Abstract

The optical feedback dynamics of two multimode InAs/GaAs quantum dot lasers emitting exclusively on sole ground or excited lasing states is investigated. The transition from long- to short-delay regimes is analyzed, while the boundaries associated to the birth of periodic and chaotic oscillations are unveiled to be a function of the external cavity length. The results show that depending on the initial lasing state, different routes to chaos are observed. These results are of importance for the development of isolator-free transmitters in short-reach networks.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon

Heming Huang, Jianan Duan, Daehwan Jung, Alan Y. Liu, Zeyu Zhang, Justin Norman, John E. Bowers, and Frédéric Grillot
J. Opt. Soc. Am. B 35(11) 2780-2787 (2018)

Comparison of optical feedback dynamics of InAs/GaAs quantum-dot lasers emitting solely on ground or excited states

Lyu-Chih Lin, Chih-Ying Chen, Heming Huang, Dejan Arsenijević, Dieter Bimberg, Frédéric Grillot, and Fan-Yi Lin
Opt. Lett. 43(2) 210-213 (2018)

Intrinsic gain switching in optically injected quantum dot laser lasing simultaneously from the ground and excited state

Lukasz Olejniczak, Krassimir Panajotov, Sebastian Wieczorek, Hugo Thienpont, and Marc Sciamanna
J. Opt. Soc. Am. B 27(11) 2416-2423 (2010)

References

  • View by:
  • |
  • |
  • |

  1. C. F. Lam, H. Liu, and R. Urata, “What devices do data centers need?” in Optical Fiber Communications Conference and Exhibition (OFC) of 2014 OSA Technical Digest Series (Optical Society of America, 2014), paper M2K.5.
  2. Cisco white paper, “The Zettabyte Era: Trends and Analysis” (Cisco, 2016).
  3. D. Bimberg, “Quantum dot based nanophotonics and nanoelectronics,” Electron. Lett. 44, 390 (2008).
    [Crossref]
  4. G. Eisenstein and D. Bimberg, eds., Green Photonics and Electronics (Springer, 2017).
    [Crossref]
  5. M. T. Crowley, N. A. Naderi, H. Su, F. Grillot, and L. F. Lester, “GaAs-Based Quantum Dot Lasers,” in Advances in Semiconductor LasersJ. J. Coleman, A. Bryce, and C. Jagadish, eds. (Academic Press, 2012), pp. 371–417
    [Crossref]
  6. M. Grundmann, ed., Nano-Optoelectronics, NanoScience and Technology (Springer, 2002).
    [Crossref]
  7. K. Nishi, K. Takemasa, M. Sugawara, and Y. Arakawa, “Development of quantum dot lasers for data-com and silicon photonics applications,” IEEE J. Sel. Topics Quantum Electron. 23, 1–7 (2017).
    [Crossref]
  8. A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics,” Photonics Res. 3, B1 (2015).
    [Crossref]
  9. S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
    [Crossref]
  10. Ranovus Inc.“Ranovus announces availability of world’s first quantum dot multi-wavelength laser and silicon photonics platform technologies to create a new cost and power consumption paradigm for DCI market,” (Ranovus, 2016), http://ranovus.com/worlds-first-quantum-dot-multi-wavelength-laser-and-silicon-photonics-platform-technologies-for-dci-market/ .
  11. Y. Urino, N. Hatori, K. Mizutani, T. Usuki, J. Fujikata, K. Yamada, T. Horikawa, T. Nakamura, and Y. Arakawa, “First demonstration of athermal silicon optical interposers with quantum dot lasers operating up to 125 ◦C,” J. Lightw. Technol. 33, 1223–1229 (2015).
    [Crossref]
  12. N. Zhuo, J.-C. Zhang, F.-J. Wang, Y.-H. Liu, S.-Q. Zhai, Y. Zhao, D.-B. Wang, Z.-W. Jia, Y.-H. Zhou, L.-J. Wang, J.-Q. Liu, S.-M. Liu, F.-Q. Liu, Z.-G. Wang, J. B. Khurgin, and G. Sun, “Room temperature continuous wave quantum dot cascade laser emitting at 7.2 µ m,” Opt. Express 25, 13807–13815 (2017).
    [Crossref] [PubMed]
  13. A. Spott, E. J. Stanton, N. Volet, J. D. Peters, J. R. Meyer, and J. E. Bowers, “Heterogeneous integration for mid-infrared silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 23, 1–10 (2017).
    [Crossref]
  14. D. O’Brien, S. Hegarty, G. Huyet, J. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. Ustinov, A. Zhukov, S. Mikhrin, and A. Kovsh, “Feedback sensitivity of 1.3 µ m InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819 (2003).
    [Crossref]
  15. K. Mizutani, K. Yashiki, M. Kurihara, Y. Suzuki, Y. Hagihara, N. Hatori, T. Shimizu, Y. Urino, T. Nakamura, K. Kurata, and Y. Arakawa, “Optical I/O core transmitter with high tolerance to optical feedback using quantum dot laser,” in 2015 European Conference on Optical Communication (ECOC), (2015), p. 0263.
    [Crossref]
  16. D. Arsenijević and D. Bimberg, “Quantum-dot lasers for 35 gbit/s pulse-amplitude modulation and 160 gbit/s differential quadrature phase-shift keying,” Proc. SPIE 9892, 9892 (2016).
  17. C. Wang, B. Lingnau, K. Lüdge, J. Even, and F. Grillot, “Enhanced dynamic performance of quantum dot semiconductor lasers operating on the excited state,” IEEE J. Quantum Electron. 50, 723–731 (2014).
  18. Z.-R. Lv, H.-M. Ji, X.-G. Yang, S. Luo, F. Gao, F. Xu, and T. Yang, “Large Signal Modulation Characteristics in the Transition regime for two-state lasing quantum dot lasers,” Chinese Phys. Lett.  33, 124204 (2016).
    [Crossref]
  19. B. J. Stevens, D. T. D. Childs, H. Shahid, and R. A. Hogg, “Direct modulation of excited state quantum dot lasers,” Appl. Phys. Lett. 95, 061101 (2009).
    [Crossref]
  20. D. Arsenijević, A. Schliwa, H. Schmeckebier, M. Stubenrauch, M. Spiegelberg, D. Bimberg, V. Mikhelashvili, and G. Eisenstein, “Comparison of dynamic properties of ground- and excited-state emission in p-doped InAs/GaAs quantum-dot lasers,” Appl. Phys. Lett. 104, 181101 (2014).
    [Crossref]
  21. F. Grillot, B. Dagens, J.-G. Provost, H. Su, and L. F. Lester, “Gain compression and above-threshold linewidth enhancement factor in 1.3-µ m InAs-GaAs quantum-Dot lasers,” IEEE J. Quantum Electron. 44, 946–951 (2008).
    [Crossref]
  22. F. Zubov, M. Maximov, E. Moiseev, A. Savelyev, Y. Shernyakov, D. Livshits, N. Kryzhanovskaya, and A. Zhukov, “Observation of zero linewidth enhancement factor at excited state band in quantum dot laser,” Electron. Lett. 51, 1686–1688 (2015).
    [Crossref]
  23. C. Mesaritakis, C. Simos, H. Simos, S. Mikroulis, I. Krestnikov, E. Roditi, and D. Syvridis, “Effect of optical feedback to the ground and excited state emission of a passively mode locked quantum dot laser,” Appl. Phys. Lett. 97, 061114 (2010).
    [Crossref]
  24. A. Röhm, B. Lingnau, and K. Lüdge, “Ground-state modulation-enhancement by two-state lasing in quantum-dot laser devices,” Appl. Phys. Lett. 106, 1–6 (2015).
    [Crossref]
  25. F. Grillot, N. A. Naderi, J. B. Wright, R. Raghunathan, M. T. Crowley, and L. F. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett. 99, 1110–1113 (2011).
    [Crossref]
  26. J. D. Walker, D. M. Kuchta, and J. S. Smith, “Wafer-scale uniformity of vertical-cavity lasers grown by modified phase-locked epitaxy technique,” Electron. Lett. 29, 239–240 (1993).
    [Crossref]
  27. H. Huang, D. Arsenijević, K. Schires, T. Sadeev, D. Bimberg, and F. Grillot, “Multimode optical feedback dynamics of InAs/GaAs quantum-dot lasers emitting on different lasing states,” AIP Adv. 6, 125114 (2016).
    [Crossref]
  28. A. Kovsh, N. Maleev, A. Zhukov, S. Mikhrin, A. Vasil’ev, E. Semenova, Y. Shernyakov, M. Maximov, D. Livshits, V. Ustinov, N. Ledentsov, D. Bimberg, and Z. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µ m range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003).
    [Crossref]
  29. O. Stier, M. Grundmann, and D. Bimberg, “Electronic and optical properties of strained quantum dots modeled by 8-band k·p theory,” Phys. Rev. B 59, 5688 (1999).
    [Crossref]
  30. A. Schliwa, M. Winkelnkemper, and D. Bimberg, “Few-particle energies versus geometry and composition of InxGa1x As/GaAs self-organized quantum dots,” Phys. Rev. B 79, 075443 (2009).
    [Crossref]
  31. N. Schunk and K. Petermann, “Stability analysis for laser diodes with short external cavities,” IEEE Photon. Technol. Lett. 1, 49–51 (1989).
    [Crossref]
  32. J. Ohtsubo, Semiconductor Lasers: Stability, Instability and Chaos, Springer Series in Optical Sciences (Springer, 2010).
  33. J. P. Toomey, D. M. Kane, C. McMahon, A. Argyris, and D. Syvridis, “Integrated semiconductor laser with optical feedback: transition from short to long cavity regime,” Opt. Express 23, 18754 (2015).
    [Crossref] [PubMed]
  34. N. Gavra and M. Rosenbluh, “Behavior of the relaxation oscillation frequency in vertical cavity surface-emitting laser with external feedback,” J. Opt. Soc. Am. B 27, 2482–2487 (2010).
    [Crossref]
  35. M. Stubenrauch, G. Stracke, D. Arsenijević, A. Strittmatter, and D. Bimberg, “15 Gb/s index-coupled distributed feedback lasers based on 1.3 µ m InGaAs quantum dots,” Appl. Phys. Lett. 105, 011103 (2014).
    [Crossref]

2017 (3)

K. Nishi, K. Takemasa, M. Sugawara, and Y. Arakawa, “Development of quantum dot lasers for data-com and silicon photonics applications,” IEEE J. Sel. Topics Quantum Electron. 23, 1–7 (2017).
[Crossref]

N. Zhuo, J.-C. Zhang, F.-J. Wang, Y.-H. Liu, S.-Q. Zhai, Y. Zhao, D.-B. Wang, Z.-W. Jia, Y.-H. Zhou, L.-J. Wang, J.-Q. Liu, S.-M. Liu, F.-Q. Liu, Z.-G. Wang, J. B. Khurgin, and G. Sun, “Room temperature continuous wave quantum dot cascade laser emitting at 7.2 µ m,” Opt. Express 25, 13807–13815 (2017).
[Crossref] [PubMed]

A. Spott, E. J. Stanton, N. Volet, J. D. Peters, J. R. Meyer, and J. E. Bowers, “Heterogeneous integration for mid-infrared silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 23, 1–10 (2017).
[Crossref]

2016 (4)

D. Arsenijević and D. Bimberg, “Quantum-dot lasers for 35 gbit/s pulse-amplitude modulation and 160 gbit/s differential quadrature phase-shift keying,” Proc. SPIE 9892, 9892 (2016).

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Z.-R. Lv, H.-M. Ji, X.-G. Yang, S. Luo, F. Gao, F. Xu, and T. Yang, “Large Signal Modulation Characteristics in the Transition regime for two-state lasing quantum dot lasers,” Chinese Phys. Lett.  33, 124204 (2016).
[Crossref]

H. Huang, D. Arsenijević, K. Schires, T. Sadeev, D. Bimberg, and F. Grillot, “Multimode optical feedback dynamics of InAs/GaAs quantum-dot lasers emitting on different lasing states,” AIP Adv. 6, 125114 (2016).
[Crossref]

2015 (5)

J. P. Toomey, D. M. Kane, C. McMahon, A. Argyris, and D. Syvridis, “Integrated semiconductor laser with optical feedback: transition from short to long cavity regime,” Opt. Express 23, 18754 (2015).
[Crossref] [PubMed]

F. Zubov, M. Maximov, E. Moiseev, A. Savelyev, Y. Shernyakov, D. Livshits, N. Kryzhanovskaya, and A. Zhukov, “Observation of zero linewidth enhancement factor at excited state band in quantum dot laser,” Electron. Lett. 51, 1686–1688 (2015).
[Crossref]

A. Röhm, B. Lingnau, and K. Lüdge, “Ground-state modulation-enhancement by two-state lasing in quantum-dot laser devices,” Appl. Phys. Lett. 106, 1–6 (2015).
[Crossref]

Y. Urino, N. Hatori, K. Mizutani, T. Usuki, J. Fujikata, K. Yamada, T. Horikawa, T. Nakamura, and Y. Arakawa, “First demonstration of athermal silicon optical interposers with quantum dot lasers operating up to 125 ◦C,” J. Lightw. Technol. 33, 1223–1229 (2015).
[Crossref]

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics,” Photonics Res. 3, B1 (2015).
[Crossref]

2014 (3)

C. Wang, B. Lingnau, K. Lüdge, J. Even, and F. Grillot, “Enhanced dynamic performance of quantum dot semiconductor lasers operating on the excited state,” IEEE J. Quantum Electron. 50, 723–731 (2014).

D. Arsenijević, A. Schliwa, H. Schmeckebier, M. Stubenrauch, M. Spiegelberg, D. Bimberg, V. Mikhelashvili, and G. Eisenstein, “Comparison of dynamic properties of ground- and excited-state emission in p-doped InAs/GaAs quantum-dot lasers,” Appl. Phys. Lett. 104, 181101 (2014).
[Crossref]

M. Stubenrauch, G. Stracke, D. Arsenijević, A. Strittmatter, and D. Bimberg, “15 Gb/s index-coupled distributed feedback lasers based on 1.3 µ m InGaAs quantum dots,” Appl. Phys. Lett. 105, 011103 (2014).
[Crossref]

2011 (1)

F. Grillot, N. A. Naderi, J. B. Wright, R. Raghunathan, M. T. Crowley, and L. F. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett. 99, 1110–1113 (2011).
[Crossref]

2010 (2)

C. Mesaritakis, C. Simos, H. Simos, S. Mikroulis, I. Krestnikov, E. Roditi, and D. Syvridis, “Effect of optical feedback to the ground and excited state emission of a passively mode locked quantum dot laser,” Appl. Phys. Lett. 97, 061114 (2010).
[Crossref]

N. Gavra and M. Rosenbluh, “Behavior of the relaxation oscillation frequency in vertical cavity surface-emitting laser with external feedback,” J. Opt. Soc. Am. B 27, 2482–2487 (2010).
[Crossref]

2009 (2)

A. Schliwa, M. Winkelnkemper, and D. Bimberg, “Few-particle energies versus geometry and composition of InxGa1x As/GaAs self-organized quantum dots,” Phys. Rev. B 79, 075443 (2009).
[Crossref]

B. J. Stevens, D. T. D. Childs, H. Shahid, and R. A. Hogg, “Direct modulation of excited state quantum dot lasers,” Appl. Phys. Lett. 95, 061101 (2009).
[Crossref]

2008 (2)

F. Grillot, B. Dagens, J.-G. Provost, H. Su, and L. F. Lester, “Gain compression and above-threshold linewidth enhancement factor in 1.3-µ m InAs-GaAs quantum-Dot lasers,” IEEE J. Quantum Electron. 44, 946–951 (2008).
[Crossref]

D. Bimberg, “Quantum dot based nanophotonics and nanoelectronics,” Electron. Lett. 44, 390 (2008).
[Crossref]

2003 (2)

A. Kovsh, N. Maleev, A. Zhukov, S. Mikhrin, A. Vasil’ev, E. Semenova, Y. Shernyakov, M. Maximov, D. Livshits, V. Ustinov, N. Ledentsov, D. Bimberg, and Z. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µ m range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003).
[Crossref]

D. O’Brien, S. Hegarty, G. Huyet, J. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. Ustinov, A. Zhukov, S. Mikhrin, and A. Kovsh, “Feedback sensitivity of 1.3 µ m InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819 (2003).
[Crossref]

1999 (1)

O. Stier, M. Grundmann, and D. Bimberg, “Electronic and optical properties of strained quantum dots modeled by 8-band k·p theory,” Phys. Rev. B 59, 5688 (1999).
[Crossref]

1993 (1)

J. D. Walker, D. M. Kuchta, and J. S. Smith, “Wafer-scale uniformity of vertical-cavity lasers grown by modified phase-locked epitaxy technique,” Electron. Lett. 29, 239–240 (1993).
[Crossref]

1989 (1)

N. Schunk and K. Petermann, “Stability analysis for laser diodes with short external cavities,” IEEE Photon. Technol. Lett. 1, 49–51 (1989).
[Crossref]

Alferov, Z.

A. Kovsh, N. Maleev, A. Zhukov, S. Mikhrin, A. Vasil’ev, E. Semenova, Y. Shernyakov, M. Maximov, D. Livshits, V. Ustinov, N. Ledentsov, D. Bimberg, and Z. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µ m range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003).
[Crossref]

Arakawa, Y.

K. Nishi, K. Takemasa, M. Sugawara, and Y. Arakawa, “Development of quantum dot lasers for data-com and silicon photonics applications,” IEEE J. Sel. Topics Quantum Electron. 23, 1–7 (2017).
[Crossref]

Y. Urino, N. Hatori, K. Mizutani, T. Usuki, J. Fujikata, K. Yamada, T. Horikawa, T. Nakamura, and Y. Arakawa, “First demonstration of athermal silicon optical interposers with quantum dot lasers operating up to 125 ◦C,” J. Lightw. Technol. 33, 1223–1229 (2015).
[Crossref]

K. Mizutani, K. Yashiki, M. Kurihara, Y. Suzuki, Y. Hagihara, N. Hatori, T. Shimizu, Y. Urino, T. Nakamura, K. Kurata, and Y. Arakawa, “Optical I/O core transmitter with high tolerance to optical feedback using quantum dot laser,” in 2015 European Conference on Optical Communication (ECOC), (2015), p. 0263.
[Crossref]

Argyris, A.

Arsenijevic, D.

D. Arsenijević and D. Bimberg, “Quantum-dot lasers for 35 gbit/s pulse-amplitude modulation and 160 gbit/s differential quadrature phase-shift keying,” Proc. SPIE 9892, 9892 (2016).

H. Huang, D. Arsenijević, K. Schires, T. Sadeev, D. Bimberg, and F. Grillot, “Multimode optical feedback dynamics of InAs/GaAs quantum-dot lasers emitting on different lasing states,” AIP Adv. 6, 125114 (2016).
[Crossref]

D. Arsenijević, A. Schliwa, H. Schmeckebier, M. Stubenrauch, M. Spiegelberg, D. Bimberg, V. Mikhelashvili, and G. Eisenstein, “Comparison of dynamic properties of ground- and excited-state emission in p-doped InAs/GaAs quantum-dot lasers,” Appl. Phys. Lett. 104, 181101 (2014).
[Crossref]

M. Stubenrauch, G. Stracke, D. Arsenijević, A. Strittmatter, and D. Bimberg, “15 Gb/s index-coupled distributed feedback lasers based on 1.3 µ m InGaAs quantum dots,” Appl. Phys. Lett. 105, 011103 (2014).
[Crossref]

Bimberg, D.

D. Arsenijević and D. Bimberg, “Quantum-dot lasers for 35 gbit/s pulse-amplitude modulation and 160 gbit/s differential quadrature phase-shift keying,” Proc. SPIE 9892, 9892 (2016).

H. Huang, D. Arsenijević, K. Schires, T. Sadeev, D. Bimberg, and F. Grillot, “Multimode optical feedback dynamics of InAs/GaAs quantum-dot lasers emitting on different lasing states,” AIP Adv. 6, 125114 (2016).
[Crossref]

D. Arsenijević, A. Schliwa, H. Schmeckebier, M. Stubenrauch, M. Spiegelberg, D. Bimberg, V. Mikhelashvili, and G. Eisenstein, “Comparison of dynamic properties of ground- and excited-state emission in p-doped InAs/GaAs quantum-dot lasers,” Appl. Phys. Lett. 104, 181101 (2014).
[Crossref]

M. Stubenrauch, G. Stracke, D. Arsenijević, A. Strittmatter, and D. Bimberg, “15 Gb/s index-coupled distributed feedback lasers based on 1.3 µ m InGaAs quantum dots,” Appl. Phys. Lett. 105, 011103 (2014).
[Crossref]

A. Schliwa, M. Winkelnkemper, and D. Bimberg, “Few-particle energies versus geometry and composition of InxGa1x As/GaAs self-organized quantum dots,” Phys. Rev. B 79, 075443 (2009).
[Crossref]

D. Bimberg, “Quantum dot based nanophotonics and nanoelectronics,” Electron. Lett. 44, 390 (2008).
[Crossref]

A. Kovsh, N. Maleev, A. Zhukov, S. Mikhrin, A. Vasil’ev, E. Semenova, Y. Shernyakov, M. Maximov, D. Livshits, V. Ustinov, N. Ledentsov, D. Bimberg, and Z. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µ m range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003).
[Crossref]

D. O’Brien, S. Hegarty, G. Huyet, J. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. Ustinov, A. Zhukov, S. Mikhrin, and A. Kovsh, “Feedback sensitivity of 1.3 µ m InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819 (2003).
[Crossref]

O. Stier, M. Grundmann, and D. Bimberg, “Electronic and optical properties of strained quantum dots modeled by 8-band k·p theory,” Phys. Rev. B 59, 5688 (1999).
[Crossref]

Bowers, J. E.

A. Spott, E. J. Stanton, N. Volet, J. D. Peters, J. R. Meyer, and J. E. Bowers, “Heterogeneous integration for mid-infrared silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 23, 1–10 (2017).
[Crossref]

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics,” Photonics Res. 3, B1 (2015).
[Crossref]

Chen, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Childs, D. T. D.

B. J. Stevens, D. T. D. Childs, H. Shahid, and R. A. Hogg, “Direct modulation of excited state quantum dot lasers,” Appl. Phys. Lett. 95, 061101 (2009).
[Crossref]

Crowley, M. T.

F. Grillot, N. A. Naderi, J. B. Wright, R. Raghunathan, M. T. Crowley, and L. F. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett. 99, 1110–1113 (2011).
[Crossref]

M. T. Crowley, N. A. Naderi, H. Su, F. Grillot, and L. F. Lester, “GaAs-Based Quantum Dot Lasers,” in Advances in Semiconductor LasersJ. J. Coleman, A. Bryce, and C. Jagadish, eds. (Academic Press, 2012), pp. 371–417
[Crossref]

Dagens, B.

F. Grillot, B. Dagens, J.-G. Provost, H. Su, and L. F. Lester, “Gain compression and above-threshold linewidth enhancement factor in 1.3-µ m InAs-GaAs quantum-Dot lasers,” IEEE J. Quantum Electron. 44, 946–951 (2008).
[Crossref]

Eisenstein, G.

D. Arsenijević, A. Schliwa, H. Schmeckebier, M. Stubenrauch, M. Spiegelberg, D. Bimberg, V. Mikhelashvili, and G. Eisenstein, “Comparison of dynamic properties of ground- and excited-state emission in p-doped InAs/GaAs quantum-dot lasers,” Appl. Phys. Lett. 104, 181101 (2014).
[Crossref]

Elliott, S. N.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Even, J.

C. Wang, B. Lingnau, K. Lüdge, J. Even, and F. Grillot, “Enhanced dynamic performance of quantum dot semiconductor lasers operating on the excited state,” IEEE J. Quantum Electron. 50, 723–731 (2014).

Fujikata, J.

Y. Urino, N. Hatori, K. Mizutani, T. Usuki, J. Fujikata, K. Yamada, T. Horikawa, T. Nakamura, and Y. Arakawa, “First demonstration of athermal silicon optical interposers with quantum dot lasers operating up to 125 ◦C,” J. Lightw. Technol. 33, 1223–1229 (2015).
[Crossref]

Gao, F.

Z.-R. Lv, H.-M. Ji, X.-G. Yang, S. Luo, F. Gao, F. Xu, and T. Yang, “Large Signal Modulation Characteristics in the Transition regime for two-state lasing quantum dot lasers,” Chinese Phys. Lett.  33, 124204 (2016).
[Crossref]

Gavra, N.

Gossard, A. C.

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics,” Photonics Res. 3, B1 (2015).
[Crossref]

Grillot, F.

H. Huang, D. Arsenijević, K. Schires, T. Sadeev, D. Bimberg, and F. Grillot, “Multimode optical feedback dynamics of InAs/GaAs quantum-dot lasers emitting on different lasing states,” AIP Adv. 6, 125114 (2016).
[Crossref]

C. Wang, B. Lingnau, K. Lüdge, J. Even, and F. Grillot, “Enhanced dynamic performance of quantum dot semiconductor lasers operating on the excited state,” IEEE J. Quantum Electron. 50, 723–731 (2014).

F. Grillot, N. A. Naderi, J. B. Wright, R. Raghunathan, M. T. Crowley, and L. F. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett. 99, 1110–1113 (2011).
[Crossref]

F. Grillot, B. Dagens, J.-G. Provost, H. Su, and L. F. Lester, “Gain compression and above-threshold linewidth enhancement factor in 1.3-µ m InAs-GaAs quantum-Dot lasers,” IEEE J. Quantum Electron. 44, 946–951 (2008).
[Crossref]

M. T. Crowley, N. A. Naderi, H. Su, F. Grillot, and L. F. Lester, “GaAs-Based Quantum Dot Lasers,” in Advances in Semiconductor LasersJ. J. Coleman, A. Bryce, and C. Jagadish, eds. (Academic Press, 2012), pp. 371–417
[Crossref]

Grundmann, M.

O. Stier, M. Grundmann, and D. Bimberg, “Electronic and optical properties of strained quantum dots modeled by 8-band k·p theory,” Phys. Rev. B 59, 5688 (1999).
[Crossref]

Hagihara, Y.

K. Mizutani, K. Yashiki, M. Kurihara, Y. Suzuki, Y. Hagihara, N. Hatori, T. Shimizu, Y. Urino, T. Nakamura, K. Kurata, and Y. Arakawa, “Optical I/O core transmitter with high tolerance to optical feedback using quantum dot laser,” in 2015 European Conference on Optical Communication (ECOC), (2015), p. 0263.
[Crossref]

Hatori, N.

Y. Urino, N. Hatori, K. Mizutani, T. Usuki, J. Fujikata, K. Yamada, T. Horikawa, T. Nakamura, and Y. Arakawa, “First demonstration of athermal silicon optical interposers with quantum dot lasers operating up to 125 ◦C,” J. Lightw. Technol. 33, 1223–1229 (2015).
[Crossref]

K. Mizutani, K. Yashiki, M. Kurihara, Y. Suzuki, Y. Hagihara, N. Hatori, T. Shimizu, Y. Urino, T. Nakamura, K. Kurata, and Y. Arakawa, “Optical I/O core transmitter with high tolerance to optical feedback using quantum dot laser,” in 2015 European Conference on Optical Communication (ECOC), (2015), p. 0263.
[Crossref]

Hegarty, S.

D. O’Brien, S. Hegarty, G. Huyet, J. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. Ustinov, A. Zhukov, S. Mikhrin, and A. Kovsh, “Feedback sensitivity of 1.3 µ m InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819 (2003).
[Crossref]

Hogg, R. A.

B. J. Stevens, D. T. D. Childs, H. Shahid, and R. A. Hogg, “Direct modulation of excited state quantum dot lasers,” Appl. Phys. Lett. 95, 061101 (2009).
[Crossref]

Horikawa, T.

Y. Urino, N. Hatori, K. Mizutani, T. Usuki, J. Fujikata, K. Yamada, T. Horikawa, T. Nakamura, and Y. Arakawa, “First demonstration of athermal silicon optical interposers with quantum dot lasers operating up to 125 ◦C,” J. Lightw. Technol. 33, 1223–1229 (2015).
[Crossref]

Huang, H.

H. Huang, D. Arsenijević, K. Schires, T. Sadeev, D. Bimberg, and F. Grillot, “Multimode optical feedback dynamics of InAs/GaAs quantum-dot lasers emitting on different lasing states,” AIP Adv. 6, 125114 (2016).
[Crossref]

Huyet, G.

D. O’Brien, S. Hegarty, G. Huyet, J. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. Ustinov, A. Zhukov, S. Mikhrin, and A. Kovsh, “Feedback sensitivity of 1.3 µ m InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819 (2003).
[Crossref]

Ji, H.-M.

Z.-R. Lv, H.-M. Ji, X.-G. Yang, S. Luo, F. Gao, F. Xu, and T. Yang, “Large Signal Modulation Characteristics in the Transition regime for two-state lasing quantum dot lasers,” Chinese Phys. Lett.  33, 124204 (2016).
[Crossref]

Jia, Z.-W.

Jiang, Q.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Kane, D. M.

Kettler, T.

D. O’Brien, S. Hegarty, G. Huyet, J. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. Ustinov, A. Zhukov, S. Mikhrin, and A. Kovsh, “Feedback sensitivity of 1.3 µ m InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819 (2003).
[Crossref]

Khurgin, J. B.

Kovsh, A.

D. O’Brien, S. Hegarty, G. Huyet, J. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. Ustinov, A. Zhukov, S. Mikhrin, and A. Kovsh, “Feedback sensitivity of 1.3 µ m InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819 (2003).
[Crossref]

A. Kovsh, N. Maleev, A. Zhukov, S. Mikhrin, A. Vasil’ev, E. Semenova, Y. Shernyakov, M. Maximov, D. Livshits, V. Ustinov, N. Ledentsov, D. Bimberg, and Z. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µ m range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003).
[Crossref]

Krestnikov, I.

C. Mesaritakis, C. Simos, H. Simos, S. Mikroulis, I. Krestnikov, E. Roditi, and D. Syvridis, “Effect of optical feedback to the ground and excited state emission of a passively mode locked quantum dot laser,” Appl. Phys. Lett. 97, 061114 (2010).
[Crossref]

Kryzhanovskaya, N.

F. Zubov, M. Maximov, E. Moiseev, A. Savelyev, Y. Shernyakov, D. Livshits, N. Kryzhanovskaya, and A. Zhukov, “Observation of zero linewidth enhancement factor at excited state band in quantum dot laser,” Electron. Lett. 51, 1686–1688 (2015).
[Crossref]

Kuchta, D. M.

J. D. Walker, D. M. Kuchta, and J. S. Smith, “Wafer-scale uniformity of vertical-cavity lasers grown by modified phase-locked epitaxy technique,” Electron. Lett. 29, 239–240 (1993).
[Crossref]

Kurata, K.

K. Mizutani, K. Yashiki, M. Kurihara, Y. Suzuki, Y. Hagihara, N. Hatori, T. Shimizu, Y. Urino, T. Nakamura, K. Kurata, and Y. Arakawa, “Optical I/O core transmitter with high tolerance to optical feedback using quantum dot laser,” in 2015 European Conference on Optical Communication (ECOC), (2015), p. 0263.
[Crossref]

Kurihara, M.

K. Mizutani, K. Yashiki, M. Kurihara, Y. Suzuki, Y. Hagihara, N. Hatori, T. Shimizu, Y. Urino, T. Nakamura, K. Kurata, and Y. Arakawa, “Optical I/O core transmitter with high tolerance to optical feedback using quantum dot laser,” in 2015 European Conference on Optical Communication (ECOC), (2015), p. 0263.
[Crossref]

Laemmlin, M.

D. O’Brien, S. Hegarty, G. Huyet, J. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. Ustinov, A. Zhukov, S. Mikhrin, and A. Kovsh, “Feedback sensitivity of 1.3 µ m InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819 (2003).
[Crossref]

Lam, C. F.

C. F. Lam, H. Liu, and R. Urata, “What devices do data centers need?” in Optical Fiber Communications Conference and Exhibition (OFC) of 2014 OSA Technical Digest Series (Optical Society of America, 2014), paper M2K.5.

Ledentsov, N.

A. Kovsh, N. Maleev, A. Zhukov, S. Mikhrin, A. Vasil’ev, E. Semenova, Y. Shernyakov, M. Maximov, D. Livshits, V. Ustinov, N. Ledentsov, D. Bimberg, and Z. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µ m range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003).
[Crossref]

Lester, L. F.

F. Grillot, N. A. Naderi, J. B. Wright, R. Raghunathan, M. T. Crowley, and L. F. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett. 99, 1110–1113 (2011).
[Crossref]

F. Grillot, B. Dagens, J.-G. Provost, H. Su, and L. F. Lester, “Gain compression and above-threshold linewidth enhancement factor in 1.3-µ m InAs-GaAs quantum-Dot lasers,” IEEE J. Quantum Electron. 44, 946–951 (2008).
[Crossref]

M. T. Crowley, N. A. Naderi, H. Su, F. Grillot, and L. F. Lester, “GaAs-Based Quantum Dot Lasers,” in Advances in Semiconductor LasersJ. J. Coleman, A. Bryce, and C. Jagadish, eds. (Academic Press, 2012), pp. 371–417
[Crossref]

Li, W.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Lingnau, B.

A. Röhm, B. Lingnau, and K. Lüdge, “Ground-state modulation-enhancement by two-state lasing in quantum-dot laser devices,” Appl. Phys. Lett. 106, 1–6 (2015).
[Crossref]

C. Wang, B. Lingnau, K. Lüdge, J. Even, and F. Grillot, “Enhanced dynamic performance of quantum dot semiconductor lasers operating on the excited state,” IEEE J. Quantum Electron. 50, 723–731 (2014).

Liu, A. Y.

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics,” Photonics Res. 3, B1 (2015).
[Crossref]

Liu, F.-Q.

Liu, H.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

C. F. Lam, H. Liu, and R. Urata, “What devices do data centers need?” in Optical Fiber Communications Conference and Exhibition (OFC) of 2014 OSA Technical Digest Series (Optical Society of America, 2014), paper M2K.5.

Liu, J.-Q.

Liu, S.-M.

Liu, Y.-H.

Livshits, D.

F. Zubov, M. Maximov, E. Moiseev, A. Savelyev, Y. Shernyakov, D. Livshits, N. Kryzhanovskaya, and A. Zhukov, “Observation of zero linewidth enhancement factor at excited state band in quantum dot laser,” Electron. Lett. 51, 1686–1688 (2015).
[Crossref]

A. Kovsh, N. Maleev, A. Zhukov, S. Mikhrin, A. Vasil’ev, E. Semenova, Y. Shernyakov, M. Maximov, D. Livshits, V. Ustinov, N. Ledentsov, D. Bimberg, and Z. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µ m range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003).
[Crossref]

Lüdge, K.

A. Röhm, B. Lingnau, and K. Lüdge, “Ground-state modulation-enhancement by two-state lasing in quantum-dot laser devices,” Appl. Phys. Lett. 106, 1–6 (2015).
[Crossref]

C. Wang, B. Lingnau, K. Lüdge, J. Even, and F. Grillot, “Enhanced dynamic performance of quantum dot semiconductor lasers operating on the excited state,” IEEE J. Quantum Electron. 50, 723–731 (2014).

Luo, S.

Z.-R. Lv, H.-M. Ji, X.-G. Yang, S. Luo, F. Gao, F. Xu, and T. Yang, “Large Signal Modulation Characteristics in the Transition regime for two-state lasing quantum dot lasers,” Chinese Phys. Lett.  33, 124204 (2016).
[Crossref]

Lv, Z.-R.

Z.-R. Lv, H.-M. Ji, X.-G. Yang, S. Luo, F. Gao, F. Xu, and T. Yang, “Large Signal Modulation Characteristics in the Transition regime for two-state lasing quantum dot lasers,” Chinese Phys. Lett.  33, 124204 (2016).
[Crossref]

Maleev, N.

A. Kovsh, N. Maleev, A. Zhukov, S. Mikhrin, A. Vasil’ev, E. Semenova, Y. Shernyakov, M. Maximov, D. Livshits, V. Ustinov, N. Ledentsov, D. Bimberg, and Z. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µ m range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003).
[Crossref]

Maximov, M.

F. Zubov, M. Maximov, E. Moiseev, A. Savelyev, Y. Shernyakov, D. Livshits, N. Kryzhanovskaya, and A. Zhukov, “Observation of zero linewidth enhancement factor at excited state band in quantum dot laser,” Electron. Lett. 51, 1686–1688 (2015).
[Crossref]

A. Kovsh, N. Maleev, A. Zhukov, S. Mikhrin, A. Vasil’ev, E. Semenova, Y. Shernyakov, M. Maximov, D. Livshits, V. Ustinov, N. Ledentsov, D. Bimberg, and Z. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µ m range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003).
[Crossref]

McInerney, J.

D. O’Brien, S. Hegarty, G. Huyet, J. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. Ustinov, A. Zhukov, S. Mikhrin, and A. Kovsh, “Feedback sensitivity of 1.3 µ m InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819 (2003).
[Crossref]

McMahon, C.

Mesaritakis, C.

C. Mesaritakis, C. Simos, H. Simos, S. Mikroulis, I. Krestnikov, E. Roditi, and D. Syvridis, “Effect of optical feedback to the ground and excited state emission of a passively mode locked quantum dot laser,” Appl. Phys. Lett. 97, 061114 (2010).
[Crossref]

Meyer, J. R.

A. Spott, E. J. Stanton, N. Volet, J. D. Peters, J. R. Meyer, and J. E. Bowers, “Heterogeneous integration for mid-infrared silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 23, 1–10 (2017).
[Crossref]

Mikhelashvili, V.

D. Arsenijević, A. Schliwa, H. Schmeckebier, M. Stubenrauch, M. Spiegelberg, D. Bimberg, V. Mikhelashvili, and G. Eisenstein, “Comparison of dynamic properties of ground- and excited-state emission in p-doped InAs/GaAs quantum-dot lasers,” Appl. Phys. Lett. 104, 181101 (2014).
[Crossref]

Mikhrin, S.

D. O’Brien, S. Hegarty, G. Huyet, J. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. Ustinov, A. Zhukov, S. Mikhrin, and A. Kovsh, “Feedback sensitivity of 1.3 µ m InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819 (2003).
[Crossref]

A. Kovsh, N. Maleev, A. Zhukov, S. Mikhrin, A. Vasil’ev, E. Semenova, Y. Shernyakov, M. Maximov, D. Livshits, V. Ustinov, N. Ledentsov, D. Bimberg, and Z. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µ m range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003).
[Crossref]

Mikroulis, S.

C. Mesaritakis, C. Simos, H. Simos, S. Mikroulis, I. Krestnikov, E. Roditi, and D. Syvridis, “Effect of optical feedback to the ground and excited state emission of a passively mode locked quantum dot laser,” Appl. Phys. Lett. 97, 061114 (2010).
[Crossref]

Mizutani, K.

Y. Urino, N. Hatori, K. Mizutani, T. Usuki, J. Fujikata, K. Yamada, T. Horikawa, T. Nakamura, and Y. Arakawa, “First demonstration of athermal silicon optical interposers with quantum dot lasers operating up to 125 ◦C,” J. Lightw. Technol. 33, 1223–1229 (2015).
[Crossref]

K. Mizutani, K. Yashiki, M. Kurihara, Y. Suzuki, Y. Hagihara, N. Hatori, T. Shimizu, Y. Urino, T. Nakamura, K. Kurata, and Y. Arakawa, “Optical I/O core transmitter with high tolerance to optical feedback using quantum dot laser,” in 2015 European Conference on Optical Communication (ECOC), (2015), p. 0263.
[Crossref]

Moiseev, E.

F. Zubov, M. Maximov, E. Moiseev, A. Savelyev, Y. Shernyakov, D. Livshits, N. Kryzhanovskaya, and A. Zhukov, “Observation of zero linewidth enhancement factor at excited state band in quantum dot laser,” Electron. Lett. 51, 1686–1688 (2015).
[Crossref]

Naderi, N. A.

F. Grillot, N. A. Naderi, J. B. Wright, R. Raghunathan, M. T. Crowley, and L. F. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett. 99, 1110–1113 (2011).
[Crossref]

M. T. Crowley, N. A. Naderi, H. Su, F. Grillot, and L. F. Lester, “GaAs-Based Quantum Dot Lasers,” in Advances in Semiconductor LasersJ. J. Coleman, A. Bryce, and C. Jagadish, eds. (Academic Press, 2012), pp. 371–417
[Crossref]

Nakamura, T.

Y. Urino, N. Hatori, K. Mizutani, T. Usuki, J. Fujikata, K. Yamada, T. Horikawa, T. Nakamura, and Y. Arakawa, “First demonstration of athermal silicon optical interposers with quantum dot lasers operating up to 125 ◦C,” J. Lightw. Technol. 33, 1223–1229 (2015).
[Crossref]

K. Mizutani, K. Yashiki, M. Kurihara, Y. Suzuki, Y. Hagihara, N. Hatori, T. Shimizu, Y. Urino, T. Nakamura, K. Kurata, and Y. Arakawa, “Optical I/O core transmitter with high tolerance to optical feedback using quantum dot laser,” in 2015 European Conference on Optical Communication (ECOC), (2015), p. 0263.
[Crossref]

Nishi, K.

K. Nishi, K. Takemasa, M. Sugawara, and Y. Arakawa, “Development of quantum dot lasers for data-com and silicon photonics applications,” IEEE J. Sel. Topics Quantum Electron. 23, 1–7 (2017).
[Crossref]

Norman, J.

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics,” Photonics Res. 3, B1 (2015).
[Crossref]

O’Brien, D.

D. O’Brien, S. Hegarty, G. Huyet, J. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. Ustinov, A. Zhukov, S. Mikhrin, and A. Kovsh, “Feedback sensitivity of 1.3 µ m InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819 (2003).
[Crossref]

Ohtsubo, J.

J. Ohtsubo, Semiconductor Lasers: Stability, Instability and Chaos, Springer Series in Optical Sciences (Springer, 2010).

Petermann, K.

N. Schunk and K. Petermann, “Stability analysis for laser diodes with short external cavities,” IEEE Photon. Technol. Lett. 1, 49–51 (1989).
[Crossref]

Peters, J. D.

A. Spott, E. J. Stanton, N. Volet, J. D. Peters, J. R. Meyer, and J. E. Bowers, “Heterogeneous integration for mid-infrared silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 23, 1–10 (2017).
[Crossref]

Provost, J.-G.

F. Grillot, B. Dagens, J.-G. Provost, H. Su, and L. F. Lester, “Gain compression and above-threshold linewidth enhancement factor in 1.3-µ m InAs-GaAs quantum-Dot lasers,” IEEE J. Quantum Electron. 44, 946–951 (2008).
[Crossref]

Raghunathan, R.

F. Grillot, N. A. Naderi, J. B. Wright, R. Raghunathan, M. T. Crowley, and L. F. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett. 99, 1110–1113 (2011).
[Crossref]

Roditi, E.

C. Mesaritakis, C. Simos, H. Simos, S. Mikroulis, I. Krestnikov, E. Roditi, and D. Syvridis, “Effect of optical feedback to the ground and excited state emission of a passively mode locked quantum dot laser,” Appl. Phys. Lett. 97, 061114 (2010).
[Crossref]

Röhm, A.

A. Röhm, B. Lingnau, and K. Lüdge, “Ground-state modulation-enhancement by two-state lasing in quantum-dot laser devices,” Appl. Phys. Lett. 106, 1–6 (2015).
[Crossref]

Rosenbluh, M.

Ross, I.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Sadeev, T.

H. Huang, D. Arsenijević, K. Schires, T. Sadeev, D. Bimberg, and F. Grillot, “Multimode optical feedback dynamics of InAs/GaAs quantum-dot lasers emitting on different lasing states,” AIP Adv. 6, 125114 (2016).
[Crossref]

Savelyev, A.

F. Zubov, M. Maximov, E. Moiseev, A. Savelyev, Y. Shernyakov, D. Livshits, N. Kryzhanovskaya, and A. Zhukov, “Observation of zero linewidth enhancement factor at excited state band in quantum dot laser,” Electron. Lett. 51, 1686–1688 (2015).
[Crossref]

Schires, K.

H. Huang, D. Arsenijević, K. Schires, T. Sadeev, D. Bimberg, and F. Grillot, “Multimode optical feedback dynamics of InAs/GaAs quantum-dot lasers emitting on different lasing states,” AIP Adv. 6, 125114 (2016).
[Crossref]

Schliwa, A.

D. Arsenijević, A. Schliwa, H. Schmeckebier, M. Stubenrauch, M. Spiegelberg, D. Bimberg, V. Mikhelashvili, and G. Eisenstein, “Comparison of dynamic properties of ground- and excited-state emission in p-doped InAs/GaAs quantum-dot lasers,” Appl. Phys. Lett. 104, 181101 (2014).
[Crossref]

A. Schliwa, M. Winkelnkemper, and D. Bimberg, “Few-particle energies versus geometry and composition of InxGa1x As/GaAs self-organized quantum dots,” Phys. Rev. B 79, 075443 (2009).
[Crossref]

Schmeckebier, H.

D. Arsenijević, A. Schliwa, H. Schmeckebier, M. Stubenrauch, M. Spiegelberg, D. Bimberg, V. Mikhelashvili, and G. Eisenstein, “Comparison of dynamic properties of ground- and excited-state emission in p-doped InAs/GaAs quantum-dot lasers,” Appl. Phys. Lett. 104, 181101 (2014).
[Crossref]

Schunk, N.

N. Schunk and K. Petermann, “Stability analysis for laser diodes with short external cavities,” IEEE Photon. Technol. Lett. 1, 49–51 (1989).
[Crossref]

Seeds, A. J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Semenova, E.

A. Kovsh, N. Maleev, A. Zhukov, S. Mikhrin, A. Vasil’ev, E. Semenova, Y. Shernyakov, M. Maximov, D. Livshits, V. Ustinov, N. Ledentsov, D. Bimberg, and Z. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µ m range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003).
[Crossref]

Shahid, H.

B. J. Stevens, D. T. D. Childs, H. Shahid, and R. A. Hogg, “Direct modulation of excited state quantum dot lasers,” Appl. Phys. Lett. 95, 061101 (2009).
[Crossref]

Shernyakov, Y.

F. Zubov, M. Maximov, E. Moiseev, A. Savelyev, Y. Shernyakov, D. Livshits, N. Kryzhanovskaya, and A. Zhukov, “Observation of zero linewidth enhancement factor at excited state band in quantum dot laser,” Electron. Lett. 51, 1686–1688 (2015).
[Crossref]

A. Kovsh, N. Maleev, A. Zhukov, S. Mikhrin, A. Vasil’ev, E. Semenova, Y. Shernyakov, M. Maximov, D. Livshits, V. Ustinov, N. Ledentsov, D. Bimberg, and Z. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µ m range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003).
[Crossref]

Shimizu, T.

K. Mizutani, K. Yashiki, M. Kurihara, Y. Suzuki, Y. Hagihara, N. Hatori, T. Shimizu, Y. Urino, T. Nakamura, K. Kurata, and Y. Arakawa, “Optical I/O core transmitter with high tolerance to optical feedback using quantum dot laser,” in 2015 European Conference on Optical Communication (ECOC), (2015), p. 0263.
[Crossref]

Shutts, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Simos, C.

C. Mesaritakis, C. Simos, H. Simos, S. Mikroulis, I. Krestnikov, E. Roditi, and D. Syvridis, “Effect of optical feedback to the ground and excited state emission of a passively mode locked quantum dot laser,” Appl. Phys. Lett. 97, 061114 (2010).
[Crossref]

Simos, H.

C. Mesaritakis, C. Simos, H. Simos, S. Mikroulis, I. Krestnikov, E. Roditi, and D. Syvridis, “Effect of optical feedback to the ground and excited state emission of a passively mode locked quantum dot laser,” Appl. Phys. Lett. 97, 061114 (2010).
[Crossref]

Smith, J. S.

J. D. Walker, D. M. Kuchta, and J. S. Smith, “Wafer-scale uniformity of vertical-cavity lasers grown by modified phase-locked epitaxy technique,” Electron. Lett. 29, 239–240 (1993).
[Crossref]

Smowton, P. M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Sobiesierski, A.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Spiegelberg, M.

D. Arsenijević, A. Schliwa, H. Schmeckebier, M. Stubenrauch, M. Spiegelberg, D. Bimberg, V. Mikhelashvili, and G. Eisenstein, “Comparison of dynamic properties of ground- and excited-state emission in p-doped InAs/GaAs quantum-dot lasers,” Appl. Phys. Lett. 104, 181101 (2014).
[Crossref]

Spott, A.

A. Spott, E. J. Stanton, N. Volet, J. D. Peters, J. R. Meyer, and J. E. Bowers, “Heterogeneous integration for mid-infrared silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 23, 1–10 (2017).
[Crossref]

Srinivasan, S.

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics,” Photonics Res. 3, B1 (2015).
[Crossref]

Stanton, E. J.

A. Spott, E. J. Stanton, N. Volet, J. D. Peters, J. R. Meyer, and J. E. Bowers, “Heterogeneous integration for mid-infrared silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 23, 1–10 (2017).
[Crossref]

Stevens, B. J.

B. J. Stevens, D. T. D. Childs, H. Shahid, and R. A. Hogg, “Direct modulation of excited state quantum dot lasers,” Appl. Phys. Lett. 95, 061101 (2009).
[Crossref]

Stier, O.

O. Stier, M. Grundmann, and D. Bimberg, “Electronic and optical properties of strained quantum dots modeled by 8-band k·p theory,” Phys. Rev. B 59, 5688 (1999).
[Crossref]

Stracke, G.

M. Stubenrauch, G. Stracke, D. Arsenijević, A. Strittmatter, and D. Bimberg, “15 Gb/s index-coupled distributed feedback lasers based on 1.3 µ m InGaAs quantum dots,” Appl. Phys. Lett. 105, 011103 (2014).
[Crossref]

Strittmatter, A.

M. Stubenrauch, G. Stracke, D. Arsenijević, A. Strittmatter, and D. Bimberg, “15 Gb/s index-coupled distributed feedback lasers based on 1.3 µ m InGaAs quantum dots,” Appl. Phys. Lett. 105, 011103 (2014).
[Crossref]

Stubenrauch, M.

M. Stubenrauch, G. Stracke, D. Arsenijević, A. Strittmatter, and D. Bimberg, “15 Gb/s index-coupled distributed feedback lasers based on 1.3 µ m InGaAs quantum dots,” Appl. Phys. Lett. 105, 011103 (2014).
[Crossref]

D. Arsenijević, A. Schliwa, H. Schmeckebier, M. Stubenrauch, M. Spiegelberg, D. Bimberg, V. Mikhelashvili, and G. Eisenstein, “Comparison of dynamic properties of ground- and excited-state emission in p-doped InAs/GaAs quantum-dot lasers,” Appl. Phys. Lett. 104, 181101 (2014).
[Crossref]

Su, H.

F. Grillot, B. Dagens, J.-G. Provost, H. Su, and L. F. Lester, “Gain compression and above-threshold linewidth enhancement factor in 1.3-µ m InAs-GaAs quantum-Dot lasers,” IEEE J. Quantum Electron. 44, 946–951 (2008).
[Crossref]

M. T. Crowley, N. A. Naderi, H. Su, F. Grillot, and L. F. Lester, “GaAs-Based Quantum Dot Lasers,” in Advances in Semiconductor LasersJ. J. Coleman, A. Bryce, and C. Jagadish, eds. (Academic Press, 2012), pp. 371–417
[Crossref]

Sugawara, M.

K. Nishi, K. Takemasa, M. Sugawara, and Y. Arakawa, “Development of quantum dot lasers for data-com and silicon photonics applications,” IEEE J. Sel. Topics Quantum Electron. 23, 1–7 (2017).
[Crossref]

Sun, G.

Suzuki, Y.

K. Mizutani, K. Yashiki, M. Kurihara, Y. Suzuki, Y. Hagihara, N. Hatori, T. Shimizu, Y. Urino, T. Nakamura, K. Kurata, and Y. Arakawa, “Optical I/O core transmitter with high tolerance to optical feedback using quantum dot laser,” in 2015 European Conference on Optical Communication (ECOC), (2015), p. 0263.
[Crossref]

Syvridis, D.

J. P. Toomey, D. M. Kane, C. McMahon, A. Argyris, and D. Syvridis, “Integrated semiconductor laser with optical feedback: transition from short to long cavity regime,” Opt. Express 23, 18754 (2015).
[Crossref] [PubMed]

C. Mesaritakis, C. Simos, H. Simos, S. Mikroulis, I. Krestnikov, E. Roditi, and D. Syvridis, “Effect of optical feedback to the ground and excited state emission of a passively mode locked quantum dot laser,” Appl. Phys. Lett. 97, 061114 (2010).
[Crossref]

Takemasa, K.

K. Nishi, K. Takemasa, M. Sugawara, and Y. Arakawa, “Development of quantum dot lasers for data-com and silicon photonics applications,” IEEE J. Sel. Topics Quantum Electron. 23, 1–7 (2017).
[Crossref]

Tang, M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Toomey, J. P.

Urata, R.

C. F. Lam, H. Liu, and R. Urata, “What devices do data centers need?” in Optical Fiber Communications Conference and Exhibition (OFC) of 2014 OSA Technical Digest Series (Optical Society of America, 2014), paper M2K.5.

Urino, Y.

Y. Urino, N. Hatori, K. Mizutani, T. Usuki, J. Fujikata, K. Yamada, T. Horikawa, T. Nakamura, and Y. Arakawa, “First demonstration of athermal silicon optical interposers with quantum dot lasers operating up to 125 ◦C,” J. Lightw. Technol. 33, 1223–1229 (2015).
[Crossref]

K. Mizutani, K. Yashiki, M. Kurihara, Y. Suzuki, Y. Hagihara, N. Hatori, T. Shimizu, Y. Urino, T. Nakamura, K. Kurata, and Y. Arakawa, “Optical I/O core transmitter with high tolerance to optical feedback using quantum dot laser,” in 2015 European Conference on Optical Communication (ECOC), (2015), p. 0263.
[Crossref]

Ustinov, V.

D. O’Brien, S. Hegarty, G. Huyet, J. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. Ustinov, A. Zhukov, S. Mikhrin, and A. Kovsh, “Feedback sensitivity of 1.3 µ m InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819 (2003).
[Crossref]

A. Kovsh, N. Maleev, A. Zhukov, S. Mikhrin, A. Vasil’ev, E. Semenova, Y. Shernyakov, M. Maximov, D. Livshits, V. Ustinov, N. Ledentsov, D. Bimberg, and Z. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µ m range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003).
[Crossref]

Usuki, T.

Y. Urino, N. Hatori, K. Mizutani, T. Usuki, J. Fujikata, K. Yamada, T. Horikawa, T. Nakamura, and Y. Arakawa, “First demonstration of athermal silicon optical interposers with quantum dot lasers operating up to 125 ◦C,” J. Lightw. Technol. 33, 1223–1229 (2015).
[Crossref]

Vasil’ev, A.

A. Kovsh, N. Maleev, A. Zhukov, S. Mikhrin, A. Vasil’ev, E. Semenova, Y. Shernyakov, M. Maximov, D. Livshits, V. Ustinov, N. Ledentsov, D. Bimberg, and Z. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µ m range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003).
[Crossref]

Volet, N.

A. Spott, E. J. Stanton, N. Volet, J. D. Peters, J. R. Meyer, and J. E. Bowers, “Heterogeneous integration for mid-infrared silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 23, 1–10 (2017).
[Crossref]

Walker, J. D.

J. D. Walker, D. M. Kuchta, and J. S. Smith, “Wafer-scale uniformity of vertical-cavity lasers grown by modified phase-locked epitaxy technique,” Electron. Lett. 29, 239–240 (1993).
[Crossref]

Wang, C.

C. Wang, B. Lingnau, K. Lüdge, J. Even, and F. Grillot, “Enhanced dynamic performance of quantum dot semiconductor lasers operating on the excited state,” IEEE J. Quantum Electron. 50, 723–731 (2014).

Wang, D.-B.

Wang, F.-J.

Wang, L.-J.

Wang, Z.-G.

Winkelnkemper, M.

A. Schliwa, M. Winkelnkemper, and D. Bimberg, “Few-particle energies versus geometry and composition of InxGa1x As/GaAs self-organized quantum dots,” Phys. Rev. B 79, 075443 (2009).
[Crossref]

Wright, J. B.

F. Grillot, N. A. Naderi, J. B. Wright, R. Raghunathan, M. T. Crowley, and L. F. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett. 99, 1110–1113 (2011).
[Crossref]

Wu, J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Xu, F.

Z.-R. Lv, H.-M. Ji, X.-G. Yang, S. Luo, F. Gao, F. Xu, and T. Yang, “Large Signal Modulation Characteristics in the Transition regime for two-state lasing quantum dot lasers,” Chinese Phys. Lett.  33, 124204 (2016).
[Crossref]

Yamada, K.

Y. Urino, N. Hatori, K. Mizutani, T. Usuki, J. Fujikata, K. Yamada, T. Horikawa, T. Nakamura, and Y. Arakawa, “First demonstration of athermal silicon optical interposers with quantum dot lasers operating up to 125 ◦C,” J. Lightw. Technol. 33, 1223–1229 (2015).
[Crossref]

Yang, T.

Z.-R. Lv, H.-M. Ji, X.-G. Yang, S. Luo, F. Gao, F. Xu, and T. Yang, “Large Signal Modulation Characteristics in the Transition regime for two-state lasing quantum dot lasers,” Chinese Phys. Lett.  33, 124204 (2016).
[Crossref]

Yang, X.-G.

Z.-R. Lv, H.-M. Ji, X.-G. Yang, S. Luo, F. Gao, F. Xu, and T. Yang, “Large Signal Modulation Characteristics in the Transition regime for two-state lasing quantum dot lasers,” Chinese Phys. Lett.  33, 124204 (2016).
[Crossref]

Yashiki, K.

K. Mizutani, K. Yashiki, M. Kurihara, Y. Suzuki, Y. Hagihara, N. Hatori, T. Shimizu, Y. Urino, T. Nakamura, K. Kurata, and Y. Arakawa, “Optical I/O core transmitter with high tolerance to optical feedback using quantum dot laser,” in 2015 European Conference on Optical Communication (ECOC), (2015), p. 0263.
[Crossref]

Zhai, S.-Q.

Zhang, J.-C.

Zhao, Y.

Zhou, Y.-H.

Zhukov, A.

F. Zubov, M. Maximov, E. Moiseev, A. Savelyev, Y. Shernyakov, D. Livshits, N. Kryzhanovskaya, and A. Zhukov, “Observation of zero linewidth enhancement factor at excited state band in quantum dot laser,” Electron. Lett. 51, 1686–1688 (2015).
[Crossref]

D. O’Brien, S. Hegarty, G. Huyet, J. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. Ustinov, A. Zhukov, S. Mikhrin, and A. Kovsh, “Feedback sensitivity of 1.3 µ m InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819 (2003).
[Crossref]

A. Kovsh, N. Maleev, A. Zhukov, S. Mikhrin, A. Vasil’ev, E. Semenova, Y. Shernyakov, M. Maximov, D. Livshits, V. Ustinov, N. Ledentsov, D. Bimberg, and Z. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µ m range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003).
[Crossref]

Zhuo, N.

Zubov, F.

F. Zubov, M. Maximov, E. Moiseev, A. Savelyev, Y. Shernyakov, D. Livshits, N. Kryzhanovskaya, and A. Zhukov, “Observation of zero linewidth enhancement factor at excited state band in quantum dot laser,” Electron. Lett. 51, 1686–1688 (2015).
[Crossref]

AIP Adv. (1)

H. Huang, D. Arsenijević, K. Schires, T. Sadeev, D. Bimberg, and F. Grillot, “Multimode optical feedback dynamics of InAs/GaAs quantum-dot lasers emitting on different lasing states,” AIP Adv. 6, 125114 (2016).
[Crossref]

Appl. Phys. Lett. (6)

B. J. Stevens, D. T. D. Childs, H. Shahid, and R. A. Hogg, “Direct modulation of excited state quantum dot lasers,” Appl. Phys. Lett. 95, 061101 (2009).
[Crossref]

D. Arsenijević, A. Schliwa, H. Schmeckebier, M. Stubenrauch, M. Spiegelberg, D. Bimberg, V. Mikhelashvili, and G. Eisenstein, “Comparison of dynamic properties of ground- and excited-state emission in p-doped InAs/GaAs quantum-dot lasers,” Appl. Phys. Lett. 104, 181101 (2014).
[Crossref]

C. Mesaritakis, C. Simos, H. Simos, S. Mikroulis, I. Krestnikov, E. Roditi, and D. Syvridis, “Effect of optical feedback to the ground and excited state emission of a passively mode locked quantum dot laser,” Appl. Phys. Lett. 97, 061114 (2010).
[Crossref]

A. Röhm, B. Lingnau, and K. Lüdge, “Ground-state modulation-enhancement by two-state lasing in quantum-dot laser devices,” Appl. Phys. Lett. 106, 1–6 (2015).
[Crossref]

F. Grillot, N. A. Naderi, J. B. Wright, R. Raghunathan, M. T. Crowley, and L. F. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett. 99, 1110–1113 (2011).
[Crossref]

M. Stubenrauch, G. Stracke, D. Arsenijević, A. Strittmatter, and D. Bimberg, “15 Gb/s index-coupled distributed feedback lasers based on 1.3 µ m InGaAs quantum dots,” Appl. Phys. Lett. 105, 011103 (2014).
[Crossref]

Chinese Phys. Lett (1)

Z.-R. Lv, H.-M. Ji, X.-G. Yang, S. Luo, F. Gao, F. Xu, and T. Yang, “Large Signal Modulation Characteristics in the Transition regime for two-state lasing quantum dot lasers,” Chinese Phys. Lett.  33, 124204 (2016).
[Crossref]

Electron. Lett. (4)

J. D. Walker, D. M. Kuchta, and J. S. Smith, “Wafer-scale uniformity of vertical-cavity lasers grown by modified phase-locked epitaxy technique,” Electron. Lett. 29, 239–240 (1993).
[Crossref]

F. Zubov, M. Maximov, E. Moiseev, A. Savelyev, Y. Shernyakov, D. Livshits, N. Kryzhanovskaya, and A. Zhukov, “Observation of zero linewidth enhancement factor at excited state band in quantum dot laser,” Electron. Lett. 51, 1686–1688 (2015).
[Crossref]

D. Bimberg, “Quantum dot based nanophotonics and nanoelectronics,” Electron. Lett. 44, 390 (2008).
[Crossref]

D. O’Brien, S. Hegarty, G. Huyet, J. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. Ustinov, A. Zhukov, S. Mikhrin, and A. Kovsh, “Feedback sensitivity of 1.3 µ m InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819 (2003).
[Crossref]

IEEE J. Quantum Electron. (2)

C. Wang, B. Lingnau, K. Lüdge, J. Even, and F. Grillot, “Enhanced dynamic performance of quantum dot semiconductor lasers operating on the excited state,” IEEE J. Quantum Electron. 50, 723–731 (2014).

F. Grillot, B. Dagens, J.-G. Provost, H. Su, and L. F. Lester, “Gain compression and above-threshold linewidth enhancement factor in 1.3-µ m InAs-GaAs quantum-Dot lasers,” IEEE J. Quantum Electron. 44, 946–951 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Spott, E. J. Stanton, N. Volet, J. D. Peters, J. R. Meyer, and J. E. Bowers, “Heterogeneous integration for mid-infrared silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 23, 1–10 (2017).
[Crossref]

IEEE J. Sel. Topics Quantum Electron. (1)

K. Nishi, K. Takemasa, M. Sugawara, and Y. Arakawa, “Development of quantum dot lasers for data-com and silicon photonics applications,” IEEE J. Sel. Topics Quantum Electron. 23, 1–7 (2017).
[Crossref]

IEEE Photon. Technol. Lett. (1)

N. Schunk and K. Petermann, “Stability analysis for laser diodes with short external cavities,” IEEE Photon. Technol. Lett. 1, 49–51 (1989).
[Crossref]

J. Cryst. Growth (1)

A. Kovsh, N. Maleev, A. Zhukov, S. Mikhrin, A. Vasil’ev, E. Semenova, Y. Shernyakov, M. Maximov, D. Livshits, V. Ustinov, N. Ledentsov, D. Bimberg, and Z. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µ m range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003).
[Crossref]

J. Lightw. Technol. (1)

Y. Urino, N. Hatori, K. Mizutani, T. Usuki, J. Fujikata, K. Yamada, T. Horikawa, T. Nakamura, and Y. Arakawa, “First demonstration of athermal silicon optical interposers with quantum dot lasers operating up to 125 ◦C,” J. Lightw. Technol. 33, 1223–1229 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Opt. Express (2)

Photonics Res. (1)

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics,” Photonics Res. 3, B1 (2015).
[Crossref]

Phys. Rev. B (2)

O. Stier, M. Grundmann, and D. Bimberg, “Electronic and optical properties of strained quantum dots modeled by 8-band k·p theory,” Phys. Rev. B 59, 5688 (1999).
[Crossref]

A. Schliwa, M. Winkelnkemper, and D. Bimberg, “Few-particle energies versus geometry and composition of InxGa1x As/GaAs self-organized quantum dots,” Phys. Rev. B 79, 075443 (2009).
[Crossref]

Proc. SPIE (1)

D. Arsenijević and D. Bimberg, “Quantum-dot lasers for 35 gbit/s pulse-amplitude modulation and 160 gbit/s differential quadrature phase-shift keying,” Proc. SPIE 9892, 9892 (2016).

Other (8)

K. Mizutani, K. Yashiki, M. Kurihara, Y. Suzuki, Y. Hagihara, N. Hatori, T. Shimizu, Y. Urino, T. Nakamura, K. Kurata, and Y. Arakawa, “Optical I/O core transmitter with high tolerance to optical feedback using quantum dot laser,” in 2015 European Conference on Optical Communication (ECOC), (2015), p. 0263.
[Crossref]

Ranovus Inc.“Ranovus announces availability of world’s first quantum dot multi-wavelength laser and silicon photonics platform technologies to create a new cost and power consumption paradigm for DCI market,” (Ranovus, 2016), http://ranovus.com/worlds-first-quantum-dot-multi-wavelength-laser-and-silicon-photonics-platform-technologies-for-dci-market/ .

C. F. Lam, H. Liu, and R. Urata, “What devices do data centers need?” in Optical Fiber Communications Conference and Exhibition (OFC) of 2014 OSA Technical Digest Series (Optical Society of America, 2014), paper M2K.5.

Cisco white paper, “The Zettabyte Era: Trends and Analysis” (Cisco, 2016).

G. Eisenstein and D. Bimberg, eds., Green Photonics and Electronics (Springer, 2017).
[Crossref]

M. T. Crowley, N. A. Naderi, H. Su, F. Grillot, and L. F. Lester, “GaAs-Based Quantum Dot Lasers,” in Advances in Semiconductor LasersJ. J. Coleman, A. Bryce, and C. Jagadish, eds. (Academic Press, 2012), pp. 371–417
[Crossref]

M. Grundmann, ed., Nano-Optoelectronics, NanoScience and Technology (Springer, 2002).
[Crossref]

J. Ohtsubo, Semiconductor Lasers: Stability, Instability and Chaos, Springer Series in Optical Sciences (Springer, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 L-I dependence of the (a) GS and (b) ES QD lasers. The insets (I) show the optical spectra taken at 1.75×Ith for both lasers while the insets (II) highlight the center of the emission marked by the red rectangle in insets (I). The black dots indicate the operating points of both lasers as discussed in the text.
Fig. 2
Fig. 2 Free-space optical feedback apparatus. PD: photo-diode; ESA: electrical spectrum analyzer; OSA: optical spectrum analyzer; VOA: variable optical attenuator.
Fig. 3
Fig. 3 RF spectra measured with Lext = 3 cm (fext=5 GHz): (a) GS QD laser under free-running operation (black) and maximal feedback ratio of 75.9% (blue); (b) ES QD laser under free-running operation (black), 22% optical feedback (blue) and maximal feedback ratio of 54.5% (red). (c) and (d) RF spectral mappings as a function of the feedback ratio for the GS and ES QD lasers.
Fig. 4
Fig. 4 Extracted boundaries of periodic (blue) and chaotic oscillations (red) with respect to the external cavity length Lext measured at 1.75 ×Ith for (a) GS and (b) ES QD lasers.
Fig. 5
Fig. 5 Excited periodic frequency fP at the stability boundary between fixed points to periodic oscillations with respect to the external cavity length Lext measured at 1.75 × Ith for (a) GS and (b) ES QD lasers.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d A d t = 1 2 Γ a { [ N ( t ) N t ] 1 τ p } A ( t ) + κ A ( t τ e x t ) cos θ ( t ) d ϕ d t = 1 2 α H Γ a { [ N ( t ) N t ] 1 τ p } A ( t ) + κ A ( t τ e x t ) A sin θ ( t ) d N d t = I q V N ( t ) τ c a [ N ( t ) N t ] A 2 ( t )
κ = 1 R 2 τ i n R r e x t
= ( κ K cos ( ω s τ e x t ) κ K A s sin ( ω s τ e x t ) 1 2 Γ a A s κ K A s sin ( ω s τ e x t ) κ K cos ( ω s τ e x t ) 1 2 α H Γ a 2 a ( N s N t r ) A s 0 ( a A s 2 + 1 τ c ) )
D ( γ ) = γ 3 + 2 [ γ D + κ K cos ( ω s τ e x t ) ] γ 2 + [ κ 2 K 2 + 4 κ K cos ( ω s τ e x t ) γ D + ω R O 2 ] γ + { κ 2 K 2 γ D + ω R O 2 κ K [ cos ( ω s τ e x t ) α H sin ( ω s τ e x t ) ] } = 0
f p 2 f R O 2 = γ D π f p cot ( π f p f e x t )

Metrics