Abstract

A simple and compact design of the laser system is important for realization of compact atom interferometers (AIs). We design and realize a simple fiber bench-based 780-nm laser system used for 85Rb AI-based gravimeters. The laser system contains only one 780 nm seed laser, and the traditional frequency-doubling-module is not used. The Raman beams are shared with one pair of the cooling beams by using a liquid crystal variable retarder based polarization control technique. This laser system is applied to a compact AI-based gravimeter, and a best gravity measurement sensitivity of 230 μGal/Hz1/2 is achieved. The gravity measurements for more than one day are also performed, and the long-term stability of the gravimeter is 5.5 μGal.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Compact portable laser system for mobile cold atom gravimeters

Xiaowei Zhang, Jiaqi Zhong, Biao Tang, Xi Chen, Lei Zhu, Panwei Huang, Jin Wang, and Mingsheng Zhan
Appl. Opt. 57(22) 6545-6551 (2018)

Multiaxis atom interferometry with a single-diode laser and a pyramidal magneto-optical trap

Xuejian Wu, Fei Zi, Jordan Dudley, Ryan J. Bilotta, Philip Canoza, and Holger Müller
Optica 4(12) 1545-1551 (2017)

Compact and robust diode laser system technology for dual-species ultracold atom experiments with rubidium and potassium in microgravity

Julia Pahl, Aline N. Dinkelaker, Christoph Grzeschik, Julien Kluge, Max Schiemangk, Andreas Wicht, Achim Peters, and Markus Krutzik
Appl. Opt. 58(20) 5456-5464 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. Peters, K.Y. Chung, and S. Chu, “High-precision gravity measurements using atom interferometry,” Metrologia 38(1), 25–61 (2001).
    [Crossref]
  2. M. Hauth, C. Freier, V. Schkolnik, A. Senger, M. Schmidt, and A. Peters, “First gravity measurements using the mobile atom interferometer GAIN,” Appl. Phys. B 113(1), 49–55 (2013).
    [Crossref]
  3. Z. K. Hu, B. L. Sun, X. C. Duan, M. K. Zhou, L. L. Chen, S. Zhan, Q. Z. Zhang, and J. Luo, “Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter,” Phys. Rev. A 88(4), 043610 (2013).
    [Crossref]
  4. L. Zhou, Z. Y. Xiong, W. Yang, B. Tang, W. C. Peng, Y. B. Wang, P. Xu, J. Wang, and M. S. Zhan, “Measurement of local gravity via a cold atom interferometer,” Chin. Phys. Lett. 28(1), 013701 (2011).
    [Crossref]
  5. C. Freier, M. Hauth, V. Schkolnik, B. Leykauf, M. Schilling, H. Wziontek, H. G. Scherneck, J. Müller, and A. Peters, “Mobile quantum gravity sensor with unprecedented stability,” J. Phys. Conf. Ser. 723, 012050 (2016).
    [Crossref]
  6. B. Fang, I. Dutta, P. Gillot, D. Savoie, J. Lautier, B. Cheng, C. L. Garrido Alzar, R. Geiger, S. Merlet, F. Pereira Dos Santos, and A. Landragin, “Metrology with atom interferometry: inertial sensors from laboratory to field applications,” J. Phys. Conf. Ser. 723, 012049 (2016).
    [Crossref]
  7. G. Rosi, L. Cacciapuoti, F. Sorrentino, M. Menchetti, M. Prevedelli, and G. M. Tino, “Measurement of the gravity-field curvature by atom interferometry,” Phys. Rev. Lett. 114(1), 013001 (2015).
    [Crossref] [PubMed]
  8. S. M. Dickerson, J. M. Hogan, A. Sugarbaker, D. M. Johnson, and M. A. Kasevich, “Multiaxis inertial sensing with long-time point source atom interferometry,” Phys. Rev. Lett. 111(8), 083001 (2013).
    [Crossref] [PubMed]
  9. H. J. McGuinness, A. V. Rakholia, and G. W. Biedermann, “High data-rate atom interferometer for measuring acceleration,” Appl. Phys. Lett. 100(1), 011106 (2012).
    [Crossref]
  10. J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, “Sensitive absolute-gravity gradiometry using atom interferometry,” Phys. Rev. A 65(3), 033608 (2002).
    [Crossref]
  11. F. Sorrentino, Q. Bodart, L. Cacciapuoti, Y.-H. Lien, M. Prevedelli, G. Rosi, L. Salvi, and G. M. Tino, “Sensitivity limits of a Raman atom interferometer as a gravity gradiometer,” Phys. Rev. A 89(2), 023607 (2014).
    [Crossref]
  12. G. D’Amico, F. Borselli, L. Cacciapuoti, M. Prevedelli, G. Rosi, F. Sorrentino, and G. M. Tino, “Bragg interferometer for gravity gradient measurements,” Phys. Rev. A 93(6), 063628 (2016).
    [Crossref]
  13. Y. P. Wang, J. Q. Zhong, H. W. Song, L. Zhu, Y. M. Li, X. Chen, R. B. Li, J. Wang, and M. S. Zhan, “Location-dependent Raman transition in gravity-gradient measurements using dual atom interferometers,” Phys. Rev. A 95(5), 053612 (2017).
    [Crossref]
  14. T. L. Gustavson, P. Bouyer, and M. A. Kasevich, “Precision rotation measurements with an atom interferometer gyroscope,” Phys. Rev. Lettt. 78(11), 2046–2049 (1997).
    [Crossref]
  15. I. Dutta, D. Savoie, B. Fang, B. Venon, C. L. Garrido Alzar, R. Geiger, and A. Landragin, “Continuous cold-atom inertial sensor with 1 nrad/sec rotation stability,” Phys. Rev. Lett. 116(18), 183003 (2016).
    [Crossref] [PubMed]
  16. Z. W. Yao, S. B. Lu, R. B. Li, K. Wang, L. Cao, J. Wang, and M. S. Zhan, “Continuous dynamic rotation measurements using a compact cold atom gyroscope,” Chin. Phys. Lett. 33(8), 083701 (2016).
    [Crossref]
  17. D. Crossley, J. Hinderer, and U. Riccardi, “The measurement of surface gravity,” Rep. Prog. Phys. 76(4), 046101 (2013).
    [Crossref] [PubMed]
  18. D. Schlippert, J. Hartwig, H. Albers, L. L. Richardson, C. Schubert, A. Roura, W. P. Schleich, W. Ertmer, and E. M. Rasel, “Quantum test of the universality of free fall,” Phys. Rev. Lettt. 112(20), 203002 (2014).
    [Crossref]
  19. M. G. Tarallo, T. Mazzoni, N. Poli, D. V. Sutyrin, X. Zhang, and G. M. Tino, “Test of Einstein equivalence principle for 0-spin and half-integer-spin atoms: search for spin-gravity coupling effects,” Phys. Rev. Lett. 113(2), 023005 (2014).
    [Crossref] [PubMed]
  20. L. Zhou, S. T. Long, B. Tang, X. Chen, F. Gao, W. C. Peng, W. T. Duan, J. Q. Zhong, Z. Y. Xiong, J. Wang, Y. Z. Zhang, and M. S. Zhan, “Test of equivalence principle at 10−8 level by a dual-species double-diffraction Raman atom interferometer,” Phys. Rev. Lett. 115(1), 013004 (2015).
    [Crossref] [PubMed]
  21. X. C. Duan, X. B. Deng, M. K. Zhou, K. Zhang, W. J. Xu, F. Xiong, Y. Y. Xu, C. G. Shao, J. Luo, and Z. K. Hu, “Test of the universality of free fall with atoms in different spin orientations,” Phys. Rev. Lett. 117(2), 023001 (2016).
    [Crossref] [PubMed]
  22. S. Dimopoulos, P. W. Graham, J. M. Hogan, M. A. Kasevich, and S. Rajendran, “Gravitational wave detection with atom interferometry,” Phys. Lett. B 678(1), 37–40 (2009).
    [Crossref]
  23. M. Hohensee, S.-Y. Lan, R. Houtz, C. Chan, B. Estey, G. Kim, P.-C. Kuan, and H. Müller, “Sources and technology for an atomic gravitational wave interferometric sensor,” Gen. Relativ. Grav. 43(7), 1905–1930 (2011).
    [Crossref]
  24. D. F. Gao, P. Ju, B. Zhang, and M. S. Zhan, “Gravitational-wave detection with matter-wave interferometers based on standing light waves,” Gen. Relativ. Grav. 43(7), 2027–2036 (2011).
    [Crossref]
  25. P. Cheinet, F. Pereira Dos Santos, T. Petelski, J. Le Gouët, J. Kim, K. T. Therkildsen, A. Clairon, and A. Landragin, “Compact laser system for atom interferometry,” Appl. Phys. B 84(4), 643–646 (2006).
    [Crossref]
  26. S. Merlet, L. Volodimer, M. Lours, and F. P. Dos Santos, “A simple laser system for atom interferometry,” Appl. Phys. B 117(2), 749–754 (2014).
    [Crossref]
  27. W. Ren, Y. G. Sun, B. Wang, W. B. Xia, Q. Z. Qu, J. F. Xiang, Z. R. Dong, D. S. Lu, and L. Liu, “Highly reliable optical system for a rubidium space cold atom clock,” Appl. Opt. 55(13), 3607–3614 (2016).
    [Crossref] [PubMed]
  28. V. Schkolnik, O. Hellmig, A. Wenzlawski, J. Grosse, A. Kohfeldt, K. Döringshoff, A. Wicht, P. Windpassinger, K. Sengstock, C. Braxmaier, M. Krutzik, and A. Peters, “A compact and robust diode laser system for atom interferometry on a sounding rocket,” Appl. Phys. B 122(8), 217 (2016).
    [Crossref]
  29. F. Lienhart, S. Boussen, O. Carraz, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm,” Appl. Phys. B 89(2–3), 177–180 (2007).
    [Crossref]
  30. C. Diboune, N. Zahzam, Y. Bidel, M. Cadoret, and A. Bresson, “Multi-line fiber laser system for cesium and rubidium atom interferometry,” Opt. Express 25(15), 16898–16906 (2017).
    [Crossref] [PubMed]
  31. V. Ménoret, R. Geiger, G. Stern, N. Zahzam, B. Battelier, A. Bresson, A. Landragin, and P. Bouyer, “Dual-wavelength laser source for onboard atom interferometry,” Opt. Lett. 36(21), 4128–4130 (2011).
    [Crossref] [PubMed]
  32. F. Theron, Y. Bidel, E. Dieu, N. Zahzam, M. Cadoret, and A. Bresson, “Frequency-doubled telecom fiber laser for a cold atom interferometer using optical lattices,” Opt. Commun. 393, 152–155 (2017).
    [Crossref]
  33. O. Carraz, F. Lienhart, R. Charriére, M. Cadoret, N. Zahzam, and Y. Bidel, “Compact and robust laser system for onboard atom interferometry,” Appl. Phys. B 97(2), 405–411 (2009)
    [Crossref]
  34. Q. Y. Wang, Z. Y. Wang, Z. J. Fu, W. Y. Liu, and Q. Lin, “A compact laser system for the cold atom gravimeter,” Opt. Commun. 358, 82–87 (2016).
    [Crossref]
  35. J. Thorpe, K. Numata, and J. Livas, “Laser frequency stabilization and control through offset sideband locking to optical cavities,” Opt. Express 16(20), 15980–15990 (2008).
    [Crossref] [PubMed]
  36. F. Theron, O. Carraz, G. Rennon, N. Zahzam, Y. Bidel, M. Cadoret, and A. Bresson, “Narrow linewidth single laser source system for onboard atom interferometry,” Appl. Phys. B 118(1), 1–5 (2015).
    [Crossref]
  37. B. Battelier, B. Barrett, L. Fouché, L. Chichet, L. Antoni-Micollier, H. Porte, F. Napolitano, J. Lautier, A. Landragin, and P. Bouyer, “Development of compact cold-atom sensors for inertial navigation,” Proc. SPIE 9900, 990004 (2016).
    [Crossref]
  38. X. J. Wu, F. Zi, J. Dudley, R. J. Bilotta, P. Canoza, and H. Müller, “Multiaxis atom interferometry with a single diode laser,” arXiv:1707.08693 (2017).
  39. K. Moler, D. S. Weiss, M. Kasevich, and S. Chu, “Theoretical analysis of velocity-selective Raman transitions,” Phys. Rev. A 45(1), 342–348 (1992).
    [Crossref] [PubMed]
  40. A. Louchet-Chauvet, T. Farah, Q. Bodart, A. Clairon, A. Landragin, S. Merlet, and F. P. Dos Santos, “The influence of transverse motion within an atomic gravimeter,” New J. Phys. 13, 065025 (2011).
    [Crossref]

2017 (3)

Y. P. Wang, J. Q. Zhong, H. W. Song, L. Zhu, Y. M. Li, X. Chen, R. B. Li, J. Wang, and M. S. Zhan, “Location-dependent Raman transition in gravity-gradient measurements using dual atom interferometers,” Phys. Rev. A 95(5), 053612 (2017).
[Crossref]

C. Diboune, N. Zahzam, Y. Bidel, M. Cadoret, and A. Bresson, “Multi-line fiber laser system for cesium and rubidium atom interferometry,” Opt. Express 25(15), 16898–16906 (2017).
[Crossref] [PubMed]

F. Theron, Y. Bidel, E. Dieu, N. Zahzam, M. Cadoret, and A. Bresson, “Frequency-doubled telecom fiber laser for a cold atom interferometer using optical lattices,” Opt. Commun. 393, 152–155 (2017).
[Crossref]

2016 (10)

Q. Y. Wang, Z. Y. Wang, Z. J. Fu, W. Y. Liu, and Q. Lin, “A compact laser system for the cold atom gravimeter,” Opt. Commun. 358, 82–87 (2016).
[Crossref]

B. Battelier, B. Barrett, L. Fouché, L. Chichet, L. Antoni-Micollier, H. Porte, F. Napolitano, J. Lautier, A. Landragin, and P. Bouyer, “Development of compact cold-atom sensors for inertial navigation,” Proc. SPIE 9900, 990004 (2016).
[Crossref]

W. Ren, Y. G. Sun, B. Wang, W. B. Xia, Q. Z. Qu, J. F. Xiang, Z. R. Dong, D. S. Lu, and L. Liu, “Highly reliable optical system for a rubidium space cold atom clock,” Appl. Opt. 55(13), 3607–3614 (2016).
[Crossref] [PubMed]

V. Schkolnik, O. Hellmig, A. Wenzlawski, J. Grosse, A. Kohfeldt, K. Döringshoff, A. Wicht, P. Windpassinger, K. Sengstock, C. Braxmaier, M. Krutzik, and A. Peters, “A compact and robust diode laser system for atom interferometry on a sounding rocket,” Appl. Phys. B 122(8), 217 (2016).
[Crossref]

X. C. Duan, X. B. Deng, M. K. Zhou, K. Zhang, W. J. Xu, F. Xiong, Y. Y. Xu, C. G. Shao, J. Luo, and Z. K. Hu, “Test of the universality of free fall with atoms in different spin orientations,” Phys. Rev. Lett. 117(2), 023001 (2016).
[Crossref] [PubMed]

I. Dutta, D. Savoie, B. Fang, B. Venon, C. L. Garrido Alzar, R. Geiger, and A. Landragin, “Continuous cold-atom inertial sensor with 1 nrad/sec rotation stability,” Phys. Rev. Lett. 116(18), 183003 (2016).
[Crossref] [PubMed]

Z. W. Yao, S. B. Lu, R. B. Li, K. Wang, L. Cao, J. Wang, and M. S. Zhan, “Continuous dynamic rotation measurements using a compact cold atom gyroscope,” Chin. Phys. Lett. 33(8), 083701 (2016).
[Crossref]

G. D’Amico, F. Borselli, L. Cacciapuoti, M. Prevedelli, G. Rosi, F. Sorrentino, and G. M. Tino, “Bragg interferometer for gravity gradient measurements,” Phys. Rev. A 93(6), 063628 (2016).
[Crossref]

C. Freier, M. Hauth, V. Schkolnik, B. Leykauf, M. Schilling, H. Wziontek, H. G. Scherneck, J. Müller, and A. Peters, “Mobile quantum gravity sensor with unprecedented stability,” J. Phys. Conf. Ser. 723, 012050 (2016).
[Crossref]

B. Fang, I. Dutta, P. Gillot, D. Savoie, J. Lautier, B. Cheng, C. L. Garrido Alzar, R. Geiger, S. Merlet, F. Pereira Dos Santos, and A. Landragin, “Metrology with atom interferometry: inertial sensors from laboratory to field applications,” J. Phys. Conf. Ser. 723, 012049 (2016).
[Crossref]

2015 (3)

G. Rosi, L. Cacciapuoti, F. Sorrentino, M. Menchetti, M. Prevedelli, and G. M. Tino, “Measurement of the gravity-field curvature by atom interferometry,” Phys. Rev. Lett. 114(1), 013001 (2015).
[Crossref] [PubMed]

L. Zhou, S. T. Long, B. Tang, X. Chen, F. Gao, W. C. Peng, W. T. Duan, J. Q. Zhong, Z. Y. Xiong, J. Wang, Y. Z. Zhang, and M. S. Zhan, “Test of equivalence principle at 10−8 level by a dual-species double-diffraction Raman atom interferometer,” Phys. Rev. Lett. 115(1), 013004 (2015).
[Crossref] [PubMed]

F. Theron, O. Carraz, G. Rennon, N. Zahzam, Y. Bidel, M. Cadoret, and A. Bresson, “Narrow linewidth single laser source system for onboard atom interferometry,” Appl. Phys. B 118(1), 1–5 (2015).
[Crossref]

2014 (4)

S. Merlet, L. Volodimer, M. Lours, and F. P. Dos Santos, “A simple laser system for atom interferometry,” Appl. Phys. B 117(2), 749–754 (2014).
[Crossref]

D. Schlippert, J. Hartwig, H. Albers, L. L. Richardson, C. Schubert, A. Roura, W. P. Schleich, W. Ertmer, and E. M. Rasel, “Quantum test of the universality of free fall,” Phys. Rev. Lettt. 112(20), 203002 (2014).
[Crossref]

M. G. Tarallo, T. Mazzoni, N. Poli, D. V. Sutyrin, X. Zhang, and G. M. Tino, “Test of Einstein equivalence principle for 0-spin and half-integer-spin atoms: search for spin-gravity coupling effects,” Phys. Rev. Lett. 113(2), 023005 (2014).
[Crossref] [PubMed]

F. Sorrentino, Q. Bodart, L. Cacciapuoti, Y.-H. Lien, M. Prevedelli, G. Rosi, L. Salvi, and G. M. Tino, “Sensitivity limits of a Raman atom interferometer as a gravity gradiometer,” Phys. Rev. A 89(2), 023607 (2014).
[Crossref]

2013 (4)

M. Hauth, C. Freier, V. Schkolnik, A. Senger, M. Schmidt, and A. Peters, “First gravity measurements using the mobile atom interferometer GAIN,” Appl. Phys. B 113(1), 49–55 (2013).
[Crossref]

Z. K. Hu, B. L. Sun, X. C. Duan, M. K. Zhou, L. L. Chen, S. Zhan, Q. Z. Zhang, and J. Luo, “Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter,” Phys. Rev. A 88(4), 043610 (2013).
[Crossref]

S. M. Dickerson, J. M. Hogan, A. Sugarbaker, D. M. Johnson, and M. A. Kasevich, “Multiaxis inertial sensing with long-time point source atom interferometry,” Phys. Rev. Lett. 111(8), 083001 (2013).
[Crossref] [PubMed]

D. Crossley, J. Hinderer, and U. Riccardi, “The measurement of surface gravity,” Rep. Prog. Phys. 76(4), 046101 (2013).
[Crossref] [PubMed]

2012 (1)

H. J. McGuinness, A. V. Rakholia, and G. W. Biedermann, “High data-rate atom interferometer for measuring acceleration,” Appl. Phys. Lett. 100(1), 011106 (2012).
[Crossref]

2011 (5)

L. Zhou, Z. Y. Xiong, W. Yang, B. Tang, W. C. Peng, Y. B. Wang, P. Xu, J. Wang, and M. S. Zhan, “Measurement of local gravity via a cold atom interferometer,” Chin. Phys. Lett. 28(1), 013701 (2011).
[Crossref]

M. Hohensee, S.-Y. Lan, R. Houtz, C. Chan, B. Estey, G. Kim, P.-C. Kuan, and H. Müller, “Sources and technology for an atomic gravitational wave interferometric sensor,” Gen. Relativ. Grav. 43(7), 1905–1930 (2011).
[Crossref]

D. F. Gao, P. Ju, B. Zhang, and M. S. Zhan, “Gravitational-wave detection with matter-wave interferometers based on standing light waves,” Gen. Relativ. Grav. 43(7), 2027–2036 (2011).
[Crossref]

V. Ménoret, R. Geiger, G. Stern, N. Zahzam, B. Battelier, A. Bresson, A. Landragin, and P. Bouyer, “Dual-wavelength laser source for onboard atom interferometry,” Opt. Lett. 36(21), 4128–4130 (2011).
[Crossref] [PubMed]

A. Louchet-Chauvet, T. Farah, Q. Bodart, A. Clairon, A. Landragin, S. Merlet, and F. P. Dos Santos, “The influence of transverse motion within an atomic gravimeter,” New J. Phys. 13, 065025 (2011).
[Crossref]

2009 (2)

S. Dimopoulos, P. W. Graham, J. M. Hogan, M. A. Kasevich, and S. Rajendran, “Gravitational wave detection with atom interferometry,” Phys. Lett. B 678(1), 37–40 (2009).
[Crossref]

O. Carraz, F. Lienhart, R. Charriére, M. Cadoret, N. Zahzam, and Y. Bidel, “Compact and robust laser system for onboard atom interferometry,” Appl. Phys. B 97(2), 405–411 (2009)
[Crossref]

2008 (1)

2007 (1)

F. Lienhart, S. Boussen, O. Carraz, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm,” Appl. Phys. B 89(2–3), 177–180 (2007).
[Crossref]

2006 (1)

P. Cheinet, F. Pereira Dos Santos, T. Petelski, J. Le Gouët, J. Kim, K. T. Therkildsen, A. Clairon, and A. Landragin, “Compact laser system for atom interferometry,” Appl. Phys. B 84(4), 643–646 (2006).
[Crossref]

2002 (1)

J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, “Sensitive absolute-gravity gradiometry using atom interferometry,” Phys. Rev. A 65(3), 033608 (2002).
[Crossref]

2001 (1)

A. Peters, K.Y. Chung, and S. Chu, “High-precision gravity measurements using atom interferometry,” Metrologia 38(1), 25–61 (2001).
[Crossref]

1997 (1)

T. L. Gustavson, P. Bouyer, and M. A. Kasevich, “Precision rotation measurements with an atom interferometer gyroscope,” Phys. Rev. Lettt. 78(11), 2046–2049 (1997).
[Crossref]

1992 (1)

K. Moler, D. S. Weiss, M. Kasevich, and S. Chu, “Theoretical analysis of velocity-selective Raman transitions,” Phys. Rev. A 45(1), 342–348 (1992).
[Crossref] [PubMed]

Albers, H.

D. Schlippert, J. Hartwig, H. Albers, L. L. Richardson, C. Schubert, A. Roura, W. P. Schleich, W. Ertmer, and E. M. Rasel, “Quantum test of the universality of free fall,” Phys. Rev. Lettt. 112(20), 203002 (2014).
[Crossref]

Antoni-Micollier, L.

B. Battelier, B. Barrett, L. Fouché, L. Chichet, L. Antoni-Micollier, H. Porte, F. Napolitano, J. Lautier, A. Landragin, and P. Bouyer, “Development of compact cold-atom sensors for inertial navigation,” Proc. SPIE 9900, 990004 (2016).
[Crossref]

Barrett, B.

B. Battelier, B. Barrett, L. Fouché, L. Chichet, L. Antoni-Micollier, H. Porte, F. Napolitano, J. Lautier, A. Landragin, and P. Bouyer, “Development of compact cold-atom sensors for inertial navigation,” Proc. SPIE 9900, 990004 (2016).
[Crossref]

Battelier, B.

B. Battelier, B. Barrett, L. Fouché, L. Chichet, L. Antoni-Micollier, H. Porte, F. Napolitano, J. Lautier, A. Landragin, and P. Bouyer, “Development of compact cold-atom sensors for inertial navigation,” Proc. SPIE 9900, 990004 (2016).
[Crossref]

V. Ménoret, R. Geiger, G. Stern, N. Zahzam, B. Battelier, A. Bresson, A. Landragin, and P. Bouyer, “Dual-wavelength laser source for onboard atom interferometry,” Opt. Lett. 36(21), 4128–4130 (2011).
[Crossref] [PubMed]

Bidel, Y.

C. Diboune, N. Zahzam, Y. Bidel, M. Cadoret, and A. Bresson, “Multi-line fiber laser system for cesium and rubidium atom interferometry,” Opt. Express 25(15), 16898–16906 (2017).
[Crossref] [PubMed]

F. Theron, Y. Bidel, E. Dieu, N. Zahzam, M. Cadoret, and A. Bresson, “Frequency-doubled telecom fiber laser for a cold atom interferometer using optical lattices,” Opt. Commun. 393, 152–155 (2017).
[Crossref]

F. Theron, O. Carraz, G. Rennon, N. Zahzam, Y. Bidel, M. Cadoret, and A. Bresson, “Narrow linewidth single laser source system for onboard atom interferometry,” Appl. Phys. B 118(1), 1–5 (2015).
[Crossref]

O. Carraz, F. Lienhart, R. Charriére, M. Cadoret, N. Zahzam, and Y. Bidel, “Compact and robust laser system for onboard atom interferometry,” Appl. Phys. B 97(2), 405–411 (2009)
[Crossref]

F. Lienhart, S. Boussen, O. Carraz, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm,” Appl. Phys. B 89(2–3), 177–180 (2007).
[Crossref]

Biedermann, G. W.

H. J. McGuinness, A. V. Rakholia, and G. W. Biedermann, “High data-rate atom interferometer for measuring acceleration,” Appl. Phys. Lett. 100(1), 011106 (2012).
[Crossref]

Bilotta, R. J.

X. J. Wu, F. Zi, J. Dudley, R. J. Bilotta, P. Canoza, and H. Müller, “Multiaxis atom interferometry with a single diode laser,” arXiv:1707.08693 (2017).

Bodart, Q.

F. Sorrentino, Q. Bodart, L. Cacciapuoti, Y.-H. Lien, M. Prevedelli, G. Rosi, L. Salvi, and G. M. Tino, “Sensitivity limits of a Raman atom interferometer as a gravity gradiometer,” Phys. Rev. A 89(2), 023607 (2014).
[Crossref]

A. Louchet-Chauvet, T. Farah, Q. Bodart, A. Clairon, A. Landragin, S. Merlet, and F. P. Dos Santos, “The influence of transverse motion within an atomic gravimeter,” New J. Phys. 13, 065025 (2011).
[Crossref]

Borselli, F.

G. D’Amico, F. Borselli, L. Cacciapuoti, M. Prevedelli, G. Rosi, F. Sorrentino, and G. M. Tino, “Bragg interferometer for gravity gradient measurements,” Phys. Rev. A 93(6), 063628 (2016).
[Crossref]

Boussen, S.

F. Lienhart, S. Boussen, O. Carraz, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm,” Appl. Phys. B 89(2–3), 177–180 (2007).
[Crossref]

Bouyer, P.

B. Battelier, B. Barrett, L. Fouché, L. Chichet, L. Antoni-Micollier, H. Porte, F. Napolitano, J. Lautier, A. Landragin, and P. Bouyer, “Development of compact cold-atom sensors for inertial navigation,” Proc. SPIE 9900, 990004 (2016).
[Crossref]

V. Ménoret, R. Geiger, G. Stern, N. Zahzam, B. Battelier, A. Bresson, A. Landragin, and P. Bouyer, “Dual-wavelength laser source for onboard atom interferometry,” Opt. Lett. 36(21), 4128–4130 (2011).
[Crossref] [PubMed]

T. L. Gustavson, P. Bouyer, and M. A. Kasevich, “Precision rotation measurements with an atom interferometer gyroscope,” Phys. Rev. Lettt. 78(11), 2046–2049 (1997).
[Crossref]

Braxmaier, C.

V. Schkolnik, O. Hellmig, A. Wenzlawski, J. Grosse, A. Kohfeldt, K. Döringshoff, A. Wicht, P. Windpassinger, K. Sengstock, C. Braxmaier, M. Krutzik, and A. Peters, “A compact and robust diode laser system for atom interferometry on a sounding rocket,” Appl. Phys. B 122(8), 217 (2016).
[Crossref]

Bresson, A.

F. Theron, Y. Bidel, E. Dieu, N. Zahzam, M. Cadoret, and A. Bresson, “Frequency-doubled telecom fiber laser for a cold atom interferometer using optical lattices,” Opt. Commun. 393, 152–155 (2017).
[Crossref]

C. Diboune, N. Zahzam, Y. Bidel, M. Cadoret, and A. Bresson, “Multi-line fiber laser system for cesium and rubidium atom interferometry,” Opt. Express 25(15), 16898–16906 (2017).
[Crossref] [PubMed]

F. Theron, O. Carraz, G. Rennon, N. Zahzam, Y. Bidel, M. Cadoret, and A. Bresson, “Narrow linewidth single laser source system for onboard atom interferometry,” Appl. Phys. B 118(1), 1–5 (2015).
[Crossref]

V. Ménoret, R. Geiger, G. Stern, N. Zahzam, B. Battelier, A. Bresson, A. Landragin, and P. Bouyer, “Dual-wavelength laser source for onboard atom interferometry,” Opt. Lett. 36(21), 4128–4130 (2011).
[Crossref] [PubMed]

F. Lienhart, S. Boussen, O. Carraz, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm,” Appl. Phys. B 89(2–3), 177–180 (2007).
[Crossref]

Cacciapuoti, L.

G. D’Amico, F. Borselli, L. Cacciapuoti, M. Prevedelli, G. Rosi, F. Sorrentino, and G. M. Tino, “Bragg interferometer for gravity gradient measurements,” Phys. Rev. A 93(6), 063628 (2016).
[Crossref]

G. Rosi, L. Cacciapuoti, F. Sorrentino, M. Menchetti, M. Prevedelli, and G. M. Tino, “Measurement of the gravity-field curvature by atom interferometry,” Phys. Rev. Lett. 114(1), 013001 (2015).
[Crossref] [PubMed]

F. Sorrentino, Q. Bodart, L. Cacciapuoti, Y.-H. Lien, M. Prevedelli, G. Rosi, L. Salvi, and G. M. Tino, “Sensitivity limits of a Raman atom interferometer as a gravity gradiometer,” Phys. Rev. A 89(2), 023607 (2014).
[Crossref]

Cadoret, M.

F. Theron, Y. Bidel, E. Dieu, N. Zahzam, M. Cadoret, and A. Bresson, “Frequency-doubled telecom fiber laser for a cold atom interferometer using optical lattices,” Opt. Commun. 393, 152–155 (2017).
[Crossref]

C. Diboune, N. Zahzam, Y. Bidel, M. Cadoret, and A. Bresson, “Multi-line fiber laser system for cesium and rubidium atom interferometry,” Opt. Express 25(15), 16898–16906 (2017).
[Crossref] [PubMed]

F. Theron, O. Carraz, G. Rennon, N. Zahzam, Y. Bidel, M. Cadoret, and A. Bresson, “Narrow linewidth single laser source system for onboard atom interferometry,” Appl. Phys. B 118(1), 1–5 (2015).
[Crossref]

O. Carraz, F. Lienhart, R. Charriére, M. Cadoret, N. Zahzam, and Y. Bidel, “Compact and robust laser system for onboard atom interferometry,” Appl. Phys. B 97(2), 405–411 (2009)
[Crossref]

Canoza, P.

X. J. Wu, F. Zi, J. Dudley, R. J. Bilotta, P. Canoza, and H. Müller, “Multiaxis atom interferometry with a single diode laser,” arXiv:1707.08693 (2017).

Cao, L.

Z. W. Yao, S. B. Lu, R. B. Li, K. Wang, L. Cao, J. Wang, and M. S. Zhan, “Continuous dynamic rotation measurements using a compact cold atom gyroscope,” Chin. Phys. Lett. 33(8), 083701 (2016).
[Crossref]

Carraz, O.

F. Theron, O. Carraz, G. Rennon, N. Zahzam, Y. Bidel, M. Cadoret, and A. Bresson, “Narrow linewidth single laser source system for onboard atom interferometry,” Appl. Phys. B 118(1), 1–5 (2015).
[Crossref]

O. Carraz, F. Lienhart, R. Charriére, M. Cadoret, N. Zahzam, and Y. Bidel, “Compact and robust laser system for onboard atom interferometry,” Appl. Phys. B 97(2), 405–411 (2009)
[Crossref]

F. Lienhart, S. Boussen, O. Carraz, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm,” Appl. Phys. B 89(2–3), 177–180 (2007).
[Crossref]

Chan, C.

M. Hohensee, S.-Y. Lan, R. Houtz, C. Chan, B. Estey, G. Kim, P.-C. Kuan, and H. Müller, “Sources and technology for an atomic gravitational wave interferometric sensor,” Gen. Relativ. Grav. 43(7), 1905–1930 (2011).
[Crossref]

Charriére, R.

O. Carraz, F. Lienhart, R. Charriére, M. Cadoret, N. Zahzam, and Y. Bidel, “Compact and robust laser system for onboard atom interferometry,” Appl. Phys. B 97(2), 405–411 (2009)
[Crossref]

Cheinet, P.

P. Cheinet, F. Pereira Dos Santos, T. Petelski, J. Le Gouët, J. Kim, K. T. Therkildsen, A. Clairon, and A. Landragin, “Compact laser system for atom interferometry,” Appl. Phys. B 84(4), 643–646 (2006).
[Crossref]

Chen, L. L.

Z. K. Hu, B. L. Sun, X. C. Duan, M. K. Zhou, L. L. Chen, S. Zhan, Q. Z. Zhang, and J. Luo, “Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter,” Phys. Rev. A 88(4), 043610 (2013).
[Crossref]

Chen, X.

Y. P. Wang, J. Q. Zhong, H. W. Song, L. Zhu, Y. M. Li, X. Chen, R. B. Li, J. Wang, and M. S. Zhan, “Location-dependent Raman transition in gravity-gradient measurements using dual atom interferometers,” Phys. Rev. A 95(5), 053612 (2017).
[Crossref]

L. Zhou, S. T. Long, B. Tang, X. Chen, F. Gao, W. C. Peng, W. T. Duan, J. Q. Zhong, Z. Y. Xiong, J. Wang, Y. Z. Zhang, and M. S. Zhan, “Test of equivalence principle at 10−8 level by a dual-species double-diffraction Raman atom interferometer,” Phys. Rev. Lett. 115(1), 013004 (2015).
[Crossref] [PubMed]

Cheng, B.

B. Fang, I. Dutta, P. Gillot, D. Savoie, J. Lautier, B. Cheng, C. L. Garrido Alzar, R. Geiger, S. Merlet, F. Pereira Dos Santos, and A. Landragin, “Metrology with atom interferometry: inertial sensors from laboratory to field applications,” J. Phys. Conf. Ser. 723, 012049 (2016).
[Crossref]

Chichet, L.

B. Battelier, B. Barrett, L. Fouché, L. Chichet, L. Antoni-Micollier, H. Porte, F. Napolitano, J. Lautier, A. Landragin, and P. Bouyer, “Development of compact cold-atom sensors for inertial navigation,” Proc. SPIE 9900, 990004 (2016).
[Crossref]

Chu, S.

A. Peters, K.Y. Chung, and S. Chu, “High-precision gravity measurements using atom interferometry,” Metrologia 38(1), 25–61 (2001).
[Crossref]

K. Moler, D. S. Weiss, M. Kasevich, and S. Chu, “Theoretical analysis of velocity-selective Raman transitions,” Phys. Rev. A 45(1), 342–348 (1992).
[Crossref] [PubMed]

Chung, K.Y.

A. Peters, K.Y. Chung, and S. Chu, “High-precision gravity measurements using atom interferometry,” Metrologia 38(1), 25–61 (2001).
[Crossref]

Clairon, A.

A. Louchet-Chauvet, T. Farah, Q. Bodart, A. Clairon, A. Landragin, S. Merlet, and F. P. Dos Santos, “The influence of transverse motion within an atomic gravimeter,” New J. Phys. 13, 065025 (2011).
[Crossref]

P. Cheinet, F. Pereira Dos Santos, T. Petelski, J. Le Gouët, J. Kim, K. T. Therkildsen, A. Clairon, and A. Landragin, “Compact laser system for atom interferometry,” Appl. Phys. B 84(4), 643–646 (2006).
[Crossref]

Crossley, D.

D. Crossley, J. Hinderer, and U. Riccardi, “The measurement of surface gravity,” Rep. Prog. Phys. 76(4), 046101 (2013).
[Crossref] [PubMed]

D’Amico, G.

G. D’Amico, F. Borselli, L. Cacciapuoti, M. Prevedelli, G. Rosi, F. Sorrentino, and G. M. Tino, “Bragg interferometer for gravity gradient measurements,” Phys. Rev. A 93(6), 063628 (2016).
[Crossref]

Deng, X. B.

X. C. Duan, X. B. Deng, M. K. Zhou, K. Zhang, W. J. Xu, F. Xiong, Y. Y. Xu, C. G. Shao, J. Luo, and Z. K. Hu, “Test of the universality of free fall with atoms in different spin orientations,” Phys. Rev. Lett. 117(2), 023001 (2016).
[Crossref] [PubMed]

Diboune, C.

Dickerson, S. M.

S. M. Dickerson, J. M. Hogan, A. Sugarbaker, D. M. Johnson, and M. A. Kasevich, “Multiaxis inertial sensing with long-time point source atom interferometry,” Phys. Rev. Lett. 111(8), 083001 (2013).
[Crossref] [PubMed]

Dieu, E.

F. Theron, Y. Bidel, E. Dieu, N. Zahzam, M. Cadoret, and A. Bresson, “Frequency-doubled telecom fiber laser for a cold atom interferometer using optical lattices,” Opt. Commun. 393, 152–155 (2017).
[Crossref]

Dimopoulos, S.

S. Dimopoulos, P. W. Graham, J. M. Hogan, M. A. Kasevich, and S. Rajendran, “Gravitational wave detection with atom interferometry,” Phys. Lett. B 678(1), 37–40 (2009).
[Crossref]

Dong, Z. R.

Döringshoff, K.

V. Schkolnik, O. Hellmig, A. Wenzlawski, J. Grosse, A. Kohfeldt, K. Döringshoff, A. Wicht, P. Windpassinger, K. Sengstock, C. Braxmaier, M. Krutzik, and A. Peters, “A compact and robust diode laser system for atom interferometry on a sounding rocket,” Appl. Phys. B 122(8), 217 (2016).
[Crossref]

Dos Santos, F. P.

S. Merlet, L. Volodimer, M. Lours, and F. P. Dos Santos, “A simple laser system for atom interferometry,” Appl. Phys. B 117(2), 749–754 (2014).
[Crossref]

A. Louchet-Chauvet, T. Farah, Q. Bodart, A. Clairon, A. Landragin, S. Merlet, and F. P. Dos Santos, “The influence of transverse motion within an atomic gravimeter,” New J. Phys. 13, 065025 (2011).
[Crossref]

Duan, W. T.

L. Zhou, S. T. Long, B. Tang, X. Chen, F. Gao, W. C. Peng, W. T. Duan, J. Q. Zhong, Z. Y. Xiong, J. Wang, Y. Z. Zhang, and M. S. Zhan, “Test of equivalence principle at 10−8 level by a dual-species double-diffraction Raman atom interferometer,” Phys. Rev. Lett. 115(1), 013004 (2015).
[Crossref] [PubMed]

Duan, X. C.

X. C. Duan, X. B. Deng, M. K. Zhou, K. Zhang, W. J. Xu, F. Xiong, Y. Y. Xu, C. G. Shao, J. Luo, and Z. K. Hu, “Test of the universality of free fall with atoms in different spin orientations,” Phys. Rev. Lett. 117(2), 023001 (2016).
[Crossref] [PubMed]

Z. K. Hu, B. L. Sun, X. C. Duan, M. K. Zhou, L. L. Chen, S. Zhan, Q. Z. Zhang, and J. Luo, “Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter,” Phys. Rev. A 88(4), 043610 (2013).
[Crossref]

Dudley, J.

X. J. Wu, F. Zi, J. Dudley, R. J. Bilotta, P. Canoza, and H. Müller, “Multiaxis atom interferometry with a single diode laser,” arXiv:1707.08693 (2017).

Dutta, I.

B. Fang, I. Dutta, P. Gillot, D. Savoie, J. Lautier, B. Cheng, C. L. Garrido Alzar, R. Geiger, S. Merlet, F. Pereira Dos Santos, and A. Landragin, “Metrology with atom interferometry: inertial sensors from laboratory to field applications,” J. Phys. Conf. Ser. 723, 012049 (2016).
[Crossref]

I. Dutta, D. Savoie, B. Fang, B. Venon, C. L. Garrido Alzar, R. Geiger, and A. Landragin, “Continuous cold-atom inertial sensor with 1 nrad/sec rotation stability,” Phys. Rev. Lett. 116(18), 183003 (2016).
[Crossref] [PubMed]

Ertmer, W.

D. Schlippert, J. Hartwig, H. Albers, L. L. Richardson, C. Schubert, A. Roura, W. P. Schleich, W. Ertmer, and E. M. Rasel, “Quantum test of the universality of free fall,” Phys. Rev. Lettt. 112(20), 203002 (2014).
[Crossref]

Estey, B.

M. Hohensee, S.-Y. Lan, R. Houtz, C. Chan, B. Estey, G. Kim, P.-C. Kuan, and H. Müller, “Sources and technology for an atomic gravitational wave interferometric sensor,” Gen. Relativ. Grav. 43(7), 1905–1930 (2011).
[Crossref]

Fang, B.

I. Dutta, D. Savoie, B. Fang, B. Venon, C. L. Garrido Alzar, R. Geiger, and A. Landragin, “Continuous cold-atom inertial sensor with 1 nrad/sec rotation stability,” Phys. Rev. Lett. 116(18), 183003 (2016).
[Crossref] [PubMed]

B. Fang, I. Dutta, P. Gillot, D. Savoie, J. Lautier, B. Cheng, C. L. Garrido Alzar, R. Geiger, S. Merlet, F. Pereira Dos Santos, and A. Landragin, “Metrology with atom interferometry: inertial sensors from laboratory to field applications,” J. Phys. Conf. Ser. 723, 012049 (2016).
[Crossref]

Farah, T.

A. Louchet-Chauvet, T. Farah, Q. Bodart, A. Clairon, A. Landragin, S. Merlet, and F. P. Dos Santos, “The influence of transverse motion within an atomic gravimeter,” New J. Phys. 13, 065025 (2011).
[Crossref]

Fixler, J. B.

J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, “Sensitive absolute-gravity gradiometry using atom interferometry,” Phys. Rev. A 65(3), 033608 (2002).
[Crossref]

Foster, G. T.

J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, “Sensitive absolute-gravity gradiometry using atom interferometry,” Phys. Rev. A 65(3), 033608 (2002).
[Crossref]

Fouché, L.

B. Battelier, B. Barrett, L. Fouché, L. Chichet, L. Antoni-Micollier, H. Porte, F. Napolitano, J. Lautier, A. Landragin, and P. Bouyer, “Development of compact cold-atom sensors for inertial navigation,” Proc. SPIE 9900, 990004 (2016).
[Crossref]

Freier, C.

C. Freier, M. Hauth, V. Schkolnik, B. Leykauf, M. Schilling, H. Wziontek, H. G. Scherneck, J. Müller, and A. Peters, “Mobile quantum gravity sensor with unprecedented stability,” J. Phys. Conf. Ser. 723, 012050 (2016).
[Crossref]

M. Hauth, C. Freier, V. Schkolnik, A. Senger, M. Schmidt, and A. Peters, “First gravity measurements using the mobile atom interferometer GAIN,” Appl. Phys. B 113(1), 49–55 (2013).
[Crossref]

Fu, Z. J.

Q. Y. Wang, Z. Y. Wang, Z. J. Fu, W. Y. Liu, and Q. Lin, “A compact laser system for the cold atom gravimeter,” Opt. Commun. 358, 82–87 (2016).
[Crossref]

Gao, D. F.

D. F. Gao, P. Ju, B. Zhang, and M. S. Zhan, “Gravitational-wave detection with matter-wave interferometers based on standing light waves,” Gen. Relativ. Grav. 43(7), 2027–2036 (2011).
[Crossref]

Gao, F.

L. Zhou, S. T. Long, B. Tang, X. Chen, F. Gao, W. C. Peng, W. T. Duan, J. Q. Zhong, Z. Y. Xiong, J. Wang, Y. Z. Zhang, and M. S. Zhan, “Test of equivalence principle at 10−8 level by a dual-species double-diffraction Raman atom interferometer,” Phys. Rev. Lett. 115(1), 013004 (2015).
[Crossref] [PubMed]

Garrido Alzar, C. L.

I. Dutta, D. Savoie, B. Fang, B. Venon, C. L. Garrido Alzar, R. Geiger, and A. Landragin, “Continuous cold-atom inertial sensor with 1 nrad/sec rotation stability,” Phys. Rev. Lett. 116(18), 183003 (2016).
[Crossref] [PubMed]

B. Fang, I. Dutta, P. Gillot, D. Savoie, J. Lautier, B. Cheng, C. L. Garrido Alzar, R. Geiger, S. Merlet, F. Pereira Dos Santos, and A. Landragin, “Metrology with atom interferometry: inertial sensors from laboratory to field applications,” J. Phys. Conf. Ser. 723, 012049 (2016).
[Crossref]

Geiger, R.

B. Fang, I. Dutta, P. Gillot, D. Savoie, J. Lautier, B. Cheng, C. L. Garrido Alzar, R. Geiger, S. Merlet, F. Pereira Dos Santos, and A. Landragin, “Metrology with atom interferometry: inertial sensors from laboratory to field applications,” J. Phys. Conf. Ser. 723, 012049 (2016).
[Crossref]

I. Dutta, D. Savoie, B. Fang, B. Venon, C. L. Garrido Alzar, R. Geiger, and A. Landragin, “Continuous cold-atom inertial sensor with 1 nrad/sec rotation stability,” Phys. Rev. Lett. 116(18), 183003 (2016).
[Crossref] [PubMed]

V. Ménoret, R. Geiger, G. Stern, N. Zahzam, B. Battelier, A. Bresson, A. Landragin, and P. Bouyer, “Dual-wavelength laser source for onboard atom interferometry,” Opt. Lett. 36(21), 4128–4130 (2011).
[Crossref] [PubMed]

Gillot, P.

B. Fang, I. Dutta, P. Gillot, D. Savoie, J. Lautier, B. Cheng, C. L. Garrido Alzar, R. Geiger, S. Merlet, F. Pereira Dos Santos, and A. Landragin, “Metrology with atom interferometry: inertial sensors from laboratory to field applications,” J. Phys. Conf. Ser. 723, 012049 (2016).
[Crossref]

Graham, P. W.

S. Dimopoulos, P. W. Graham, J. M. Hogan, M. A. Kasevich, and S. Rajendran, “Gravitational wave detection with atom interferometry,” Phys. Lett. B 678(1), 37–40 (2009).
[Crossref]

Grosse, J.

V. Schkolnik, O. Hellmig, A. Wenzlawski, J. Grosse, A. Kohfeldt, K. Döringshoff, A. Wicht, P. Windpassinger, K. Sengstock, C. Braxmaier, M. Krutzik, and A. Peters, “A compact and robust diode laser system for atom interferometry on a sounding rocket,” Appl. Phys. B 122(8), 217 (2016).
[Crossref]

Gustavson, T. L.

T. L. Gustavson, P. Bouyer, and M. A. Kasevich, “Precision rotation measurements with an atom interferometer gyroscope,” Phys. Rev. Lettt. 78(11), 2046–2049 (1997).
[Crossref]

Hartwig, J.

D. Schlippert, J. Hartwig, H. Albers, L. L. Richardson, C. Schubert, A. Roura, W. P. Schleich, W. Ertmer, and E. M. Rasel, “Quantum test of the universality of free fall,” Phys. Rev. Lettt. 112(20), 203002 (2014).
[Crossref]

Hauth, M.

C. Freier, M. Hauth, V. Schkolnik, B. Leykauf, M. Schilling, H. Wziontek, H. G. Scherneck, J. Müller, and A. Peters, “Mobile quantum gravity sensor with unprecedented stability,” J. Phys. Conf. Ser. 723, 012050 (2016).
[Crossref]

M. Hauth, C. Freier, V. Schkolnik, A. Senger, M. Schmidt, and A. Peters, “First gravity measurements using the mobile atom interferometer GAIN,” Appl. Phys. B 113(1), 49–55 (2013).
[Crossref]

Hellmig, O.

V. Schkolnik, O. Hellmig, A. Wenzlawski, J. Grosse, A. Kohfeldt, K. Döringshoff, A. Wicht, P. Windpassinger, K. Sengstock, C. Braxmaier, M. Krutzik, and A. Peters, “A compact and robust diode laser system for atom interferometry on a sounding rocket,” Appl. Phys. B 122(8), 217 (2016).
[Crossref]

Hinderer, J.

D. Crossley, J. Hinderer, and U. Riccardi, “The measurement of surface gravity,” Rep. Prog. Phys. 76(4), 046101 (2013).
[Crossref] [PubMed]

Hogan, J. M.

S. M. Dickerson, J. M. Hogan, A. Sugarbaker, D. M. Johnson, and M. A. Kasevich, “Multiaxis inertial sensing with long-time point source atom interferometry,” Phys. Rev. Lett. 111(8), 083001 (2013).
[Crossref] [PubMed]

S. Dimopoulos, P. W. Graham, J. M. Hogan, M. A. Kasevich, and S. Rajendran, “Gravitational wave detection with atom interferometry,” Phys. Lett. B 678(1), 37–40 (2009).
[Crossref]

Hohensee, M.

M. Hohensee, S.-Y. Lan, R. Houtz, C. Chan, B. Estey, G. Kim, P.-C. Kuan, and H. Müller, “Sources and technology for an atomic gravitational wave interferometric sensor,” Gen. Relativ. Grav. 43(7), 1905–1930 (2011).
[Crossref]

Houtz, R.

M. Hohensee, S.-Y. Lan, R. Houtz, C. Chan, B. Estey, G. Kim, P.-C. Kuan, and H. Müller, “Sources and technology for an atomic gravitational wave interferometric sensor,” Gen. Relativ. Grav. 43(7), 1905–1930 (2011).
[Crossref]

Hu, Z. K.

X. C. Duan, X. B. Deng, M. K. Zhou, K. Zhang, W. J. Xu, F. Xiong, Y. Y. Xu, C. G. Shao, J. Luo, and Z. K. Hu, “Test of the universality of free fall with atoms in different spin orientations,” Phys. Rev. Lett. 117(2), 023001 (2016).
[Crossref] [PubMed]

Z. K. Hu, B. L. Sun, X. C. Duan, M. K. Zhou, L. L. Chen, S. Zhan, Q. Z. Zhang, and J. Luo, “Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter,” Phys. Rev. A 88(4), 043610 (2013).
[Crossref]

Johnson, D. M.

S. M. Dickerson, J. M. Hogan, A. Sugarbaker, D. M. Johnson, and M. A. Kasevich, “Multiaxis inertial sensing with long-time point source atom interferometry,” Phys. Rev. Lett. 111(8), 083001 (2013).
[Crossref] [PubMed]

Ju, P.

D. F. Gao, P. Ju, B. Zhang, and M. S. Zhan, “Gravitational-wave detection with matter-wave interferometers based on standing light waves,” Gen. Relativ. Grav. 43(7), 2027–2036 (2011).
[Crossref]

Kasevich, M.

K. Moler, D. S. Weiss, M. Kasevich, and S. Chu, “Theoretical analysis of velocity-selective Raman transitions,” Phys. Rev. A 45(1), 342–348 (1992).
[Crossref] [PubMed]

Kasevich, M. A.

S. M. Dickerson, J. M. Hogan, A. Sugarbaker, D. M. Johnson, and M. A. Kasevich, “Multiaxis inertial sensing with long-time point source atom interferometry,” Phys. Rev. Lett. 111(8), 083001 (2013).
[Crossref] [PubMed]

S. Dimopoulos, P. W. Graham, J. M. Hogan, M. A. Kasevich, and S. Rajendran, “Gravitational wave detection with atom interferometry,” Phys. Lett. B 678(1), 37–40 (2009).
[Crossref]

J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, “Sensitive absolute-gravity gradiometry using atom interferometry,” Phys. Rev. A 65(3), 033608 (2002).
[Crossref]

T. L. Gustavson, P. Bouyer, and M. A. Kasevich, “Precision rotation measurements with an atom interferometer gyroscope,” Phys. Rev. Lettt. 78(11), 2046–2049 (1997).
[Crossref]

Kim, G.

M. Hohensee, S.-Y. Lan, R. Houtz, C. Chan, B. Estey, G. Kim, P.-C. Kuan, and H. Müller, “Sources and technology for an atomic gravitational wave interferometric sensor,” Gen. Relativ. Grav. 43(7), 1905–1930 (2011).
[Crossref]

Kim, J.

P. Cheinet, F. Pereira Dos Santos, T. Petelski, J. Le Gouët, J. Kim, K. T. Therkildsen, A. Clairon, and A. Landragin, “Compact laser system for atom interferometry,” Appl. Phys. B 84(4), 643–646 (2006).
[Crossref]

Kohfeldt, A.

V. Schkolnik, O. Hellmig, A. Wenzlawski, J. Grosse, A. Kohfeldt, K. Döringshoff, A. Wicht, P. Windpassinger, K. Sengstock, C. Braxmaier, M. Krutzik, and A. Peters, “A compact and robust diode laser system for atom interferometry on a sounding rocket,” Appl. Phys. B 122(8), 217 (2016).
[Crossref]

Krutzik, M.

V. Schkolnik, O. Hellmig, A. Wenzlawski, J. Grosse, A. Kohfeldt, K. Döringshoff, A. Wicht, P. Windpassinger, K. Sengstock, C. Braxmaier, M. Krutzik, and A. Peters, “A compact and robust diode laser system for atom interferometry on a sounding rocket,” Appl. Phys. B 122(8), 217 (2016).
[Crossref]

Kuan, P.-C.

M. Hohensee, S.-Y. Lan, R. Houtz, C. Chan, B. Estey, G. Kim, P.-C. Kuan, and H. Müller, “Sources and technology for an atomic gravitational wave interferometric sensor,” Gen. Relativ. Grav. 43(7), 1905–1930 (2011).
[Crossref]

Lan, S.-Y.

M. Hohensee, S.-Y. Lan, R. Houtz, C. Chan, B. Estey, G. Kim, P.-C. Kuan, and H. Müller, “Sources and technology for an atomic gravitational wave interferometric sensor,” Gen. Relativ. Grav. 43(7), 1905–1930 (2011).
[Crossref]

Landragin, A.

B. Battelier, B. Barrett, L. Fouché, L. Chichet, L. Antoni-Micollier, H. Porte, F. Napolitano, J. Lautier, A. Landragin, and P. Bouyer, “Development of compact cold-atom sensors for inertial navigation,” Proc. SPIE 9900, 990004 (2016).
[Crossref]

I. Dutta, D. Savoie, B. Fang, B. Venon, C. L. Garrido Alzar, R. Geiger, and A. Landragin, “Continuous cold-atom inertial sensor with 1 nrad/sec rotation stability,” Phys. Rev. Lett. 116(18), 183003 (2016).
[Crossref] [PubMed]

B. Fang, I. Dutta, P. Gillot, D. Savoie, J. Lautier, B. Cheng, C. L. Garrido Alzar, R. Geiger, S. Merlet, F. Pereira Dos Santos, and A. Landragin, “Metrology with atom interferometry: inertial sensors from laboratory to field applications,” J. Phys. Conf. Ser. 723, 012049 (2016).
[Crossref]

A. Louchet-Chauvet, T. Farah, Q. Bodart, A. Clairon, A. Landragin, S. Merlet, and F. P. Dos Santos, “The influence of transverse motion within an atomic gravimeter,” New J. Phys. 13, 065025 (2011).
[Crossref]

V. Ménoret, R. Geiger, G. Stern, N. Zahzam, B. Battelier, A. Bresson, A. Landragin, and P. Bouyer, “Dual-wavelength laser source for onboard atom interferometry,” Opt. Lett. 36(21), 4128–4130 (2011).
[Crossref] [PubMed]

P. Cheinet, F. Pereira Dos Santos, T. Petelski, J. Le Gouët, J. Kim, K. T. Therkildsen, A. Clairon, and A. Landragin, “Compact laser system for atom interferometry,” Appl. Phys. B 84(4), 643–646 (2006).
[Crossref]

Lautier, J.

B. Battelier, B. Barrett, L. Fouché, L. Chichet, L. Antoni-Micollier, H. Porte, F. Napolitano, J. Lautier, A. Landragin, and P. Bouyer, “Development of compact cold-atom sensors for inertial navigation,” Proc. SPIE 9900, 990004 (2016).
[Crossref]

B. Fang, I. Dutta, P. Gillot, D. Savoie, J. Lautier, B. Cheng, C. L. Garrido Alzar, R. Geiger, S. Merlet, F. Pereira Dos Santos, and A. Landragin, “Metrology with atom interferometry: inertial sensors from laboratory to field applications,” J. Phys. Conf. Ser. 723, 012049 (2016).
[Crossref]

Le Gouët, J.

P. Cheinet, F. Pereira Dos Santos, T. Petelski, J. Le Gouët, J. Kim, K. T. Therkildsen, A. Clairon, and A. Landragin, “Compact laser system for atom interferometry,” Appl. Phys. B 84(4), 643–646 (2006).
[Crossref]

Leykauf, B.

C. Freier, M. Hauth, V. Schkolnik, B. Leykauf, M. Schilling, H. Wziontek, H. G. Scherneck, J. Müller, and A. Peters, “Mobile quantum gravity sensor with unprecedented stability,” J. Phys. Conf. Ser. 723, 012050 (2016).
[Crossref]

Li, R. B.

Y. P. Wang, J. Q. Zhong, H. W. Song, L. Zhu, Y. M. Li, X. Chen, R. B. Li, J. Wang, and M. S. Zhan, “Location-dependent Raman transition in gravity-gradient measurements using dual atom interferometers,” Phys. Rev. A 95(5), 053612 (2017).
[Crossref]

Z. W. Yao, S. B. Lu, R. B. Li, K. Wang, L. Cao, J. Wang, and M. S. Zhan, “Continuous dynamic rotation measurements using a compact cold atom gyroscope,” Chin. Phys. Lett. 33(8), 083701 (2016).
[Crossref]

Li, Y. M.

Y. P. Wang, J. Q. Zhong, H. W. Song, L. Zhu, Y. M. Li, X. Chen, R. B. Li, J. Wang, and M. S. Zhan, “Location-dependent Raman transition in gravity-gradient measurements using dual atom interferometers,” Phys. Rev. A 95(5), 053612 (2017).
[Crossref]

Lien, Y.-H.

F. Sorrentino, Q. Bodart, L. Cacciapuoti, Y.-H. Lien, M. Prevedelli, G. Rosi, L. Salvi, and G. M. Tino, “Sensitivity limits of a Raman atom interferometer as a gravity gradiometer,” Phys. Rev. A 89(2), 023607 (2014).
[Crossref]

Lienhart, F.

O. Carraz, F. Lienhart, R. Charriére, M. Cadoret, N. Zahzam, and Y. Bidel, “Compact and robust laser system for onboard atom interferometry,” Appl. Phys. B 97(2), 405–411 (2009)
[Crossref]

F. Lienhart, S. Boussen, O. Carraz, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm,” Appl. Phys. B 89(2–3), 177–180 (2007).
[Crossref]

Lin, Q.

Q. Y. Wang, Z. Y. Wang, Z. J. Fu, W. Y. Liu, and Q. Lin, “A compact laser system for the cold atom gravimeter,” Opt. Commun. 358, 82–87 (2016).
[Crossref]

Liu, L.

Liu, W. Y.

Q. Y. Wang, Z. Y. Wang, Z. J. Fu, W. Y. Liu, and Q. Lin, “A compact laser system for the cold atom gravimeter,” Opt. Commun. 358, 82–87 (2016).
[Crossref]

Livas, J.

Long, S. T.

L. Zhou, S. T. Long, B. Tang, X. Chen, F. Gao, W. C. Peng, W. T. Duan, J. Q. Zhong, Z. Y. Xiong, J. Wang, Y. Z. Zhang, and M. S. Zhan, “Test of equivalence principle at 10−8 level by a dual-species double-diffraction Raman atom interferometer,” Phys. Rev. Lett. 115(1), 013004 (2015).
[Crossref] [PubMed]

Louchet-Chauvet, A.

A. Louchet-Chauvet, T. Farah, Q. Bodart, A. Clairon, A. Landragin, S. Merlet, and F. P. Dos Santos, “The influence of transverse motion within an atomic gravimeter,” New J. Phys. 13, 065025 (2011).
[Crossref]

Lours, M.

S. Merlet, L. Volodimer, M. Lours, and F. P. Dos Santos, “A simple laser system for atom interferometry,” Appl. Phys. B 117(2), 749–754 (2014).
[Crossref]

Lu, D. S.

Lu, S. B.

Z. W. Yao, S. B. Lu, R. B. Li, K. Wang, L. Cao, J. Wang, and M. S. Zhan, “Continuous dynamic rotation measurements using a compact cold atom gyroscope,” Chin. Phys. Lett. 33(8), 083701 (2016).
[Crossref]

Luo, J.

X. C. Duan, X. B. Deng, M. K. Zhou, K. Zhang, W. J. Xu, F. Xiong, Y. Y. Xu, C. G. Shao, J. Luo, and Z. K. Hu, “Test of the universality of free fall with atoms in different spin orientations,” Phys. Rev. Lett. 117(2), 023001 (2016).
[Crossref] [PubMed]

Z. K. Hu, B. L. Sun, X. C. Duan, M. K. Zhou, L. L. Chen, S. Zhan, Q. Z. Zhang, and J. Luo, “Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter,” Phys. Rev. A 88(4), 043610 (2013).
[Crossref]

Mazzoni, T.

M. G. Tarallo, T. Mazzoni, N. Poli, D. V. Sutyrin, X. Zhang, and G. M. Tino, “Test of Einstein equivalence principle for 0-spin and half-integer-spin atoms: search for spin-gravity coupling effects,” Phys. Rev. Lett. 113(2), 023005 (2014).
[Crossref] [PubMed]

McGuinness, H. J.

H. J. McGuinness, A. V. Rakholia, and G. W. Biedermann, “High data-rate atom interferometer for measuring acceleration,” Appl. Phys. Lett. 100(1), 011106 (2012).
[Crossref]

McGuirk, J. M.

J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, “Sensitive absolute-gravity gradiometry using atom interferometry,” Phys. Rev. A 65(3), 033608 (2002).
[Crossref]

Menchetti, M.

G. Rosi, L. Cacciapuoti, F. Sorrentino, M. Menchetti, M. Prevedelli, and G. M. Tino, “Measurement of the gravity-field curvature by atom interferometry,” Phys. Rev. Lett. 114(1), 013001 (2015).
[Crossref] [PubMed]

Ménoret, V.

Merlet, S.

B. Fang, I. Dutta, P. Gillot, D. Savoie, J. Lautier, B. Cheng, C. L. Garrido Alzar, R. Geiger, S. Merlet, F. Pereira Dos Santos, and A. Landragin, “Metrology with atom interferometry: inertial sensors from laboratory to field applications,” J. Phys. Conf. Ser. 723, 012049 (2016).
[Crossref]

S. Merlet, L. Volodimer, M. Lours, and F. P. Dos Santos, “A simple laser system for atom interferometry,” Appl. Phys. B 117(2), 749–754 (2014).
[Crossref]

A. Louchet-Chauvet, T. Farah, Q. Bodart, A. Clairon, A. Landragin, S. Merlet, and F. P. Dos Santos, “The influence of transverse motion within an atomic gravimeter,” New J. Phys. 13, 065025 (2011).
[Crossref]

Moler, K.

K. Moler, D. S. Weiss, M. Kasevich, and S. Chu, “Theoretical analysis of velocity-selective Raman transitions,” Phys. Rev. A 45(1), 342–348 (1992).
[Crossref] [PubMed]

Müller, H.

M. Hohensee, S.-Y. Lan, R. Houtz, C. Chan, B. Estey, G. Kim, P.-C. Kuan, and H. Müller, “Sources and technology for an atomic gravitational wave interferometric sensor,” Gen. Relativ. Grav. 43(7), 1905–1930 (2011).
[Crossref]

X. J. Wu, F. Zi, J. Dudley, R. J. Bilotta, P. Canoza, and H. Müller, “Multiaxis atom interferometry with a single diode laser,” arXiv:1707.08693 (2017).

Müller, J.

C. Freier, M. Hauth, V. Schkolnik, B. Leykauf, M. Schilling, H. Wziontek, H. G. Scherneck, J. Müller, and A. Peters, “Mobile quantum gravity sensor with unprecedented stability,” J. Phys. Conf. Ser. 723, 012050 (2016).
[Crossref]

Napolitano, F.

B. Battelier, B. Barrett, L. Fouché, L. Chichet, L. Antoni-Micollier, H. Porte, F. Napolitano, J. Lautier, A. Landragin, and P. Bouyer, “Development of compact cold-atom sensors for inertial navigation,” Proc. SPIE 9900, 990004 (2016).
[Crossref]

Numata, K.

Peng, W. C.

L. Zhou, S. T. Long, B. Tang, X. Chen, F. Gao, W. C. Peng, W. T. Duan, J. Q. Zhong, Z. Y. Xiong, J. Wang, Y. Z. Zhang, and M. S. Zhan, “Test of equivalence principle at 10−8 level by a dual-species double-diffraction Raman atom interferometer,” Phys. Rev. Lett. 115(1), 013004 (2015).
[Crossref] [PubMed]

L. Zhou, Z. Y. Xiong, W. Yang, B. Tang, W. C. Peng, Y. B. Wang, P. Xu, J. Wang, and M. S. Zhan, “Measurement of local gravity via a cold atom interferometer,” Chin. Phys. Lett. 28(1), 013701 (2011).
[Crossref]

Pereira Dos Santos, F.

B. Fang, I. Dutta, P. Gillot, D. Savoie, J. Lautier, B. Cheng, C. L. Garrido Alzar, R. Geiger, S. Merlet, F. Pereira Dos Santos, and A. Landragin, “Metrology with atom interferometry: inertial sensors from laboratory to field applications,” J. Phys. Conf. Ser. 723, 012049 (2016).
[Crossref]

P. Cheinet, F. Pereira Dos Santos, T. Petelski, J. Le Gouët, J. Kim, K. T. Therkildsen, A. Clairon, and A. Landragin, “Compact laser system for atom interferometry,” Appl. Phys. B 84(4), 643–646 (2006).
[Crossref]

Petelski, T.

P. Cheinet, F. Pereira Dos Santos, T. Petelski, J. Le Gouët, J. Kim, K. T. Therkildsen, A. Clairon, and A. Landragin, “Compact laser system for atom interferometry,” Appl. Phys. B 84(4), 643–646 (2006).
[Crossref]

Peters, A.

V. Schkolnik, O. Hellmig, A. Wenzlawski, J. Grosse, A. Kohfeldt, K. Döringshoff, A. Wicht, P. Windpassinger, K. Sengstock, C. Braxmaier, M. Krutzik, and A. Peters, “A compact and robust diode laser system for atom interferometry on a sounding rocket,” Appl. Phys. B 122(8), 217 (2016).
[Crossref]

C. Freier, M. Hauth, V. Schkolnik, B. Leykauf, M. Schilling, H. Wziontek, H. G. Scherneck, J. Müller, and A. Peters, “Mobile quantum gravity sensor with unprecedented stability,” J. Phys. Conf. Ser. 723, 012050 (2016).
[Crossref]

M. Hauth, C. Freier, V. Schkolnik, A. Senger, M. Schmidt, and A. Peters, “First gravity measurements using the mobile atom interferometer GAIN,” Appl. Phys. B 113(1), 49–55 (2013).
[Crossref]

A. Peters, K.Y. Chung, and S. Chu, “High-precision gravity measurements using atom interferometry,” Metrologia 38(1), 25–61 (2001).
[Crossref]

Poli, N.

M. G. Tarallo, T. Mazzoni, N. Poli, D. V. Sutyrin, X. Zhang, and G. M. Tino, “Test of Einstein equivalence principle for 0-spin and half-integer-spin atoms: search for spin-gravity coupling effects,” Phys. Rev. Lett. 113(2), 023005 (2014).
[Crossref] [PubMed]

Porte, H.

B. Battelier, B. Barrett, L. Fouché, L. Chichet, L. Antoni-Micollier, H. Porte, F. Napolitano, J. Lautier, A. Landragin, and P. Bouyer, “Development of compact cold-atom sensors for inertial navigation,” Proc. SPIE 9900, 990004 (2016).
[Crossref]

Prevedelli, M.

G. D’Amico, F. Borselli, L. Cacciapuoti, M. Prevedelli, G. Rosi, F. Sorrentino, and G. M. Tino, “Bragg interferometer for gravity gradient measurements,” Phys. Rev. A 93(6), 063628 (2016).
[Crossref]

G. Rosi, L. Cacciapuoti, F. Sorrentino, M. Menchetti, M. Prevedelli, and G. M. Tino, “Measurement of the gravity-field curvature by atom interferometry,” Phys. Rev. Lett. 114(1), 013001 (2015).
[Crossref] [PubMed]

F. Sorrentino, Q. Bodart, L. Cacciapuoti, Y.-H. Lien, M. Prevedelli, G. Rosi, L. Salvi, and G. M. Tino, “Sensitivity limits of a Raman atom interferometer as a gravity gradiometer,” Phys. Rev. A 89(2), 023607 (2014).
[Crossref]

Qu, Q. Z.

Rajendran, S.

S. Dimopoulos, P. W. Graham, J. M. Hogan, M. A. Kasevich, and S. Rajendran, “Gravitational wave detection with atom interferometry,” Phys. Lett. B 678(1), 37–40 (2009).
[Crossref]

Rakholia, A. V.

H. J. McGuinness, A. V. Rakholia, and G. W. Biedermann, “High data-rate atom interferometer for measuring acceleration,” Appl. Phys. Lett. 100(1), 011106 (2012).
[Crossref]

Rasel, E. M.

D. Schlippert, J. Hartwig, H. Albers, L. L. Richardson, C. Schubert, A. Roura, W. P. Schleich, W. Ertmer, and E. M. Rasel, “Quantum test of the universality of free fall,” Phys. Rev. Lettt. 112(20), 203002 (2014).
[Crossref]

Ren, W.

Rennon, G.

F. Theron, O. Carraz, G. Rennon, N. Zahzam, Y. Bidel, M. Cadoret, and A. Bresson, “Narrow linewidth single laser source system for onboard atom interferometry,” Appl. Phys. B 118(1), 1–5 (2015).
[Crossref]

Riccardi, U.

D. Crossley, J. Hinderer, and U. Riccardi, “The measurement of surface gravity,” Rep. Prog. Phys. 76(4), 046101 (2013).
[Crossref] [PubMed]

Richardson, L. L.

D. Schlippert, J. Hartwig, H. Albers, L. L. Richardson, C. Schubert, A. Roura, W. P. Schleich, W. Ertmer, and E. M. Rasel, “Quantum test of the universality of free fall,” Phys. Rev. Lettt. 112(20), 203002 (2014).
[Crossref]

Rosi, G.

G. D’Amico, F. Borselli, L. Cacciapuoti, M. Prevedelli, G. Rosi, F. Sorrentino, and G. M. Tino, “Bragg interferometer for gravity gradient measurements,” Phys. Rev. A 93(6), 063628 (2016).
[Crossref]

G. Rosi, L. Cacciapuoti, F. Sorrentino, M. Menchetti, M. Prevedelli, and G. M. Tino, “Measurement of the gravity-field curvature by atom interferometry,” Phys. Rev. Lett. 114(1), 013001 (2015).
[Crossref] [PubMed]

F. Sorrentino, Q. Bodart, L. Cacciapuoti, Y.-H. Lien, M. Prevedelli, G. Rosi, L. Salvi, and G. M. Tino, “Sensitivity limits of a Raman atom interferometer as a gravity gradiometer,” Phys. Rev. A 89(2), 023607 (2014).
[Crossref]

Roura, A.

D. Schlippert, J. Hartwig, H. Albers, L. L. Richardson, C. Schubert, A. Roura, W. P. Schleich, W. Ertmer, and E. M. Rasel, “Quantum test of the universality of free fall,” Phys. Rev. Lettt. 112(20), 203002 (2014).
[Crossref]

Salvi, L.

F. Sorrentino, Q. Bodart, L. Cacciapuoti, Y.-H. Lien, M. Prevedelli, G. Rosi, L. Salvi, and G. M. Tino, “Sensitivity limits of a Raman atom interferometer as a gravity gradiometer,” Phys. Rev. A 89(2), 023607 (2014).
[Crossref]

Savoie, D.

I. Dutta, D. Savoie, B. Fang, B. Venon, C. L. Garrido Alzar, R. Geiger, and A. Landragin, “Continuous cold-atom inertial sensor with 1 nrad/sec rotation stability,” Phys. Rev. Lett. 116(18), 183003 (2016).
[Crossref] [PubMed]

B. Fang, I. Dutta, P. Gillot, D. Savoie, J. Lautier, B. Cheng, C. L. Garrido Alzar, R. Geiger, S. Merlet, F. Pereira Dos Santos, and A. Landragin, “Metrology with atom interferometry: inertial sensors from laboratory to field applications,” J. Phys. Conf. Ser. 723, 012049 (2016).
[Crossref]

Scherneck, H. G.

C. Freier, M. Hauth, V. Schkolnik, B. Leykauf, M. Schilling, H. Wziontek, H. G. Scherneck, J. Müller, and A. Peters, “Mobile quantum gravity sensor with unprecedented stability,” J. Phys. Conf. Ser. 723, 012050 (2016).
[Crossref]

Schilling, M.

C. Freier, M. Hauth, V. Schkolnik, B. Leykauf, M. Schilling, H. Wziontek, H. G. Scherneck, J. Müller, and A. Peters, “Mobile quantum gravity sensor with unprecedented stability,” J. Phys. Conf. Ser. 723, 012050 (2016).
[Crossref]

Schkolnik, V.

C. Freier, M. Hauth, V. Schkolnik, B. Leykauf, M. Schilling, H. Wziontek, H. G. Scherneck, J. Müller, and A. Peters, “Mobile quantum gravity sensor with unprecedented stability,” J. Phys. Conf. Ser. 723, 012050 (2016).
[Crossref]

V. Schkolnik, O. Hellmig, A. Wenzlawski, J. Grosse, A. Kohfeldt, K. Döringshoff, A. Wicht, P. Windpassinger, K. Sengstock, C. Braxmaier, M. Krutzik, and A. Peters, “A compact and robust diode laser system for atom interferometry on a sounding rocket,” Appl. Phys. B 122(8), 217 (2016).
[Crossref]

M. Hauth, C. Freier, V. Schkolnik, A. Senger, M. Schmidt, and A. Peters, “First gravity measurements using the mobile atom interferometer GAIN,” Appl. Phys. B 113(1), 49–55 (2013).
[Crossref]

Schleich, W. P.

D. Schlippert, J. Hartwig, H. Albers, L. L. Richardson, C. Schubert, A. Roura, W. P. Schleich, W. Ertmer, and E. M. Rasel, “Quantum test of the universality of free fall,” Phys. Rev. Lettt. 112(20), 203002 (2014).
[Crossref]

Schlippert, D.

D. Schlippert, J. Hartwig, H. Albers, L. L. Richardson, C. Schubert, A. Roura, W. P. Schleich, W. Ertmer, and E. M. Rasel, “Quantum test of the universality of free fall,” Phys. Rev. Lettt. 112(20), 203002 (2014).
[Crossref]

Schmidt, M.

M. Hauth, C. Freier, V. Schkolnik, A. Senger, M. Schmidt, and A. Peters, “First gravity measurements using the mobile atom interferometer GAIN,” Appl. Phys. B 113(1), 49–55 (2013).
[Crossref]

Schubert, C.

D. Schlippert, J. Hartwig, H. Albers, L. L. Richardson, C. Schubert, A. Roura, W. P. Schleich, W. Ertmer, and E. M. Rasel, “Quantum test of the universality of free fall,” Phys. Rev. Lettt. 112(20), 203002 (2014).
[Crossref]

Senger, A.

M. Hauth, C. Freier, V. Schkolnik, A. Senger, M. Schmidt, and A. Peters, “First gravity measurements using the mobile atom interferometer GAIN,” Appl. Phys. B 113(1), 49–55 (2013).
[Crossref]

Sengstock, K.

V. Schkolnik, O. Hellmig, A. Wenzlawski, J. Grosse, A. Kohfeldt, K. Döringshoff, A. Wicht, P. Windpassinger, K. Sengstock, C. Braxmaier, M. Krutzik, and A. Peters, “A compact and robust diode laser system for atom interferometry on a sounding rocket,” Appl. Phys. B 122(8), 217 (2016).
[Crossref]

Shao, C. G.

X. C. Duan, X. B. Deng, M. K. Zhou, K. Zhang, W. J. Xu, F. Xiong, Y. Y. Xu, C. G. Shao, J. Luo, and Z. K. Hu, “Test of the universality of free fall with atoms in different spin orientations,” Phys. Rev. Lett. 117(2), 023001 (2016).
[Crossref] [PubMed]

Snadden, M. J.

J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, “Sensitive absolute-gravity gradiometry using atom interferometry,” Phys. Rev. A 65(3), 033608 (2002).
[Crossref]

Song, H. W.

Y. P. Wang, J. Q. Zhong, H. W. Song, L. Zhu, Y. M. Li, X. Chen, R. B. Li, J. Wang, and M. S. Zhan, “Location-dependent Raman transition in gravity-gradient measurements using dual atom interferometers,” Phys. Rev. A 95(5), 053612 (2017).
[Crossref]

Sorrentino, F.

G. D’Amico, F. Borselli, L. Cacciapuoti, M. Prevedelli, G. Rosi, F. Sorrentino, and G. M. Tino, “Bragg interferometer for gravity gradient measurements,” Phys. Rev. A 93(6), 063628 (2016).
[Crossref]

G. Rosi, L. Cacciapuoti, F. Sorrentino, M. Menchetti, M. Prevedelli, and G. M. Tino, “Measurement of the gravity-field curvature by atom interferometry,” Phys. Rev. Lett. 114(1), 013001 (2015).
[Crossref] [PubMed]

F. Sorrentino, Q. Bodart, L. Cacciapuoti, Y.-H. Lien, M. Prevedelli, G. Rosi, L. Salvi, and G. M. Tino, “Sensitivity limits of a Raman atom interferometer as a gravity gradiometer,” Phys. Rev. A 89(2), 023607 (2014).
[Crossref]

Stern, G.

Sugarbaker, A.

S. M. Dickerson, J. M. Hogan, A. Sugarbaker, D. M. Johnson, and M. A. Kasevich, “Multiaxis inertial sensing with long-time point source atom interferometry,” Phys. Rev. Lett. 111(8), 083001 (2013).
[Crossref] [PubMed]

Sun, B. L.

Z. K. Hu, B. L. Sun, X. C. Duan, M. K. Zhou, L. L. Chen, S. Zhan, Q. Z. Zhang, and J. Luo, “Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter,” Phys. Rev. A 88(4), 043610 (2013).
[Crossref]

Sun, Y. G.

Sutyrin, D. V.

M. G. Tarallo, T. Mazzoni, N. Poli, D. V. Sutyrin, X. Zhang, and G. M. Tino, “Test of Einstein equivalence principle for 0-spin and half-integer-spin atoms: search for spin-gravity coupling effects,” Phys. Rev. Lett. 113(2), 023005 (2014).
[Crossref] [PubMed]

Tang, B.

L. Zhou, S. T. Long, B. Tang, X. Chen, F. Gao, W. C. Peng, W. T. Duan, J. Q. Zhong, Z. Y. Xiong, J. Wang, Y. Z. Zhang, and M. S. Zhan, “Test of equivalence principle at 10−8 level by a dual-species double-diffraction Raman atom interferometer,” Phys. Rev. Lett. 115(1), 013004 (2015).
[Crossref] [PubMed]

L. Zhou, Z. Y. Xiong, W. Yang, B. Tang, W. C. Peng, Y. B. Wang, P. Xu, J. Wang, and M. S. Zhan, “Measurement of local gravity via a cold atom interferometer,” Chin. Phys. Lett. 28(1), 013701 (2011).
[Crossref]

Tarallo, M. G.

M. G. Tarallo, T. Mazzoni, N. Poli, D. V. Sutyrin, X. Zhang, and G. M. Tino, “Test of Einstein equivalence principle for 0-spin and half-integer-spin atoms: search for spin-gravity coupling effects,” Phys. Rev. Lett. 113(2), 023005 (2014).
[Crossref] [PubMed]

Therkildsen, K. T.

P. Cheinet, F. Pereira Dos Santos, T. Petelski, J. Le Gouët, J. Kim, K. T. Therkildsen, A. Clairon, and A. Landragin, “Compact laser system for atom interferometry,” Appl. Phys. B 84(4), 643–646 (2006).
[Crossref]

Theron, F.

F. Theron, Y. Bidel, E. Dieu, N. Zahzam, M. Cadoret, and A. Bresson, “Frequency-doubled telecom fiber laser for a cold atom interferometer using optical lattices,” Opt. Commun. 393, 152–155 (2017).
[Crossref]

F. Theron, O. Carraz, G. Rennon, N. Zahzam, Y. Bidel, M. Cadoret, and A. Bresson, “Narrow linewidth single laser source system for onboard atom interferometry,” Appl. Phys. B 118(1), 1–5 (2015).
[Crossref]

Thorpe, J.

Tino, G. M.

G. D’Amico, F. Borselli, L. Cacciapuoti, M. Prevedelli, G. Rosi, F. Sorrentino, and G. M. Tino, “Bragg interferometer for gravity gradient measurements,” Phys. Rev. A 93(6), 063628 (2016).
[Crossref]

G. Rosi, L. Cacciapuoti, F. Sorrentino, M. Menchetti, M. Prevedelli, and G. M. Tino, “Measurement of the gravity-field curvature by atom interferometry,” Phys. Rev. Lett. 114(1), 013001 (2015).
[Crossref] [PubMed]

M. G. Tarallo, T. Mazzoni, N. Poli, D. V. Sutyrin, X. Zhang, and G. M. Tino, “Test of Einstein equivalence principle for 0-spin and half-integer-spin atoms: search for spin-gravity coupling effects,” Phys. Rev. Lett. 113(2), 023005 (2014).
[Crossref] [PubMed]

F. Sorrentino, Q. Bodart, L. Cacciapuoti, Y.-H. Lien, M. Prevedelli, G. Rosi, L. Salvi, and G. M. Tino, “Sensitivity limits of a Raman atom interferometer as a gravity gradiometer,” Phys. Rev. A 89(2), 023607 (2014).
[Crossref]

Venon, B.

I. Dutta, D. Savoie, B. Fang, B. Venon, C. L. Garrido Alzar, R. Geiger, and A. Landragin, “Continuous cold-atom inertial sensor with 1 nrad/sec rotation stability,” Phys. Rev. Lett. 116(18), 183003 (2016).
[Crossref] [PubMed]

Volodimer, L.

S. Merlet, L. Volodimer, M. Lours, and F. P. Dos Santos, “A simple laser system for atom interferometry,” Appl. Phys. B 117(2), 749–754 (2014).
[Crossref]

Wang, B.

Wang, J.

Y. P. Wang, J. Q. Zhong, H. W. Song, L. Zhu, Y. M. Li, X. Chen, R. B. Li, J. Wang, and M. S. Zhan, “Location-dependent Raman transition in gravity-gradient measurements using dual atom interferometers,” Phys. Rev. A 95(5), 053612 (2017).
[Crossref]

Z. W. Yao, S. B. Lu, R. B. Li, K. Wang, L. Cao, J. Wang, and M. S. Zhan, “Continuous dynamic rotation measurements using a compact cold atom gyroscope,” Chin. Phys. Lett. 33(8), 083701 (2016).
[Crossref]

L. Zhou, S. T. Long, B. Tang, X. Chen, F. Gao, W. C. Peng, W. T. Duan, J. Q. Zhong, Z. Y. Xiong, J. Wang, Y. Z. Zhang, and M. S. Zhan, “Test of equivalence principle at 10−8 level by a dual-species double-diffraction Raman atom interferometer,” Phys. Rev. Lett. 115(1), 013004 (2015).
[Crossref] [PubMed]

L. Zhou, Z. Y. Xiong, W. Yang, B. Tang, W. C. Peng, Y. B. Wang, P. Xu, J. Wang, and M. S. Zhan, “Measurement of local gravity via a cold atom interferometer,” Chin. Phys. Lett. 28(1), 013701 (2011).
[Crossref]

Wang, K.

Z. W. Yao, S. B. Lu, R. B. Li, K. Wang, L. Cao, J. Wang, and M. S. Zhan, “Continuous dynamic rotation measurements using a compact cold atom gyroscope,” Chin. Phys. Lett. 33(8), 083701 (2016).
[Crossref]

Wang, Q. Y.

Q. Y. Wang, Z. Y. Wang, Z. J. Fu, W. Y. Liu, and Q. Lin, “A compact laser system for the cold atom gravimeter,” Opt. Commun. 358, 82–87 (2016).
[Crossref]

Wang, Y. B.

L. Zhou, Z. Y. Xiong, W. Yang, B. Tang, W. C. Peng, Y. B. Wang, P. Xu, J. Wang, and M. S. Zhan, “Measurement of local gravity via a cold atom interferometer,” Chin. Phys. Lett. 28(1), 013701 (2011).
[Crossref]

Wang, Y. P.

Y. P. Wang, J. Q. Zhong, H. W. Song, L. Zhu, Y. M. Li, X. Chen, R. B. Li, J. Wang, and M. S. Zhan, “Location-dependent Raman transition in gravity-gradient measurements using dual atom interferometers,” Phys. Rev. A 95(5), 053612 (2017).
[Crossref]

Wang, Z. Y.

Q. Y. Wang, Z. Y. Wang, Z. J. Fu, W. Y. Liu, and Q. Lin, “A compact laser system for the cold atom gravimeter,” Opt. Commun. 358, 82–87 (2016).
[Crossref]

Weiss, D. S.

K. Moler, D. S. Weiss, M. Kasevich, and S. Chu, “Theoretical analysis of velocity-selective Raman transitions,” Phys. Rev. A 45(1), 342–348 (1992).
[Crossref] [PubMed]

Wenzlawski, A.

V. Schkolnik, O. Hellmig, A. Wenzlawski, J. Grosse, A. Kohfeldt, K. Döringshoff, A. Wicht, P. Windpassinger, K. Sengstock, C. Braxmaier, M. Krutzik, and A. Peters, “A compact and robust diode laser system for atom interferometry on a sounding rocket,” Appl. Phys. B 122(8), 217 (2016).
[Crossref]

Wicht, A.

V. Schkolnik, O. Hellmig, A. Wenzlawski, J. Grosse, A. Kohfeldt, K. Döringshoff, A. Wicht, P. Windpassinger, K. Sengstock, C. Braxmaier, M. Krutzik, and A. Peters, “A compact and robust diode laser system for atom interferometry on a sounding rocket,” Appl. Phys. B 122(8), 217 (2016).
[Crossref]

Windpassinger, P.

V. Schkolnik, O. Hellmig, A. Wenzlawski, J. Grosse, A. Kohfeldt, K. Döringshoff, A. Wicht, P. Windpassinger, K. Sengstock, C. Braxmaier, M. Krutzik, and A. Peters, “A compact and robust diode laser system for atom interferometry on a sounding rocket,” Appl. Phys. B 122(8), 217 (2016).
[Crossref]

Wu, X. J.

X. J. Wu, F. Zi, J. Dudley, R. J. Bilotta, P. Canoza, and H. Müller, “Multiaxis atom interferometry with a single diode laser,” arXiv:1707.08693 (2017).

Wziontek, H.

C. Freier, M. Hauth, V. Schkolnik, B. Leykauf, M. Schilling, H. Wziontek, H. G. Scherneck, J. Müller, and A. Peters, “Mobile quantum gravity sensor with unprecedented stability,” J. Phys. Conf. Ser. 723, 012050 (2016).
[Crossref]

Xia, W. B.

Xiang, J. F.

Xiong, F.

X. C. Duan, X. B. Deng, M. K. Zhou, K. Zhang, W. J. Xu, F. Xiong, Y. Y. Xu, C. G. Shao, J. Luo, and Z. K. Hu, “Test of the universality of free fall with atoms in different spin orientations,” Phys. Rev. Lett. 117(2), 023001 (2016).
[Crossref] [PubMed]

Xiong, Z. Y.

L. Zhou, S. T. Long, B. Tang, X. Chen, F. Gao, W. C. Peng, W. T. Duan, J. Q. Zhong, Z. Y. Xiong, J. Wang, Y. Z. Zhang, and M. S. Zhan, “Test of equivalence principle at 10−8 level by a dual-species double-diffraction Raman atom interferometer,” Phys. Rev. Lett. 115(1), 013004 (2015).
[Crossref] [PubMed]

L. Zhou, Z. Y. Xiong, W. Yang, B. Tang, W. C. Peng, Y. B. Wang, P. Xu, J. Wang, and M. S. Zhan, “Measurement of local gravity via a cold atom interferometer,” Chin. Phys. Lett. 28(1), 013701 (2011).
[Crossref]

Xu, P.

L. Zhou, Z. Y. Xiong, W. Yang, B. Tang, W. C. Peng, Y. B. Wang, P. Xu, J. Wang, and M. S. Zhan, “Measurement of local gravity via a cold atom interferometer,” Chin. Phys. Lett. 28(1), 013701 (2011).
[Crossref]

Xu, W. J.

X. C. Duan, X. B. Deng, M. K. Zhou, K. Zhang, W. J. Xu, F. Xiong, Y. Y. Xu, C. G. Shao, J. Luo, and Z. K. Hu, “Test of the universality of free fall with atoms in different spin orientations,” Phys. Rev. Lett. 117(2), 023001 (2016).
[Crossref] [PubMed]

Xu, Y. Y.

X. C. Duan, X. B. Deng, M. K. Zhou, K. Zhang, W. J. Xu, F. Xiong, Y. Y. Xu, C. G. Shao, J. Luo, and Z. K. Hu, “Test of the universality of free fall with atoms in different spin orientations,” Phys. Rev. Lett. 117(2), 023001 (2016).
[Crossref] [PubMed]

Yang, W.

L. Zhou, Z. Y. Xiong, W. Yang, B. Tang, W. C. Peng, Y. B. Wang, P. Xu, J. Wang, and M. S. Zhan, “Measurement of local gravity via a cold atom interferometer,” Chin. Phys. Lett. 28(1), 013701 (2011).
[Crossref]

Yao, Z. W.

Z. W. Yao, S. B. Lu, R. B. Li, K. Wang, L. Cao, J. Wang, and M. S. Zhan, “Continuous dynamic rotation measurements using a compact cold atom gyroscope,” Chin. Phys. Lett. 33(8), 083701 (2016).
[Crossref]

Zahzam, N.

C. Diboune, N. Zahzam, Y. Bidel, M. Cadoret, and A. Bresson, “Multi-line fiber laser system for cesium and rubidium atom interferometry,” Opt. Express 25(15), 16898–16906 (2017).
[Crossref] [PubMed]

F. Theron, Y. Bidel, E. Dieu, N. Zahzam, M. Cadoret, and A. Bresson, “Frequency-doubled telecom fiber laser for a cold atom interferometer using optical lattices,” Opt. Commun. 393, 152–155 (2017).
[Crossref]

F. Theron, O. Carraz, G. Rennon, N. Zahzam, Y. Bidel, M. Cadoret, and A. Bresson, “Narrow linewidth single laser source system for onboard atom interferometry,” Appl. Phys. B 118(1), 1–5 (2015).
[Crossref]

V. Ménoret, R. Geiger, G. Stern, N. Zahzam, B. Battelier, A. Bresson, A. Landragin, and P. Bouyer, “Dual-wavelength laser source for onboard atom interferometry,” Opt. Lett. 36(21), 4128–4130 (2011).
[Crossref] [PubMed]

O. Carraz, F. Lienhart, R. Charriére, M. Cadoret, N. Zahzam, and Y. Bidel, “Compact and robust laser system for onboard atom interferometry,” Appl. Phys. B 97(2), 405–411 (2009)
[Crossref]

F. Lienhart, S. Boussen, O. Carraz, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm,” Appl. Phys. B 89(2–3), 177–180 (2007).
[Crossref]

Zhan, M. S.

Y. P. Wang, J. Q. Zhong, H. W. Song, L. Zhu, Y. M. Li, X. Chen, R. B. Li, J. Wang, and M. S. Zhan, “Location-dependent Raman transition in gravity-gradient measurements using dual atom interferometers,” Phys. Rev. A 95(5), 053612 (2017).
[Crossref]

Z. W. Yao, S. B. Lu, R. B. Li, K. Wang, L. Cao, J. Wang, and M. S. Zhan, “Continuous dynamic rotation measurements using a compact cold atom gyroscope,” Chin. Phys. Lett. 33(8), 083701 (2016).
[Crossref]

L. Zhou, S. T. Long, B. Tang, X. Chen, F. Gao, W. C. Peng, W. T. Duan, J. Q. Zhong, Z. Y. Xiong, J. Wang, Y. Z. Zhang, and M. S. Zhan, “Test of equivalence principle at 10−8 level by a dual-species double-diffraction Raman atom interferometer,” Phys. Rev. Lett. 115(1), 013004 (2015).
[Crossref] [PubMed]

L. Zhou, Z. Y. Xiong, W. Yang, B. Tang, W. C. Peng, Y. B. Wang, P. Xu, J. Wang, and M. S. Zhan, “Measurement of local gravity via a cold atom interferometer,” Chin. Phys. Lett. 28(1), 013701 (2011).
[Crossref]

D. F. Gao, P. Ju, B. Zhang, and M. S. Zhan, “Gravitational-wave detection with matter-wave interferometers based on standing light waves,” Gen. Relativ. Grav. 43(7), 2027–2036 (2011).
[Crossref]

Zhan, S.

Z. K. Hu, B. L. Sun, X. C. Duan, M. K. Zhou, L. L. Chen, S. Zhan, Q. Z. Zhang, and J. Luo, “Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter,” Phys. Rev. A 88(4), 043610 (2013).
[Crossref]

Zhang, B.

D. F. Gao, P. Ju, B. Zhang, and M. S. Zhan, “Gravitational-wave detection with matter-wave interferometers based on standing light waves,” Gen. Relativ. Grav. 43(7), 2027–2036 (2011).
[Crossref]

Zhang, K.

X. C. Duan, X. B. Deng, M. K. Zhou, K. Zhang, W. J. Xu, F. Xiong, Y. Y. Xu, C. G. Shao, J. Luo, and Z. K. Hu, “Test of the universality of free fall with atoms in different spin orientations,” Phys. Rev. Lett. 117(2), 023001 (2016).
[Crossref] [PubMed]

Zhang, Q. Z.

Z. K. Hu, B. L. Sun, X. C. Duan, M. K. Zhou, L. L. Chen, S. Zhan, Q. Z. Zhang, and J. Luo, “Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter,” Phys. Rev. A 88(4), 043610 (2013).
[Crossref]

Zhang, X.

M. G. Tarallo, T. Mazzoni, N. Poli, D. V. Sutyrin, X. Zhang, and G. M. Tino, “Test of Einstein equivalence principle for 0-spin and half-integer-spin atoms: search for spin-gravity coupling effects,” Phys. Rev. Lett. 113(2), 023005 (2014).
[Crossref] [PubMed]

Zhang, Y. Z.

L. Zhou, S. T. Long, B. Tang, X. Chen, F. Gao, W. C. Peng, W. T. Duan, J. Q. Zhong, Z. Y. Xiong, J. Wang, Y. Z. Zhang, and M. S. Zhan, “Test of equivalence principle at 10−8 level by a dual-species double-diffraction Raman atom interferometer,” Phys. Rev. Lett. 115(1), 013004 (2015).
[Crossref] [PubMed]

Zhong, J. Q.

Y. P. Wang, J. Q. Zhong, H. W. Song, L. Zhu, Y. M. Li, X. Chen, R. B. Li, J. Wang, and M. S. Zhan, “Location-dependent Raman transition in gravity-gradient measurements using dual atom interferometers,” Phys. Rev. A 95(5), 053612 (2017).
[Crossref]

L. Zhou, S. T. Long, B. Tang, X. Chen, F. Gao, W. C. Peng, W. T. Duan, J. Q. Zhong, Z. Y. Xiong, J. Wang, Y. Z. Zhang, and M. S. Zhan, “Test of equivalence principle at 10−8 level by a dual-species double-diffraction Raman atom interferometer,” Phys. Rev. Lett. 115(1), 013004 (2015).
[Crossref] [PubMed]

Zhou, L.

L. Zhou, S. T. Long, B. Tang, X. Chen, F. Gao, W. C. Peng, W. T. Duan, J. Q. Zhong, Z. Y. Xiong, J. Wang, Y. Z. Zhang, and M. S. Zhan, “Test of equivalence principle at 10−8 level by a dual-species double-diffraction Raman atom interferometer,” Phys. Rev. Lett. 115(1), 013004 (2015).
[Crossref] [PubMed]

L. Zhou, Z. Y. Xiong, W. Yang, B. Tang, W. C. Peng, Y. B. Wang, P. Xu, J. Wang, and M. S. Zhan, “Measurement of local gravity via a cold atom interferometer,” Chin. Phys. Lett. 28(1), 013701 (2011).
[Crossref]

Zhou, M. K.

X. C. Duan, X. B. Deng, M. K. Zhou, K. Zhang, W. J. Xu, F. Xiong, Y. Y. Xu, C. G. Shao, J. Luo, and Z. K. Hu, “Test of the universality of free fall with atoms in different spin orientations,” Phys. Rev. Lett. 117(2), 023001 (2016).
[Crossref] [PubMed]

Z. K. Hu, B. L. Sun, X. C. Duan, M. K. Zhou, L. L. Chen, S. Zhan, Q. Z. Zhang, and J. Luo, “Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter,” Phys. Rev. A 88(4), 043610 (2013).
[Crossref]

Zhu, L.

Y. P. Wang, J. Q. Zhong, H. W. Song, L. Zhu, Y. M. Li, X. Chen, R. B. Li, J. Wang, and M. S. Zhan, “Location-dependent Raman transition in gravity-gradient measurements using dual atom interferometers,” Phys. Rev. A 95(5), 053612 (2017).
[Crossref]

Zi, F.

X. J. Wu, F. Zi, J. Dudley, R. J. Bilotta, P. Canoza, and H. Müller, “Multiaxis atom interferometry with a single diode laser,” arXiv:1707.08693 (2017).

Appl. Opt. (1)

Appl. Phys. B (7)

V. Schkolnik, O. Hellmig, A. Wenzlawski, J. Grosse, A. Kohfeldt, K. Döringshoff, A. Wicht, P. Windpassinger, K. Sengstock, C. Braxmaier, M. Krutzik, and A. Peters, “A compact and robust diode laser system for atom interferometry on a sounding rocket,” Appl. Phys. B 122(8), 217 (2016).
[Crossref]

F. Lienhart, S. Boussen, O. Carraz, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm,” Appl. Phys. B 89(2–3), 177–180 (2007).
[Crossref]

P. Cheinet, F. Pereira Dos Santos, T. Petelski, J. Le Gouët, J. Kim, K. T. Therkildsen, A. Clairon, and A. Landragin, “Compact laser system for atom interferometry,” Appl. Phys. B 84(4), 643–646 (2006).
[Crossref]

S. Merlet, L. Volodimer, M. Lours, and F. P. Dos Santos, “A simple laser system for atom interferometry,” Appl. Phys. B 117(2), 749–754 (2014).
[Crossref]

O. Carraz, F. Lienhart, R. Charriére, M. Cadoret, N. Zahzam, and Y. Bidel, “Compact and robust laser system for onboard atom interferometry,” Appl. Phys. B 97(2), 405–411 (2009)
[Crossref]

F. Theron, O. Carraz, G. Rennon, N. Zahzam, Y. Bidel, M. Cadoret, and A. Bresson, “Narrow linewidth single laser source system for onboard atom interferometry,” Appl. Phys. B 118(1), 1–5 (2015).
[Crossref]

M. Hauth, C. Freier, V. Schkolnik, A. Senger, M. Schmidt, and A. Peters, “First gravity measurements using the mobile atom interferometer GAIN,” Appl. Phys. B 113(1), 49–55 (2013).
[Crossref]

Appl. Phys. Lett. (1)

H. J. McGuinness, A. V. Rakholia, and G. W. Biedermann, “High data-rate atom interferometer for measuring acceleration,” Appl. Phys. Lett. 100(1), 011106 (2012).
[Crossref]

Chin. Phys. Lett. (2)

L. Zhou, Z. Y. Xiong, W. Yang, B. Tang, W. C. Peng, Y. B. Wang, P. Xu, J. Wang, and M. S. Zhan, “Measurement of local gravity via a cold atom interferometer,” Chin. Phys. Lett. 28(1), 013701 (2011).
[Crossref]

Z. W. Yao, S. B. Lu, R. B. Li, K. Wang, L. Cao, J. Wang, and M. S. Zhan, “Continuous dynamic rotation measurements using a compact cold atom gyroscope,” Chin. Phys. Lett. 33(8), 083701 (2016).
[Crossref]

Gen. Relativ. Grav. (2)

M. Hohensee, S.-Y. Lan, R. Houtz, C. Chan, B. Estey, G. Kim, P.-C. Kuan, and H. Müller, “Sources and technology for an atomic gravitational wave interferometric sensor,” Gen. Relativ. Grav. 43(7), 1905–1930 (2011).
[Crossref]

D. F. Gao, P. Ju, B. Zhang, and M. S. Zhan, “Gravitational-wave detection with matter-wave interferometers based on standing light waves,” Gen. Relativ. Grav. 43(7), 2027–2036 (2011).
[Crossref]

J. Phys. Conf. Ser. (2)

C. Freier, M. Hauth, V. Schkolnik, B. Leykauf, M. Schilling, H. Wziontek, H. G. Scherneck, J. Müller, and A. Peters, “Mobile quantum gravity sensor with unprecedented stability,” J. Phys. Conf. Ser. 723, 012050 (2016).
[Crossref]

B. Fang, I. Dutta, P. Gillot, D. Savoie, J. Lautier, B. Cheng, C. L. Garrido Alzar, R. Geiger, S. Merlet, F. Pereira Dos Santos, and A. Landragin, “Metrology with atom interferometry: inertial sensors from laboratory to field applications,” J. Phys. Conf. Ser. 723, 012049 (2016).
[Crossref]

Metrologia (1)

A. Peters, K.Y. Chung, and S. Chu, “High-precision gravity measurements using atom interferometry,” Metrologia 38(1), 25–61 (2001).
[Crossref]

New J. Phys. (1)

A. Louchet-Chauvet, T. Farah, Q. Bodart, A. Clairon, A. Landragin, S. Merlet, and F. P. Dos Santos, “The influence of transverse motion within an atomic gravimeter,” New J. Phys. 13, 065025 (2011).
[Crossref]

Opt. Commun. (2)

F. Theron, Y. Bidel, E. Dieu, N. Zahzam, M. Cadoret, and A. Bresson, “Frequency-doubled telecom fiber laser for a cold atom interferometer using optical lattices,” Opt. Commun. 393, 152–155 (2017).
[Crossref]

Q. Y. Wang, Z. Y. Wang, Z. J. Fu, W. Y. Liu, and Q. Lin, “A compact laser system for the cold atom gravimeter,” Opt. Commun. 358, 82–87 (2016).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Lett. B (1)

S. Dimopoulos, P. W. Graham, J. M. Hogan, M. A. Kasevich, and S. Rajendran, “Gravitational wave detection with atom interferometry,” Phys. Lett. B 678(1), 37–40 (2009).
[Crossref]

Phys. Rev. A (6)

K. Moler, D. S. Weiss, M. Kasevich, and S. Chu, “Theoretical analysis of velocity-selective Raman transitions,” Phys. Rev. A 45(1), 342–348 (1992).
[Crossref] [PubMed]

Z. K. Hu, B. L. Sun, X. C. Duan, M. K. Zhou, L. L. Chen, S. Zhan, Q. Z. Zhang, and J. Luo, “Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter,” Phys. Rev. A 88(4), 043610 (2013).
[Crossref]

J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, “Sensitive absolute-gravity gradiometry using atom interferometry,” Phys. Rev. A 65(3), 033608 (2002).
[Crossref]

F. Sorrentino, Q. Bodart, L. Cacciapuoti, Y.-H. Lien, M. Prevedelli, G. Rosi, L. Salvi, and G. M. Tino, “Sensitivity limits of a Raman atom interferometer as a gravity gradiometer,” Phys. Rev. A 89(2), 023607 (2014).
[Crossref]

G. D’Amico, F. Borselli, L. Cacciapuoti, M. Prevedelli, G. Rosi, F. Sorrentino, and G. M. Tino, “Bragg interferometer for gravity gradient measurements,” Phys. Rev. A 93(6), 063628 (2016).
[Crossref]

Y. P. Wang, J. Q. Zhong, H. W. Song, L. Zhu, Y. M. Li, X. Chen, R. B. Li, J. Wang, and M. S. Zhan, “Location-dependent Raman transition in gravity-gradient measurements using dual atom interferometers,” Phys. Rev. A 95(5), 053612 (2017).
[Crossref]

Phys. Rev. Lett. (6)

G. Rosi, L. Cacciapuoti, F. Sorrentino, M. Menchetti, M. Prevedelli, and G. M. Tino, “Measurement of the gravity-field curvature by atom interferometry,” Phys. Rev. Lett. 114(1), 013001 (2015).
[Crossref] [PubMed]

S. M. Dickerson, J. M. Hogan, A. Sugarbaker, D. M. Johnson, and M. A. Kasevich, “Multiaxis inertial sensing with long-time point source atom interferometry,” Phys. Rev. Lett. 111(8), 083001 (2013).
[Crossref] [PubMed]

I. Dutta, D. Savoie, B. Fang, B. Venon, C. L. Garrido Alzar, R. Geiger, and A. Landragin, “Continuous cold-atom inertial sensor with 1 nrad/sec rotation stability,” Phys. Rev. Lett. 116(18), 183003 (2016).
[Crossref] [PubMed]

M. G. Tarallo, T. Mazzoni, N. Poli, D. V. Sutyrin, X. Zhang, and G. M. Tino, “Test of Einstein equivalence principle for 0-spin and half-integer-spin atoms: search for spin-gravity coupling effects,” Phys. Rev. Lett. 113(2), 023005 (2014).
[Crossref] [PubMed]

L. Zhou, S. T. Long, B. Tang, X. Chen, F. Gao, W. C. Peng, W. T. Duan, J. Q. Zhong, Z. Y. Xiong, J. Wang, Y. Z. Zhang, and M. S. Zhan, “Test of equivalence principle at 10−8 level by a dual-species double-diffraction Raman atom interferometer,” Phys. Rev. Lett. 115(1), 013004 (2015).
[Crossref] [PubMed]

X. C. Duan, X. B. Deng, M. K. Zhou, K. Zhang, W. J. Xu, F. Xiong, Y. Y. Xu, C. G. Shao, J. Luo, and Z. K. Hu, “Test of the universality of free fall with atoms in different spin orientations,” Phys. Rev. Lett. 117(2), 023001 (2016).
[Crossref] [PubMed]

Phys. Rev. Lettt. (2)

T. L. Gustavson, P. Bouyer, and M. A. Kasevich, “Precision rotation measurements with an atom interferometer gyroscope,” Phys. Rev. Lettt. 78(11), 2046–2049 (1997).
[Crossref]

D. Schlippert, J. Hartwig, H. Albers, L. L. Richardson, C. Schubert, A. Roura, W. P. Schleich, W. Ertmer, and E. M. Rasel, “Quantum test of the universality of free fall,” Phys. Rev. Lettt. 112(20), 203002 (2014).
[Crossref]

Proc. SPIE (1)

B. Battelier, B. Barrett, L. Fouché, L. Chichet, L. Antoni-Micollier, H. Porte, F. Napolitano, J. Lautier, A. Landragin, and P. Bouyer, “Development of compact cold-atom sensors for inertial navigation,” Proc. SPIE 9900, 990004 (2016).
[Crossref]

Rep. Prog. Phys. (1)

D. Crossley, J. Hinderer, and U. Riccardi, “The measurement of surface gravity,” Rep. Prog. Phys. 76(4), 046101 (2013).
[Crossref] [PubMed]

Other (1)

X. J. Wu, F. Zi, J. Dudley, R. J. Bilotta, P. Canoza, and H. Müller, “Multiaxis atom interferometry with a single diode laser,” arXiv:1707.08693 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The schematic of an AI-based gravimeter. (a) Laser system; (b) Control system; (c) Physics system. DAQ-card, data acquisition card; LCC, laser diode current controller; PID, proportional integral differential circuit; LIA, lock-in amplifier; VCO, voltage controlled crystal oscillator; FDL, fiber-coupled diode laser module; FOI, fiber-coupled optical isolator module; FBS, fiber-coupled beam splitter module; FEOM, fiber-coupled electro-optic modulator module; SAS, saturated absorption spectrum module; FTA, fiber-coupled optical tapered amplifier module; FAOM, fiber-coupled acousto-optic modulator module; FC, fiber coupler; LCVR, liquid crystal variable retarder; PBS, polarization beam splitter; QWP, quarter-wave plate; DDS, direct digital synthesizer; LPS, laser power supply.
Fig. 2
Fig. 2 Frequency stabilization and control signal. (a) Saturated absorption spectrum of 87Rb F=2 → F′ and 85Rb F=3 → F′ transition of D2 line. Natural abundance rubidium vapor cell is used. (b) Saturated absorption spectrum of 87Rb F=2 → F′ transition of D2 line induced by the carrier and the ±1-order sidebands. Pure 87Rb isotopic vapor cell is used. (c) Error signal of b for the frequency stabilization.
Fig. 3
Fig. 3 The SAS signal (red) and error signal (black) during the frequency shift.
Fig. 4
Fig. 4 Allan deviation of the relative laser intensity of the Raman pulse before (black dashed line) and after locking (red solid line). The dots are Allan deviations of experimental data, the lines are connecting lines of the dots.
Fig. 5
Fig. 5 Experimental time sequences of the atom gravimeter at different stages. (a) The carrier frequency (detuning with respect to F=3 → F′ = 4 transition of 85Rb D2 line). (b) Switch of the laser intensity. (c) The modulation of FEOM (b). (d) The polarization of output laser.
Fig. 6
Fig. 6 The Doppler sensitive interference fringe for T=50 ms. The red dots are experimental data, the blue solid line is Sine fitting. There are 100 measurement points in the fringe and the time for a single point is 539 ms. The uncertainty of the phase is 12.3 mrad, corresponding to a gravity measurement sensitivity of 230 μGal/Hz1/2.
Fig. 7
Fig. 7 (a) The Allan deviation of the gravity data after deducing theoretical tide value. 100 measurement points are averaged to give a gravity value, and the time for the total measurement points is about 1.4 days. (b) The long-term gravity measurement compared with the theoretical tide value. Same measurement points are used as in (a), and 3328 measurement points are averaged to give a gravity value.

Metrics