Abstract

Abstract: We propose a highly-sensitive temperature sensor employing a Mach-Zehnder interferometer (MZI) based on silicon-on-insulator (SOI) platform. The waveguide widths in the two MZI arms are tailored to have different temperature sensitivities but nearly the same group refractive indices. A temperature sensor with an enhanced sensitivity of larger than 438pm/°C is experimentally demonstrated, which is over seven times larger than that of conventional silicon optical temperature sensor (about 60pm/°C for quasi-TM mode). Moreover, the sensor is easy to fabricate, only by a single mask, and no need of any polymer cladding, which makes it more robust, and can be used in lab-on-chip systems as a temperature monitor.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical temperature sensor with enhanced sensitivity by employing hybrid waveguides in a silicon Mach-Zehnder interferometer

Xiaowei Guan, Xiaoyan Wang, and Lars H. Frandsen
Opt. Express 24(15) 16349-16356 (2016)

Ultra-sensitive polymeric waveguide temperature sensor based on asymmetric Mach–Zehnder interferometer

Donghai Niu, Lilei Wang, Qiang Xu, Minghui Jiang, Xibin Wang, Xiaoqiang Sun, Fei Wang, and Daming Zhang
Appl. Opt. 58(5) 1276-1280 (2019)

High-sensitivity liquid refractive-index sensor based on a Mach-Zehnder interferometer with a double-slot hybrid plasmonic waveguide

Xu Sun, Daoxin Dai, Lars Thylén, and Lech Wosinski
Opt. Express 23(20) 25688-25699 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, “In-fiber bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15(5), 779–785 (1997).
    [Crossref]
  2. S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33(16), 1917–1919 (2008).
    [Crossref] [PubMed]
  3. J. L. Kou, S. J. Qiu, F. Xu, and Y. Q. Lu, “Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe,” Opt. Express 19(19), 18452–18457 (2011).
    [Crossref] [PubMed]
  4. J. Shi, Y. Wang, D. Xu, H. Zhang, G. Su, L. Duan, C. Yan, D. Yan, S. Fu, and J. Yao, “Temperature sensor based on fiber ring laser with sagnac loop,” IEEE Photonics Technol. Lett. 28(7), 794–797 (2016).
    [Crossref]
  5. L.-Y. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
    [Crossref]
  6. P. Munendhar, L. Zhang, L. Tong, and S. Yu, “Highly sensitive temperature sensor using intrinsic Mach-Zehnder interferometer formed by bent micro-fiber embedded in polymer,” in Proceedings of the 2017 25th Optical Fiber Sensors Conference (OFS); Jeju, Korea. 24–28 April 2017; pp. 1–4.
  7. R. Dekker, N. Usechak, M. Först, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D Appl. Phys. 40(14), R249–R271 (2007).
    [Crossref]
  8. H. Xu, M. Hafezi, J. Fan, J. M. Taylor, G. F. Strouse, and Z. Ahmed, “Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures,” Opt. Express 22(3), 3098–3104 (2014).
    [Crossref] [PubMed]
  9. G. Liu, M. Han, and W. Hou, “High-resolution and fast-response fiber-optic temperature sensor using silicon Fabry-Pérot cavity,” Opt. Express 23(6), 7237–7247 (2015).
    [Crossref] [PubMed]
  10. R. Boeck, M. Caverley, L. Chrostowski, and N. A. F. Jaeger, “Grating-assisted silicon-on-insulator racetrack resonator reflector,” Opt. Express 23(20), 25509–25522 (2015).
    [Crossref] [PubMed]
  11. H. T. Kim and M. Yu, “Cascaded ring resonator-based temperature sensor with simultaneously enhanced sensitivity and range,” Opt. Express 24(9), 9501–9510 (2016).
    [Crossref] [PubMed]
  12. Y. Zhang, P. Liu, S. Zhang, W. Liu, J. Chen, and Y. Shi, “High sensitivity temperature sensor based on cascaded silicon photonic crystal nanobeam cavities,” Opt. Express 24(20), 23037–23043 (2016).
    [Crossref] [PubMed]
  13. J.-M. Lee, “Ultrahigh temperature-sensitive silicon MZI with titania cladding,” Front. Mater. 2(36), 1–4 (2015).
  14. X. Guan, X. Wang, and L. H. Frandsen, “Optical temperature sensor with enhanced sensitivity by employing hybrid waveguides in a silicon Mach-Zehnder interferometer,” Opt. Express 24(15), 16349–16356 (2016).
    [Crossref] [PubMed]
  15. M. Uenuma and T. Motooka, “Temperature-independent silicon waveguide optical filter,” Opt. Lett. 34(5), 599–601 (2009).
    [Crossref] [PubMed]
  16. H. Xu, M. Hafezi, J. Fan, J. M. Taylor, G. F. Strouse, and Z. Ahmed, “Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures,” Opt. Express 22(3), 3098–3104 (2014).
    [Crossref] [PubMed]
  17. D. Martens and P. Bienstman, “Comparison between vernier-cascade and mzi as transducer for biosensing with on-chip spectral filter,” Nanophotonics 6(4), 703 (2017).
    [Crossref]

2017 (1)

D. Martens and P. Bienstman, “Comparison between vernier-cascade and mzi as transducer for biosensing with on-chip spectral filter,” Nanophotonics 6(4), 703 (2017).
[Crossref]

2016 (4)

2015 (4)

G. Liu, M. Han, and W. Hou, “High-resolution and fast-response fiber-optic temperature sensor using silicon Fabry-Pérot cavity,” Opt. Express 23(6), 7237–7247 (2015).
[Crossref] [PubMed]

R. Boeck, M. Caverley, L. Chrostowski, and N. A. F. Jaeger, “Grating-assisted silicon-on-insulator racetrack resonator reflector,” Opt. Express 23(20), 25509–25522 (2015).
[Crossref] [PubMed]

L.-Y. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
[Crossref]

J.-M. Lee, “Ultrahigh temperature-sensitive silicon MZI with titania cladding,” Front. Mater. 2(36), 1–4 (2015).

2014 (2)

2011 (1)

2009 (1)

2008 (1)

2007 (1)

R. Dekker, N. Usechak, M. Först, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D Appl. Phys. 40(14), R249–R271 (2007).
[Crossref]

1997 (1)

Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, “In-fiber bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15(5), 779–785 (1997).
[Crossref]

Ahmed, Z.

Bandyopadhyay, S.

Bennion, I.

Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, “In-fiber bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15(5), 779–785 (1997).
[Crossref]

Bienstman, P.

D. Martens and P. Bienstman, “Comparison between vernier-cascade and mzi as transducer for biosensing with on-chip spectral filter,” Nanophotonics 6(4), 703 (2017).
[Crossref]

Boeck, R.

Canning, J.

Caverley, M.

Chen, J.

Chrostowski, L.

Cook, K.

Dekker, R.

R. Dekker, N. Usechak, M. Först, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D Appl. Phys. 40(14), R249–R271 (2007).
[Crossref]

Driessen, A.

R. Dekker, N. Usechak, M. Först, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D Appl. Phys. 40(14), R249–R271 (2007).
[Crossref]

Duan, L.

J. Shi, Y. Wang, D. Xu, H. Zhang, G. Su, L. Duan, C. Yan, D. Yan, S. Fu, and J. Yao, “Temperature sensor based on fiber ring laser with sagnac loop,” IEEE Photonics Technol. Lett. 28(7), 794–797 (2016).
[Crossref]

Fan, J.

Först, M.

R. Dekker, N. Usechak, M. Först, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D Appl. Phys. 40(14), R249–R271 (2007).
[Crossref]

Frandsen, L. H.

Fu, S.

J. Shi, Y. Wang, D. Xu, H. Zhang, G. Su, L. Duan, C. Yan, D. Yan, S. Fu, and J. Yao, “Temperature sensor based on fiber ring laser with sagnac loop,” IEEE Photonics Technol. Lett. 28(7), 794–797 (2016).
[Crossref]

Guan, X.

Hafezi, M.

Han, M.

Hou, W.

Jackson, D. A.

Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, “In-fiber bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15(5), 779–785 (1997).
[Crossref]

Jaeger, N. A. F.

Kim, H. T.

Kou, J. L.

Lee, J.-M.

J.-M. Lee, “Ultrahigh temperature-sensitive silicon MZI with titania cladding,” Front. Mater. 2(36), 1–4 (2015).

Liu, G.

Liu, P.

Liu, W.

Lu, Y. Q.

Luo, B.

L.-Y. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
[Crossref]

Luo, Y.

L.-Y. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
[Crossref]

Martens, D.

D. Martens and P. Bienstman, “Comparison between vernier-cascade and mzi as transducer for biosensing with on-chip spectral filter,” Nanophotonics 6(4), 703 (2017).
[Crossref]

Motooka, T.

Pan, W.

L.-Y. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
[Crossref]

Qiu, S. J.

Rao, Y. J.

Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, “In-fiber bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15(5), 779–785 (1997).
[Crossref]

Shao, L.-Y.

L.-Y. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
[Crossref]

Shi, J.

J. Shi, Y. Wang, D. Xu, H. Zhang, G. Su, L. Duan, C. Yan, D. Yan, S. Fu, and J. Yao, “Temperature sensor based on fiber ring laser with sagnac loop,” IEEE Photonics Technol. Lett. 28(7), 794–797 (2016).
[Crossref]

Shi, Y.

Stevenson, M.

Strouse, G. F.

Su, G.

J. Shi, Y. Wang, D. Xu, H. Zhang, G. Su, L. Duan, C. Yan, D. Yan, S. Fu, and J. Yao, “Temperature sensor based on fiber ring laser with sagnac loop,” IEEE Photonics Technol. Lett. 28(7), 794–797 (2016).
[Crossref]

Taylor, J. M.

Uenuma, M.

Usechak, N.

R. Dekker, N. Usechak, M. Först, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D Appl. Phys. 40(14), R249–R271 (2007).
[Crossref]

Wang, X.

Wang, Y.

J. Shi, Y. Wang, D. Xu, H. Zhang, G. Su, L. Duan, C. Yan, D. Yan, S. Fu, and J. Yao, “Temperature sensor based on fiber ring laser with sagnac loop,” IEEE Photonics Technol. Lett. 28(7), 794–797 (2016).
[Crossref]

Webb, D. J.

Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, “In-fiber bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15(5), 779–785 (1997).
[Crossref]

Xu, D.

J. Shi, Y. Wang, D. Xu, H. Zhang, G. Su, L. Duan, C. Yan, D. Yan, S. Fu, and J. Yao, “Temperature sensor based on fiber ring laser with sagnac loop,” IEEE Photonics Technol. Lett. 28(7), 794–797 (2016).
[Crossref]

Xu, F.

Xu, H.

Yan, C.

J. Shi, Y. Wang, D. Xu, H. Zhang, G. Su, L. Duan, C. Yan, D. Yan, S. Fu, and J. Yao, “Temperature sensor based on fiber ring laser with sagnac loop,” IEEE Photonics Technol. Lett. 28(7), 794–797 (2016).
[Crossref]

Yan, D.

J. Shi, Y. Wang, D. Xu, H. Zhang, G. Su, L. Duan, C. Yan, D. Yan, S. Fu, and J. Yao, “Temperature sensor based on fiber ring laser with sagnac loop,” IEEE Photonics Technol. Lett. 28(7), 794–797 (2016).
[Crossref]

Yan, L.

L.-Y. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
[Crossref]

Yao, J.

J. Shi, Y. Wang, D. Xu, H. Zhang, G. Su, L. Duan, C. Yan, D. Yan, S. Fu, and J. Yao, “Temperature sensor based on fiber ring laser with sagnac loop,” IEEE Photonics Technol. Lett. 28(7), 794–797 (2016).
[Crossref]

Yu, M.

Zhang, H.

J. Shi, Y. Wang, D. Xu, H. Zhang, G. Su, L. Duan, C. Yan, D. Yan, S. Fu, and J. Yao, “Temperature sensor based on fiber ring laser with sagnac loop,” IEEE Photonics Technol. Lett. 28(7), 794–797 (2016).
[Crossref]

Zhang, L.

Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, “In-fiber bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15(5), 779–785 (1997).
[Crossref]

Zhang, S.

Zhang, Y.

Zhang, Z.

L.-Y. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
[Crossref]

Zou, X.

L.-Y. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
[Crossref]

Front. Mater. (1)

J.-M. Lee, “Ultrahigh temperature-sensitive silicon MZI with titania cladding,” Front. Mater. 2(36), 1–4 (2015).

IEEE Photonics Technol. Lett. (1)

J. Shi, Y. Wang, D. Xu, H. Zhang, G. Su, L. Duan, C. Yan, D. Yan, S. Fu, and J. Yao, “Temperature sensor based on fiber ring laser with sagnac loop,” IEEE Photonics Technol. Lett. 28(7), 794–797 (2016).
[Crossref]

J. Lightwave Technol. (1)

Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, “In-fiber bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15(5), 779–785 (1997).
[Crossref]

J. Phys. D Appl. Phys. (1)

R. Dekker, N. Usechak, M. Först, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D Appl. Phys. 40(14), R249–R271 (2007).
[Crossref]

Nanophotonics (1)

D. Martens and P. Bienstman, “Comparison between vernier-cascade and mzi as transducer for biosensing with on-chip spectral filter,” Nanophotonics 6(4), 703 (2017).
[Crossref]

Opt. Commun. (1)

L.-Y. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
[Crossref]

Opt. Express (8)

H. Xu, M. Hafezi, J. Fan, J. M. Taylor, G. F. Strouse, and Z. Ahmed, “Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures,” Opt. Express 22(3), 3098–3104 (2014).
[Crossref] [PubMed]

G. Liu, M. Han, and W. Hou, “High-resolution and fast-response fiber-optic temperature sensor using silicon Fabry-Pérot cavity,” Opt. Express 23(6), 7237–7247 (2015).
[Crossref] [PubMed]

R. Boeck, M. Caverley, L. Chrostowski, and N. A. F. Jaeger, “Grating-assisted silicon-on-insulator racetrack resonator reflector,” Opt. Express 23(20), 25509–25522 (2015).
[Crossref] [PubMed]

H. T. Kim and M. Yu, “Cascaded ring resonator-based temperature sensor with simultaneously enhanced sensitivity and range,” Opt. Express 24(9), 9501–9510 (2016).
[Crossref] [PubMed]

Y. Zhang, P. Liu, S. Zhang, W. Liu, J. Chen, and Y. Shi, “High sensitivity temperature sensor based on cascaded silicon photonic crystal nanobeam cavities,” Opt. Express 24(20), 23037–23043 (2016).
[Crossref] [PubMed]

X. Guan, X. Wang, and L. H. Frandsen, “Optical temperature sensor with enhanced sensitivity by employing hybrid waveguides in a silicon Mach-Zehnder interferometer,” Opt. Express 24(15), 16349–16356 (2016).
[Crossref] [PubMed]

J. L. Kou, S. J. Qiu, F. Xu, and Y. Q. Lu, “Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe,” Opt. Express 19(19), 18452–18457 (2011).
[Crossref] [PubMed]

H. Xu, M. Hafezi, J. Fan, J. M. Taylor, G. F. Strouse, and Z. Ahmed, “Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures,” Opt. Express 22(3), 3098–3104 (2014).
[Crossref] [PubMed]

Opt. Lett. (2)

Other (1)

P. Munendhar, L. Zhang, L. Tong, and S. Yu, “Highly sensitive temperature sensor using intrinsic Mach-Zehnder interferometer formed by bent micro-fiber embedded in polymer,” in Proceedings of the 2017 25th Optical Fiber Sensors Conference (OFS); Jeju, Korea. 24–28 April 2017; pp. 1–4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of the proposed temperature sensor.
Fig. 2
Fig. 2 (a) n eff ( W i ) and λ n eff ( W i )/ λ as a function of the waveguide width, respectively. (b) The group index and temperature sensitivity of the waveguide as a function of the waveguide width. Here the wavelength, initial temperature and the thickness of core Si layer is 1560nm, 300K and 250nm, respectively, with silica cladding.
Fig. 3
Fig. 3 (a) Temperature sensitivity of the MZI sensor as a function of W 2 when W 1 is fixed at 900nm. (b) Temperature sensitivity as a function of W 1 when W 2 is fixed at 520nm.
Fig. 4
Fig. 4 (a) Optical microscope image of the fabricated MZI sensor. (b)-(c) The SEM images of two arms.
Fig. 5
Fig. 5 (a)-(b) Transmission spectra of the proposed sensor and conventional MZI at different temperature, respectively. (c) The wavelength shifts of interference spectrum with respect to the temperature variation. Slopes are obtained by linear fitting.
Fig. 6
Fig. 6 Dip-wavelength shift with respect to temperature variation. Five width-combinations were fabricated and measured, indicating a good tolerance for the proposed sensor.
Fig. 7
Fig. 7 Transmission spectra of the proposed sensor at different temperature when W 1 =900nm and W 2 =460nm. The temperature sensitivities at different wavelength from 1560nm to 1590nm are labeled respectively.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

mλ=[ n eff ( W 1 ) n eff ( W 2 ) ]L
M=abs( m[ n eff ( W 1 ) λ n eff ( W 2 ) λ ]L )
λ T = L M [ n eff ( W 1 ) T n eff ( W 2 ) T ]
λ T = λ | n g ( W 1 ) n g ( W 2 ) | [ n eff ( W 1 ) T n eff ( W 2 ) T ]
Δ T DR = FSR Sensitivity = λ L[ n eff ( W 1 ) T n eff ( W 2 ) T ]

Metrics