Abstract

In this paper, a novel optical fiber temperature sensor based on surface plasmon resonance (SPR) is presented. The sensor consists of multimode fiber-photonic crystal fiber-multimode fiber (MMF-PCF-MMF) structure coated with gold film, whose refractive index (RI) sensitivity was found to range from 1060.78 nm/RIU to 4613.73 nm/RIU in the RI range of 1.3330-1.3904. Through simulation and experimental results, the RI sensitivity of the MMF-PCF-MMF structure is found to be higher than that of multimode fiber-single mode fiber-multimode fiber (MMF-SMF-MMF) structure. The sensing area was coated with polydimethylsiloxane (PDMS) that has a high thermal coefficient, obtaining a high temperature sensitivity of −1.551 nm/°C in the temperature range of 35-100 °C, which means it has a broad application prospect in medical, environmental monitoring and manufacturing industry.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

Yong Wang, Qing Huang, Wenjie Zhu, Minghong Yang, and Elfed Lewis, "Novel optical fiber SPR temperature sensor based on MMF-PCF-MMF structure and gold-PDMS film: erratum," Opt. Express 27, 10813-10813 (2019)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-27-8-10813

OSA Recommended Articles
Ultrahigh-sensitivity temperature fiber sensor based on multimode interference

Susana Silva, Edwin G. P. Pachon, Marcos A. R. Franco, Juliano G. Hayashi, F. Xavier Malcata, Orlando Frazão, Pedro Jorge, and Cristiano M. B. Cordeiro
Appl. Opt. 51(16) 3236-3242 (2012)

Surface plasmon resonance biosensor based on gold-coated side-polished hexagonal structure photonic crystal fiber

Tiesheng Wu, Yu Shao, Ying Wang, Shaoqing Cao, Weiping Cao, Feng Zhang, Changrui Liao, Jun He, Yijian Huang, Maoxiang Hou, and Yiping Wang
Opt. Express 25(17) 20313-20322 (2017)

D-shaped photonic crystal fiber plasmonic refractive index sensor based on gold grating

Junjie Lu, Yan Li, Yanhua Han, Yi Liu, and Jianmin Gao
Appl. Opt. 57(19) 5268-5272 (2018)

References

  • View by:
  • |
  • |
  • |

  1. T. K. Yadav, R. Narayanaswamy, M. H. Abu Bakar, Y. M. Kamil, and M. A. Mahdi, “Single mode tapered fiber-optic interferometer based refractive index sensor and its application to protein sensing,” Opt. Express 22(19), 22802–22807 (2014).
    [Crossref] [PubMed]
  2. G. Fu, Y. Li, Q. Li, J. Yang, X. Fu, and W. Bi, “Temperature Insensitive Vector Bending Sensor based on Asymmetrical Cascading SMF-PCF-SMF Structure,” IEEE Photonics J. 9(3), 7103114 (2017).
    [Crossref]
  3. Z. Feng, J. Li, X. Qiao, L. Li, H. Yang, and M. Hu, “A thermally annealed Mach-Zehnder Interferometer for High Temperature Measurement,” Sensors (Basel) 14(8), 14210–14221 (2014).
    [Crossref] [PubMed]
  4. C. S. Park, K. I. Joo, S. W. Kang, and H. R. Kim, “A PDMS-coated optical fiber bragg grating sensor for enhancing temperature sensitivity,” J. Opt. Soc. Korea 15(4), 329–334 (2011).
    [Crossref]
  5. W. Cui, J. Si, T. Chen, and X. Hou, “Compact bending sensor based on a fiber Bragg grating in an abrupt biconical taper,” Opt. Express 23(9), 11031–11036 (2015).
    [Crossref] [PubMed]
  6. C. Markos, K. Vlachos, and G. Kakarantzas, “Bending loss and thermo-optic effect of a hybrid PDMS/silica photonic crystal fiber,” Opt. Express 18(23), 24344–24351 (2010).
    [Crossref] [PubMed]
  7. M. S. Jiang, Q. M. Sui, Z. W. Jin, F. Y. Zhang, and L. Jia, “Temperature-independent optical fiber Fabry–Perot refractive-index sensor based on hollow-core photonic crystal fiber,” Optik (Stuttg.) 125(13), 3295–3298 (2014).
    [Crossref]
  8. Q. Wang, C. Du, J. Zhang, R. Lv, and Y. Zhao, “Sensitivity-enhanced temperature sensor based on PDMS-coated long period fiber grating,” Opt. Commun. 377, 89–93 (2017).
    [Crossref]
  9. I. Hernández-Romano, M. A. Cruz-Garcia, C. Moreno-Hernández, D. Monzón-Hernández, E. O. López-Figueroa, O. E. Paredes-Gallardo, M. Torres-Cisneros, and J. Villatoro, “Optical fiber temperature sensor based on a microcavity with polymer overlay,” Opt. Express 24(5), 5654–5661 (2016).
    [Crossref] [PubMed]
  10. M. Ding, B. Yang, P. Jiang, X. Liu, L. Dai, Y. Hu, and B. Zhang, “High-sensitivity thermometer based on singlemode-multimode FBG-singlemode fiber,” Opt. Laser Technol. 96, 313–317 (2017).
    [Crossref]
  11. Y. Zhao, Z. Q. Deng, and H. F. Hu, “Fiber-Optic SPR Sensor for Temperature Measurement,” IEEE Trans. Instrum. Meas. 64(11), 3099–3104 (2015).
    [Crossref]
  12. D. Brabant and W. J. Bock, “Photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Proc. SPIE 7750, 77502K (2010).
    [Crossref]
  13. C. W. Wei, C. C. Chi, L. B. Jia, Y. T. Zi, Q. T. Zhi, B. Y. Hong, M. L. Chang, and C. L. Kam, “Photonic Crystal Fiber Surface Plasmon Resonance Biosensor Based on Protein G Immobilization,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4602107 (2013).
    [Crossref]
  14. R. Jha, J. Villatoro, and G. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett. 93(19), 4057–4059 (2008).
    [Crossref]
  15. Y. Zhao, R. J. Tong, M. Q. Chen, and F. Xia, “Fluorescence Temperature Sensor Based on GQDs Solution Encapsulated in Hollow Core Fiber,” IEEE Photonics Technol. Lett. 29(18), 1544–1547 (2017).
    [Crossref]
  16. Y. Li, Y. Wang, and C. Wen, “Temperature and strain sensing properties of the zinc coated FBG,” Optik (Stuttg.) 127(16), 6463–6469 (2006).
    [Crossref]
  17. N. Irawati, S. W. Harun, H. A. Rahman, S. S. Chong, N. A. Hamizi, and H. Ahmad, “Temperature sensing using CdSe quantum dot doped poly(methyl methacrylate) microfiber,” Appl. Opt. 56(16), 4675–4679 (2017).
    [Crossref] [PubMed]

2017 (5)

Q. Wang, C. Du, J. Zhang, R. Lv, and Y. Zhao, “Sensitivity-enhanced temperature sensor based on PDMS-coated long period fiber grating,” Opt. Commun. 377, 89–93 (2017).
[Crossref]

M. Ding, B. Yang, P. Jiang, X. Liu, L. Dai, Y. Hu, and B. Zhang, “High-sensitivity thermometer based on singlemode-multimode FBG-singlemode fiber,” Opt. Laser Technol. 96, 313–317 (2017).
[Crossref]

G. Fu, Y. Li, Q. Li, J. Yang, X. Fu, and W. Bi, “Temperature Insensitive Vector Bending Sensor based on Asymmetrical Cascading SMF-PCF-SMF Structure,” IEEE Photonics J. 9(3), 7103114 (2017).
[Crossref]

Y. Zhao, R. J. Tong, M. Q. Chen, and F. Xia, “Fluorescence Temperature Sensor Based on GQDs Solution Encapsulated in Hollow Core Fiber,” IEEE Photonics Technol. Lett. 29(18), 1544–1547 (2017).
[Crossref]

N. Irawati, S. W. Harun, H. A. Rahman, S. S. Chong, N. A. Hamizi, and H. Ahmad, “Temperature sensing using CdSe quantum dot doped poly(methyl methacrylate) microfiber,” Appl. Opt. 56(16), 4675–4679 (2017).
[Crossref] [PubMed]

2016 (1)

2015 (2)

W. Cui, J. Si, T. Chen, and X. Hou, “Compact bending sensor based on a fiber Bragg grating in an abrupt biconical taper,” Opt. Express 23(9), 11031–11036 (2015).
[Crossref] [PubMed]

Y. Zhao, Z. Q. Deng, and H. F. Hu, “Fiber-Optic SPR Sensor for Temperature Measurement,” IEEE Trans. Instrum. Meas. 64(11), 3099–3104 (2015).
[Crossref]

2014 (3)

Z. Feng, J. Li, X. Qiao, L. Li, H. Yang, and M. Hu, “A thermally annealed Mach-Zehnder Interferometer for High Temperature Measurement,” Sensors (Basel) 14(8), 14210–14221 (2014).
[Crossref] [PubMed]

M. S. Jiang, Q. M. Sui, Z. W. Jin, F. Y. Zhang, and L. Jia, “Temperature-independent optical fiber Fabry–Perot refractive-index sensor based on hollow-core photonic crystal fiber,” Optik (Stuttg.) 125(13), 3295–3298 (2014).
[Crossref]

T. K. Yadav, R. Narayanaswamy, M. H. Abu Bakar, Y. M. Kamil, and M. A. Mahdi, “Single mode tapered fiber-optic interferometer based refractive index sensor and its application to protein sensing,” Opt. Express 22(19), 22802–22807 (2014).
[Crossref] [PubMed]

2013 (1)

C. W. Wei, C. C. Chi, L. B. Jia, Y. T. Zi, Q. T. Zhi, B. Y. Hong, M. L. Chang, and C. L. Kam, “Photonic Crystal Fiber Surface Plasmon Resonance Biosensor Based on Protein G Immobilization,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4602107 (2013).
[Crossref]

2011 (1)

2010 (2)

C. Markos, K. Vlachos, and G. Kakarantzas, “Bending loss and thermo-optic effect of a hybrid PDMS/silica photonic crystal fiber,” Opt. Express 18(23), 24344–24351 (2010).
[Crossref] [PubMed]

D. Brabant and W. J. Bock, “Photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Proc. SPIE 7750, 77502K (2010).
[Crossref]

2008 (1)

R. Jha, J. Villatoro, and G. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett. 93(19), 4057–4059 (2008).
[Crossref]

2006 (1)

Y. Li, Y. Wang, and C. Wen, “Temperature and strain sensing properties of the zinc coated FBG,” Optik (Stuttg.) 127(16), 6463–6469 (2006).
[Crossref]

Abu Bakar, M. H.

Ahmad, H.

Badenes, G.

R. Jha, J. Villatoro, and G. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett. 93(19), 4057–4059 (2008).
[Crossref]

Bi, W.

G. Fu, Y. Li, Q. Li, J. Yang, X. Fu, and W. Bi, “Temperature Insensitive Vector Bending Sensor based on Asymmetrical Cascading SMF-PCF-SMF Structure,” IEEE Photonics J. 9(3), 7103114 (2017).
[Crossref]

Bock, W. J.

D. Brabant and W. J. Bock, “Photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Proc. SPIE 7750, 77502K (2010).
[Crossref]

Brabant, D.

D. Brabant and W. J. Bock, “Photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Proc. SPIE 7750, 77502K (2010).
[Crossref]

Chang, M. L.

C. W. Wei, C. C. Chi, L. B. Jia, Y. T. Zi, Q. T. Zhi, B. Y. Hong, M. L. Chang, and C. L. Kam, “Photonic Crystal Fiber Surface Plasmon Resonance Biosensor Based on Protein G Immobilization,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4602107 (2013).
[Crossref]

Chen, M. Q.

Y. Zhao, R. J. Tong, M. Q. Chen, and F. Xia, “Fluorescence Temperature Sensor Based on GQDs Solution Encapsulated in Hollow Core Fiber,” IEEE Photonics Technol. Lett. 29(18), 1544–1547 (2017).
[Crossref]

Chen, T.

Chi, C. C.

C. W. Wei, C. C. Chi, L. B. Jia, Y. T. Zi, Q. T. Zhi, B. Y. Hong, M. L. Chang, and C. L. Kam, “Photonic Crystal Fiber Surface Plasmon Resonance Biosensor Based on Protein G Immobilization,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4602107 (2013).
[Crossref]

Chong, S. S.

Cruz-Garcia, M. A.

Cui, W.

Dai, L.

M. Ding, B. Yang, P. Jiang, X. Liu, L. Dai, Y. Hu, and B. Zhang, “High-sensitivity thermometer based on singlemode-multimode FBG-singlemode fiber,” Opt. Laser Technol. 96, 313–317 (2017).
[Crossref]

Deng, Z. Q.

Y. Zhao, Z. Q. Deng, and H. F. Hu, “Fiber-Optic SPR Sensor for Temperature Measurement,” IEEE Trans. Instrum. Meas. 64(11), 3099–3104 (2015).
[Crossref]

Ding, M.

M. Ding, B. Yang, P. Jiang, X. Liu, L. Dai, Y. Hu, and B. Zhang, “High-sensitivity thermometer based on singlemode-multimode FBG-singlemode fiber,” Opt. Laser Technol. 96, 313–317 (2017).
[Crossref]

Du, C.

Q. Wang, C. Du, J. Zhang, R. Lv, and Y. Zhao, “Sensitivity-enhanced temperature sensor based on PDMS-coated long period fiber grating,” Opt. Commun. 377, 89–93 (2017).
[Crossref]

Feng, Z.

Z. Feng, J. Li, X. Qiao, L. Li, H. Yang, and M. Hu, “A thermally annealed Mach-Zehnder Interferometer for High Temperature Measurement,” Sensors (Basel) 14(8), 14210–14221 (2014).
[Crossref] [PubMed]

Fu, G.

G. Fu, Y. Li, Q. Li, J. Yang, X. Fu, and W. Bi, “Temperature Insensitive Vector Bending Sensor based on Asymmetrical Cascading SMF-PCF-SMF Structure,” IEEE Photonics J. 9(3), 7103114 (2017).
[Crossref]

Fu, X.

G. Fu, Y. Li, Q. Li, J. Yang, X. Fu, and W. Bi, “Temperature Insensitive Vector Bending Sensor based on Asymmetrical Cascading SMF-PCF-SMF Structure,” IEEE Photonics J. 9(3), 7103114 (2017).
[Crossref]

Hamizi, N. A.

Harun, S. W.

Hernández-Romano, I.

Hong, B. Y.

C. W. Wei, C. C. Chi, L. B. Jia, Y. T. Zi, Q. T. Zhi, B. Y. Hong, M. L. Chang, and C. L. Kam, “Photonic Crystal Fiber Surface Plasmon Resonance Biosensor Based on Protein G Immobilization,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4602107 (2013).
[Crossref]

Hou, X.

Hu, H. F.

Y. Zhao, Z. Q. Deng, and H. F. Hu, “Fiber-Optic SPR Sensor for Temperature Measurement,” IEEE Trans. Instrum. Meas. 64(11), 3099–3104 (2015).
[Crossref]

Hu, M.

Z. Feng, J. Li, X. Qiao, L. Li, H. Yang, and M. Hu, “A thermally annealed Mach-Zehnder Interferometer for High Temperature Measurement,” Sensors (Basel) 14(8), 14210–14221 (2014).
[Crossref] [PubMed]

Hu, Y.

M. Ding, B. Yang, P. Jiang, X. Liu, L. Dai, Y. Hu, and B. Zhang, “High-sensitivity thermometer based on singlemode-multimode FBG-singlemode fiber,” Opt. Laser Technol. 96, 313–317 (2017).
[Crossref]

Irawati, N.

Jha, R.

R. Jha, J. Villatoro, and G. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett. 93(19), 4057–4059 (2008).
[Crossref]

Jia, L.

M. S. Jiang, Q. M. Sui, Z. W. Jin, F. Y. Zhang, and L. Jia, “Temperature-independent optical fiber Fabry–Perot refractive-index sensor based on hollow-core photonic crystal fiber,” Optik (Stuttg.) 125(13), 3295–3298 (2014).
[Crossref]

Jia, L. B.

C. W. Wei, C. C. Chi, L. B. Jia, Y. T. Zi, Q. T. Zhi, B. Y. Hong, M. L. Chang, and C. L. Kam, “Photonic Crystal Fiber Surface Plasmon Resonance Biosensor Based on Protein G Immobilization,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4602107 (2013).
[Crossref]

Jiang, M. S.

M. S. Jiang, Q. M. Sui, Z. W. Jin, F. Y. Zhang, and L. Jia, “Temperature-independent optical fiber Fabry–Perot refractive-index sensor based on hollow-core photonic crystal fiber,” Optik (Stuttg.) 125(13), 3295–3298 (2014).
[Crossref]

Jiang, P.

M. Ding, B. Yang, P. Jiang, X. Liu, L. Dai, Y. Hu, and B. Zhang, “High-sensitivity thermometer based on singlemode-multimode FBG-singlemode fiber,” Opt. Laser Technol. 96, 313–317 (2017).
[Crossref]

Jin, Z. W.

M. S. Jiang, Q. M. Sui, Z. W. Jin, F. Y. Zhang, and L. Jia, “Temperature-independent optical fiber Fabry–Perot refractive-index sensor based on hollow-core photonic crystal fiber,” Optik (Stuttg.) 125(13), 3295–3298 (2014).
[Crossref]

Joo, K. I.

Kakarantzas, G.

Kam, C. L.

C. W. Wei, C. C. Chi, L. B. Jia, Y. T. Zi, Q. T. Zhi, B. Y. Hong, M. L. Chang, and C. L. Kam, “Photonic Crystal Fiber Surface Plasmon Resonance Biosensor Based on Protein G Immobilization,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4602107 (2013).
[Crossref]

Kamil, Y. M.

Kang, S. W.

Kim, H. R.

Li, J.

Z. Feng, J. Li, X. Qiao, L. Li, H. Yang, and M. Hu, “A thermally annealed Mach-Zehnder Interferometer for High Temperature Measurement,” Sensors (Basel) 14(8), 14210–14221 (2014).
[Crossref] [PubMed]

Li, L.

Z. Feng, J. Li, X. Qiao, L. Li, H. Yang, and M. Hu, “A thermally annealed Mach-Zehnder Interferometer for High Temperature Measurement,” Sensors (Basel) 14(8), 14210–14221 (2014).
[Crossref] [PubMed]

Li, Q.

G. Fu, Y. Li, Q. Li, J. Yang, X. Fu, and W. Bi, “Temperature Insensitive Vector Bending Sensor based on Asymmetrical Cascading SMF-PCF-SMF Structure,” IEEE Photonics J. 9(3), 7103114 (2017).
[Crossref]

Li, Y.

G. Fu, Y. Li, Q. Li, J. Yang, X. Fu, and W. Bi, “Temperature Insensitive Vector Bending Sensor based on Asymmetrical Cascading SMF-PCF-SMF Structure,” IEEE Photonics J. 9(3), 7103114 (2017).
[Crossref]

Y. Li, Y. Wang, and C. Wen, “Temperature and strain sensing properties of the zinc coated FBG,” Optik (Stuttg.) 127(16), 6463–6469 (2006).
[Crossref]

Liu, X.

M. Ding, B. Yang, P. Jiang, X. Liu, L. Dai, Y. Hu, and B. Zhang, “High-sensitivity thermometer based on singlemode-multimode FBG-singlemode fiber,” Opt. Laser Technol. 96, 313–317 (2017).
[Crossref]

López-Figueroa, E. O.

Lv, R.

Q. Wang, C. Du, J. Zhang, R. Lv, and Y. Zhao, “Sensitivity-enhanced temperature sensor based on PDMS-coated long period fiber grating,” Opt. Commun. 377, 89–93 (2017).
[Crossref]

Mahdi, M. A.

Markos, C.

Monzón-Hernández, D.

Moreno-Hernández, C.

Narayanaswamy, R.

Paredes-Gallardo, O. E.

Park, C. S.

Qiao, X.

Z. Feng, J. Li, X. Qiao, L. Li, H. Yang, and M. Hu, “A thermally annealed Mach-Zehnder Interferometer for High Temperature Measurement,” Sensors (Basel) 14(8), 14210–14221 (2014).
[Crossref] [PubMed]

Rahman, H. A.

Si, J.

Sui, Q. M.

M. S. Jiang, Q. M. Sui, Z. W. Jin, F. Y. Zhang, and L. Jia, “Temperature-independent optical fiber Fabry–Perot refractive-index sensor based on hollow-core photonic crystal fiber,” Optik (Stuttg.) 125(13), 3295–3298 (2014).
[Crossref]

Tong, R. J.

Y. Zhao, R. J. Tong, M. Q. Chen, and F. Xia, “Fluorescence Temperature Sensor Based on GQDs Solution Encapsulated in Hollow Core Fiber,” IEEE Photonics Technol. Lett. 29(18), 1544–1547 (2017).
[Crossref]

Torres-Cisneros, M.

Villatoro, J.

Vlachos, K.

Wang, Q.

Q. Wang, C. Du, J. Zhang, R. Lv, and Y. Zhao, “Sensitivity-enhanced temperature sensor based on PDMS-coated long period fiber grating,” Opt. Commun. 377, 89–93 (2017).
[Crossref]

Wang, Y.

Y. Li, Y. Wang, and C. Wen, “Temperature and strain sensing properties of the zinc coated FBG,” Optik (Stuttg.) 127(16), 6463–6469 (2006).
[Crossref]

Wei, C. W.

C. W. Wei, C. C. Chi, L. B. Jia, Y. T. Zi, Q. T. Zhi, B. Y. Hong, M. L. Chang, and C. L. Kam, “Photonic Crystal Fiber Surface Plasmon Resonance Biosensor Based on Protein G Immobilization,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4602107 (2013).
[Crossref]

Wen, C.

Y. Li, Y. Wang, and C. Wen, “Temperature and strain sensing properties of the zinc coated FBG,” Optik (Stuttg.) 127(16), 6463–6469 (2006).
[Crossref]

Xia, F.

Y. Zhao, R. J. Tong, M. Q. Chen, and F. Xia, “Fluorescence Temperature Sensor Based on GQDs Solution Encapsulated in Hollow Core Fiber,” IEEE Photonics Technol. Lett. 29(18), 1544–1547 (2017).
[Crossref]

Yadav, T. K.

Yang, B.

M. Ding, B. Yang, P. Jiang, X. Liu, L. Dai, Y. Hu, and B. Zhang, “High-sensitivity thermometer based on singlemode-multimode FBG-singlemode fiber,” Opt. Laser Technol. 96, 313–317 (2017).
[Crossref]

Yang, H.

Z. Feng, J. Li, X. Qiao, L. Li, H. Yang, and M. Hu, “A thermally annealed Mach-Zehnder Interferometer for High Temperature Measurement,” Sensors (Basel) 14(8), 14210–14221 (2014).
[Crossref] [PubMed]

Yang, J.

G. Fu, Y. Li, Q. Li, J. Yang, X. Fu, and W. Bi, “Temperature Insensitive Vector Bending Sensor based on Asymmetrical Cascading SMF-PCF-SMF Structure,” IEEE Photonics J. 9(3), 7103114 (2017).
[Crossref]

Zhang, B.

M. Ding, B. Yang, P. Jiang, X. Liu, L. Dai, Y. Hu, and B. Zhang, “High-sensitivity thermometer based on singlemode-multimode FBG-singlemode fiber,” Opt. Laser Technol. 96, 313–317 (2017).
[Crossref]

Zhang, F. Y.

M. S. Jiang, Q. M. Sui, Z. W. Jin, F. Y. Zhang, and L. Jia, “Temperature-independent optical fiber Fabry–Perot refractive-index sensor based on hollow-core photonic crystal fiber,” Optik (Stuttg.) 125(13), 3295–3298 (2014).
[Crossref]

Zhang, J.

Q. Wang, C. Du, J. Zhang, R. Lv, and Y. Zhao, “Sensitivity-enhanced temperature sensor based on PDMS-coated long period fiber grating,” Opt. Commun. 377, 89–93 (2017).
[Crossref]

Zhao, Y.

Q. Wang, C. Du, J. Zhang, R. Lv, and Y. Zhao, “Sensitivity-enhanced temperature sensor based on PDMS-coated long period fiber grating,” Opt. Commun. 377, 89–93 (2017).
[Crossref]

Y. Zhao, R. J. Tong, M. Q. Chen, and F. Xia, “Fluorescence Temperature Sensor Based on GQDs Solution Encapsulated in Hollow Core Fiber,” IEEE Photonics Technol. Lett. 29(18), 1544–1547 (2017).
[Crossref]

Y. Zhao, Z. Q. Deng, and H. F. Hu, “Fiber-Optic SPR Sensor for Temperature Measurement,” IEEE Trans. Instrum. Meas. 64(11), 3099–3104 (2015).
[Crossref]

Zhi, Q. T.

C. W. Wei, C. C. Chi, L. B. Jia, Y. T. Zi, Q. T. Zhi, B. Y. Hong, M. L. Chang, and C. L. Kam, “Photonic Crystal Fiber Surface Plasmon Resonance Biosensor Based on Protein G Immobilization,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4602107 (2013).
[Crossref]

Zi, Y. T.

C. W. Wei, C. C. Chi, L. B. Jia, Y. T. Zi, Q. T. Zhi, B. Y. Hong, M. L. Chang, and C. L. Kam, “Photonic Crystal Fiber Surface Plasmon Resonance Biosensor Based on Protein G Immobilization,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4602107 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R. Jha, J. Villatoro, and G. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett. 93(19), 4057–4059 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. W. Wei, C. C. Chi, L. B. Jia, Y. T. Zi, Q. T. Zhi, B. Y. Hong, M. L. Chang, and C. L. Kam, “Photonic Crystal Fiber Surface Plasmon Resonance Biosensor Based on Protein G Immobilization,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4602107 (2013).
[Crossref]

IEEE Photonics J. (1)

G. Fu, Y. Li, Q. Li, J. Yang, X. Fu, and W. Bi, “Temperature Insensitive Vector Bending Sensor based on Asymmetrical Cascading SMF-PCF-SMF Structure,” IEEE Photonics J. 9(3), 7103114 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Y. Zhao, R. J. Tong, M. Q. Chen, and F. Xia, “Fluorescence Temperature Sensor Based on GQDs Solution Encapsulated in Hollow Core Fiber,” IEEE Photonics Technol. Lett. 29(18), 1544–1547 (2017).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

Y. Zhao, Z. Q. Deng, and H. F. Hu, “Fiber-Optic SPR Sensor for Temperature Measurement,” IEEE Trans. Instrum. Meas. 64(11), 3099–3104 (2015).
[Crossref]

J. Opt. Soc. Korea (1)

Opt. Commun. (1)

Q. Wang, C. Du, J. Zhang, R. Lv, and Y. Zhao, “Sensitivity-enhanced temperature sensor based on PDMS-coated long period fiber grating,” Opt. Commun. 377, 89–93 (2017).
[Crossref]

Opt. Express (4)

Opt. Laser Technol. (1)

M. Ding, B. Yang, P. Jiang, X. Liu, L. Dai, Y. Hu, and B. Zhang, “High-sensitivity thermometer based on singlemode-multimode FBG-singlemode fiber,” Opt. Laser Technol. 96, 313–317 (2017).
[Crossref]

Optik (Stuttg.) (2)

M. S. Jiang, Q. M. Sui, Z. W. Jin, F. Y. Zhang, and L. Jia, “Temperature-independent optical fiber Fabry–Perot refractive-index sensor based on hollow-core photonic crystal fiber,” Optik (Stuttg.) 125(13), 3295–3298 (2014).
[Crossref]

Y. Li, Y. Wang, and C. Wen, “Temperature and strain sensing properties of the zinc coated FBG,” Optik (Stuttg.) 127(16), 6463–6469 (2006).
[Crossref]

Proc. SPIE (1)

D. Brabant and W. J. Bock, “Photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Proc. SPIE 7750, 77502K (2010).
[Crossref]

Sensors (Basel) (1)

Z. Feng, J. Li, X. Qiao, L. Li, H. Yang, and M. Hu, “A thermally annealed Mach-Zehnder Interferometer for High Temperature Measurement,” Sensors (Basel) 14(8), 14210–14221 (2014).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Multimode fiber-photonic crystal fiber -multimode fiber (MMF-PCF-MMF) structure. (b) Optical microscope image of cross section of photonic crystal fiber. (c) Optical microscope image of the junction of photonic crystal and multimode fiber. (d) Optical microscopic image of the sensing area before gilding and after gilding.
Fig. 2
Fig. 2 Normalized transmission spectra of three sensors with different photonic crystal fiber length ((a) 0.5 cm, (b) 1.0 cm, (c) 1.5 cm) in different glycerol concentrations. (d) The relation spectra between the wavelength and refractive index of three sensors with different photonic crystal fiber length.
Fig. 3
Fig. 3 Normalized transmission spectra in the RI of 1.3904 for different photonic crystal fiber length.
Fig. 4
Fig. 4 (a) The mode field of photonic crystal fiber. (b) The mode field of single mode fiber.
Fig. 5
Fig. 5 (a) Normalized transmission spectra of MMF-PCF-MMF structure in different glycerol concentrations.(b) Normalized transmission spectra of MMF-SMF-MMF structure in different glycerol concentrations.
Fig. 6
Fig. 6 The relation spectra between the wavelength and refractive index of MMF-PCF-MMF structure and MMF-SMF-MMF structure.
Fig. 7
Fig. 7 Schematic diagram of the experimental setup.
Fig. 8
Fig. 8 (a) Normalized transmission spectra of the sensor in different temperature. (b) Relation spectra between resonance wavelength and temperature.

Tables (1)

Tables Icon

Table 1 Comparison of optical fiber sensor for temperature sensing.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

K z = ω c ε 0 sinθ
K spw =Re[ ω c ε 1 ε 2 ε 1 + ε 2 ]
y=1.551x+948.086

Metrics