Abstract

We summarize theoretical formulae for determining the intrinsic loss of few-mode fibers and compare intrinsic losses among step-index and parabolic graded-index few-mode fibers (FMF) with different dopants, and with single-mode fibers (SMF). The low-loss characteristics of pure-silica-core FMFs, in comparison with SMFs, give rise to additional motivations for pursuing mode-division multiplexed transmission over parallel-SMF transmission, and quasi-single-mode (QSM) transmission over ultra-large-area SMF transmission.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Bending losses of trench-assisted few-mode optical fibers

Xingjuan Zheng, Guobin Ren, Lin Huang, Haisu Li, Bofeng Zhu, Heling Zheng, and Min Cao
Appl. Opt. 55(10) 2639-2648 (2016)

Design and analysis of a combined-ring core weakly coupled few-mode fiber with six linearly polarized modes and an ultra-large effective index difference

Yuheng Xie, Li Pei, Jingjing Zheng, Qi Zhao, Tigang Ning, and Jianbin Sun
Appl. Opt. 58(16) 4373-4380 (2019)

Comparison of bandwidth and sensitivity of long-period gratings in single-mode and few-mode fibers

Florence Y. M. Chan, Gopinath Mudhana, and P. Shum
Appl. Opt. 54(21) 6558-6565 (2015)

References

  • View by:
  • |
  • |
  • |

  1. K. C. Kao and G. A. Hockham, “Dielectric-fibre surface waveguides for optical frequencies,” Proceedings of the Institution of Electrical Engineers. IET Digital Library 113(7), 1151–1158 (1966).
  2. Y. Tamura, H. Sakuma, K. Morita, M. Suzuki, Y. Yamamoto, K. Shimada, Y. Honma, K. Sohma, T. Fujii, and T. Hasegawa, “Lowest-ever 0.1419-dB/km loss optical fiber,” in Optical Fiber Communication Conference, Optical Society of America, 2017, paper Th5D.1.
    [Crossref]
  3. G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
    [Crossref]
  4. K. Tsujikawa, K. Tajima, and J. Zhou, “Intrinsic loss of optical fibers,” Opt. Fiber Technol. 11(4), 319–331 (2005).
    [Crossref]
  5. M. Ohashi, K. Shiraki, and K. Tajima, “Optical loss property of silica-based single-mode fibers,” J. Lightwave Technol. 10(5), 539–543 (1992).
    [Crossref]
  6. M. E. Lines, “Scattering losses in optic fiber materials. I. A new parametrization,” J. Appl. Phys. 55(11), 4052–4057 (1984).
    [Crossref]
  7. K. Tsujikawa, M. Ohashi, K. Shiraki, and M. Tateda, “Effect of thermal treatment on Rayleigh scattering in silica-based glasses,” Electron. Lett. 31(22), 1940–1941 (1995).
    [Crossref]
  8. M. E. Lines, J. B. MacChesney, K. B. Lyons, A. J. Bruce, A. E. Miller, and K. Nassau, “Calcium aluminate glasses as pontential ultralow-loss optical materials at 1.5–1.9 μm,” J. Non-Cryst. Solids 107(2–3), 251–260 (1989).
    [Crossref]
  9. K. Shiraki and M. Ohashi, “Scattering property of fluorine-doped silica glasses,” Electron. Lett. 28(17), 1565–1566 (1992).
    [Crossref]
  10. R. Olshansky, “Propagation in glass optical waveguides,” Rev. Mod. Phys. 51(2), 341–367 (1979).
    [Crossref]
  11. K. Tajima, M. Ohashi, K. Shiraki, and S. Syuichi, “Low Rayleigh scattering P2O5-F-SiO2 glasses,” J. Lightwave Technol. 10(11), 1532–1535 (1992).
    [Crossref]
  12. R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007).
    [Crossref]
  13. A. B. Sharma, A. H. Al-Ani, and S. J. Halme, “Constant-curvature loss in monomode fibers: An experimental investigation,” Appl. Opt. 23(19), 3297–3301 (1984).
    [Crossref] [PubMed]
  14. K.-P. Ho and J. M. Kahn, “Mode-dependent loss and gain: statistics and effect on mode-division multiplexing,” Opt. Express 19(17), 16612–16635 (2011).
    [Crossref] [PubMed]
  15. K. Sanada, T. Shamoto, and K. Inada, “Radiation resistance characteristics of graded-index fibers with a core of Ge-, F-doped or B and F-codoped SiO2 glass,” J. Non-Cryst. Solids 189(3), 283–290 (1995).
    [Crossref]
  16. V. A. Bhagavatula, “Estimation of single-mode waveguide dispersion using an equivalent-step-index approach,” Electron. Lett. 18(8), 319–320 (1982).
    [Crossref]
  17. E. M. Dianov and V. M. Mashinsky, “Germania-based core optical fibers,” J. Lightwave Technol. 23(11), 3500–3508 (2005).
    [Crossref]
  18. D. Downie, M. Mlejnek, I. Roudas, W. Wood, A. Zakharian, J. Hurley, S. Mishra, F. Yaman, S. Zhang, E. Ip, and Y. Huang, “Quasi-Single-Mode Fiber Transmission for Optical Communications,” IEEE J. Sel. Top. Quantum Electron. 23(3), 1–12 (2017).
    [Crossref]

2017 (1)

D. Downie, M. Mlejnek, I. Roudas, W. Wood, A. Zakharian, J. Hurley, S. Mishra, F. Yaman, S. Zhang, E. Ip, and Y. Huang, “Quasi-Single-Mode Fiber Transmission for Optical Communications,” IEEE J. Sel. Top. Quantum Electron. 23(3), 1–12 (2017).
[Crossref]

2014 (1)

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

2011 (1)

2007 (1)

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007).
[Crossref]

2005 (2)

E. M. Dianov and V. M. Mashinsky, “Germania-based core optical fibers,” J. Lightwave Technol. 23(11), 3500–3508 (2005).
[Crossref]

K. Tsujikawa, K. Tajima, and J. Zhou, “Intrinsic loss of optical fibers,” Opt. Fiber Technol. 11(4), 319–331 (2005).
[Crossref]

1995 (2)

K. Tsujikawa, M. Ohashi, K. Shiraki, and M. Tateda, “Effect of thermal treatment on Rayleigh scattering in silica-based glasses,” Electron. Lett. 31(22), 1940–1941 (1995).
[Crossref]

K. Sanada, T. Shamoto, and K. Inada, “Radiation resistance characteristics of graded-index fibers with a core of Ge-, F-doped or B and F-codoped SiO2 glass,” J. Non-Cryst. Solids 189(3), 283–290 (1995).
[Crossref]

1992 (3)

K. Tajima, M. Ohashi, K. Shiraki, and S. Syuichi, “Low Rayleigh scattering P2O5-F-SiO2 glasses,” J. Lightwave Technol. 10(11), 1532–1535 (1992).
[Crossref]

K. Shiraki and M. Ohashi, “Scattering property of fluorine-doped silica glasses,” Electron. Lett. 28(17), 1565–1566 (1992).
[Crossref]

M. Ohashi, K. Shiraki, and K. Tajima, “Optical loss property of silica-based single-mode fibers,” J. Lightwave Technol. 10(5), 539–543 (1992).
[Crossref]

1989 (1)

M. E. Lines, J. B. MacChesney, K. B. Lyons, A. J. Bruce, A. E. Miller, and K. Nassau, “Calcium aluminate glasses as pontential ultralow-loss optical materials at 1.5–1.9 μm,” J. Non-Cryst. Solids 107(2–3), 251–260 (1989).
[Crossref]

1984 (2)

M. E. Lines, “Scattering losses in optic fiber materials. I. A new parametrization,” J. Appl. Phys. 55(11), 4052–4057 (1984).
[Crossref]

A. B. Sharma, A. H. Al-Ani, and S. J. Halme, “Constant-curvature loss in monomode fibers: An experimental investigation,” Appl. Opt. 23(19), 3297–3301 (1984).
[Crossref] [PubMed]

1982 (1)

V. A. Bhagavatula, “Estimation of single-mode waveguide dispersion using an equivalent-step-index approach,” Electron. Lett. 18(8), 319–320 (1982).
[Crossref]

1979 (1)

R. Olshansky, “Propagation in glass optical waveguides,” Rev. Mod. Phys. 51(2), 341–367 (1979).
[Crossref]

Al-Ani, A. H.

Bai, N.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

Bhagavatula, V. A.

V. A. Bhagavatula, “Estimation of single-mode waveguide dispersion using an equivalent-step-index approach,” Electron. Lett. 18(8), 319–320 (1982).
[Crossref]

Bruce, A. J.

M. E. Lines, J. B. MacChesney, K. B. Lyons, A. J. Bruce, A. E. Miller, and K. Nassau, “Calcium aluminate glasses as pontential ultralow-loss optical materials at 1.5–1.9 μm,” J. Non-Cryst. Solids 107(2–3), 251–260 (1989).
[Crossref]

Cole, J. H.

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007).
[Crossref]

Dianov, E. M.

Downie, D.

D. Downie, M. Mlejnek, I. Roudas, W. Wood, A. Zakharian, J. Hurley, S. Mishra, F. Yaman, S. Zhang, E. Ip, and Y. Huang, “Quasi-Single-Mode Fiber Transmission for Optical Communications,” IEEE J. Sel. Top. Quantum Electron. 23(3), 1–12 (2017).
[Crossref]

Halme, S. J.

Ho, K.-P.

Huang, Y.

D. Downie, M. Mlejnek, I. Roudas, W. Wood, A. Zakharian, J. Hurley, S. Mishra, F. Yaman, S. Zhang, E. Ip, and Y. Huang, “Quasi-Single-Mode Fiber Transmission for Optical Communications,” IEEE J. Sel. Top. Quantum Electron. 23(3), 1–12 (2017).
[Crossref]

Hurley, J.

D. Downie, M. Mlejnek, I. Roudas, W. Wood, A. Zakharian, J. Hurley, S. Mishra, F. Yaman, S. Zhang, E. Ip, and Y. Huang, “Quasi-Single-Mode Fiber Transmission for Optical Communications,” IEEE J. Sel. Top. Quantum Electron. 23(3), 1–12 (2017).
[Crossref]

Inada, K.

K. Sanada, T. Shamoto, and K. Inada, “Radiation resistance characteristics of graded-index fibers with a core of Ge-, F-doped or B and F-codoped SiO2 glass,” J. Non-Cryst. Solids 189(3), 283–290 (1995).
[Crossref]

Ip, E.

D. Downie, M. Mlejnek, I. Roudas, W. Wood, A. Zakharian, J. Hurley, S. Mishra, F. Yaman, S. Zhang, E. Ip, and Y. Huang, “Quasi-Single-Mode Fiber Transmission for Optical Communications,” IEEE J. Sel. Top. Quantum Electron. 23(3), 1–12 (2017).
[Crossref]

Kahn, J. M.

Li, G.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

Lines, M. E.

M. E. Lines, J. B. MacChesney, K. B. Lyons, A. J. Bruce, A. E. Miller, and K. Nassau, “Calcium aluminate glasses as pontential ultralow-loss optical materials at 1.5–1.9 μm,” J. Non-Cryst. Solids 107(2–3), 251–260 (1989).
[Crossref]

M. E. Lines, “Scattering losses in optic fiber materials. I. A new parametrization,” J. Appl. Phys. 55(11), 4052–4057 (1984).
[Crossref]

Lyons, K. B.

M. E. Lines, J. B. MacChesney, K. B. Lyons, A. J. Bruce, A. E. Miller, and K. Nassau, “Calcium aluminate glasses as pontential ultralow-loss optical materials at 1.5–1.9 μm,” J. Non-Cryst. Solids 107(2–3), 251–260 (1989).
[Crossref]

MacChesney, J. B.

M. E. Lines, J. B. MacChesney, K. B. Lyons, A. J. Bruce, A. E. Miller, and K. Nassau, “Calcium aluminate glasses as pontential ultralow-loss optical materials at 1.5–1.9 μm,” J. Non-Cryst. Solids 107(2–3), 251–260 (1989).
[Crossref]

Mashinsky, V. M.

Miller, A. E.

M. E. Lines, J. B. MacChesney, K. B. Lyons, A. J. Bruce, A. E. Miller, and K. Nassau, “Calcium aluminate glasses as pontential ultralow-loss optical materials at 1.5–1.9 μm,” J. Non-Cryst. Solids 107(2–3), 251–260 (1989).
[Crossref]

Mishra, S.

D. Downie, M. Mlejnek, I. Roudas, W. Wood, A. Zakharian, J. Hurley, S. Mishra, F. Yaman, S. Zhang, E. Ip, and Y. Huang, “Quasi-Single-Mode Fiber Transmission for Optical Communications,” IEEE J. Sel. Top. Quantum Electron. 23(3), 1–12 (2017).
[Crossref]

Mlejnek, M.

D. Downie, M. Mlejnek, I. Roudas, W. Wood, A. Zakharian, J. Hurley, S. Mishra, F. Yaman, S. Zhang, E. Ip, and Y. Huang, “Quasi-Single-Mode Fiber Transmission for Optical Communications,” IEEE J. Sel. Top. Quantum Electron. 23(3), 1–12 (2017).
[Crossref]

Nassau, K.

M. E. Lines, J. B. MacChesney, K. B. Lyons, A. J. Bruce, A. E. Miller, and K. Nassau, “Calcium aluminate glasses as pontential ultralow-loss optical materials at 1.5–1.9 μm,” J. Non-Cryst. Solids 107(2–3), 251–260 (1989).
[Crossref]

Ohashi, M.

K. Tsujikawa, M. Ohashi, K. Shiraki, and M. Tateda, “Effect of thermal treatment on Rayleigh scattering in silica-based glasses,” Electron. Lett. 31(22), 1940–1941 (1995).
[Crossref]

M. Ohashi, K. Shiraki, and K. Tajima, “Optical loss property of silica-based single-mode fibers,” J. Lightwave Technol. 10(5), 539–543 (1992).
[Crossref]

K. Shiraki and M. Ohashi, “Scattering property of fluorine-doped silica glasses,” Electron. Lett. 28(17), 1565–1566 (1992).
[Crossref]

K. Tajima, M. Ohashi, K. Shiraki, and S. Syuichi, “Low Rayleigh scattering P2O5-F-SiO2 glasses,” J. Lightwave Technol. 10(11), 1532–1535 (1992).
[Crossref]

Olshansky, R.

R. Olshansky, “Propagation in glass optical waveguides,” Rev. Mod. Phys. 51(2), 341–367 (1979).
[Crossref]

Roudas, I.

D. Downie, M. Mlejnek, I. Roudas, W. Wood, A. Zakharian, J. Hurley, S. Mishra, F. Yaman, S. Zhang, E. Ip, and Y. Huang, “Quasi-Single-Mode Fiber Transmission for Optical Communications,” IEEE J. Sel. Top. Quantum Electron. 23(3), 1–12 (2017).
[Crossref]

Sanada, K.

K. Sanada, T. Shamoto, and K. Inada, “Radiation resistance characteristics of graded-index fibers with a core of Ge-, F-doped or B and F-codoped SiO2 glass,” J. Non-Cryst. Solids 189(3), 283–290 (1995).
[Crossref]

Schermer, R. T.

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007).
[Crossref]

Shamoto, T.

K. Sanada, T. Shamoto, and K. Inada, “Radiation resistance characteristics of graded-index fibers with a core of Ge-, F-doped or B and F-codoped SiO2 glass,” J. Non-Cryst. Solids 189(3), 283–290 (1995).
[Crossref]

Sharma, A. B.

Shiraki, K.

K. Tsujikawa, M. Ohashi, K. Shiraki, and M. Tateda, “Effect of thermal treatment on Rayleigh scattering in silica-based glasses,” Electron. Lett. 31(22), 1940–1941 (1995).
[Crossref]

M. Ohashi, K. Shiraki, and K. Tajima, “Optical loss property of silica-based single-mode fibers,” J. Lightwave Technol. 10(5), 539–543 (1992).
[Crossref]

K. Tajima, M. Ohashi, K. Shiraki, and S. Syuichi, “Low Rayleigh scattering P2O5-F-SiO2 glasses,” J. Lightwave Technol. 10(11), 1532–1535 (1992).
[Crossref]

K. Shiraki and M. Ohashi, “Scattering property of fluorine-doped silica glasses,” Electron. Lett. 28(17), 1565–1566 (1992).
[Crossref]

Syuichi, S.

K. Tajima, M. Ohashi, K. Shiraki, and S. Syuichi, “Low Rayleigh scattering P2O5-F-SiO2 glasses,” J. Lightwave Technol. 10(11), 1532–1535 (1992).
[Crossref]

Tajima, K.

K. Tsujikawa, K. Tajima, and J. Zhou, “Intrinsic loss of optical fibers,” Opt. Fiber Technol. 11(4), 319–331 (2005).
[Crossref]

M. Ohashi, K. Shiraki, and K. Tajima, “Optical loss property of silica-based single-mode fibers,” J. Lightwave Technol. 10(5), 539–543 (1992).
[Crossref]

K. Tajima, M. Ohashi, K. Shiraki, and S. Syuichi, “Low Rayleigh scattering P2O5-F-SiO2 glasses,” J. Lightwave Technol. 10(11), 1532–1535 (1992).
[Crossref]

Tateda, M.

K. Tsujikawa, M. Ohashi, K. Shiraki, and M. Tateda, “Effect of thermal treatment on Rayleigh scattering in silica-based glasses,” Electron. Lett. 31(22), 1940–1941 (1995).
[Crossref]

Tsujikawa, K.

K. Tsujikawa, K. Tajima, and J. Zhou, “Intrinsic loss of optical fibers,” Opt. Fiber Technol. 11(4), 319–331 (2005).
[Crossref]

K. Tsujikawa, M. Ohashi, K. Shiraki, and M. Tateda, “Effect of thermal treatment on Rayleigh scattering in silica-based glasses,” Electron. Lett. 31(22), 1940–1941 (1995).
[Crossref]

Wood, W.

D. Downie, M. Mlejnek, I. Roudas, W. Wood, A. Zakharian, J. Hurley, S. Mishra, F. Yaman, S. Zhang, E. Ip, and Y. Huang, “Quasi-Single-Mode Fiber Transmission for Optical Communications,” IEEE J. Sel. Top. Quantum Electron. 23(3), 1–12 (2017).
[Crossref]

Xia, C.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

Yaman, F.

D. Downie, M. Mlejnek, I. Roudas, W. Wood, A. Zakharian, J. Hurley, S. Mishra, F. Yaman, S. Zhang, E. Ip, and Y. Huang, “Quasi-Single-Mode Fiber Transmission for Optical Communications,” IEEE J. Sel. Top. Quantum Electron. 23(3), 1–12 (2017).
[Crossref]

Zakharian, A.

D. Downie, M. Mlejnek, I. Roudas, W. Wood, A. Zakharian, J. Hurley, S. Mishra, F. Yaman, S. Zhang, E. Ip, and Y. Huang, “Quasi-Single-Mode Fiber Transmission for Optical Communications,” IEEE J. Sel. Top. Quantum Electron. 23(3), 1–12 (2017).
[Crossref]

Zhang, S.

D. Downie, M. Mlejnek, I. Roudas, W. Wood, A. Zakharian, J. Hurley, S. Mishra, F. Yaman, S. Zhang, E. Ip, and Y. Huang, “Quasi-Single-Mode Fiber Transmission for Optical Communications,” IEEE J. Sel. Top. Quantum Electron. 23(3), 1–12 (2017).
[Crossref]

Zhao, N.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

Zhou, J.

K. Tsujikawa, K. Tajima, and J. Zhou, “Intrinsic loss of optical fibers,” Opt. Fiber Technol. 11(4), 319–331 (2005).
[Crossref]

Adv. Opt. Photonics (1)

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

Appl. Opt. (1)

Electron. Lett. (3)

V. A. Bhagavatula, “Estimation of single-mode waveguide dispersion using an equivalent-step-index approach,” Electron. Lett. 18(8), 319–320 (1982).
[Crossref]

K. Shiraki and M. Ohashi, “Scattering property of fluorine-doped silica glasses,” Electron. Lett. 28(17), 1565–1566 (1992).
[Crossref]

K. Tsujikawa, M. Ohashi, K. Shiraki, and M. Tateda, “Effect of thermal treatment on Rayleigh scattering in silica-based glasses,” Electron. Lett. 31(22), 1940–1941 (1995).
[Crossref]

IEEE J. Quantum Electron. (1)

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

D. Downie, M. Mlejnek, I. Roudas, W. Wood, A. Zakharian, J. Hurley, S. Mishra, F. Yaman, S. Zhang, E. Ip, and Y. Huang, “Quasi-Single-Mode Fiber Transmission for Optical Communications,” IEEE J. Sel. Top. Quantum Electron. 23(3), 1–12 (2017).
[Crossref]

J. Appl. Phys. (1)

M. E. Lines, “Scattering losses in optic fiber materials. I. A new parametrization,” J. Appl. Phys. 55(11), 4052–4057 (1984).
[Crossref]

J. Lightwave Technol. (3)

M. Ohashi, K. Shiraki, and K. Tajima, “Optical loss property of silica-based single-mode fibers,” J. Lightwave Technol. 10(5), 539–543 (1992).
[Crossref]

E. M. Dianov and V. M. Mashinsky, “Germania-based core optical fibers,” J. Lightwave Technol. 23(11), 3500–3508 (2005).
[Crossref]

K. Tajima, M. Ohashi, K. Shiraki, and S. Syuichi, “Low Rayleigh scattering P2O5-F-SiO2 glasses,” J. Lightwave Technol. 10(11), 1532–1535 (1992).
[Crossref]

J. Non-Cryst. Solids (2)

K. Sanada, T. Shamoto, and K. Inada, “Radiation resistance characteristics of graded-index fibers with a core of Ge-, F-doped or B and F-codoped SiO2 glass,” J. Non-Cryst. Solids 189(3), 283–290 (1995).
[Crossref]

M. E. Lines, J. B. MacChesney, K. B. Lyons, A. J. Bruce, A. E. Miller, and K. Nassau, “Calcium aluminate glasses as pontential ultralow-loss optical materials at 1.5–1.9 μm,” J. Non-Cryst. Solids 107(2–3), 251–260 (1989).
[Crossref]

Opt. Express (1)

Opt. Fiber Technol. (1)

K. Tsujikawa, K. Tajima, and J. Zhou, “Intrinsic loss of optical fibers,” Opt. Fiber Technol. 11(4), 319–331 (2005).
[Crossref]

Rev. Mod. Phys. (1)

R. Olshansky, “Propagation in glass optical waveguides,” Rev. Mod. Phys. 51(2), 341–367 (1979).
[Crossref]

Other (2)

K. C. Kao and G. A. Hockham, “Dielectric-fibre surface waveguides for optical frequencies,” Proceedings of the Institution of Electrical Engineers. IET Digital Library 113(7), 1151–1158 (1966).

Y. Tamura, H. Sakuma, K. Morita, M. Suzuki, Y. Yamamoto, K. Shimada, Y. Honma, K. Sohma, T. Fujii, and T. Hasegawa, “Lowest-ever 0.1419-dB/km loss optical fiber,” in Optical Fiber Communication Conference, Optical Society of America, 2017, paper Th5D.1.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic of (a) step-index and (b) graded-index fibers.
Fig. 2
Fig. 2 Intrinsic losses of SI single-mode and 4-LP mode fibers (a) GeO2-doped core (b) pure-silica core.
Fig. 3
Fig. 3 Intrinsic loss of GI single-mode and 4-LP mode fibers (a) GeO2-doped core (b) F-doped core.
Fig. 4
Fig. 4 Differences in intrinsic losses of various dopant silica fibers (a) step-index profile fibers (b) parabolic graded-index profile fibers

Tables (6)

Tables Icon

Table 1 Parameters for step-index fibers.

Tables Icon

Table 2 Intrinsic loss for step-index fibers.

Tables Icon

Table 3 Parameters for graded-index fibers.

Tables Icon

Table 4 Intrinsic loss for graded-index fibers

Tables Icon

Table 5 The fiber bending loss value of the LP01

Tables Icon

Table 6 The fiber bending loss value of FMF

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

α total = α R + α IR = A λ 4 +Bexp( b λ )
α R = 1 λ 4 A(r)P(r,θ)rdrdθ P(r,θ)rdrdθ
α R = 1 λ 4 i A i (r) Γ i
Γ core = P core (r,θ)rdrdθ P core (r,θ)rdrdθ + P clad (r,θ)rdrdθ
Γ clad = P clad (r,θ)rdrdθ P core (r,θ)rdrdθ + P clad (r,θ)rdrdθ
Γ core + Γ clad =1 ,
A 0 = 8 π 3 3 n 8 p 2 k B β T f
A Ge = A 0 (1+44| Δ |) for GeO 2 doped silica
A F = A 0 (1+41| Δ |) for Fdoped silica
α R_SI_Ge = 1 λ 4 ( A Ge Γ core + A 0 Γ clad ) for SI GeO 2 doped silica
α R_SI_F = 1 λ 4 ( A 0 Γ core + A F Γ clad ) for SI Fdoped silica
α R_GI_Ge = 1 λ 4 A Ge (r) P core (r,θ)rdrdθ+ A 0 P clad (r,θ)rdrdθ P core (r,θ)rdrdθ+ P clad (r,θ)rdrdθ for GI GeO 2 doped silica
α R_GI_F = 1 λ 4 A F (r) P core (r,θ)rdrdθ+ A F P clad (r,θ)rdrdθ P core (r,θ)rdrdθ+ P clad (r,θ)rdrdθ for GI Fdoped silica
α IR =Bexp( b λ )
n =n(1+ x R eff )
R eff = R 1 n 2 2 [ P 12 ν( P 11 + P 12 )]
α bend = 0.4πIm( n eff ) λln10

Metrics