Abstract

In this work, we present a method to discriminate between different microparticle sizes in mixed flowing media based on laser feedback interferometry, which could ultimately form the basis for a small, low-cost, real-time microembolus detector. We experimentally evaluated the performance of the system using microparticle phantoms, and the system achieved approximately 45% positive predictive value and better than 98% negative predictive value in the detection and classification of abnormally large particles.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Laser feedback interferometry: a tutorial on the self-mixing effect for coherent sensing

Thomas Taimre, Milan Nikolić, Karl Bertling, Yah Leng Lim, Thierry Bosch, and Aleksandar D. Rakić
Adv. Opt. Photon. 7(3) 570-631 (2015)

Coherent imaging using laser feedback interferometry with pulsed-mode terahertz quantum cascade lasers

Yah Leng Lim, Karl Bertling, Thomas Taimre, Tim Gillespie, Chris Glenn, Ashley Robinson, Dragan Indjin, Yingjun Han, Lianhe Li, Edmund H. Linfield, A. Giles Davies, Paul Dean, and Aleksandar D. Rakić
Opt. Express 27(7) 10221-10233 (2019)

Effect of the optical system on the Doppler spectrum in laser-feedback interferometry

Alireza Mowla, Milan Nikolić, Thomas Taimre, John R. Tucker, Yah Leng Lim, Karl Bertling, and Aleksandar D. Rakić
Appl. Opt. 54(1) 18-26 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. J. Park, C. A. Milano, A. J. Tatooles, J. G. Rogers, R. M. Adamson, D. E. Steidley, G. A. Ewald, K. S. Sundareswaran, D. J. Farrar, and M. S. Slaughter, “Outcomes in advanced heart failure patients with left ventricular assist devices for destination therapy,” Circ. Heart. Fail. 5, 241–248 (2012).
    [Crossref] [PubMed]
  2. R. C. Starling, N. Moazami, S. C. Silvestry, G. Ewald, J. G. Rogers, C. A. Milano, J. E. Rame, M. A. Acker, E. H. Blackstone, J. Ehrlinger, L. Thuita, M. M. Mountis, E. G. Soltesz, B. W. Lytle, and N. G. Smedira, “Unexpected abrupt increase in left ventricular assist device thrombosis,” N. Eng. J. Med. 370, 33–40 (2014).
    [Crossref]
  3. J. K. Kirklin, D. C. Naftel, F. D. Pagani, R. L. Kormos, S. Myers, M. A. Acker, J. Rogers, M. S. Slaughter, and L. W. Stevenson, “Pump thrombosis in the thoratec HeartMate II device: An update analysis of the INTERMACS registry,” J. Heart Lung Transplant. 34, 1515–1526 (2015).
    [Crossref] [PubMed]
  4. C.-M. Samama, “Thromboelastography: Another point of view,” Anesth. Analg. 93, 517–518 (2001).
  5. M. J. Martin, E. M. Chung, K. V. Ramnarine, A. H. Goodall, A. R. Naylor, and D. H. Evans, “Thrombus size and doppler embolic signal intensity,” Cerebrovasc. Dis. 28, 397–405 (2009).
    [Crossref] [PubMed]
  6. T. Taimre, M. Nikolić, K. Bertling, YL. Lim, T. Bosch, and A. D. Rakić, “Laser feedback interferometry: A tutorial on the self-mixing effect for coherent sensing,” Adv. Opt. Photonics 7, 570–631 (2015).
    [Crossref]
  7. S. Donati and M. Norgia, “Self-mixing interferometry for biomedical signals sensing,” IEEE J. Sel. Top. Quantum Electron. 20, 6900108 (2014).
    [Crossref]
  8. L. Campagnolo, M. Nikolić, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubiere, L. Prat, A. D. Rakić, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluid. 14, 113–119 (2013)
    [Crossref]
  9. K. Bertling, J. Perchoux, T. Taimre, R. Malkin, D. Robert, A. D. Rakić, and T. Bosch, “Imaging of acoustic fields using optical feedback interferometry,” Opt. Express 22, 30346–30356 (2014).
    [Crossref]
  10. J. Herbert, K. Bertling, T. Taimre, A. Rakić, and S. Wilson, “Surface roughness characterisation using optical feedback interferometry,” Electron. Lett. 53, 268–270 (2017).
    [Crossref]
  11. J. Keeley, J. Freeman, K. Bertling, Y.L. Lim, R. A. Mohandas, T. Taimre, L. H. Li, D. Indjin, A. D. Rakić, E. H. Linfield, A. G. Davies, and P. Dean, “Measurement of the emission spectrum of a semiconductor laser using laser-feedback interferometry,” Sci. Rep. 7, 7236 (2017).
    [Crossref] [PubMed]
  12. K. Bertling,“Determining ethanol Ccntent of liquid solutions using laser feedback interferometry with a terahertz quantum cascade laser,” IEEE Sensors Lett. 2, 3501604 (2018)
  13. YL. Lim, T. Taimre, K. Bertling, P. Dean, D. Indjin, A. Valavanis, S. P. Khanna, M. Lachab, H. Schaider, T. W. Prow, H. P. Soyer, S. J. Wilson, E. H. Linfield, A. G. Davies, and A. D. Rakić, “High-contrast coherent terahertz imaging of porcine tissue via swept-frequency feedback interferometry,” Bio. Opt. Express 5, 3981–3989 (2014).
    [Crossref]
  14. J. Perchoux, A. Quotb, R. Atashkhooei, F. J. Azcona, E. E. Ramírez-Miquet, O. Bernal, A. Jha, A. Luna-Arriaga, C. Yanez, J. Caum, T. Bosch, and S. Royo, “Current developments on optical feedback interferometry as an all-optical sensor for biomedical applications,” Sensors 16, 694 (2016).
    [Crossref]
  15. A. Mowla, B. W. Du, T. Taimre, K. Bertling, S. Wilson, H. P. Soyer, and A. D. Rakić, “Confocal laser feedback tomography for skin cancer detection,” Bio. Opt. Express 8, 4037–4048 (2017)
    [Crossref]
  16. C. Zakian, M. Dickinson, and T. King, “Particle sizing and flow measurement using self-mixing interferometry with a laser diode,” J. Opt. A Pure Appl. Opt. 7, S445–S452 (2005).
    [Crossref]
  17. C. Zakian, M. Dickinson, and T. King, “Dynamic light scattering by using self-mixing interferometry with a laser diode,” Appl. Opt. 45, 2240–2245 (2006).
    [Crossref] [PubMed]
  18. S. Sudo, Y. Miyasaka, K. Otsuka, Y. Takahashi, T. Oishi, and J.-Y. Ko, “Quick and easy measurement of particle size of Brownian particles and plankton in water using a self-mixing laser,” Opt. Express 14, 1044–1054 (2006).
    [Crossref]
  19. H. Wang and J. Shen, “Fast and economic signal processing technique of laser diode self-mixing interferometry for nanoparticle size measurement,” Appl. Phys. B 115, 285–291 (2014).
    [Crossref]
  20. V. Contreras, J. Lönnqvist, and J. Toivonen, “Detection of single microparticles in airflows by edge-filter enhanced self-mixing interferometry,” Opt. Express 24, 8886–8894 (2016).
    [Crossref] [PubMed]
  21. T. Ohtomo, S. Sudo, and K. Otsuka, “Detection and counting of a submicrometer particle in liquid flow by self-mixing microchip YB:YAG laser velocimetry,” Appl. Opt. 55, 7574–7582 (2016).
    [Crossref] [PubMed]
  22. R. Atashkhooei, E. Ramírez-Miquet, R. da Costa Moreira, A. Quotb, R. Santiago, and J. Perchoux, “Optical feedback flowmetry: Impact of particle concentration on the signal processing method,” IEEE Sensors J.,  18, 1457–1463 (2018)
    [Crossref]
  23. R. Kliese, T. Taimre, A. Bakar, YL. Lim, K. Bertling, M. Nikolić, J. Perchoux, T. Bosch, and A. D. Rakić, “Solving self-mixing equations for arbitrary feedback levels: A concise algorithm,” Appl. Opt. 53, 3723–3736 (2014).
    [Crossref] [PubMed]
  24. G. P. Agrawal and C. M. Bowden, “Concept of linewidth enhancement factor in semiconductor lasers: its usefulness and limitations,” IEEE Photon. Tech. Lett. 5, 640–642 (1993).
    [Crossref]
  25. J. Al Roumy, J. Perchoux, YL. Lim, T. Taimre, A. D. Rakić, and T. Bosch, “Effect of injection current and temperature on signal strength in a laser diode optical feedback interferometer,” Appl. Opt. 54, 312–318 (2015).
    [Crossref] [PubMed]
  26. A. Mowla, M. Nikolić, T. Taimre, J. Tucker, YL. Lim, K. Bertling, and A. D. Rakić, “Effect of the optical system on the doppler spectrum in laser-feedback interferometry,” Appl. Opt. 54, 18–26 (2015).
    [Crossref] [PubMed]
  27. S. Qian and D. Chen, “Joint time-frequency analysis,” IEEE Signal Process. Mag. 16, 52–67 (1999).
    [Crossref]
  28. S. Shinohara, A. Mochizuki, H. Yoshida, and M. Sumi, “Laser doppler velocimeter using the self-mixing effect of a semiconductor laser diode,” Appl. Opt. 25, 1417–1419 (1986).
    [Crossref] [PubMed]
  29. M. Uyuklu, M. Canpolat, H. J. Meiselman, and O. K. Baskurt, “Wavelength selection in measuring red blood cell aggregation based on light transmittance,” J. Biomed. Opt. 16, 117006 (2011)
    [Crossref] [PubMed]
  30. G. Chen, D. Shen, M. Feng, and M. Yang, “An attenuated total reflection FT-IR spectroscopic study of polyamide 6/Clay nanocomposite fibers,” Macromol. Rapid Commun.,  25, 1121–1124 (2004).
    [Crossref]
  31. KY. Chu and A. R. Thompson, “Densities and Refractive Indices of Alcohol-Water Solutions of n-Propyl, Isopropyl, and Methyl Alcohols,” J. Chem. Eng. Data 7, 358–360 (1962).
    [Crossref]
  32. N. Ghosh, P. Buddhiwant, A. Uppal, S. K. Majumder, H. S. Patel, and P. K. Gupta, “Simultaneous determination of size and refractive index of red blood cells by light scattering measurements,” Appl. Phys. Lett. 88, 084101 (2006).
    [Crossref]
  33. J. Jesty and E. Beltrami, “Positive feedbacks of coagulation their role in threshold regulation,” Arteriosclerosis, Thrombosis, and Vascular Biology 25, 2463–2469 (2005).
    [Crossref]
  34. J. Tucker, A. Mowla, J. Herbert, M. Fuentes, C. Freakley, K. Bertling, YL. Lim, R. Matharu, J. Perchoux, T. Taimre, S. Wilson, and A. D. Rakić, “Self-mixing sensing system based on uncooled vertical-cavity surface-emitting laser array: Linking multichannel operation and enhanced performance,” Opt. Lett. 39, 394–397 (2014).
    [Crossref] [PubMed]
  35. YL. Lim, R. Kliese, K. Bertling, K. Tanimizu, P. Jacobs, and A. D. Rakić, “Self-mixing flow sensor using a monolithic VCSEL array with parallel readout,” Opt. Express 18, 11720–11727 (2010).
    [Crossref] [PubMed]

2018 (2)

K. Bertling,“Determining ethanol Ccntent of liquid solutions using laser feedback interferometry with a terahertz quantum cascade laser,” IEEE Sensors Lett. 2, 3501604 (2018)

R. Atashkhooei, E. Ramírez-Miquet, R. da Costa Moreira, A. Quotb, R. Santiago, and J. Perchoux, “Optical feedback flowmetry: Impact of particle concentration on the signal processing method,” IEEE Sensors J.,  18, 1457–1463 (2018)
[Crossref]

2017 (3)

J. Herbert, K. Bertling, T. Taimre, A. Rakić, and S. Wilson, “Surface roughness characterisation using optical feedback interferometry,” Electron. Lett. 53, 268–270 (2017).
[Crossref]

J. Keeley, J. Freeman, K. Bertling, Y.L. Lim, R. A. Mohandas, T. Taimre, L. H. Li, D. Indjin, A. D. Rakić, E. H. Linfield, A. G. Davies, and P. Dean, “Measurement of the emission spectrum of a semiconductor laser using laser-feedback interferometry,” Sci. Rep. 7, 7236 (2017).
[Crossref] [PubMed]

A. Mowla, B. W. Du, T. Taimre, K. Bertling, S. Wilson, H. P. Soyer, and A. D. Rakić, “Confocal laser feedback tomography for skin cancer detection,” Bio. Opt. Express 8, 4037–4048 (2017)
[Crossref]

2016 (3)

J. Perchoux, A. Quotb, R. Atashkhooei, F. J. Azcona, E. E. Ramírez-Miquet, O. Bernal, A. Jha, A. Luna-Arriaga, C. Yanez, J. Caum, T. Bosch, and S. Royo, “Current developments on optical feedback interferometry as an all-optical sensor for biomedical applications,” Sensors 16, 694 (2016).
[Crossref]

V. Contreras, J. Lönnqvist, and J. Toivonen, “Detection of single microparticles in airflows by edge-filter enhanced self-mixing interferometry,” Opt. Express 24, 8886–8894 (2016).
[Crossref] [PubMed]

T. Ohtomo, S. Sudo, and K. Otsuka, “Detection and counting of a submicrometer particle in liquid flow by self-mixing microchip YB:YAG laser velocimetry,” Appl. Opt. 55, 7574–7582 (2016).
[Crossref] [PubMed]

2015 (4)

J. Al Roumy, J. Perchoux, YL. Lim, T. Taimre, A. D. Rakić, and T. Bosch, “Effect of injection current and temperature on signal strength in a laser diode optical feedback interferometer,” Appl. Opt. 54, 312–318 (2015).
[Crossref] [PubMed]

A. Mowla, M. Nikolić, T. Taimre, J. Tucker, YL. Lim, K. Bertling, and A. D. Rakić, “Effect of the optical system on the doppler spectrum in laser-feedback interferometry,” Appl. Opt. 54, 18–26 (2015).
[Crossref] [PubMed]

J. K. Kirklin, D. C. Naftel, F. D. Pagani, R. L. Kormos, S. Myers, M. A. Acker, J. Rogers, M. S. Slaughter, and L. W. Stevenson, “Pump thrombosis in the thoratec HeartMate II device: An update analysis of the INTERMACS registry,” J. Heart Lung Transplant. 34, 1515–1526 (2015).
[Crossref] [PubMed]

T. Taimre, M. Nikolić, K. Bertling, YL. Lim, T. Bosch, and A. D. Rakić, “Laser feedback interferometry: A tutorial on the self-mixing effect for coherent sensing,” Adv. Opt. Photonics 7, 570–631 (2015).
[Crossref]

2014 (7)

S. Donati and M. Norgia, “Self-mixing interferometry for biomedical signals sensing,” IEEE J. Sel. Top. Quantum Electron. 20, 6900108 (2014).
[Crossref]

K. Bertling, J. Perchoux, T. Taimre, R. Malkin, D. Robert, A. D. Rakić, and T. Bosch, “Imaging of acoustic fields using optical feedback interferometry,” Opt. Express 22, 30346–30356 (2014).
[Crossref]

R. C. Starling, N. Moazami, S. C. Silvestry, G. Ewald, J. G. Rogers, C. A. Milano, J. E. Rame, M. A. Acker, E. H. Blackstone, J. Ehrlinger, L. Thuita, M. M. Mountis, E. G. Soltesz, B. W. Lytle, and N. G. Smedira, “Unexpected abrupt increase in left ventricular assist device thrombosis,” N. Eng. J. Med. 370, 33–40 (2014).
[Crossref]

YL. Lim, T. Taimre, K. Bertling, P. Dean, D. Indjin, A. Valavanis, S. P. Khanna, M. Lachab, H. Schaider, T. W. Prow, H. P. Soyer, S. J. Wilson, E. H. Linfield, A. G. Davies, and A. D. Rakić, “High-contrast coherent terahertz imaging of porcine tissue via swept-frequency feedback interferometry,” Bio. Opt. Express 5, 3981–3989 (2014).
[Crossref]

H. Wang and J. Shen, “Fast and economic signal processing technique of laser diode self-mixing interferometry for nanoparticle size measurement,” Appl. Phys. B 115, 285–291 (2014).
[Crossref]

R. Kliese, T. Taimre, A. Bakar, YL. Lim, K. Bertling, M. Nikolić, J. Perchoux, T. Bosch, and A. D. Rakić, “Solving self-mixing equations for arbitrary feedback levels: A concise algorithm,” Appl. Opt. 53, 3723–3736 (2014).
[Crossref] [PubMed]

J. Tucker, A. Mowla, J. Herbert, M. Fuentes, C. Freakley, K. Bertling, YL. Lim, R. Matharu, J. Perchoux, T. Taimre, S. Wilson, and A. D. Rakić, “Self-mixing sensing system based on uncooled vertical-cavity surface-emitting laser array: Linking multichannel operation and enhanced performance,” Opt. Lett. 39, 394–397 (2014).
[Crossref] [PubMed]

2013 (1)

L. Campagnolo, M. Nikolić, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubiere, L. Prat, A. D. Rakić, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluid. 14, 113–119 (2013)
[Crossref]

2012 (1)

S. J. Park, C. A. Milano, A. J. Tatooles, J. G. Rogers, R. M. Adamson, D. E. Steidley, G. A. Ewald, K. S. Sundareswaran, D. J. Farrar, and M. S. Slaughter, “Outcomes in advanced heart failure patients with left ventricular assist devices for destination therapy,” Circ. Heart. Fail. 5, 241–248 (2012).
[Crossref] [PubMed]

2011 (1)

M. Uyuklu, M. Canpolat, H. J. Meiselman, and O. K. Baskurt, “Wavelength selection in measuring red blood cell aggregation based on light transmittance,” J. Biomed. Opt. 16, 117006 (2011)
[Crossref] [PubMed]

2010 (1)

2009 (1)

M. J. Martin, E. M. Chung, K. V. Ramnarine, A. H. Goodall, A. R. Naylor, and D. H. Evans, “Thrombus size and doppler embolic signal intensity,” Cerebrovasc. Dis. 28, 397–405 (2009).
[Crossref] [PubMed]

2006 (3)

2005 (2)

J. Jesty and E. Beltrami, “Positive feedbacks of coagulation their role in threshold regulation,” Arteriosclerosis, Thrombosis, and Vascular Biology 25, 2463–2469 (2005).
[Crossref]

C. Zakian, M. Dickinson, and T. King, “Particle sizing and flow measurement using self-mixing interferometry with a laser diode,” J. Opt. A Pure Appl. Opt. 7, S445–S452 (2005).
[Crossref]

2004 (1)

G. Chen, D. Shen, M. Feng, and M. Yang, “An attenuated total reflection FT-IR spectroscopic study of polyamide 6/Clay nanocomposite fibers,” Macromol. Rapid Commun.,  25, 1121–1124 (2004).
[Crossref]

2001 (1)

C.-M. Samama, “Thromboelastography: Another point of view,” Anesth. Analg. 93, 517–518 (2001).

1999 (1)

S. Qian and D. Chen, “Joint time-frequency analysis,” IEEE Signal Process. Mag. 16, 52–67 (1999).
[Crossref]

1993 (1)

G. P. Agrawal and C. M. Bowden, “Concept of linewidth enhancement factor in semiconductor lasers: its usefulness and limitations,” IEEE Photon. Tech. Lett. 5, 640–642 (1993).
[Crossref]

1986 (1)

1962 (1)

KY. Chu and A. R. Thompson, “Densities and Refractive Indices of Alcohol-Water Solutions of n-Propyl, Isopropyl, and Methyl Alcohols,” J. Chem. Eng. Data 7, 358–360 (1962).
[Crossref]

Acker, M. A.

J. K. Kirklin, D. C. Naftel, F. D. Pagani, R. L. Kormos, S. Myers, M. A. Acker, J. Rogers, M. S. Slaughter, and L. W. Stevenson, “Pump thrombosis in the thoratec HeartMate II device: An update analysis of the INTERMACS registry,” J. Heart Lung Transplant. 34, 1515–1526 (2015).
[Crossref] [PubMed]

R. C. Starling, N. Moazami, S. C. Silvestry, G. Ewald, J. G. Rogers, C. A. Milano, J. E. Rame, M. A. Acker, E. H. Blackstone, J. Ehrlinger, L. Thuita, M. M. Mountis, E. G. Soltesz, B. W. Lytle, and N. G. Smedira, “Unexpected abrupt increase in left ventricular assist device thrombosis,” N. Eng. J. Med. 370, 33–40 (2014).
[Crossref]

Adamson, R. M.

S. J. Park, C. A. Milano, A. J. Tatooles, J. G. Rogers, R. M. Adamson, D. E. Steidley, G. A. Ewald, K. S. Sundareswaran, D. J. Farrar, and M. S. Slaughter, “Outcomes in advanced heart failure patients with left ventricular assist devices for destination therapy,” Circ. Heart. Fail. 5, 241–248 (2012).
[Crossref] [PubMed]

Agrawal, G. P.

G. P. Agrawal and C. M. Bowden, “Concept of linewidth enhancement factor in semiconductor lasers: its usefulness and limitations,” IEEE Photon. Tech. Lett. 5, 640–642 (1993).
[Crossref]

Al Roumy, J.

Atashkhooei, R.

R. Atashkhooei, E. Ramírez-Miquet, R. da Costa Moreira, A. Quotb, R. Santiago, and J. Perchoux, “Optical feedback flowmetry: Impact of particle concentration on the signal processing method,” IEEE Sensors J.,  18, 1457–1463 (2018)
[Crossref]

J. Perchoux, A. Quotb, R. Atashkhooei, F. J. Azcona, E. E. Ramírez-Miquet, O. Bernal, A. Jha, A. Luna-Arriaga, C. Yanez, J. Caum, T. Bosch, and S. Royo, “Current developments on optical feedback interferometry as an all-optical sensor for biomedical applications,” Sensors 16, 694 (2016).
[Crossref]

Azcona, F. J.

J. Perchoux, A. Quotb, R. Atashkhooei, F. J. Azcona, E. E. Ramírez-Miquet, O. Bernal, A. Jha, A. Luna-Arriaga, C. Yanez, J. Caum, T. Bosch, and S. Royo, “Current developments on optical feedback interferometry as an all-optical sensor for biomedical applications,” Sensors 16, 694 (2016).
[Crossref]

Bakar, A.

Baskurt, O. K.

M. Uyuklu, M. Canpolat, H. J. Meiselman, and O. K. Baskurt, “Wavelength selection in measuring red blood cell aggregation based on light transmittance,” J. Biomed. Opt. 16, 117006 (2011)
[Crossref] [PubMed]

Beltrami, E.

J. Jesty and E. Beltrami, “Positive feedbacks of coagulation their role in threshold regulation,” Arteriosclerosis, Thrombosis, and Vascular Biology 25, 2463–2469 (2005).
[Crossref]

Bernal, O.

J. Perchoux, A. Quotb, R. Atashkhooei, F. J. Azcona, E. E. Ramírez-Miquet, O. Bernal, A. Jha, A. Luna-Arriaga, C. Yanez, J. Caum, T. Bosch, and S. Royo, “Current developments on optical feedback interferometry as an all-optical sensor for biomedical applications,” Sensors 16, 694 (2016).
[Crossref]

Bertling, K.

K. Bertling,“Determining ethanol Ccntent of liquid solutions using laser feedback interferometry with a terahertz quantum cascade laser,” IEEE Sensors Lett. 2, 3501604 (2018)

A. Mowla, B. W. Du, T. Taimre, K. Bertling, S. Wilson, H. P. Soyer, and A. D. Rakić, “Confocal laser feedback tomography for skin cancer detection,” Bio. Opt. Express 8, 4037–4048 (2017)
[Crossref]

J. Herbert, K. Bertling, T. Taimre, A. Rakić, and S. Wilson, “Surface roughness characterisation using optical feedback interferometry,” Electron. Lett. 53, 268–270 (2017).
[Crossref]

J. Keeley, J. Freeman, K. Bertling, Y.L. Lim, R. A. Mohandas, T. Taimre, L. H. Li, D. Indjin, A. D. Rakić, E. H. Linfield, A. G. Davies, and P. Dean, “Measurement of the emission spectrum of a semiconductor laser using laser-feedback interferometry,” Sci. Rep. 7, 7236 (2017).
[Crossref] [PubMed]

T. Taimre, M. Nikolić, K. Bertling, YL. Lim, T. Bosch, and A. D. Rakić, “Laser feedback interferometry: A tutorial on the self-mixing effect for coherent sensing,” Adv. Opt. Photonics 7, 570–631 (2015).
[Crossref]

A. Mowla, M. Nikolić, T. Taimre, J. Tucker, YL. Lim, K. Bertling, and A. D. Rakić, “Effect of the optical system on the doppler spectrum in laser-feedback interferometry,” Appl. Opt. 54, 18–26 (2015).
[Crossref] [PubMed]

R. Kliese, T. Taimre, A. Bakar, YL. Lim, K. Bertling, M. Nikolić, J. Perchoux, T. Bosch, and A. D. Rakić, “Solving self-mixing equations for arbitrary feedback levels: A concise algorithm,” Appl. Opt. 53, 3723–3736 (2014).
[Crossref] [PubMed]

K. Bertling, J. Perchoux, T. Taimre, R. Malkin, D. Robert, A. D. Rakić, and T. Bosch, “Imaging of acoustic fields using optical feedback interferometry,” Opt. Express 22, 30346–30356 (2014).
[Crossref]

J. Tucker, A. Mowla, J. Herbert, M. Fuentes, C. Freakley, K. Bertling, YL. Lim, R. Matharu, J. Perchoux, T. Taimre, S. Wilson, and A. D. Rakić, “Self-mixing sensing system based on uncooled vertical-cavity surface-emitting laser array: Linking multichannel operation and enhanced performance,” Opt. Lett. 39, 394–397 (2014).
[Crossref] [PubMed]

YL. Lim, T. Taimre, K. Bertling, P. Dean, D. Indjin, A. Valavanis, S. P. Khanna, M. Lachab, H. Schaider, T. W. Prow, H. P. Soyer, S. J. Wilson, E. H. Linfield, A. G. Davies, and A. D. Rakić, “High-contrast coherent terahertz imaging of porcine tissue via swept-frequency feedback interferometry,” Bio. Opt. Express 5, 3981–3989 (2014).
[Crossref]

L. Campagnolo, M. Nikolić, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubiere, L. Prat, A. D. Rakić, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluid. 14, 113–119 (2013)
[Crossref]

YL. Lim, R. Kliese, K. Bertling, K. Tanimizu, P. Jacobs, and A. D. Rakić, “Self-mixing flow sensor using a monolithic VCSEL array with parallel readout,” Opt. Express 18, 11720–11727 (2010).
[Crossref] [PubMed]

Blackstone, E. H.

R. C. Starling, N. Moazami, S. C. Silvestry, G. Ewald, J. G. Rogers, C. A. Milano, J. E. Rame, M. A. Acker, E. H. Blackstone, J. Ehrlinger, L. Thuita, M. M. Mountis, E. G. Soltesz, B. W. Lytle, and N. G. Smedira, “Unexpected abrupt increase in left ventricular assist device thrombosis,” N. Eng. J. Med. 370, 33–40 (2014).
[Crossref]

Bosch, T.

J. Perchoux, A. Quotb, R. Atashkhooei, F. J. Azcona, E. E. Ramírez-Miquet, O. Bernal, A. Jha, A. Luna-Arriaga, C. Yanez, J. Caum, T. Bosch, and S. Royo, “Current developments on optical feedback interferometry as an all-optical sensor for biomedical applications,” Sensors 16, 694 (2016).
[Crossref]

T. Taimre, M. Nikolić, K. Bertling, YL. Lim, T. Bosch, and A. D. Rakić, “Laser feedback interferometry: A tutorial on the self-mixing effect for coherent sensing,” Adv. Opt. Photonics 7, 570–631 (2015).
[Crossref]

J. Al Roumy, J. Perchoux, YL. Lim, T. Taimre, A. D. Rakić, and T. Bosch, “Effect of injection current and temperature on signal strength in a laser diode optical feedback interferometer,” Appl. Opt. 54, 312–318 (2015).
[Crossref] [PubMed]

R. Kliese, T. Taimre, A. Bakar, YL. Lim, K. Bertling, M. Nikolić, J. Perchoux, T. Bosch, and A. D. Rakić, “Solving self-mixing equations for arbitrary feedback levels: A concise algorithm,” Appl. Opt. 53, 3723–3736 (2014).
[Crossref] [PubMed]

K. Bertling, J. Perchoux, T. Taimre, R. Malkin, D. Robert, A. D. Rakić, and T. Bosch, “Imaging of acoustic fields using optical feedback interferometry,” Opt. Express 22, 30346–30356 (2014).
[Crossref]

L. Campagnolo, M. Nikolić, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubiere, L. Prat, A. D. Rakić, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluid. 14, 113–119 (2013)
[Crossref]

Bowden, C. M.

G. P. Agrawal and C. M. Bowden, “Concept of linewidth enhancement factor in semiconductor lasers: its usefulness and limitations,” IEEE Photon. Tech. Lett. 5, 640–642 (1993).
[Crossref]

Buddhiwant, P.

N. Ghosh, P. Buddhiwant, A. Uppal, S. K. Majumder, H. S. Patel, and P. K. Gupta, “Simultaneous determination of size and refractive index of red blood cells by light scattering measurements,” Appl. Phys. Lett. 88, 084101 (2006).
[Crossref]

Campagnolo, L.

L. Campagnolo, M. Nikolić, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubiere, L. Prat, A. D. Rakić, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluid. 14, 113–119 (2013)
[Crossref]

Canpolat, M.

M. Uyuklu, M. Canpolat, H. J. Meiselman, and O. K. Baskurt, “Wavelength selection in measuring red blood cell aggregation based on light transmittance,” J. Biomed. Opt. 16, 117006 (2011)
[Crossref] [PubMed]

Caum, J.

J. Perchoux, A. Quotb, R. Atashkhooei, F. J. Azcona, E. E. Ramírez-Miquet, O. Bernal, A. Jha, A. Luna-Arriaga, C. Yanez, J. Caum, T. Bosch, and S. Royo, “Current developments on optical feedback interferometry as an all-optical sensor for biomedical applications,” Sensors 16, 694 (2016).
[Crossref]

Chen, D.

S. Qian and D. Chen, “Joint time-frequency analysis,” IEEE Signal Process. Mag. 16, 52–67 (1999).
[Crossref]

Chen, G.

G. Chen, D. Shen, M. Feng, and M. Yang, “An attenuated total reflection FT-IR spectroscopic study of polyamide 6/Clay nanocomposite fibers,” Macromol. Rapid Commun.,  25, 1121–1124 (2004).
[Crossref]

Chu, KY.

KY. Chu and A. R. Thompson, “Densities and Refractive Indices of Alcohol-Water Solutions of n-Propyl, Isopropyl, and Methyl Alcohols,” J. Chem. Eng. Data 7, 358–360 (1962).
[Crossref]

Chung, E. M.

M. J. Martin, E. M. Chung, K. V. Ramnarine, A. H. Goodall, A. R. Naylor, and D. H. Evans, “Thrombus size and doppler embolic signal intensity,” Cerebrovasc. Dis. 28, 397–405 (2009).
[Crossref] [PubMed]

Contreras, V.

da Costa Moreira, R.

R. Atashkhooei, E. Ramírez-Miquet, R. da Costa Moreira, A. Quotb, R. Santiago, and J. Perchoux, “Optical feedback flowmetry: Impact of particle concentration on the signal processing method,” IEEE Sensors J.,  18, 1457–1463 (2018)
[Crossref]

Davies, A. G.

J. Keeley, J. Freeman, K. Bertling, Y.L. Lim, R. A. Mohandas, T. Taimre, L. H. Li, D. Indjin, A. D. Rakić, E. H. Linfield, A. G. Davies, and P. Dean, “Measurement of the emission spectrum of a semiconductor laser using laser-feedback interferometry,” Sci. Rep. 7, 7236 (2017).
[Crossref] [PubMed]

YL. Lim, T. Taimre, K. Bertling, P. Dean, D. Indjin, A. Valavanis, S. P. Khanna, M. Lachab, H. Schaider, T. W. Prow, H. P. Soyer, S. J. Wilson, E. H. Linfield, A. G. Davies, and A. D. Rakić, “High-contrast coherent terahertz imaging of porcine tissue via swept-frequency feedback interferometry,” Bio. Opt. Express 5, 3981–3989 (2014).
[Crossref]

Dean, P.

J. Keeley, J. Freeman, K. Bertling, Y.L. Lim, R. A. Mohandas, T. Taimre, L. H. Li, D. Indjin, A. D. Rakić, E. H. Linfield, A. G. Davies, and P. Dean, “Measurement of the emission spectrum of a semiconductor laser using laser-feedback interferometry,” Sci. Rep. 7, 7236 (2017).
[Crossref] [PubMed]

YL. Lim, T. Taimre, K. Bertling, P. Dean, D. Indjin, A. Valavanis, S. P. Khanna, M. Lachab, H. Schaider, T. W. Prow, H. P. Soyer, S. J. Wilson, E. H. Linfield, A. G. Davies, and A. D. Rakić, “High-contrast coherent terahertz imaging of porcine tissue via swept-frequency feedback interferometry,” Bio. Opt. Express 5, 3981–3989 (2014).
[Crossref]

Dickinson, M.

C. Zakian, M. Dickinson, and T. King, “Dynamic light scattering by using self-mixing interferometry with a laser diode,” Appl. Opt. 45, 2240–2245 (2006).
[Crossref] [PubMed]

C. Zakian, M. Dickinson, and T. King, “Particle sizing and flow measurement using self-mixing interferometry with a laser diode,” J. Opt. A Pure Appl. Opt. 7, S445–S452 (2005).
[Crossref]

Donati, S.

S. Donati and M. Norgia, “Self-mixing interferometry for biomedical signals sensing,” IEEE J. Sel. Top. Quantum Electron. 20, 6900108 (2014).
[Crossref]

Du, B. W.

A. Mowla, B. W. Du, T. Taimre, K. Bertling, S. Wilson, H. P. Soyer, and A. D. Rakić, “Confocal laser feedback tomography for skin cancer detection,” Bio. Opt. Express 8, 4037–4048 (2017)
[Crossref]

Ehrlinger, J.

R. C. Starling, N. Moazami, S. C. Silvestry, G. Ewald, J. G. Rogers, C. A. Milano, J. E. Rame, M. A. Acker, E. H. Blackstone, J. Ehrlinger, L. Thuita, M. M. Mountis, E. G. Soltesz, B. W. Lytle, and N. G. Smedira, “Unexpected abrupt increase in left ventricular assist device thrombosis,” N. Eng. J. Med. 370, 33–40 (2014).
[Crossref]

Evans, D. H.

M. J. Martin, E. M. Chung, K. V. Ramnarine, A. H. Goodall, A. R. Naylor, and D. H. Evans, “Thrombus size and doppler embolic signal intensity,” Cerebrovasc. Dis. 28, 397–405 (2009).
[Crossref] [PubMed]

Ewald, G.

R. C. Starling, N. Moazami, S. C. Silvestry, G. Ewald, J. G. Rogers, C. A. Milano, J. E. Rame, M. A. Acker, E. H. Blackstone, J. Ehrlinger, L. Thuita, M. M. Mountis, E. G. Soltesz, B. W. Lytle, and N. G. Smedira, “Unexpected abrupt increase in left ventricular assist device thrombosis,” N. Eng. J. Med. 370, 33–40 (2014).
[Crossref]

Ewald, G. A.

S. J. Park, C. A. Milano, A. J. Tatooles, J. G. Rogers, R. M. Adamson, D. E. Steidley, G. A. Ewald, K. S. Sundareswaran, D. J. Farrar, and M. S. Slaughter, “Outcomes in advanced heart failure patients with left ventricular assist devices for destination therapy,” Circ. Heart. Fail. 5, 241–248 (2012).
[Crossref] [PubMed]

Farrar, D. J.

S. J. Park, C. A. Milano, A. J. Tatooles, J. G. Rogers, R. M. Adamson, D. E. Steidley, G. A. Ewald, K. S. Sundareswaran, D. J. Farrar, and M. S. Slaughter, “Outcomes in advanced heart failure patients with left ventricular assist devices for destination therapy,” Circ. Heart. Fail. 5, 241–248 (2012).
[Crossref] [PubMed]

Feng, M.

G. Chen, D. Shen, M. Feng, and M. Yang, “An attenuated total reflection FT-IR spectroscopic study of polyamide 6/Clay nanocomposite fibers,” Macromol. Rapid Commun.,  25, 1121–1124 (2004).
[Crossref]

Freakley, C.

Freeman, J.

J. Keeley, J. Freeman, K. Bertling, Y.L. Lim, R. A. Mohandas, T. Taimre, L. H. Li, D. Indjin, A. D. Rakić, E. H. Linfield, A. G. Davies, and P. Dean, “Measurement of the emission spectrum of a semiconductor laser using laser-feedback interferometry,” Sci. Rep. 7, 7236 (2017).
[Crossref] [PubMed]

Fuentes, M.

Ghosh, N.

N. Ghosh, P. Buddhiwant, A. Uppal, S. K. Majumder, H. S. Patel, and P. K. Gupta, “Simultaneous determination of size and refractive index of red blood cells by light scattering measurements,” Appl. Phys. Lett. 88, 084101 (2006).
[Crossref]

Goodall, A. H.

M. J. Martin, E. M. Chung, K. V. Ramnarine, A. H. Goodall, A. R. Naylor, and D. H. Evans, “Thrombus size and doppler embolic signal intensity,” Cerebrovasc. Dis. 28, 397–405 (2009).
[Crossref] [PubMed]

Gupta, P. K.

N. Ghosh, P. Buddhiwant, A. Uppal, S. K. Majumder, H. S. Patel, and P. K. Gupta, “Simultaneous determination of size and refractive index of red blood cells by light scattering measurements,” Appl. Phys. Lett. 88, 084101 (2006).
[Crossref]

Herbert, J.

Indjin, D.

J. Keeley, J. Freeman, K. Bertling, Y.L. Lim, R. A. Mohandas, T. Taimre, L. H. Li, D. Indjin, A. D. Rakić, E. H. Linfield, A. G. Davies, and P. Dean, “Measurement of the emission spectrum of a semiconductor laser using laser-feedback interferometry,” Sci. Rep. 7, 7236 (2017).
[Crossref] [PubMed]

YL. Lim, T. Taimre, K. Bertling, P. Dean, D. Indjin, A. Valavanis, S. P. Khanna, M. Lachab, H. Schaider, T. W. Prow, H. P. Soyer, S. J. Wilson, E. H. Linfield, A. G. Davies, and A. D. Rakić, “High-contrast coherent terahertz imaging of porcine tissue via swept-frequency feedback interferometry,” Bio. Opt. Express 5, 3981–3989 (2014).
[Crossref]

Jacobs, P.

Jesty, J.

J. Jesty and E. Beltrami, “Positive feedbacks of coagulation their role in threshold regulation,” Arteriosclerosis, Thrombosis, and Vascular Biology 25, 2463–2469 (2005).
[Crossref]

Jha, A.

J. Perchoux, A. Quotb, R. Atashkhooei, F. J. Azcona, E. E. Ramírez-Miquet, O. Bernal, A. Jha, A. Luna-Arriaga, C. Yanez, J. Caum, T. Bosch, and S. Royo, “Current developments on optical feedback interferometry as an all-optical sensor for biomedical applications,” Sensors 16, 694 (2016).
[Crossref]

Keeley, J.

J. Keeley, J. Freeman, K. Bertling, Y.L. Lim, R. A. Mohandas, T. Taimre, L. H. Li, D. Indjin, A. D. Rakić, E. H. Linfield, A. G. Davies, and P. Dean, “Measurement of the emission spectrum of a semiconductor laser using laser-feedback interferometry,” Sci. Rep. 7, 7236 (2017).
[Crossref] [PubMed]

Khanna, S. P.

YL. Lim, T. Taimre, K. Bertling, P. Dean, D. Indjin, A. Valavanis, S. P. Khanna, M. Lachab, H. Schaider, T. W. Prow, H. P. Soyer, S. J. Wilson, E. H. Linfield, A. G. Davies, and A. D. Rakić, “High-contrast coherent terahertz imaging of porcine tissue via swept-frequency feedback interferometry,” Bio. Opt. Express 5, 3981–3989 (2014).
[Crossref]

King, T.

C. Zakian, M. Dickinson, and T. King, “Dynamic light scattering by using self-mixing interferometry with a laser diode,” Appl. Opt. 45, 2240–2245 (2006).
[Crossref] [PubMed]

C. Zakian, M. Dickinson, and T. King, “Particle sizing and flow measurement using self-mixing interferometry with a laser diode,” J. Opt. A Pure Appl. Opt. 7, S445–S452 (2005).
[Crossref]

Kirklin, J. K.

J. K. Kirklin, D. C. Naftel, F. D. Pagani, R. L. Kormos, S. Myers, M. A. Acker, J. Rogers, M. S. Slaughter, and L. W. Stevenson, “Pump thrombosis in the thoratec HeartMate II device: An update analysis of the INTERMACS registry,” J. Heart Lung Transplant. 34, 1515–1526 (2015).
[Crossref] [PubMed]

Kliese, R.

Ko, J.-Y.

Kormos, R. L.

J. K. Kirklin, D. C. Naftel, F. D. Pagani, R. L. Kormos, S. Myers, M. A. Acker, J. Rogers, M. S. Slaughter, and L. W. Stevenson, “Pump thrombosis in the thoratec HeartMate II device: An update analysis of the INTERMACS registry,” J. Heart Lung Transplant. 34, 1515–1526 (2015).
[Crossref] [PubMed]

Lachab, M.

YL. Lim, T. Taimre, K. Bertling, P. Dean, D. Indjin, A. Valavanis, S. P. Khanna, M. Lachab, H. Schaider, T. W. Prow, H. P. Soyer, S. J. Wilson, E. H. Linfield, A. G. Davies, and A. D. Rakić, “High-contrast coherent terahertz imaging of porcine tissue via swept-frequency feedback interferometry,” Bio. Opt. Express 5, 3981–3989 (2014).
[Crossref]

Li, L. H.

J. Keeley, J. Freeman, K. Bertling, Y.L. Lim, R. A. Mohandas, T. Taimre, L. H. Li, D. Indjin, A. D. Rakić, E. H. Linfield, A. G. Davies, and P. Dean, “Measurement of the emission spectrum of a semiconductor laser using laser-feedback interferometry,” Sci. Rep. 7, 7236 (2017).
[Crossref] [PubMed]

Lim, Y. L.

L. Campagnolo, M. Nikolić, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubiere, L. Prat, A. D. Rakić, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluid. 14, 113–119 (2013)
[Crossref]

Lim, Y.L.

J. Keeley, J. Freeman, K. Bertling, Y.L. Lim, R. A. Mohandas, T. Taimre, L. H. Li, D. Indjin, A. D. Rakić, E. H. Linfield, A. G. Davies, and P. Dean, “Measurement of the emission spectrum of a semiconductor laser using laser-feedback interferometry,” Sci. Rep. 7, 7236 (2017).
[Crossref] [PubMed]

Lim, YL.

T. Taimre, M. Nikolić, K. Bertling, YL. Lim, T. Bosch, and A. D. Rakić, “Laser feedback interferometry: A tutorial on the self-mixing effect for coherent sensing,” Adv. Opt. Photonics 7, 570–631 (2015).
[Crossref]

J. Al Roumy, J. Perchoux, YL. Lim, T. Taimre, A. D. Rakić, and T. Bosch, “Effect of injection current and temperature on signal strength in a laser diode optical feedback interferometer,” Appl. Opt. 54, 312–318 (2015).
[Crossref] [PubMed]

A. Mowla, M. Nikolić, T. Taimre, J. Tucker, YL. Lim, K. Bertling, and A. D. Rakić, “Effect of the optical system on the doppler spectrum in laser-feedback interferometry,” Appl. Opt. 54, 18–26 (2015).
[Crossref] [PubMed]

R. Kliese, T. Taimre, A. Bakar, YL. Lim, K. Bertling, M. Nikolić, J. Perchoux, T. Bosch, and A. D. Rakić, “Solving self-mixing equations for arbitrary feedback levels: A concise algorithm,” Appl. Opt. 53, 3723–3736 (2014).
[Crossref] [PubMed]

J. Tucker, A. Mowla, J. Herbert, M. Fuentes, C. Freakley, K. Bertling, YL. Lim, R. Matharu, J. Perchoux, T. Taimre, S. Wilson, and A. D. Rakić, “Self-mixing sensing system based on uncooled vertical-cavity surface-emitting laser array: Linking multichannel operation and enhanced performance,” Opt. Lett. 39, 394–397 (2014).
[Crossref] [PubMed]

YL. Lim, T. Taimre, K. Bertling, P. Dean, D. Indjin, A. Valavanis, S. P. Khanna, M. Lachab, H. Schaider, T. W. Prow, H. P. Soyer, S. J. Wilson, E. H. Linfield, A. G. Davies, and A. D. Rakić, “High-contrast coherent terahertz imaging of porcine tissue via swept-frequency feedback interferometry,” Bio. Opt. Express 5, 3981–3989 (2014).
[Crossref]

YL. Lim, R. Kliese, K. Bertling, K. Tanimizu, P. Jacobs, and A. D. Rakić, “Self-mixing flow sensor using a monolithic VCSEL array with parallel readout,” Opt. Express 18, 11720–11727 (2010).
[Crossref] [PubMed]

Linfield, E. H.

J. Keeley, J. Freeman, K. Bertling, Y.L. Lim, R. A. Mohandas, T. Taimre, L. H. Li, D. Indjin, A. D. Rakić, E. H. Linfield, A. G. Davies, and P. Dean, “Measurement of the emission spectrum of a semiconductor laser using laser-feedback interferometry,” Sci. Rep. 7, 7236 (2017).
[Crossref] [PubMed]

YL. Lim, T. Taimre, K. Bertling, P. Dean, D. Indjin, A. Valavanis, S. P. Khanna, M. Lachab, H. Schaider, T. W. Prow, H. P. Soyer, S. J. Wilson, E. H. Linfield, A. G. Davies, and A. D. Rakić, “High-contrast coherent terahertz imaging of porcine tissue via swept-frequency feedback interferometry,” Bio. Opt. Express 5, 3981–3989 (2014).
[Crossref]

Lönnqvist, J.

Loubiere, K.

L. Campagnolo, M. Nikolić, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubiere, L. Prat, A. D. Rakić, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluid. 14, 113–119 (2013)
[Crossref]

Luna-Arriaga, A.

J. Perchoux, A. Quotb, R. Atashkhooei, F. J. Azcona, E. E. Ramírez-Miquet, O. Bernal, A. Jha, A. Luna-Arriaga, C. Yanez, J. Caum, T. Bosch, and S. Royo, “Current developments on optical feedback interferometry as an all-optical sensor for biomedical applications,” Sensors 16, 694 (2016).
[Crossref]

Lytle, B. W.

R. C. Starling, N. Moazami, S. C. Silvestry, G. Ewald, J. G. Rogers, C. A. Milano, J. E. Rame, M. A. Acker, E. H. Blackstone, J. Ehrlinger, L. Thuita, M. M. Mountis, E. G. Soltesz, B. W. Lytle, and N. G. Smedira, “Unexpected abrupt increase in left ventricular assist device thrombosis,” N. Eng. J. Med. 370, 33–40 (2014).
[Crossref]

Majumder, S. K.

N. Ghosh, P. Buddhiwant, A. Uppal, S. K. Majumder, H. S. Patel, and P. K. Gupta, “Simultaneous determination of size and refractive index of red blood cells by light scattering measurements,” Appl. Phys. Lett. 88, 084101 (2006).
[Crossref]

Malkin, R.

Martin, M. J.

M. J. Martin, E. M. Chung, K. V. Ramnarine, A. H. Goodall, A. R. Naylor, and D. H. Evans, “Thrombus size and doppler embolic signal intensity,” Cerebrovasc. Dis. 28, 397–405 (2009).
[Crossref] [PubMed]

Matharu, R.

Meiselman, H. J.

M. Uyuklu, M. Canpolat, H. J. Meiselman, and O. K. Baskurt, “Wavelength selection in measuring red blood cell aggregation based on light transmittance,” J. Biomed. Opt. 16, 117006 (2011)
[Crossref] [PubMed]

Milano, C. A.

R. C. Starling, N. Moazami, S. C. Silvestry, G. Ewald, J. G. Rogers, C. A. Milano, J. E. Rame, M. A. Acker, E. H. Blackstone, J. Ehrlinger, L. Thuita, M. M. Mountis, E. G. Soltesz, B. W. Lytle, and N. G. Smedira, “Unexpected abrupt increase in left ventricular assist device thrombosis,” N. Eng. J. Med. 370, 33–40 (2014).
[Crossref]

S. J. Park, C. A. Milano, A. J. Tatooles, J. G. Rogers, R. M. Adamson, D. E. Steidley, G. A. Ewald, K. S. Sundareswaran, D. J. Farrar, and M. S. Slaughter, “Outcomes in advanced heart failure patients with left ventricular assist devices for destination therapy,” Circ. Heart. Fail. 5, 241–248 (2012).
[Crossref] [PubMed]

Miyasaka, Y.

Moazami, N.

R. C. Starling, N. Moazami, S. C. Silvestry, G. Ewald, J. G. Rogers, C. A. Milano, J. E. Rame, M. A. Acker, E. H. Blackstone, J. Ehrlinger, L. Thuita, M. M. Mountis, E. G. Soltesz, B. W. Lytle, and N. G. Smedira, “Unexpected abrupt increase in left ventricular assist device thrombosis,” N. Eng. J. Med. 370, 33–40 (2014).
[Crossref]

Mochizuki, A.

Mohandas, R. A.

J. Keeley, J. Freeman, K. Bertling, Y.L. Lim, R. A. Mohandas, T. Taimre, L. H. Li, D. Indjin, A. D. Rakić, E. H. Linfield, A. G. Davies, and P. Dean, “Measurement of the emission spectrum of a semiconductor laser using laser-feedback interferometry,” Sci. Rep. 7, 7236 (2017).
[Crossref] [PubMed]

Mountis, M. M.

R. C. Starling, N. Moazami, S. C. Silvestry, G. Ewald, J. G. Rogers, C. A. Milano, J. E. Rame, M. A. Acker, E. H. Blackstone, J. Ehrlinger, L. Thuita, M. M. Mountis, E. G. Soltesz, B. W. Lytle, and N. G. Smedira, “Unexpected abrupt increase in left ventricular assist device thrombosis,” N. Eng. J. Med. 370, 33–40 (2014).
[Crossref]

Mowla, A.

Myers, S.

J. K. Kirklin, D. C. Naftel, F. D. Pagani, R. L. Kormos, S. Myers, M. A. Acker, J. Rogers, M. S. Slaughter, and L. W. Stevenson, “Pump thrombosis in the thoratec HeartMate II device: An update analysis of the INTERMACS registry,” J. Heart Lung Transplant. 34, 1515–1526 (2015).
[Crossref] [PubMed]

Naftel, D. C.

J. K. Kirklin, D. C. Naftel, F. D. Pagani, R. L. Kormos, S. Myers, M. A. Acker, J. Rogers, M. S. Slaughter, and L. W. Stevenson, “Pump thrombosis in the thoratec HeartMate II device: An update analysis of the INTERMACS registry,” J. Heart Lung Transplant. 34, 1515–1526 (2015).
[Crossref] [PubMed]

Naylor, A. R.

M. J. Martin, E. M. Chung, K. V. Ramnarine, A. H. Goodall, A. R. Naylor, and D. H. Evans, “Thrombus size and doppler embolic signal intensity,” Cerebrovasc. Dis. 28, 397–405 (2009).
[Crossref] [PubMed]

Nikolic, M.

T. Taimre, M. Nikolić, K. Bertling, YL. Lim, T. Bosch, and A. D. Rakić, “Laser feedback interferometry: A tutorial on the self-mixing effect for coherent sensing,” Adv. Opt. Photonics 7, 570–631 (2015).
[Crossref]

A. Mowla, M. Nikolić, T. Taimre, J. Tucker, YL. Lim, K. Bertling, and A. D. Rakić, “Effect of the optical system on the doppler spectrum in laser-feedback interferometry,” Appl. Opt. 54, 18–26 (2015).
[Crossref] [PubMed]

R. Kliese, T. Taimre, A. Bakar, YL. Lim, K. Bertling, M. Nikolić, J. Perchoux, T. Bosch, and A. D. Rakić, “Solving self-mixing equations for arbitrary feedback levels: A concise algorithm,” Appl. Opt. 53, 3723–3736 (2014).
[Crossref] [PubMed]

L. Campagnolo, M. Nikolić, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubiere, L. Prat, A. D. Rakić, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluid. 14, 113–119 (2013)
[Crossref]

Norgia, M.

S. Donati and M. Norgia, “Self-mixing interferometry for biomedical signals sensing,” IEEE J. Sel. Top. Quantum Electron. 20, 6900108 (2014).
[Crossref]

Ohtomo, T.

Oishi, T.

Otsuka, K.

Pagani, F. D.

J. K. Kirklin, D. C. Naftel, F. D. Pagani, R. L. Kormos, S. Myers, M. A. Acker, J. Rogers, M. S. Slaughter, and L. W. Stevenson, “Pump thrombosis in the thoratec HeartMate II device: An update analysis of the INTERMACS registry,” J. Heart Lung Transplant. 34, 1515–1526 (2015).
[Crossref] [PubMed]

Park, S. J.

S. J. Park, C. A. Milano, A. J. Tatooles, J. G. Rogers, R. M. Adamson, D. E. Steidley, G. A. Ewald, K. S. Sundareswaran, D. J. Farrar, and M. S. Slaughter, “Outcomes in advanced heart failure patients with left ventricular assist devices for destination therapy,” Circ. Heart. Fail. 5, 241–248 (2012).
[Crossref] [PubMed]

Patel, H. S.

N. Ghosh, P. Buddhiwant, A. Uppal, S. K. Majumder, H. S. Patel, and P. K. Gupta, “Simultaneous determination of size and refractive index of red blood cells by light scattering measurements,” Appl. Phys. Lett. 88, 084101 (2006).
[Crossref]

Perchoux, J.

R. Atashkhooei, E. Ramírez-Miquet, R. da Costa Moreira, A. Quotb, R. Santiago, and J. Perchoux, “Optical feedback flowmetry: Impact of particle concentration on the signal processing method,” IEEE Sensors J.,  18, 1457–1463 (2018)
[Crossref]

J. Perchoux, A. Quotb, R. Atashkhooei, F. J. Azcona, E. E. Ramírez-Miquet, O. Bernal, A. Jha, A. Luna-Arriaga, C. Yanez, J. Caum, T. Bosch, and S. Royo, “Current developments on optical feedback interferometry as an all-optical sensor for biomedical applications,” Sensors 16, 694 (2016).
[Crossref]

J. Al Roumy, J. Perchoux, YL. Lim, T. Taimre, A. D. Rakić, and T. Bosch, “Effect of injection current and temperature on signal strength in a laser diode optical feedback interferometer,” Appl. Opt. 54, 312–318 (2015).
[Crossref] [PubMed]

R. Kliese, T. Taimre, A. Bakar, YL. Lim, K. Bertling, M. Nikolić, J. Perchoux, T. Bosch, and A. D. Rakić, “Solving self-mixing equations for arbitrary feedback levels: A concise algorithm,” Appl. Opt. 53, 3723–3736 (2014).
[Crossref] [PubMed]

K. Bertling, J. Perchoux, T. Taimre, R. Malkin, D. Robert, A. D. Rakić, and T. Bosch, “Imaging of acoustic fields using optical feedback interferometry,” Opt. Express 22, 30346–30356 (2014).
[Crossref]

J. Tucker, A. Mowla, J. Herbert, M. Fuentes, C. Freakley, K. Bertling, YL. Lim, R. Matharu, J. Perchoux, T. Taimre, S. Wilson, and A. D. Rakić, “Self-mixing sensing system based on uncooled vertical-cavity surface-emitting laser array: Linking multichannel operation and enhanced performance,” Opt. Lett. 39, 394–397 (2014).
[Crossref] [PubMed]

L. Campagnolo, M. Nikolić, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubiere, L. Prat, A. D. Rakić, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluid. 14, 113–119 (2013)
[Crossref]

Prat, L.

L. Campagnolo, M. Nikolić, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubiere, L. Prat, A. D. Rakić, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluid. 14, 113–119 (2013)
[Crossref]

Prow, T. W.

YL. Lim, T. Taimre, K. Bertling, P. Dean, D. Indjin, A. Valavanis, S. P. Khanna, M. Lachab, H. Schaider, T. W. Prow, H. P. Soyer, S. J. Wilson, E. H. Linfield, A. G. Davies, and A. D. Rakić, “High-contrast coherent terahertz imaging of porcine tissue via swept-frequency feedback interferometry,” Bio. Opt. Express 5, 3981–3989 (2014).
[Crossref]

Qian, S.

S. Qian and D. Chen, “Joint time-frequency analysis,” IEEE Signal Process. Mag. 16, 52–67 (1999).
[Crossref]

Quotb, A.

R. Atashkhooei, E. Ramírez-Miquet, R. da Costa Moreira, A. Quotb, R. Santiago, and J. Perchoux, “Optical feedback flowmetry: Impact of particle concentration on the signal processing method,” IEEE Sensors J.,  18, 1457–1463 (2018)
[Crossref]

J. Perchoux, A. Quotb, R. Atashkhooei, F. J. Azcona, E. E. Ramírez-Miquet, O. Bernal, A. Jha, A. Luna-Arriaga, C. Yanez, J. Caum, T. Bosch, and S. Royo, “Current developments on optical feedback interferometry as an all-optical sensor for biomedical applications,” Sensors 16, 694 (2016).
[Crossref]

Rakic, A.

J. Herbert, K. Bertling, T. Taimre, A. Rakić, and S. Wilson, “Surface roughness characterisation using optical feedback interferometry,” Electron. Lett. 53, 268–270 (2017).
[Crossref]

Rakic, A. D.

J. Keeley, J. Freeman, K. Bertling, Y.L. Lim, R. A. Mohandas, T. Taimre, L. H. Li, D. Indjin, A. D. Rakić, E. H. Linfield, A. G. Davies, and P. Dean, “Measurement of the emission spectrum of a semiconductor laser using laser-feedback interferometry,” Sci. Rep. 7, 7236 (2017).
[Crossref] [PubMed]

A. Mowla, B. W. Du, T. Taimre, K. Bertling, S. Wilson, H. P. Soyer, and A. D. Rakić, “Confocal laser feedback tomography for skin cancer detection,” Bio. Opt. Express 8, 4037–4048 (2017)
[Crossref]

T. Taimre, M. Nikolić, K. Bertling, YL. Lim, T. Bosch, and A. D. Rakić, “Laser feedback interferometry: A tutorial on the self-mixing effect for coherent sensing,” Adv. Opt. Photonics 7, 570–631 (2015).
[Crossref]

A. Mowla, M. Nikolić, T. Taimre, J. Tucker, YL. Lim, K. Bertling, and A. D. Rakić, “Effect of the optical system on the doppler spectrum in laser-feedback interferometry,” Appl. Opt. 54, 18–26 (2015).
[Crossref] [PubMed]

J. Al Roumy, J. Perchoux, YL. Lim, T. Taimre, A. D. Rakić, and T. Bosch, “Effect of injection current and temperature on signal strength in a laser diode optical feedback interferometer,” Appl. Opt. 54, 312–318 (2015).
[Crossref] [PubMed]

R. Kliese, T. Taimre, A. Bakar, YL. Lim, K. Bertling, M. Nikolić, J. Perchoux, T. Bosch, and A. D. Rakić, “Solving self-mixing equations for arbitrary feedback levels: A concise algorithm,” Appl. Opt. 53, 3723–3736 (2014).
[Crossref] [PubMed]

K. Bertling, J. Perchoux, T. Taimre, R. Malkin, D. Robert, A. D. Rakić, and T. Bosch, “Imaging of acoustic fields using optical feedback interferometry,” Opt. Express 22, 30346–30356 (2014).
[Crossref]

J. Tucker, A. Mowla, J. Herbert, M. Fuentes, C. Freakley, K. Bertling, YL. Lim, R. Matharu, J. Perchoux, T. Taimre, S. Wilson, and A. D. Rakić, “Self-mixing sensing system based on uncooled vertical-cavity surface-emitting laser array: Linking multichannel operation and enhanced performance,” Opt. Lett. 39, 394–397 (2014).
[Crossref] [PubMed]

YL. Lim, T. Taimre, K. Bertling, P. Dean, D. Indjin, A. Valavanis, S. P. Khanna, M. Lachab, H. Schaider, T. W. Prow, H. P. Soyer, S. J. Wilson, E. H. Linfield, A. G. Davies, and A. D. Rakić, “High-contrast coherent terahertz imaging of porcine tissue via swept-frequency feedback interferometry,” Bio. Opt. Express 5, 3981–3989 (2014).
[Crossref]

L. Campagnolo, M. Nikolić, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubiere, L. Prat, A. D. Rakić, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluid. 14, 113–119 (2013)
[Crossref]

YL. Lim, R. Kliese, K. Bertling, K. Tanimizu, P. Jacobs, and A. D. Rakić, “Self-mixing flow sensor using a monolithic VCSEL array with parallel readout,” Opt. Express 18, 11720–11727 (2010).
[Crossref] [PubMed]

Rame, J. E.

R. C. Starling, N. Moazami, S. C. Silvestry, G. Ewald, J. G. Rogers, C. A. Milano, J. E. Rame, M. A. Acker, E. H. Blackstone, J. Ehrlinger, L. Thuita, M. M. Mountis, E. G. Soltesz, B. W. Lytle, and N. G. Smedira, “Unexpected abrupt increase in left ventricular assist device thrombosis,” N. Eng. J. Med. 370, 33–40 (2014).
[Crossref]

Ramírez-Miquet, E.

R. Atashkhooei, E. Ramírez-Miquet, R. da Costa Moreira, A. Quotb, R. Santiago, and J. Perchoux, “Optical feedback flowmetry: Impact of particle concentration on the signal processing method,” IEEE Sensors J.,  18, 1457–1463 (2018)
[Crossref]

Ramírez-Miquet, E. E.

J. Perchoux, A. Quotb, R. Atashkhooei, F. J. Azcona, E. E. Ramírez-Miquet, O. Bernal, A. Jha, A. Luna-Arriaga, C. Yanez, J. Caum, T. Bosch, and S. Royo, “Current developments on optical feedback interferometry as an all-optical sensor for biomedical applications,” Sensors 16, 694 (2016).
[Crossref]

Ramnarine, K. V.

M. J. Martin, E. M. Chung, K. V. Ramnarine, A. H. Goodall, A. R. Naylor, and D. H. Evans, “Thrombus size and doppler embolic signal intensity,” Cerebrovasc. Dis. 28, 397–405 (2009).
[Crossref] [PubMed]

Robert, D.

Rogers, J.

J. K. Kirklin, D. C. Naftel, F. D. Pagani, R. L. Kormos, S. Myers, M. A. Acker, J. Rogers, M. S. Slaughter, and L. W. Stevenson, “Pump thrombosis in the thoratec HeartMate II device: An update analysis of the INTERMACS registry,” J. Heart Lung Transplant. 34, 1515–1526 (2015).
[Crossref] [PubMed]

Rogers, J. G.

R. C. Starling, N. Moazami, S. C. Silvestry, G. Ewald, J. G. Rogers, C. A. Milano, J. E. Rame, M. A. Acker, E. H. Blackstone, J. Ehrlinger, L. Thuita, M. M. Mountis, E. G. Soltesz, B. W. Lytle, and N. G. Smedira, “Unexpected abrupt increase in left ventricular assist device thrombosis,” N. Eng. J. Med. 370, 33–40 (2014).
[Crossref]

S. J. Park, C. A. Milano, A. J. Tatooles, J. G. Rogers, R. M. Adamson, D. E. Steidley, G. A. Ewald, K. S. Sundareswaran, D. J. Farrar, and M. S. Slaughter, “Outcomes in advanced heart failure patients with left ventricular assist devices for destination therapy,” Circ. Heart. Fail. 5, 241–248 (2012).
[Crossref] [PubMed]

Royo, S.

J. Perchoux, A. Quotb, R. Atashkhooei, F. J. Azcona, E. E. Ramírez-Miquet, O. Bernal, A. Jha, A. Luna-Arriaga, C. Yanez, J. Caum, T. Bosch, and S. Royo, “Current developments on optical feedback interferometry as an all-optical sensor for biomedical applications,” Sensors 16, 694 (2016).
[Crossref]

Samama, C.-M.

C.-M. Samama, “Thromboelastography: Another point of view,” Anesth. Analg. 93, 517–518 (2001).

Santiago, R.

R. Atashkhooei, E. Ramírez-Miquet, R. da Costa Moreira, A. Quotb, R. Santiago, and J. Perchoux, “Optical feedback flowmetry: Impact of particle concentration on the signal processing method,” IEEE Sensors J.,  18, 1457–1463 (2018)
[Crossref]

Schaider, H.

YL. Lim, T. Taimre, K. Bertling, P. Dean, D. Indjin, A. Valavanis, S. P. Khanna, M. Lachab, H. Schaider, T. W. Prow, H. P. Soyer, S. J. Wilson, E. H. Linfield, A. G. Davies, and A. D. Rakić, “High-contrast coherent terahertz imaging of porcine tissue via swept-frequency feedback interferometry,” Bio. Opt. Express 5, 3981–3989 (2014).
[Crossref]

Shen, D.

G. Chen, D. Shen, M. Feng, and M. Yang, “An attenuated total reflection FT-IR spectroscopic study of polyamide 6/Clay nanocomposite fibers,” Macromol. Rapid Commun.,  25, 1121–1124 (2004).
[Crossref]

Shen, J.

H. Wang and J. Shen, “Fast and economic signal processing technique of laser diode self-mixing interferometry for nanoparticle size measurement,” Appl. Phys. B 115, 285–291 (2014).
[Crossref]

Shinohara, S.

Silvestry, S. C.

R. C. Starling, N. Moazami, S. C. Silvestry, G. Ewald, J. G. Rogers, C. A. Milano, J. E. Rame, M. A. Acker, E. H. Blackstone, J. Ehrlinger, L. Thuita, M. M. Mountis, E. G. Soltesz, B. W. Lytle, and N. G. Smedira, “Unexpected abrupt increase in left ventricular assist device thrombosis,” N. Eng. J. Med. 370, 33–40 (2014).
[Crossref]

Slaughter, M. S.

J. K. Kirklin, D. C. Naftel, F. D. Pagani, R. L. Kormos, S. Myers, M. A. Acker, J. Rogers, M. S. Slaughter, and L. W. Stevenson, “Pump thrombosis in the thoratec HeartMate II device: An update analysis of the INTERMACS registry,” J. Heart Lung Transplant. 34, 1515–1526 (2015).
[Crossref] [PubMed]

S. J. Park, C. A. Milano, A. J. Tatooles, J. G. Rogers, R. M. Adamson, D. E. Steidley, G. A. Ewald, K. S. Sundareswaran, D. J. Farrar, and M. S. Slaughter, “Outcomes in advanced heart failure patients with left ventricular assist devices for destination therapy,” Circ. Heart. Fail. 5, 241–248 (2012).
[Crossref] [PubMed]

Smedira, N. G.

R. C. Starling, N. Moazami, S. C. Silvestry, G. Ewald, J. G. Rogers, C. A. Milano, J. E. Rame, M. A. Acker, E. H. Blackstone, J. Ehrlinger, L. Thuita, M. M. Mountis, E. G. Soltesz, B. W. Lytle, and N. G. Smedira, “Unexpected abrupt increase in left ventricular assist device thrombosis,” N. Eng. J. Med. 370, 33–40 (2014).
[Crossref]

Soltesz, E. G.

R. C. Starling, N. Moazami, S. C. Silvestry, G. Ewald, J. G. Rogers, C. A. Milano, J. E. Rame, M. A. Acker, E. H. Blackstone, J. Ehrlinger, L. Thuita, M. M. Mountis, E. G. Soltesz, B. W. Lytle, and N. G. Smedira, “Unexpected abrupt increase in left ventricular assist device thrombosis,” N. Eng. J. Med. 370, 33–40 (2014).
[Crossref]

Soyer, H. P.

A. Mowla, B. W. Du, T. Taimre, K. Bertling, S. Wilson, H. P. Soyer, and A. D. Rakić, “Confocal laser feedback tomography for skin cancer detection,” Bio. Opt. Express 8, 4037–4048 (2017)
[Crossref]

YL. Lim, T. Taimre, K. Bertling, P. Dean, D. Indjin, A. Valavanis, S. P. Khanna, M. Lachab, H. Schaider, T. W. Prow, H. P. Soyer, S. J. Wilson, E. H. Linfield, A. G. Davies, and A. D. Rakić, “High-contrast coherent terahertz imaging of porcine tissue via swept-frequency feedback interferometry,” Bio. Opt. Express 5, 3981–3989 (2014).
[Crossref]

Starling, R. C.

R. C. Starling, N. Moazami, S. C. Silvestry, G. Ewald, J. G. Rogers, C. A. Milano, J. E. Rame, M. A. Acker, E. H. Blackstone, J. Ehrlinger, L. Thuita, M. M. Mountis, E. G. Soltesz, B. W. Lytle, and N. G. Smedira, “Unexpected abrupt increase in left ventricular assist device thrombosis,” N. Eng. J. Med. 370, 33–40 (2014).
[Crossref]

Steidley, D. E.

S. J. Park, C. A. Milano, A. J. Tatooles, J. G. Rogers, R. M. Adamson, D. E. Steidley, G. A. Ewald, K. S. Sundareswaran, D. J. Farrar, and M. S. Slaughter, “Outcomes in advanced heart failure patients with left ventricular assist devices for destination therapy,” Circ. Heart. Fail. 5, 241–248 (2012).
[Crossref] [PubMed]

Stevenson, L. W.

J. K. Kirklin, D. C. Naftel, F. D. Pagani, R. L. Kormos, S. Myers, M. A. Acker, J. Rogers, M. S. Slaughter, and L. W. Stevenson, “Pump thrombosis in the thoratec HeartMate II device: An update analysis of the INTERMACS registry,” J. Heart Lung Transplant. 34, 1515–1526 (2015).
[Crossref] [PubMed]

Sudo, S.

Sumi, M.

Sundareswaran, K. S.

S. J. Park, C. A. Milano, A. J. Tatooles, J. G. Rogers, R. M. Adamson, D. E. Steidley, G. A. Ewald, K. S. Sundareswaran, D. J. Farrar, and M. S. Slaughter, “Outcomes in advanced heart failure patients with left ventricular assist devices for destination therapy,” Circ. Heart. Fail. 5, 241–248 (2012).
[Crossref] [PubMed]

Taimre, T.

J. Herbert, K. Bertling, T. Taimre, A. Rakić, and S. Wilson, “Surface roughness characterisation using optical feedback interferometry,” Electron. Lett. 53, 268–270 (2017).
[Crossref]

J. Keeley, J. Freeman, K. Bertling, Y.L. Lim, R. A. Mohandas, T. Taimre, L. H. Li, D. Indjin, A. D. Rakić, E. H. Linfield, A. G. Davies, and P. Dean, “Measurement of the emission spectrum of a semiconductor laser using laser-feedback interferometry,” Sci. Rep. 7, 7236 (2017).
[Crossref] [PubMed]

A. Mowla, B. W. Du, T. Taimre, K. Bertling, S. Wilson, H. P. Soyer, and A. D. Rakić, “Confocal laser feedback tomography for skin cancer detection,” Bio. Opt. Express 8, 4037–4048 (2017)
[Crossref]

T. Taimre, M. Nikolić, K. Bertling, YL. Lim, T. Bosch, and A. D. Rakić, “Laser feedback interferometry: A tutorial on the self-mixing effect for coherent sensing,” Adv. Opt. Photonics 7, 570–631 (2015).
[Crossref]

J. Al Roumy, J. Perchoux, YL. Lim, T. Taimre, A. D. Rakić, and T. Bosch, “Effect of injection current and temperature on signal strength in a laser diode optical feedback interferometer,” Appl. Opt. 54, 312–318 (2015).
[Crossref] [PubMed]

A. Mowla, M. Nikolić, T. Taimre, J. Tucker, YL. Lim, K. Bertling, and A. D. Rakić, “Effect of the optical system on the doppler spectrum in laser-feedback interferometry,” Appl. Opt. 54, 18–26 (2015).
[Crossref] [PubMed]

K. Bertling, J. Perchoux, T. Taimre, R. Malkin, D. Robert, A. D. Rakić, and T. Bosch, “Imaging of acoustic fields using optical feedback interferometry,” Opt. Express 22, 30346–30356 (2014).
[Crossref]

R. Kliese, T. Taimre, A. Bakar, YL. Lim, K. Bertling, M. Nikolić, J. Perchoux, T. Bosch, and A. D. Rakić, “Solving self-mixing equations for arbitrary feedback levels: A concise algorithm,” Appl. Opt. 53, 3723–3736 (2014).
[Crossref] [PubMed]

J. Tucker, A. Mowla, J. Herbert, M. Fuentes, C. Freakley, K. Bertling, YL. Lim, R. Matharu, J. Perchoux, T. Taimre, S. Wilson, and A. D. Rakić, “Self-mixing sensing system based on uncooled vertical-cavity surface-emitting laser array: Linking multichannel operation and enhanced performance,” Opt. Lett. 39, 394–397 (2014).
[Crossref] [PubMed]

YL. Lim, T. Taimre, K. Bertling, P. Dean, D. Indjin, A. Valavanis, S. P. Khanna, M. Lachab, H. Schaider, T. W. Prow, H. P. Soyer, S. J. Wilson, E. H. Linfield, A. G. Davies, and A. D. Rakić, “High-contrast coherent terahertz imaging of porcine tissue via swept-frequency feedback interferometry,” Bio. Opt. Express 5, 3981–3989 (2014).
[Crossref]

Takahashi, Y.

Tanimizu, K.

Tatooles, A. J.

S. J. Park, C. A. Milano, A. J. Tatooles, J. G. Rogers, R. M. Adamson, D. E. Steidley, G. A. Ewald, K. S. Sundareswaran, D. J. Farrar, and M. S. Slaughter, “Outcomes in advanced heart failure patients with left ventricular assist devices for destination therapy,” Circ. Heart. Fail. 5, 241–248 (2012).
[Crossref] [PubMed]

Thompson, A. R.

KY. Chu and A. R. Thompson, “Densities and Refractive Indices of Alcohol-Water Solutions of n-Propyl, Isopropyl, and Methyl Alcohols,” J. Chem. Eng. Data 7, 358–360 (1962).
[Crossref]

Thuita, L.

R. C. Starling, N. Moazami, S. C. Silvestry, G. Ewald, J. G. Rogers, C. A. Milano, J. E. Rame, M. A. Acker, E. H. Blackstone, J. Ehrlinger, L. Thuita, M. M. Mountis, E. G. Soltesz, B. W. Lytle, and N. G. Smedira, “Unexpected abrupt increase in left ventricular assist device thrombosis,” N. Eng. J. Med. 370, 33–40 (2014).
[Crossref]

Toivonen, J.

Tucker, J.

Uppal, A.

N. Ghosh, P. Buddhiwant, A. Uppal, S. K. Majumder, H. S. Patel, and P. K. Gupta, “Simultaneous determination of size and refractive index of red blood cells by light scattering measurements,” Appl. Phys. Lett. 88, 084101 (2006).
[Crossref]

Uyuklu, M.

M. Uyuklu, M. Canpolat, H. J. Meiselman, and O. K. Baskurt, “Wavelength selection in measuring red blood cell aggregation based on light transmittance,” J. Biomed. Opt. 16, 117006 (2011)
[Crossref] [PubMed]

Valavanis, A.

YL. Lim, T. Taimre, K. Bertling, P. Dean, D. Indjin, A. Valavanis, S. P. Khanna, M. Lachab, H. Schaider, T. W. Prow, H. P. Soyer, S. J. Wilson, E. H. Linfield, A. G. Davies, and A. D. Rakić, “High-contrast coherent terahertz imaging of porcine tissue via swept-frequency feedback interferometry,” Bio. Opt. Express 5, 3981–3989 (2014).
[Crossref]

Wang, H.

H. Wang and J. Shen, “Fast and economic signal processing technique of laser diode self-mixing interferometry for nanoparticle size measurement,” Appl. Phys. B 115, 285–291 (2014).
[Crossref]

Wilson, S.

A. Mowla, B. W. Du, T. Taimre, K. Bertling, S. Wilson, H. P. Soyer, and A. D. Rakić, “Confocal laser feedback tomography for skin cancer detection,” Bio. Opt. Express 8, 4037–4048 (2017)
[Crossref]

J. Herbert, K. Bertling, T. Taimre, A. Rakić, and S. Wilson, “Surface roughness characterisation using optical feedback interferometry,” Electron. Lett. 53, 268–270 (2017).
[Crossref]

J. Tucker, A. Mowla, J. Herbert, M. Fuentes, C. Freakley, K. Bertling, YL. Lim, R. Matharu, J. Perchoux, T. Taimre, S. Wilson, and A. D. Rakić, “Self-mixing sensing system based on uncooled vertical-cavity surface-emitting laser array: Linking multichannel operation and enhanced performance,” Opt. Lett. 39, 394–397 (2014).
[Crossref] [PubMed]

Wilson, S. J.

YL. Lim, T. Taimre, K. Bertling, P. Dean, D. Indjin, A. Valavanis, S. P. Khanna, M. Lachab, H. Schaider, T. W. Prow, H. P. Soyer, S. J. Wilson, E. H. Linfield, A. G. Davies, and A. D. Rakić, “High-contrast coherent terahertz imaging of porcine tissue via swept-frequency feedback interferometry,” Bio. Opt. Express 5, 3981–3989 (2014).
[Crossref]

Yanez, C.

J. Perchoux, A. Quotb, R. Atashkhooei, F. J. Azcona, E. E. Ramírez-Miquet, O. Bernal, A. Jha, A. Luna-Arriaga, C. Yanez, J. Caum, T. Bosch, and S. Royo, “Current developments on optical feedback interferometry as an all-optical sensor for biomedical applications,” Sensors 16, 694 (2016).
[Crossref]

Yang, M.

G. Chen, D. Shen, M. Feng, and M. Yang, “An attenuated total reflection FT-IR spectroscopic study of polyamide 6/Clay nanocomposite fibers,” Macromol. Rapid Commun.,  25, 1121–1124 (2004).
[Crossref]

Yoshida, H.

Zakian, C.

C. Zakian, M. Dickinson, and T. King, “Dynamic light scattering by using self-mixing interferometry with a laser diode,” Appl. Opt. 45, 2240–2245 (2006).
[Crossref] [PubMed]

C. Zakian, M. Dickinson, and T. King, “Particle sizing and flow measurement using self-mixing interferometry with a laser diode,” J. Opt. A Pure Appl. Opt. 7, S445–S452 (2005).
[Crossref]

Adv. Opt. Photonics (1)

T. Taimre, M. Nikolić, K. Bertling, YL. Lim, T. Bosch, and A. D. Rakić, “Laser feedback interferometry: A tutorial on the self-mixing effect for coherent sensing,” Adv. Opt. Photonics 7, 570–631 (2015).
[Crossref]

Anesth. Analg. (1)

C.-M. Samama, “Thromboelastography: Another point of view,” Anesth. Analg. 93, 517–518 (2001).

Appl. Opt. (6)

Appl. Phys. B (1)

H. Wang and J. Shen, “Fast and economic signal processing technique of laser diode self-mixing interferometry for nanoparticle size measurement,” Appl. Phys. B 115, 285–291 (2014).
[Crossref]

Appl. Phys. Lett. (1)

N. Ghosh, P. Buddhiwant, A. Uppal, S. K. Majumder, H. S. Patel, and P. K. Gupta, “Simultaneous determination of size and refractive index of red blood cells by light scattering measurements,” Appl. Phys. Lett. 88, 084101 (2006).
[Crossref]

Arteriosclerosis, Thrombosis, and Vascular Biology (1)

J. Jesty and E. Beltrami, “Positive feedbacks of coagulation their role in threshold regulation,” Arteriosclerosis, Thrombosis, and Vascular Biology 25, 2463–2469 (2005).
[Crossref]

Bio. Opt. Express (2)

A. Mowla, B. W. Du, T. Taimre, K. Bertling, S. Wilson, H. P. Soyer, and A. D. Rakić, “Confocal laser feedback tomography for skin cancer detection,” Bio. Opt. Express 8, 4037–4048 (2017)
[Crossref]

YL. Lim, T. Taimre, K. Bertling, P. Dean, D. Indjin, A. Valavanis, S. P. Khanna, M. Lachab, H. Schaider, T. W. Prow, H. P. Soyer, S. J. Wilson, E. H. Linfield, A. G. Davies, and A. D. Rakić, “High-contrast coherent terahertz imaging of porcine tissue via swept-frequency feedback interferometry,” Bio. Opt. Express 5, 3981–3989 (2014).
[Crossref]

Cerebrovasc. Dis. (1)

M. J. Martin, E. M. Chung, K. V. Ramnarine, A. H. Goodall, A. R. Naylor, and D. H. Evans, “Thrombus size and doppler embolic signal intensity,” Cerebrovasc. Dis. 28, 397–405 (2009).
[Crossref] [PubMed]

Circ. Heart. Fail. (1)

S. J. Park, C. A. Milano, A. J. Tatooles, J. G. Rogers, R. M. Adamson, D. E. Steidley, G. A. Ewald, K. S. Sundareswaran, D. J. Farrar, and M. S. Slaughter, “Outcomes in advanced heart failure patients with left ventricular assist devices for destination therapy,” Circ. Heart. Fail. 5, 241–248 (2012).
[Crossref] [PubMed]

Electron. Lett. (1)

J. Herbert, K. Bertling, T. Taimre, A. Rakić, and S. Wilson, “Surface roughness characterisation using optical feedback interferometry,” Electron. Lett. 53, 268–270 (2017).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Donati and M. Norgia, “Self-mixing interferometry for biomedical signals sensing,” IEEE J. Sel. Top. Quantum Electron. 20, 6900108 (2014).
[Crossref]

IEEE Photon. Tech. Lett. (1)

G. P. Agrawal and C. M. Bowden, “Concept of linewidth enhancement factor in semiconductor lasers: its usefulness and limitations,” IEEE Photon. Tech. Lett. 5, 640–642 (1993).
[Crossref]

IEEE Sensors J. (1)

R. Atashkhooei, E. Ramírez-Miquet, R. da Costa Moreira, A. Quotb, R. Santiago, and J. Perchoux, “Optical feedback flowmetry: Impact of particle concentration on the signal processing method,” IEEE Sensors J.,  18, 1457–1463 (2018)
[Crossref]

IEEE Sensors Lett. (1)

K. Bertling,“Determining ethanol Ccntent of liquid solutions using laser feedback interferometry with a terahertz quantum cascade laser,” IEEE Sensors Lett. 2, 3501604 (2018)

IEEE Signal Process. Mag. (1)

S. Qian and D. Chen, “Joint time-frequency analysis,” IEEE Signal Process. Mag. 16, 52–67 (1999).
[Crossref]

J. Biomed. Opt. (1)

M. Uyuklu, M. Canpolat, H. J. Meiselman, and O. K. Baskurt, “Wavelength selection in measuring red blood cell aggregation based on light transmittance,” J. Biomed. Opt. 16, 117006 (2011)
[Crossref] [PubMed]

J. Chem. Eng. Data (1)

KY. Chu and A. R. Thompson, “Densities and Refractive Indices of Alcohol-Water Solutions of n-Propyl, Isopropyl, and Methyl Alcohols,” J. Chem. Eng. Data 7, 358–360 (1962).
[Crossref]

J. Heart Lung Transplant. (1)

J. K. Kirklin, D. C. Naftel, F. D. Pagani, R. L. Kormos, S. Myers, M. A. Acker, J. Rogers, M. S. Slaughter, and L. W. Stevenson, “Pump thrombosis in the thoratec HeartMate II device: An update analysis of the INTERMACS registry,” J. Heart Lung Transplant. 34, 1515–1526 (2015).
[Crossref] [PubMed]

J. Opt. A Pure Appl. Opt. (1)

C. Zakian, M. Dickinson, and T. King, “Particle sizing and flow measurement using self-mixing interferometry with a laser diode,” J. Opt. A Pure Appl. Opt. 7, S445–S452 (2005).
[Crossref]

Macromol. Rapid Commun. (1)

G. Chen, D. Shen, M. Feng, and M. Yang, “An attenuated total reflection FT-IR spectroscopic study of polyamide 6/Clay nanocomposite fibers,” Macromol. Rapid Commun.,  25, 1121–1124 (2004).
[Crossref]

Microfluid. Nanofluid. (1)

L. Campagnolo, M. Nikolić, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubiere, L. Prat, A. D. Rakić, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluid. 14, 113–119 (2013)
[Crossref]

N. Eng. J. Med. (1)

R. C. Starling, N. Moazami, S. C. Silvestry, G. Ewald, J. G. Rogers, C. A. Milano, J. E. Rame, M. A. Acker, E. H. Blackstone, J. Ehrlinger, L. Thuita, M. M. Mountis, E. G. Soltesz, B. W. Lytle, and N. G. Smedira, “Unexpected abrupt increase in left ventricular assist device thrombosis,” N. Eng. J. Med. 370, 33–40 (2014).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Sci. Rep. (1)

J. Keeley, J. Freeman, K. Bertling, Y.L. Lim, R. A. Mohandas, T. Taimre, L. H. Li, D. Indjin, A. D. Rakić, E. H. Linfield, A. G. Davies, and P. Dean, “Measurement of the emission spectrum of a semiconductor laser using laser-feedback interferometry,” Sci. Rep. 7, 7236 (2017).
[Crossref] [PubMed]

Sensors (1)

J. Perchoux, A. Quotb, R. Atashkhooei, F. J. Azcona, E. E. Ramírez-Miquet, O. Bernal, A. Jha, A. Luna-Arriaga, C. Yanez, J. Caum, T. Bosch, and S. Royo, “Current developments on optical feedback interferometry as an all-optical sensor for biomedical applications,” Sensors 16, 694 (2016).
[Crossref]

Supplementary Material (1)

NameDescription
» Visualization 1       Particles under flow

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 (a) Qualitative diagram of reflected power for a particle travelling from left to right, assuming that the reflection is a mixture of specular and diffuse reflection. (b) Two different sized particles with a partially specular surface, and the angular spread of reflected power at the position of maximum reflection. In both diagrams, the beam axis is shown shown as a broken line, and reflected rays are shown as solid.
Fig. 2
Fig. 2 Backscattering ratio as a function of incident angle used in the simulations [26].
Fig. 3
Fig. 3 Initial simulation scenario. A circular particle moves through the beam axis from a laser diode (LD).
Fig. 4
Fig. 4 Simulation results for a 50 µm (blue), 20 µm (green), and 5 µm (red) particle travelling perpendicular to the beam. (a) External cavity length calculation results. (b) Incident angle calculation results. (c) Laser output power deviation with C and β fixed at 1 at all positions. (d) Laser output power with C and β as a normalised function of incident angle.
Fig. 5
Fig. 5 Diagram showing the configuration of the second simulation scenario, with the particle moving at a 45 degree angle to the beam axis of the laser diode (LD).
Fig. 6
Fig. 6 Simulation results for a 50 µm (blue), 20 µm (green) and 5 µm (red) particle travelling at a 45 degree angle to the beam. (a) External cavity length calculation results. (b) Incident angle calculation results. (c) Laser output power deviation with C and β fixed at 1 at all positions. (d) Laser output power with C and β as a normalised function of incident angle.
Fig. 7
Fig. 7 Simulation results for a 50 µm diameter particle moving at 45 degrees to be beam, with the maximum C value scaled by Cmax, and β held constant. The simulation geometry is otherwise identical to that used in Fig. 6.
Fig. 8
Fig. 8 Simulation results for a 50 µm diameter particle moving at 45 degrees to be beam, but with the maximum C and β value scaled by Cmax and βmax respectively.
Fig. 9
Fig. 9 FFT of the LFI signal over the range of angles from the closed interval of 10 to 85 degrees with a step size of 5 degrees. The blue line corresponds to the theoretically predicted frequency from Eq. (5). Data was computed from a simulated 50 µm diameter particle moving at 2mm/s through the beam at various angles. Both C and β were normalised.
Fig. 10
Fig. 10 Experimental setup. The syringe pump (red) is held in the vertical direction by an angle bracket (brown), while the laser diode (LD) is fixed at a specific elevation angle using a manual rotary stage (not shown).
Fig. 11
Fig. 11 Measured LFI signal for three different sized particles passing through the beam independently.
Fig. 12
Fig. 12 LFI signal showing highlighted regions of the 20 µm signal from Fig. 11. The black region shows the phase wrapping as the particle moves out of the beam, while the red and green regions likely correspond to surface features of the particle. Features similar to these can be found in earlier simulations. Visualization 1 shows examples of particles passing through the beam.
Fig. 13
Fig. 13 Typical results of the classification algorithm. The black line is the classification boundary, and the coloured gradient shows the shape of the underlying Gaussian fit. Blue crosses are part of the training set, and the other markers are described in Table 1. The total number of measurements in the 20 µm dataset was 243, with 162 being used for training, and remaining 81 being used for classification. The 50 µm dataset contained 153 measurements which were all used for classification.

Tables (2)

Tables Icon

Table 1 Classification results for the data in Fig. 13.

Tables Icon

Table 2 Classification effectiveness after 1000 cross-validations.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

0 = ϕ FB ϕ 0 + C sin ( ϕ FB + arctan ( α ) ) ,
0 = ϕ FB 4 π d λ 0 + C sin ( ϕ FB + arctan ( α ) ) .
P = P 0 ( 1 + β cos ( ϕ FB ) ) ,
κ = 1 τ in ( 1 R 2 ) R ext R 2 ,
f D = 2 | v | cos ( θ ) λ 0 ,

Metrics