B T e ) 1 ] d Ω ,
I 0 ( ω , T e ) = ω 3 A ( ω , T e ) 4 π 2 c 2 [ exp ( ω / k B T e ) 1 ] ,
I e = 0 I 0 ( ω , T e ) d ω .

Metrics