Abstract

A high-efficiency active bidirectional electrically-controlled terahertz device based on DMSO-doped PEDOT:PSS with low-power photoexcitation is investigated. Under low-power optical excitation of 30 mW (0.5 W/cm2) and under bias voltages ranging from −0.6 V to 0.5 V, spectrally broadband modulation of THz transmission over a range from −54% to 60% is obtained over the frequency range from 0.2 to 2.6 THz in a MEH-PPV/PEDOT:PSS:DMSO/Si/PEDOT:PSS:DMSO hybrid structure. By considering the combined carrier density characteristics of the proposed device, it is found that the large-scale amplitude modulation can be ascribed to the electrically-controlled carrier density in the silicon layer with the assistance of the p-n junction that consists of the DMSO-doped PEDOT:PSS and silicon. Bidirectional modulation has a larger modulation range and is easier to use in communications applications when compared with unidirectional modulation. These results show great potential for application to the design of active broadband terahertz devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Terahertz nonvolatile in situ electrically erasable-rewritable photo-memory based on indium oxide/PEDOT:PSS

Bin Liu, Jingyu Liu, Hongyu Ji, Wei Wang, Jingling Shen, and Bo Zhang
Opt. Express 27(20) 28792-28799 (2019)

Investigate the effects of EG doping PEDOT/PSS on transmission and anti-reflection properties using terahertz pulsed spectroscopy

Yiwen Sun, Shengxin Yang, Pengju Du, Fei Yan, Junle Qu, Zexuan Zhu, Jian Zuo, and Cunlin Zhang
Opt. Express 25(3) 1723-1731 (2017)

Super terahertz transparent electrodes

Yan Du, Hao Tian, Xuan Cui, Xiangjun Wang, Jiangang Lu, and Zhongxiang Zhou
Opt. Express 24(6) 6359-6366 (2016)

References

  • View by:
  • |
  • |
  • |

  1. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [Crossref] [PubMed]
  2. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  3. Z. W. Shi, X. X. Cao, Q. Y. Wen, T. L. Wen, Q. H. Yang, Z. Chen, W. S. Shi, and H. W. Zhang, “Terahertz modulators based on silicon nanotip array,” Adv. Opt. Mater. 6(2), 1700620 (2018).
    [Crossref]
  4. H. Zhou, T. Zhang, S. Guruswamy, and A. Nahata, “An electrically tunable terahertz plasmonic device based on shape memory alloys and liquid metals,” Adv. Opt. Mater. 6(4), 1700684 (2018).
    [Crossref]
  5. M. Rahm, J. S. Li, and W. J. Padilla, “THz Wave Modulators: A Brief Review on Different Modulation Techniques,” J Infrared Milli Terahz Waves 34(1), 1–27 (2013).
    [Crossref]
  6. B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
    [Crossref] [PubMed]
  7. B. Sensale-Rodriguez, R. S. Yan, M. D. Zhu, D. Jena, L. Liu, and H. G. Xing, “Efficient terahertz electro-absorption modulation employing graphene plasmonic structures,” Appl. Phys. Lett. 101(26), 261115 (2012).
    [Crossref]
  8. Q. Li, Z. Tian, X. Q. Zhang, N. N. Xu, R. Singh, J. Q. Gu, P. Lv, L. B. Luo, S. Zhang, J. G. Han, and W. L. Zhang, “Dual control of active graphene–silicon hybrid metamaterial devices,” Carbon 90, 146–153 (2015).
    [Crossref]
  9. X. D. Liu, Z. F. Chen, E. P. J. Parrott, B. S. Y. Ung, J. B. Xu, and E. P. MacPherson, “Graphene based terahertz light modulator in total internal reflection geometry,” Adv. Opt. Mater. 5(3), 1600697 (2017).
    [Crossref]
  10. M. N. F. Hoque, G. Karaoglan-Bebek, M. Holtz, A. A. Bernussi, and Z. Y. Fan, “High performance spatial light modulators for terahertz applications,” Opt. Commun. 350, 309–314 (2015).
    [Crossref]
  11. M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
    [Crossref] [PubMed]
  12. D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007).
    [Crossref] [PubMed]
  13. Y. Zhao, C. H. Chen, X. Pan, Y. H. Zhu, M. Holtz, A. Bernussi, and Z. Y. Fan, “Tuning the properties of VO2 thin films through growth temperature for infrared and terahertz modulation applications,” J. Appl. Phys. 114(11), 113509 (2013).
    [Crossref]
  14. M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
    [Crossref] [PubMed]
  15. Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
    [Crossref] [PubMed]
  16. X. J. Wu, X. C. Pan, B. G. Quan, and L. Wang, “Optical modulation of terahertz behavior in silicon with structured surfaces,” Appl. Phys. Lett. 103(12), 121112 (2013).
    [Crossref]
  17. C. W. Berry, J. Moore, and M. Jarrahi, “Design of reconfigurable metallic slits for terahertz beam modulation,” Opt. Express 19(2), 1236–1245 (2011).
    [Crossref] [PubMed]
  18. N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
    [Crossref] [PubMed]
  19. G. C. Wang, B. Zhang, H. Y. Ji, X. Liu, T. He, L. F. Lv, Y. B. Hou, and J. L. Shen, “Monolayer graphene based organic optical terahertz modulator,” Appl. Phys. Lett. 110(2), 023301 (2017).
    [Crossref]
  20. B. Zhang, T. He, J. Shen, Y. Hou, Y. Hu, M. Zang, T. Chen, S. Feng, F. Teng, and L. Qin, “Conjugated polymer-based broadband terahertz wave modulator,” Opt. Lett. 39(21), 6110–6113 (2014).
    [Crossref] [PubMed]
  21. Q. Mao, Q. Y. Wen, W. Tian, T. L. Wen, Z. Chen, Q. H. Yang, and H. W. Zhang, “High-speed and broadband terahertz wave modulators based on large-area graphene field-effect transistors,” Opt. Lett. 39(19), 5649–5652 (2014).
    [Crossref] [PubMed]
  22. Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6(1), 7082 (2015).
    [Crossref] [PubMed]
  23. X. Liu, Z. Zhang, X. Lin, K. Zhang, Z. Jin, Z. Cheng, and G. Ma, “Terahertz broadband modulation in a biased BiFeO3/Si heterojunction,” Opt. Express 24(23), 26618–26628 (2016).
    [Crossref] [PubMed]
  24. L. L. Du, Q. Li, S. X. Li, F. R. Hu, X. M. Xiong, Y. F. Li, W. T. Zhang, and J. G. Han, “Polarization-independent terahertz wave modulator based on graphene-silicon hybrid structure,” Chin. Phys. B 25(2), 027301 (2016).
    [Crossref]
  25. S. Kirchmeyer and K. Reuter, “Scientific importance, properties and growing applications of poly (3, 4-ethylenedioxythiophene),” J. Mater. Chem. 15(21), 2077–2088 (2005).
    [Crossref]
  26. W. H. Kim, A. J. Makinen, N. Nikolov, R. Shashidhar, H. Kim, and Z. H. Kafafi, “Molecular organic light-emitting diodes using highly conducting polymers as anodes,” Appl. Phys. Lett. 80(20), 3844–3846 (2002).
    [Crossref]
  27. F. Yan, E. P. J. Parrott, X. D. Liu, and E. Pickwell-MacPherson, “Low-cost and broadband terahertz antireflection coatings based on DMSO-doped PEDOT/PSS,” Opt. Lett. 40(12), 2886–2889 (2015).
    [Crossref] [PubMed]
  28. Y. Du, H. Tian, X. Cui, H. Wang, and Z. X. Zhou, “Electrically tunable liquid crystal terahertz phase shifter driven by transparent polymer electrodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(19), 4138–4142 (2016).
    [Crossref]
  29. Y. Du, H. Tian, X. Cui, X. Wang, J. Lu, and Z. Zhou, “Super terahertz transparent electrodes,” Opt. Express 24(6), 6359–6366 (2016).
    [Crossref] [PubMed]
  30. X. Wang, Y. Dai, R. Liu, X. He, S. Li, and Z. L. Wang, “Light-triggered pyroelectric nanogenerator based on a pn-junction for self-powered near-infrared photosensing,” ACS Nano 11(8), 8339–8345 (2017).
    [Crossref] [PubMed]

2018 (2)

Z. W. Shi, X. X. Cao, Q. Y. Wen, T. L. Wen, Q. H. Yang, Z. Chen, W. S. Shi, and H. W. Zhang, “Terahertz modulators based on silicon nanotip array,” Adv. Opt. Mater. 6(2), 1700620 (2018).
[Crossref]

H. Zhou, T. Zhang, S. Guruswamy, and A. Nahata, “An electrically tunable terahertz plasmonic device based on shape memory alloys and liquid metals,” Adv. Opt. Mater. 6(4), 1700684 (2018).
[Crossref]

2017 (3)

X. D. Liu, Z. F. Chen, E. P. J. Parrott, B. S. Y. Ung, J. B. Xu, and E. P. MacPherson, “Graphene based terahertz light modulator in total internal reflection geometry,” Adv. Opt. Mater. 5(3), 1600697 (2017).
[Crossref]

G. C. Wang, B. Zhang, H. Y. Ji, X. Liu, T. He, L. F. Lv, Y. B. Hou, and J. L. Shen, “Monolayer graphene based organic optical terahertz modulator,” Appl. Phys. Lett. 110(2), 023301 (2017).
[Crossref]

X. Wang, Y. Dai, R. Liu, X. He, S. Li, and Z. L. Wang, “Light-triggered pyroelectric nanogenerator based on a pn-junction for self-powered near-infrared photosensing,” ACS Nano 11(8), 8339–8345 (2017).
[Crossref] [PubMed]

2016 (4)

L. L. Du, Q. Li, S. X. Li, F. R. Hu, X. M. Xiong, Y. F. Li, W. T. Zhang, and J. G. Han, “Polarization-independent terahertz wave modulator based on graphene-silicon hybrid structure,” Chin. Phys. B 25(2), 027301 (2016).
[Crossref]

Y. Du, H. Tian, X. Cui, H. Wang, and Z. X. Zhou, “Electrically tunable liquid crystal terahertz phase shifter driven by transparent polymer electrodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(19), 4138–4142 (2016).
[Crossref]

Y. Du, H. Tian, X. Cui, X. Wang, J. Lu, and Z. Zhou, “Super terahertz transparent electrodes,” Opt. Express 24(6), 6359–6366 (2016).
[Crossref] [PubMed]

X. Liu, Z. Zhang, X. Lin, K. Zhang, Z. Jin, Z. Cheng, and G. Ma, “Terahertz broadband modulation in a biased BiFeO3/Si heterojunction,” Opt. Express 24(23), 26618–26628 (2016).
[Crossref] [PubMed]

2015 (5)

F. Yan, E. P. J. Parrott, X. D. Liu, and E. Pickwell-MacPherson, “Low-cost and broadband terahertz antireflection coatings based on DMSO-doped PEDOT/PSS,” Opt. Lett. 40(12), 2886–2889 (2015).
[Crossref] [PubMed]

Q. Li, Z. Tian, X. Q. Zhang, N. N. Xu, R. Singh, J. Q. Gu, P. Lv, L. B. Luo, S. Zhang, J. G. Han, and W. L. Zhang, “Dual control of active graphene–silicon hybrid metamaterial devices,” Carbon 90, 146–153 (2015).
[Crossref]

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6(1), 7082 (2015).
[Crossref] [PubMed]

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

M. N. F. Hoque, G. Karaoglan-Bebek, M. Holtz, A. A. Bernussi, and Z. Y. Fan, “High performance spatial light modulators for terahertz applications,” Opt. Commun. 350, 309–314 (2015).
[Crossref]

2014 (2)

2013 (3)

M. Rahm, J. S. Li, and W. J. Padilla, “THz Wave Modulators: A Brief Review on Different Modulation Techniques,” J Infrared Milli Terahz Waves 34(1), 1–27 (2013).
[Crossref]

X. J. Wu, X. C. Pan, B. G. Quan, and L. Wang, “Optical modulation of terahertz behavior in silicon with structured surfaces,” Appl. Phys. Lett. 103(12), 121112 (2013).
[Crossref]

Y. Zhao, C. H. Chen, X. Pan, Y. H. Zhu, M. Holtz, A. Bernussi, and Z. Y. Fan, “Tuning the properties of VO2 thin films through growth temperature for infrared and terahertz modulation applications,” J. Appl. Phys. 114(11), 113509 (2013).
[Crossref]

2012 (3)

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

B. Sensale-Rodriguez, R. S. Yan, M. D. Zhu, D. Jena, L. Liu, and H. G. Xing, “Efficient terahertz electro-absorption modulation employing graphene plasmonic structures,” Appl. Phys. Lett. 101(26), 261115 (2012).
[Crossref]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

2011 (2)

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

C. W. Berry, J. Moore, and M. Jarrahi, “Design of reconfigurable metallic slits for terahertz beam modulation,” Opt. Express 19(2), 1236–1245 (2011).
[Crossref] [PubMed]

2010 (1)

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

2007 (2)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007).
[Crossref] [PubMed]

2005 (1)

S. Kirchmeyer and K. Reuter, “Scientific importance, properties and growing applications of poly (3, 4-ethylenedioxythiophene),” J. Mater. Chem. 15(21), 2077–2088 (2005).
[Crossref]

2002 (2)

W. H. Kim, A. J. Makinen, N. Nikolov, R. Shashidhar, H. Kim, and Z. H. Kafafi, “Molecular organic light-emitting diodes using highly conducting polymers as anodes,” Appl. Phys. Lett. 80(20), 3844–3846 (2002).
[Crossref]

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Ahn, K.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Ahn, Y. H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Averitt, R. D.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007).
[Crossref] [PubMed]

Bernien, H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Bernussi, A.

Y. Zhao, C. H. Chen, X. Pan, Y. H. Zhu, M. Holtz, A. Bernussi, and Z. Y. Fan, “Tuning the properties of VO2 thin films through growth temperature for infrared and terahertz modulation applications,” J. Appl. Phys. 114(11), 113509 (2013).
[Crossref]

Bernussi, A. A.

M. N. F. Hoque, G. Karaoglan-Bebek, M. Holtz, A. A. Bernussi, and Z. Y. Fan, “High performance spatial light modulators for terahertz applications,” Opt. Commun. 350, 309–314 (2015).
[Crossref]

Berry, C. W.

Brassard, D.

D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007).
[Crossref] [PubMed]

Cao, X. X.

Z. W. Shi, X. X. Cao, Q. Y. Wen, T. L. Wen, Q. H. Yang, Z. Chen, W. S. Shi, and H. W. Zhang, “Terahertz modulators based on silicon nanotip array,” Adv. Opt. Mater. 6(2), 1700620 (2018).
[Crossref]

Cavalleri, A.

D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007).
[Crossref] [PubMed]

Chen, C. H.

Y. Zhao, C. H. Chen, X. Pan, Y. H. Zhu, M. Holtz, A. Bernussi, and Z. Y. Fan, “Tuning the properties of VO2 thin films through growth temperature for infrared and terahertz modulation applications,” J. Appl. Phys. 114(11), 113509 (2013).
[Crossref]

Chen, Q.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Chen, T.

Chen, Z.

Z. W. Shi, X. X. Cao, Q. Y. Wen, T. L. Wen, Q. H. Yang, Z. Chen, W. S. Shi, and H. W. Zhang, “Terahertz modulators based on silicon nanotip array,” Adv. Opt. Mater. 6(2), 1700620 (2018).
[Crossref]

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Q. Mao, Q. Y. Wen, W. Tian, T. L. Wen, Z. Chen, Q. H. Yang, and H. W. Zhang, “High-speed and broadband terahertz wave modulators based on large-area graphene field-effect transistors,” Opt. Lett. 39(19), 5649–5652 (2014).
[Crossref] [PubMed]

Chen, Z. F.

X. D. Liu, Z. F. Chen, E. P. J. Parrott, B. S. Y. Ung, J. B. Xu, and E. P. MacPherson, “Graphene based terahertz light modulator in total internal reflection geometry,” Adv. Opt. Mater. 5(3), 1600697 (2017).
[Crossref]

Cheng, Z.

Choe, J. H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Cui, X.

Y. Du, H. Tian, X. Cui, X. Wang, J. Lu, and Z. Zhou, “Super terahertz transparent electrodes,” Opt. Express 24(6), 6359–6366 (2016).
[Crossref] [PubMed]

Y. Du, H. Tian, X. Cui, H. Wang, and Z. X. Zhou, “Electrically tunable liquid crystal terahertz phase shifter driven by transparent polymer electrodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(19), 4138–4142 (2016).
[Crossref]

Dai, Y.

X. Wang, Y. Dai, R. Liu, X. He, S. Li, and Z. L. Wang, “Light-triggered pyroelectric nanogenerator based on a pn-junction for self-powered near-infrared photosensing,” ACS Nano 11(8), 8339–8345 (2017).
[Crossref] [PubMed]

Du, L.

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6(1), 7082 (2015).
[Crossref] [PubMed]

Du, L. L.

L. L. Du, Q. Li, S. X. Li, F. R. Hu, X. M. Xiong, Y. F. Li, W. T. Zhang, and J. G. Han, “Polarization-independent terahertz wave modulator based on graphene-silicon hybrid structure,” Chin. Phys. B 25(2), 027301 (2016).
[Crossref]

Du, Y.

Y. Du, H. Tian, X. Cui, H. Wang, and Z. X. Zhou, “Electrically tunable liquid crystal terahertz phase shifter driven by transparent polymer electrodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(19), 4138–4142 (2016).
[Crossref]

Y. Du, H. Tian, X. Cui, X. Wang, J. Lu, and Z. Zhou, “Super terahertz transparent electrodes,” Opt. Express 24(6), 6359–6366 (2016).
[Crossref] [PubMed]

El Khakani, M. A.

D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007).
[Crossref] [PubMed]

Fan, K.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Fan, Z. Y.

M. N. F. Hoque, G. Karaoglan-Bebek, M. Holtz, A. A. Bernussi, and Z. Y. Fan, “High performance spatial light modulators for terahertz applications,” Opt. Commun. 350, 309–314 (2015).
[Crossref]

Y. Zhao, C. H. Chen, X. Pan, Y. H. Zhu, M. Holtz, A. Bernussi, and Z. Y. Fan, “Tuning the properties of VO2 thin films through growth temperature for infrared and terahertz modulation applications,” J. Appl. Phys. 114(11), 113509 (2013).
[Crossref]

Fang, T.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

Feng, S.

Feng, Z.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Ferguson, B.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Fourmaux, S.

D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007).
[Crossref] [PubMed]

Gokkavas, M.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

Gu, J.

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6(1), 7082 (2015).
[Crossref] [PubMed]

Gu, J. Q.

Q. Li, Z. Tian, X. Q. Zhang, N. N. Xu, R. Singh, J. Q. Gu, P. Lv, L. B. Luo, S. Zhang, J. G. Han, and W. L. Zhang, “Dual control of active graphene–silicon hybrid metamaterial devices,” Carbon 90, 146–153 (2015).
[Crossref]

Guruswamy, S.

H. Zhou, T. Zhang, S. Guruswamy, and A. Nahata, “An electrically tunable terahertz plasmonic device based on shape memory alloys and liquid metals,” Adv. Opt. Mater. 6(4), 1700684 (2018).
[Crossref]

Han, J.

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6(1), 7082 (2015).
[Crossref] [PubMed]

Han, J. G.

L. L. Du, Q. Li, S. X. Li, F. R. Hu, X. M. Xiong, Y. F. Li, W. T. Zhang, and J. G. Han, “Polarization-independent terahertz wave modulator based on graphene-silicon hybrid structure,” Chin. Phys. B 25(2), 027301 (2016).
[Crossref]

Q. Li, Z. Tian, X. Q. Zhang, N. N. Xu, R. Singh, J. Q. Gu, P. Lv, L. B. Luo, S. Zhang, J. G. Han, and W. L. Zhang, “Dual control of active graphene–silicon hybrid metamaterial devices,” Carbon 90, 146–153 (2015).
[Crossref]

He, T.

G. C. Wang, B. Zhang, H. Y. Ji, X. Liu, T. He, L. F. Lv, Y. B. Hou, and J. L. Shen, “Monolayer graphene based organic optical terahertz modulator,” Appl. Phys. Lett. 110(2), 023301 (2017).
[Crossref]

B. Zhang, T. He, J. Shen, Y. Hou, Y. Hu, M. Zang, T. Chen, S. Feng, F. Teng, and L. Qin, “Conjugated polymer-based broadband terahertz wave modulator,” Opt. Lett. 39(21), 6110–6113 (2014).
[Crossref] [PubMed]

He, X.

X. Wang, Y. Dai, R. Liu, X. He, S. Li, and Z. L. Wang, “Light-triggered pyroelectric nanogenerator based on a pn-junction for self-powered near-infrared photosensing,” ACS Nano 11(8), 8339–8345 (2017).
[Crossref] [PubMed]

Hilton, D. J.

D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007).
[Crossref] [PubMed]

Holtz, M.

M. N. F. Hoque, G. Karaoglan-Bebek, M. Holtz, A. A. Bernussi, and Z. Y. Fan, “High performance spatial light modulators for terahertz applications,” Opt. Commun. 350, 309–314 (2015).
[Crossref]

Y. Zhao, C. H. Chen, X. Pan, Y. H. Zhu, M. Holtz, A. Bernussi, and Z. Y. Fan, “Tuning the properties of VO2 thin films through growth temperature for infrared and terahertz modulation applications,” J. Appl. Phys. 114(11), 113509 (2013).
[Crossref]

Hoque, M. N. F.

M. N. F. Hoque, G. Karaoglan-Bebek, M. Holtz, A. A. Bernussi, and Z. Y. Fan, “High performance spatial light modulators for terahertz applications,” Opt. Commun. 350, 309–314 (2015).
[Crossref]

Hou, Y.

Hou, Y. B.

G. C. Wang, B. Zhang, H. Y. Ji, X. Liu, T. He, L. F. Lv, Y. B. Hou, and J. L. Shen, “Monolayer graphene based organic optical terahertz modulator,” Appl. Phys. Lett. 110(2), 023301 (2017).
[Crossref]

Hu, F. R.

L. L. Du, Q. Li, S. X. Li, F. R. Hu, X. M. Xiong, Y. F. Li, W. T. Zhang, and J. G. Han, “Polarization-independent terahertz wave modulator based on graphene-silicon hybrid structure,” Chin. Phys. B 25(2), 027301 (2016).
[Crossref]

Hu, J.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Hu, Y.

Hwang, H. Y.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Hwang, W. S.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

Jarrahi, M.

Jena, D.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

B. Sensale-Rodriguez, R. S. Yan, M. D. Zhu, D. Jena, L. Liu, and H. G. Xing, “Efficient terahertz electro-absorption modulation employing graphene plasmonic structures,” Appl. Phys. Lett. 101(26), 261115 (2012).
[Crossref]

Ji, H. Y.

G. C. Wang, B. Zhang, H. Y. Ji, X. Liu, T. He, L. F. Lv, Y. B. Hou, and J. L. Shen, “Monolayer graphene based organic optical terahertz modulator,” Appl. Phys. Lett. 110(2), 023301 (2017).
[Crossref]

Jin, Z.

Kafafi, Z. H.

W. H. Kim, A. J. Makinen, N. Nikolov, R. Shashidhar, H. Kim, and Z. H. Kafafi, “Molecular organic light-emitting diodes using highly conducting polymers as anodes,” Appl. Phys. Lett. 80(20), 3844–3846 (2002).
[Crossref]

Kafesaki, M.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

Karaoglan-Bebek, G.

M. N. F. Hoque, G. Karaoglan-Bebek, M. Holtz, A. A. Bernussi, and Z. Y. Fan, “High performance spatial light modulators for terahertz applications,” Opt. Commun. 350, 309–314 (2015).
[Crossref]

Keiser, G. R.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Kelly, M. M.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

Kieffer, J. C.

D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007).
[Crossref] [PubMed]

Kim, B. J.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Kim, D. S.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Kim, H.

W. H. Kim, A. J. Makinen, N. Nikolov, R. Shashidhar, H. Kim, and Z. H. Kafafi, “Molecular organic light-emitting diodes using highly conducting polymers as anodes,” Appl. Phys. Lett. 80(20), 3844–3846 (2002).
[Crossref]

Kim, H. S.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Kim, H. T.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Kim, W. H.

W. H. Kim, A. J. Makinen, N. Nikolov, R. Shashidhar, H. Kim, and Z. H. Kafafi, “Molecular organic light-emitting diodes using highly conducting polymers as anodes,” Appl. Phys. Lett. 80(20), 3844–3846 (2002).
[Crossref]

Kirchmeyer, S.

S. Kirchmeyer and K. Reuter, “Scientific importance, properties and growing applications of poly (3, 4-ethylenedioxythiophene),” J. Mater. Chem. 15(21), 2077–2088 (2005).
[Crossref]

Kittiwatanakul, S.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Koo, S.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Koschny, T.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

Kyoung, J.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Li, J. S.

M. Rahm, J. S. Li, and W. J. Padilla, “THz Wave Modulators: A Brief Review on Different Modulation Techniques,” J Infrared Milli Terahz Waves 34(1), 1–27 (2013).
[Crossref]

Li, L.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Li, Q.

L. L. Du, Q. Li, S. X. Li, F. R. Hu, X. M. Xiong, Y. F. Li, W. T. Zhang, and J. G. Han, “Polarization-independent terahertz wave modulator based on graphene-silicon hybrid structure,” Chin. Phys. B 25(2), 027301 (2016).
[Crossref]

Q. Li, Z. Tian, X. Q. Zhang, N. N. Xu, R. Singh, J. Q. Gu, P. Lv, L. B. Luo, S. Zhang, J. G. Han, and W. L. Zhang, “Dual control of active graphene–silicon hybrid metamaterial devices,” Carbon 90, 146–153 (2015).
[Crossref]

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6(1), 7082 (2015).
[Crossref] [PubMed]

Li, S.

X. Wang, Y. Dai, R. Liu, X. He, S. Li, and Z. L. Wang, “Light-triggered pyroelectric nanogenerator based on a pn-junction for self-powered near-infrared photosensing,” ACS Nano 11(8), 8339–8345 (2017).
[Crossref] [PubMed]

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Li, S. X.

L. L. Du, Q. Li, S. X. Li, F. R. Hu, X. M. Xiong, Y. F. Li, W. T. Zhang, and J. G. Han, “Polarization-independent terahertz wave modulator based on graphene-silicon hybrid structure,” Chin. Phys. B 25(2), 027301 (2016).
[Crossref]

Li, Y. F.

L. L. Du, Q. Li, S. X. Li, F. R. Hu, X. M. Xiong, Y. F. Li, W. T. Zhang, and J. G. Han, “Polarization-independent terahertz wave modulator based on graphene-silicon hybrid structure,” Chin. Phys. B 25(2), 027301 (2016).
[Crossref]

Liang, S.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Lin, X.

Liu, L.

B. Sensale-Rodriguez, R. S. Yan, M. D. Zhu, D. Jena, L. Liu, and H. G. Xing, “Efficient terahertz electro-absorption modulation employing graphene plasmonic structures,” Appl. Phys. Lett. 101(26), 261115 (2012).
[Crossref]

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

Liu, M.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Liu, R.

X. Wang, Y. Dai, R. Liu, X. He, S. Li, and Z. L. Wang, “Light-triggered pyroelectric nanogenerator based on a pn-junction for self-powered near-infrared photosensing,” ACS Nano 11(8), 8339–8345 (2017).
[Crossref] [PubMed]

Liu, S.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Liu, X.

G. C. Wang, B. Zhang, H. Y. Ji, X. Liu, T. He, L. F. Lv, Y. B. Hou, and J. L. Shen, “Monolayer graphene based organic optical terahertz modulator,” Appl. Phys. Lett. 110(2), 023301 (2017).
[Crossref]

X. Liu, Z. Zhang, X. Lin, K. Zhang, Z. Jin, Z. Cheng, and G. Ma, “Terahertz broadband modulation in a biased BiFeO3/Si heterojunction,” Opt. Express 24(23), 26618–26628 (2016).
[Crossref] [PubMed]

Liu, X. D.

X. D. Liu, Z. F. Chen, E. P. J. Parrott, B. S. Y. Ung, J. B. Xu, and E. P. MacPherson, “Graphene based terahertz light modulator in total internal reflection geometry,” Adv. Opt. Mater. 5(3), 1600697 (2017).
[Crossref]

F. Yan, E. P. J. Parrott, X. D. Liu, and E. Pickwell-MacPherson, “Low-cost and broadband terahertz antireflection coatings based on DMSO-doped PEDOT/PSS,” Opt. Lett. 40(12), 2886–2889 (2015).
[Crossref] [PubMed]

Lu, J.

Y. Du, H. Tian, X. Cui, X. Wang, J. Lu, and Z. Zhou, “Super terahertz transparent electrodes,” Opt. Express 24(6), 6359–6366 (2016).
[Crossref] [PubMed]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Luo, L. B.

Q. Li, Z. Tian, X. Q. Zhang, N. N. Xu, R. Singh, J. Q. Gu, P. Lv, L. B. Luo, S. Zhang, J. G. Han, and W. L. Zhang, “Dual control of active graphene–silicon hybrid metamaterial devices,” Carbon 90, 146–153 (2015).
[Crossref]

Lv, L. F.

G. C. Wang, B. Zhang, H. Y. Ji, X. Liu, T. He, L. F. Lv, Y. B. Hou, and J. L. Shen, “Monolayer graphene based organic optical terahertz modulator,” Appl. Phys. Lett. 110(2), 023301 (2017).
[Crossref]

Lv, P.

Q. Li, Z. Tian, X. Q. Zhang, N. N. Xu, R. Singh, J. Q. Gu, P. Lv, L. B. Luo, S. Zhang, J. G. Han, and W. L. Zhang, “Dual control of active graphene–silicon hybrid metamaterial devices,” Carbon 90, 146–153 (2015).
[Crossref]

Ma, G.

MacPherson, E. P.

X. D. Liu, Z. F. Chen, E. P. J. Parrott, B. S. Y. Ung, J. B. Xu, and E. P. MacPherson, “Graphene based terahertz light modulator in total internal reflection geometry,” Adv. Opt. Mater. 5(3), 1600697 (2017).
[Crossref]

Makinen, A. J.

W. H. Kim, A. J. Makinen, N. Nikolov, R. Shashidhar, H. Kim, and Z. H. Kafafi, “Molecular organic light-emitting diodes using highly conducting polymers as anodes,” Appl. Phys. Lett. 80(20), 3844–3846 (2002).
[Crossref]

Manceau, J. M.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

Mao, Q.

Massaouti, M.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

Moore, J.

Nahata, A.

H. Zhou, T. Zhang, S. Guruswamy, and A. Nahata, “An electrically tunable terahertz plasmonic device based on shape memory alloys and liquid metals,” Adv. Opt. Mater. 6(4), 1700684 (2018).
[Crossref]

Nelson, K. A.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Nikolov, N.

W. H. Kim, A. J. Makinen, N. Nikolov, R. Shashidhar, H. Kim, and Z. H. Kafafi, “Molecular organic light-emitting diodes using highly conducting polymers as anodes,” Appl. Phys. Lett. 80(20), 3844–3846 (2002).
[Crossref]

Omenetto, F. G.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Ozbay, E.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

Padilla, W. J.

M. Rahm, J. S. Li, and W. J. Padilla, “THz Wave Modulators: A Brief Review on Different Modulation Techniques,” J Infrared Milli Terahz Waves 34(1), 1–27 (2013).
[Crossref]

Pan, X.

Y. Zhao, C. H. Chen, X. Pan, Y. H. Zhu, M. Holtz, A. Bernussi, and Z. Y. Fan, “Tuning the properties of VO2 thin films through growth temperature for infrared and terahertz modulation applications,” J. Appl. Phys. 114(11), 113509 (2013).
[Crossref]

Pan, X. C.

X. J. Wu, X. C. Pan, B. G. Quan, and L. Wang, “Optical modulation of terahertz behavior in silicon with structured surfaces,” Appl. Phys. Lett. 103(12), 121112 (2013).
[Crossref]

Park, H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Park, N.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Park, Q. H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Parrott, E. P. J.

X. D. Liu, Z. F. Chen, E. P. J. Parrott, B. S. Y. Ung, J. B. Xu, and E. P. MacPherson, “Graphene based terahertz light modulator in total internal reflection geometry,” Adv. Opt. Mater. 5(3), 1600697 (2017).
[Crossref]

F. Yan, E. P. J. Parrott, X. D. Liu, and E. Pickwell-MacPherson, “Low-cost and broadband terahertz antireflection coatings based on DMSO-doped PEDOT/PSS,” Opt. Lett. 40(12), 2886–2889 (2015).
[Crossref] [PubMed]

Pickwell-MacPherson, E.

Prasankumar, R. P.

D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007).
[Crossref] [PubMed]

Qiao, S.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Qin, L.

Quan, B. G.

X. J. Wu, X. C. Pan, B. G. Quan, and L. Wang, “Optical modulation of terahertz behavior in silicon with structured surfaces,” Appl. Phys. Lett. 103(12), 121112 (2013).
[Crossref]

Rahm, M.

M. Rahm, J. S. Li, and W. J. Padilla, “THz Wave Modulators: A Brief Review on Different Modulation Techniques,” J Infrared Milli Terahz Waves 34(1), 1–27 (2013).
[Crossref]

Reuter, K.

S. Kirchmeyer and K. Reuter, “Scientific importance, properties and growing applications of poly (3, 4-ethylenedioxythiophene),” J. Mater. Chem. 15(21), 2077–2088 (2005).
[Crossref]

Sensale-Rodriguez, B.

B. Sensale-Rodriguez, R. S. Yan, M. D. Zhu, D. Jena, L. Liu, and H. G. Xing, “Efficient terahertz electro-absorption modulation employing graphene plasmonic structures,” Appl. Phys. Lett. 101(26), 261115 (2012).
[Crossref]

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

Seo, M.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Shashidhar, R.

W. H. Kim, A. J. Makinen, N. Nikolov, R. Shashidhar, H. Kim, and Z. H. Kafafi, “Molecular organic light-emitting diodes using highly conducting polymers as anodes,” Appl. Phys. Lett. 80(20), 3844–3846 (2002).
[Crossref]

Shen, J.

Shen, J. L.

G. C. Wang, B. Zhang, H. Y. Ji, X. Liu, T. He, L. F. Lv, Y. B. Hou, and J. L. Shen, “Monolayer graphene based organic optical terahertz modulator,” Appl. Phys. Lett. 110(2), 023301 (2017).
[Crossref]

Shen, N. H.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

Shi, W. S.

Z. W. Shi, X. X. Cao, Q. Y. Wen, T. L. Wen, Q. H. Yang, Z. Chen, W. S. Shi, and H. W. Zhang, “Terahertz modulators based on silicon nanotip array,” Adv. Opt. Mater. 6(2), 1700620 (2018).
[Crossref]

Shi, Z. W.

Z. W. Shi, X. X. Cao, Q. Y. Wen, T. L. Wen, Q. H. Yang, Z. Chen, W. S. Shi, and H. W. Zhang, “Terahertz modulators based on silicon nanotip array,” Adv. Opt. Mater. 6(2), 1700620 (2018).
[Crossref]

Singh, R.

Q. Li, Z. Tian, X. Q. Zhang, N. N. Xu, R. Singh, J. Q. Gu, P. Lv, L. B. Luo, S. Zhang, J. G. Han, and W. L. Zhang, “Dual control of active graphene–silicon hybrid metamaterial devices,” Carbon 90, 146–153 (2015).
[Crossref]

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6(1), 7082 (2015).
[Crossref] [PubMed]

Soukoulis, C. M.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

Sternbach, A. J.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Strikwerda, A. C.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Sun, H.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Sun, L.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Tahy, K.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

Tao, H.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Taylor, A. J.

D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007).
[Crossref] [PubMed]

Teng, F.

Tian, H.

Y. Du, H. Tian, X. Cui, X. Wang, J. Lu, and Z. Zhou, “Super terahertz transparent electrodes,” Opt. Express 24(6), 6359–6366 (2016).
[Crossref] [PubMed]

Y. Du, H. Tian, X. Cui, H. Wang, and Z. X. Zhou, “Electrically tunable liquid crystal terahertz phase shifter driven by transparent polymer electrodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(19), 4138–4142 (2016).
[Crossref]

Tian, W.

Tian, Z.

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6(1), 7082 (2015).
[Crossref] [PubMed]

Q. Li, Z. Tian, X. Q. Zhang, N. N. Xu, R. Singh, J. Q. Gu, P. Lv, L. B. Luo, S. Zhang, J. G. Han, and W. L. Zhang, “Dual control of active graphene–silicon hybrid metamaterial devices,” Carbon 90, 146–153 (2015).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Tzortzakis, S.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

Ung, B. S. Y.

X. D. Liu, Z. F. Chen, E. P. J. Parrott, B. S. Y. Ung, J. B. Xu, and E. P. MacPherson, “Graphene based terahertz light modulator in total internal reflection geometry,” Adv. Opt. Mater. 5(3), 1600697 (2017).
[Crossref]

Wang, G. C.

G. C. Wang, B. Zhang, H. Y. Ji, X. Liu, T. He, L. F. Lv, Y. B. Hou, and J. L. Shen, “Monolayer graphene based organic optical terahertz modulator,” Appl. Phys. Lett. 110(2), 023301 (2017).
[Crossref]

Wang, H.

Y. Du, H. Tian, X. Cui, H. Wang, and Z. X. Zhou, “Electrically tunable liquid crystal terahertz phase shifter driven by transparent polymer electrodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(19), 4138–4142 (2016).
[Crossref]

Wang, L.

X. J. Wu, X. C. Pan, B. G. Quan, and L. Wang, “Optical modulation of terahertz behavior in silicon with structured surfaces,” Appl. Phys. Lett. 103(12), 121112 (2013).
[Crossref]

Wang, X.

X. Wang, Y. Dai, R. Liu, X. He, S. Li, and Z. L. Wang, “Light-triggered pyroelectric nanogenerator based on a pn-junction for self-powered near-infrared photosensing,” ACS Nano 11(8), 8339–8345 (2017).
[Crossref] [PubMed]

Y. Du, H. Tian, X. Cui, X. Wang, J. Lu, and Z. Zhou, “Super terahertz transparent electrodes,” Opt. Express 24(6), 6359–6366 (2016).
[Crossref] [PubMed]

Wang, Z. L.

X. Wang, Y. Dai, R. Liu, X. He, S. Li, and Z. L. Wang, “Light-triggered pyroelectric nanogenerator based on a pn-junction for self-powered near-infrared photosensing,” ACS Nano 11(8), 8339–8345 (2017).
[Crossref] [PubMed]

Wen, Q. Y.

Z. W. Shi, X. X. Cao, Q. Y. Wen, T. L. Wen, Q. H. Yang, Z. Chen, W. S. Shi, and H. W. Zhang, “Terahertz modulators based on silicon nanotip array,” Adv. Opt. Mater. 6(2), 1700620 (2018).
[Crossref]

Q. Mao, Q. Y. Wen, W. Tian, T. L. Wen, Z. Chen, Q. H. Yang, and H. W. Zhang, “High-speed and broadband terahertz wave modulators based on large-area graphene field-effect transistors,” Opt. Lett. 39(19), 5649–5652 (2014).
[Crossref] [PubMed]

Wen, T. L.

Z. W. Shi, X. X. Cao, Q. Y. Wen, T. L. Wen, Q. H. Yang, Z. Chen, W. S. Shi, and H. W. Zhang, “Terahertz modulators based on silicon nanotip array,” Adv. Opt. Mater. 6(2), 1700620 (2018).
[Crossref]

Q. Mao, Q. Y. Wen, W. Tian, T. L. Wen, Z. Chen, Q. H. Yang, and H. W. Zhang, “High-speed and broadband terahertz wave modulators based on large-area graphene field-effect transistors,” Opt. Lett. 39(19), 5649–5652 (2014).
[Crossref] [PubMed]

West, K. G.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Wolf, S. A.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Wu, X. J.

X. J. Wu, X. C. Pan, B. G. Quan, and L. Wang, “Optical modulation of terahertz behavior in silicon with structured surfaces,” Appl. Phys. Lett. 103(12), 121112 (2013).
[Crossref]

Wu, Z.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Xing, H. G.

B. Sensale-Rodriguez, R. S. Yan, M. D. Zhu, D. Jena, L. Liu, and H. G. Xing, “Efficient terahertz electro-absorption modulation employing graphene plasmonic structures,” Appl. Phys. Lett. 101(26), 261115 (2012).
[Crossref]

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

Xiong, X. M.

L. L. Du, Q. Li, S. X. Li, F. R. Hu, X. M. Xiong, Y. F. Li, W. T. Zhang, and J. G. Han, “Polarization-independent terahertz wave modulator based on graphene-silicon hybrid structure,” Chin. Phys. B 25(2), 027301 (2016).
[Crossref]

Xu, G.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Xu, J. B.

X. D. Liu, Z. F. Chen, E. P. J. Parrott, B. S. Y. Ung, J. B. Xu, and E. P. MacPherson, “Graphene based terahertz light modulator in total internal reflection geometry,” Adv. Opt. Mater. 5(3), 1600697 (2017).
[Crossref]

Xu, N. N.

Q. Li, Z. Tian, X. Q. Zhang, N. N. Xu, R. Singh, J. Q. Gu, P. Lv, L. B. Luo, S. Zhang, J. G. Han, and W. L. Zhang, “Dual control of active graphene–silicon hybrid metamaterial devices,” Carbon 90, 146–153 (2015).
[Crossref]

Yan, F.

Yan, R.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

Yan, R. S.

B. Sensale-Rodriguez, R. S. Yan, M. D. Zhu, D. Jena, L. Liu, and H. G. Xing, “Efficient terahertz electro-absorption modulation employing graphene plasmonic structures,” Appl. Phys. Lett. 101(26), 261115 (2012).
[Crossref]

Yang, Q. H.

Z. W. Shi, X. X. Cao, Q. Y. Wen, T. L. Wen, Q. H. Yang, Z. Chen, W. S. Shi, and H. W. Zhang, “Terahertz modulators based on silicon nanotip array,” Adv. Opt. Mater. 6(2), 1700620 (2018).
[Crossref]

Q. Mao, Q. Y. Wen, W. Tian, T. L. Wen, Z. Chen, Q. H. Yang, and H. W. Zhang, “High-speed and broadband terahertz wave modulators based on large-area graphene field-effect transistors,” Opt. Lett. 39(19), 5649–5652 (2014).
[Crossref] [PubMed]

Yang, Z.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Zang, M.

Zhang, B.

G. C. Wang, B. Zhang, H. Y. Ji, X. Liu, T. He, L. F. Lv, Y. B. Hou, and J. L. Shen, “Monolayer graphene based organic optical terahertz modulator,” Appl. Phys. Lett. 110(2), 023301 (2017).
[Crossref]

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

B. Zhang, T. He, J. Shen, Y. Hou, Y. Hu, M. Zang, T. Chen, S. Feng, F. Teng, and L. Qin, “Conjugated polymer-based broadband terahertz wave modulator,” Opt. Lett. 39(21), 6110–6113 (2014).
[Crossref] [PubMed]

Zhang, H. W.

Z. W. Shi, X. X. Cao, Q. Y. Wen, T. L. Wen, Q. H. Yang, Z. Chen, W. S. Shi, and H. W. Zhang, “Terahertz modulators based on silicon nanotip array,” Adv. Opt. Mater. 6(2), 1700620 (2018).
[Crossref]

Q. Mao, Q. Y. Wen, W. Tian, T. L. Wen, Z. Chen, Q. H. Yang, and H. W. Zhang, “High-speed and broadband terahertz wave modulators based on large-area graphene field-effect transistors,” Opt. Lett. 39(19), 5649–5652 (2014).
[Crossref] [PubMed]

Zhang, K.

Zhang, S.

Q. Li, Z. Tian, X. Q. Zhang, N. N. Xu, R. Singh, J. Q. Gu, P. Lv, L. B. Luo, S. Zhang, J. G. Han, and W. L. Zhang, “Dual control of active graphene–silicon hybrid metamaterial devices,” Carbon 90, 146–153 (2015).
[Crossref]

Zhang, T.

H. Zhou, T. Zhang, S. Guruswamy, and A. Nahata, “An electrically tunable terahertz plasmonic device based on shape memory alloys and liquid metals,” Adv. Opt. Mater. 6(4), 1700684 (2018).
[Crossref]

Zhang, W.

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6(1), 7082 (2015).
[Crossref] [PubMed]

Zhang, W. L.

Q. Li, Z. Tian, X. Q. Zhang, N. N. Xu, R. Singh, J. Q. Gu, P. Lv, L. B. Luo, S. Zhang, J. G. Han, and W. L. Zhang, “Dual control of active graphene–silicon hybrid metamaterial devices,” Carbon 90, 146–153 (2015).
[Crossref]

Zhang, W. T.

L. L. Du, Q. Li, S. X. Li, F. R. Hu, X. M. Xiong, Y. F. Li, W. T. Zhang, and J. G. Han, “Polarization-independent terahertz wave modulator based on graphene-silicon hybrid structure,” Chin. Phys. B 25(2), 027301 (2016).
[Crossref]

Zhang, X.

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6(1), 7082 (2015).
[Crossref] [PubMed]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Zhang, X. C.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Zhang, X. Q.

Q. Li, Z. Tian, X. Q. Zhang, N. N. Xu, R. Singh, J. Q. Gu, P. Lv, L. B. Luo, S. Zhang, J. G. Han, and W. L. Zhang, “Dual control of active graphene–silicon hybrid metamaterial devices,” Carbon 90, 146–153 (2015).
[Crossref]

Zhang, Y.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Zhang, Z.

Zhao, Y.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Y. Zhao, C. H. Chen, X. Pan, Y. H. Zhu, M. Holtz, A. Bernussi, and Z. Y. Fan, “Tuning the properties of VO2 thin films through growth temperature for infrared and terahertz modulation applications,” J. Appl. Phys. 114(11), 113509 (2013).
[Crossref]

Zhou, H.

H. Zhou, T. Zhang, S. Guruswamy, and A. Nahata, “An electrically tunable terahertz plasmonic device based on shape memory alloys and liquid metals,” Adv. Opt. Mater. 6(4), 1700684 (2018).
[Crossref]

Zhou, Y.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Zhou, Z.

Zhou, Z. X.

Y. Du, H. Tian, X. Cui, H. Wang, and Z. X. Zhou, “Electrically tunable liquid crystal terahertz phase shifter driven by transparent polymer electrodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(19), 4138–4142 (2016).
[Crossref]

Zhu, M. D.

B. Sensale-Rodriguez, R. S. Yan, M. D. Zhu, D. Jena, L. Liu, and H. G. Xing, “Efficient terahertz electro-absorption modulation employing graphene plasmonic structures,” Appl. Phys. Lett. 101(26), 261115 (2012).
[Crossref]

Zhu, Y. H.

Y. Zhao, C. H. Chen, X. Pan, Y. H. Zhu, M. Holtz, A. Bernussi, and Z. Y. Fan, “Tuning the properties of VO2 thin films through growth temperature for infrared and terahertz modulation applications,” J. Appl. Phys. 114(11), 113509 (2013).
[Crossref]

Zou, X.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

ACS Nano (1)

X. Wang, Y. Dai, R. Liu, X. He, S. Li, and Z. L. Wang, “Light-triggered pyroelectric nanogenerator based on a pn-junction for self-powered near-infrared photosensing,” ACS Nano 11(8), 8339–8345 (2017).
[Crossref] [PubMed]

Adv. Opt. Mater. (3)

Z. W. Shi, X. X. Cao, Q. Y. Wen, T. L. Wen, Q. H. Yang, Z. Chen, W. S. Shi, and H. W. Zhang, “Terahertz modulators based on silicon nanotip array,” Adv. Opt. Mater. 6(2), 1700620 (2018).
[Crossref]

H. Zhou, T. Zhang, S. Guruswamy, and A. Nahata, “An electrically tunable terahertz plasmonic device based on shape memory alloys and liquid metals,” Adv. Opt. Mater. 6(4), 1700684 (2018).
[Crossref]

X. D. Liu, Z. F. Chen, E. P. J. Parrott, B. S. Y. Ung, J. B. Xu, and E. P. MacPherson, “Graphene based terahertz light modulator in total internal reflection geometry,” Adv. Opt. Mater. 5(3), 1600697 (2017).
[Crossref]

Appl. Phys. Lett. (4)

X. J. Wu, X. C. Pan, B. G. Quan, and L. Wang, “Optical modulation of terahertz behavior in silicon with structured surfaces,” Appl. Phys. Lett. 103(12), 121112 (2013).
[Crossref]

B. Sensale-Rodriguez, R. S. Yan, M. D. Zhu, D. Jena, L. Liu, and H. G. Xing, “Efficient terahertz electro-absorption modulation employing graphene plasmonic structures,” Appl. Phys. Lett. 101(26), 261115 (2012).
[Crossref]

G. C. Wang, B. Zhang, H. Y. Ji, X. Liu, T. He, L. F. Lv, Y. B. Hou, and J. L. Shen, “Monolayer graphene based organic optical terahertz modulator,” Appl. Phys. Lett. 110(2), 023301 (2017).
[Crossref]

W. H. Kim, A. J. Makinen, N. Nikolov, R. Shashidhar, H. Kim, and Z. H. Kafafi, “Molecular organic light-emitting diodes using highly conducting polymers as anodes,” Appl. Phys. Lett. 80(20), 3844–3846 (2002).
[Crossref]

Carbon (1)

Q. Li, Z. Tian, X. Q. Zhang, N. N. Xu, R. Singh, J. Q. Gu, P. Lv, L. B. Luo, S. Zhang, J. G. Han, and W. L. Zhang, “Dual control of active graphene–silicon hybrid metamaterial devices,” Carbon 90, 146–153 (2015).
[Crossref]

Chin. Phys. B (1)

L. L. Du, Q. Li, S. X. Li, F. R. Hu, X. M. Xiong, Y. F. Li, W. T. Zhang, and J. G. Han, “Polarization-independent terahertz wave modulator based on graphene-silicon hybrid structure,” Chin. Phys. B 25(2), 027301 (2016).
[Crossref]

J Infrared Milli Terahz Waves (1)

M. Rahm, J. S. Li, and W. J. Padilla, “THz Wave Modulators: A Brief Review on Different Modulation Techniques,” J Infrared Milli Terahz Waves 34(1), 1–27 (2013).
[Crossref]

J. Appl. Phys. (1)

Y. Zhao, C. H. Chen, X. Pan, Y. H. Zhu, M. Holtz, A. Bernussi, and Z. Y. Fan, “Tuning the properties of VO2 thin films through growth temperature for infrared and terahertz modulation applications,” J. Appl. Phys. 114(11), 113509 (2013).
[Crossref]

J. Mater. Chem. (1)

S. Kirchmeyer and K. Reuter, “Scientific importance, properties and growing applications of poly (3, 4-ethylenedioxythiophene),” J. Mater. Chem. 15(21), 2077–2088 (2005).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

Y. Du, H. Tian, X. Cui, H. Wang, and Z. X. Zhou, “Electrically tunable liquid crystal terahertz phase shifter driven by transparent polymer electrodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(19), 4138–4142 (2016).
[Crossref]

Nano Lett. (2)

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Nat. Commun. (2)

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6(1), 7082 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Nature (1)

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Opt. Commun. (1)

M. N. F. Hoque, G. Karaoglan-Bebek, M. Holtz, A. A. Bernussi, and Z. Y. Fan, “High performance spatial light modulators for terahertz applications,” Opt. Commun. 350, 309–314 (2015).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. Lett. (2)

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide,” Phys. Rev. Lett. 99(22), 226401 (2007).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Proposed MPSP hybrid structure. (b) THz transmission time-domain signal and (c) corresponding frequency-domain signal of bidirectional electrically-controlled terahertz device at various bias voltages (−1, −0.2, −0.1, 0, 0.05, 0.1, and 0.5 V) under photoexcitation power of 0.5 W/cm2.
Fig. 2
Fig. 2 (a) Transmittance of MEH-PPV/PEDOT:PSS:DMSO/Si/PEDOT:PSS:DMSO structure at bias voltages ranging from −0.6 V to 0.5 V under various levels of photoexcitation (0, 0.4, 0.5 and 2.3 W/cm2). (b) PEDOT:PSS:DMSO/Si/PEDOT:PSS:DMSO structure under bias voltages ranging from −1 V to 0.3 V under 2.9 W/cm2 photo-excitation and (c) MEH-PPV/Si/PEDOT:PSS:DMSO structure under bias voltages ranging from −2V to 2V under photo-excitation at 0.45 W/cm2. The insets show schematics of the measured devices.
Fig. 3
Fig. 3 (a) Setup for measurement of the signals of the modulated THz beam based on THz-TDS. (b) Measured signals of the modulated THz beam when the bias is positive (red line) and negative (blue line) for the MPSP sample.
Fig. 4
Fig. 4 (a)–4(d) Modulated terahertz beam signals for a carrier frequency of 180 GHz at different modulation frequencies. (e) Half typical cycle of the conductivity-time curve. The inset shows multi-cycle of curve (f) Received ASCII code waveforms for the word ‘CNU’.
Fig. 5
Fig. 5 (a) Real and 5(b) imaginary parts of the conductivities of the MPSP structure at various bias voltages under photo-excitation at 0.5 W/cm2. (c) Calculated carrier density (blue line) and modulation factor (black line) as a function of bias voltage.
Fig. 6
Fig. 6 Movement of electrons and holes in a p-n junction when (a) negative bias and (b) positive bias are applied.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

M F = P B ias o f f ( ω ) d ω P B ias o n ( ω ) d ω P B ias o f f ( ω ) d ω
T ( ω ) = E ˜ e x c i t e d ( ω ) E ˜ n o n e x c i t e d ( ω ) = n + 1 n + 1 + Z 0 d σ ˜ ( ω )
σ ˜ ( ω ) = σ r ( ω ) + i σ i ( ω )
N = m ε 0 ω p 2 / e 2
ω p = ε i 2 / ( 1 ε ) r · ω
ε r ( ω ) = 1 σ i ( ω ) / ε 0 ( ω )
ε i ( ω ) = σ r ( ω ) / ε 0 ( ω )

Metrics