M. Arigovindan, J. Shaevitz, J. McGowan, J. W. Sedat, and D. A. Agard, “A parallel product-convolution approach for representing depth varying point spread functions in 3D widefield microscopy based on principal component analysis,” Opt. Express 18, 6461–6476 (2010).

[Crossref]
[PubMed]

E. F. Y. Hom, F. Marchis, T. K. Lee, S. Haase, D. A. Agard, and J. W. Sedat, “AIDA: an adaptive image deconvolution algorithm with application to multi-frame and three-dimensional data,” J. Opt. Soc. Am. A 24, 1580–1600 (2007).

[Crossref]

Y. Hiraoka, J. W. Sedat, and D. A. Agard, “Determination of three-dimensional imaging properties of a light microscope system. partial confocal behavior in epifluorescence microscopy,” Biophys. J. 57, 325–333 (1990).

[Crossref]
[PubMed]

H. Kirshner, F. Aguet, D. Sage, and M. Unser, “3-D PSF fitting for fluorescence microscopy: implementation and localization application,” J. Microsc. 249, 13–25 (2013).

[Crossref]

C. Vonesch, F. Aguet, J.-L. Vonesch, and M. Unser, “The colored revolution of bioimaging,” IEEE Signal Process. Mag. 23, 20–31 (2006).

[Crossref]

F. Aguet, D. Van De Ville, and M. Unser, “A maximum-likelihood formalism for sub-resolution axial localization of fluorescent nanoparticles,” Opt. Express 13, 10503–10522 (2005).

[Crossref]
[PubMed]

F. Aguet, “Super-resolution fluorescence microscopy based on physical models,” Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne (2009).

D. A. Fish, A. M. Brinicombe, E. R. Pike, J. G. Walker, and R. L. Algorithm, “Blind deconvolution by means of the Richardson-Lucy algorithm,” Appl. Opt. 12, 58–65 (1995).

H. P. Babcock and X. Zhuang, “Analyzing single molecule localization microscopy data using cubic splines,” Sci. Rep. 7, 552 (2017).

[Crossref]
[PubMed]

L. Gao, L. Shao, B.-C. Chen, and E. Betzig, “3D live fluorescence imaging of cellular dynamics using Bessel beam plane illumination microscopy,” Nat. Protoc. 9, 1083–1101 (2014).

[Crossref]
[PubMed]

J. Li, F. Luisier, and T. Blu, “PURE-LET Image Deconvolution,” IEEE Trans. Image Process. 27, 92–105 (2018).

[Crossref]

J. Li, F. Xue, and T. Blu, “Fast and accurate three-dimensional point spread function computation for fluorescence microscopy,” J. Opt. Soc. Am. A 34, 1029–1034 (2017).

[Crossref]

F. Xue and T. Blu, “A novel SURE-based criterion for parametric PSF estimation,” IEEE Trans. Image Process. 24, 595–607 (2015).

[Crossref]

F. Luisier, T. Blu, and M. Unser, “Image denoising in mixed Poisson-Gaussian noise,” IEEE Trans. Image Process. 20, 696–708 (2011).

[Crossref]

J. Li, F. Xue, and T. Blu, “Accurate 3D PSF estimation from a wide-field microscopy image,” in Proceedings of IEEE International Symposium on Biomedical Imaging, (IEEE, 2018), pp. 501–504.

J. Li, F. Xue, and T. Blu, “Gaussian blur estimation for photon-limited images,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2017), pp. 495–499.

J. Li, F. Luisier, and T. Blu, “PURE-LET deconvolution of 3D fluorescence microscopy images,” in Proceedings of IEEE International Symposium on Biomedical Imaging (IEEE, 2017), pp. 723–727.

M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Cambridge University, 1999).

[Crossref]

J. Boulanger, C. Kervrann, P. Bouthemy, P. Elbau, J.-B. Sibarita, and J. Salamero, “Patch-based nonlocal functional for denoising fluorescence microscopy image sequences,” IEEE Trans. Med. Imag. 29, 442–454 (2010).

[Crossref]

J. Boulanger, C. Kervrann, P. Bouthemy, P. Elbau, J.-B. Sibarita, and J. Salamero, “Patch-based nonlocal functional for denoising fluorescence microscopy image sequences,” IEEE Trans. Med. Imag. 29, 442–454 (2010).

[Crossref]

D. A. Fish, A. M. Brinicombe, E. R. Pike, J. G. Walker, and R. L. Algorithm, “Blind deconvolution by means of the Richardson-Lucy algorithm,” Appl. Opt. 12, 58–65 (1995).

J.-S. Lee, T.-L. E. Wee, and C. M. Brown, “Calibration of wide-field deconvolution microscopy for quantitative fluorescence imaging,” J. Biomol. Tech. 25, 31 (2014).

[Crossref]
[PubMed]

R. W. Cole, T. Jinadasa, and C. M. Brown, “Measuring and interpreting point spread functions to determine confocal microscope resolution and ensure quality control,” Nat. Protoc. 6, 1929–1941 (2011).

[Crossref]
[PubMed]

M. Keuper, T. Schmidt, M. Temerinac-Ott, J. Padeken, P. Heun, O. Ronneberger, and T. Brox, “Blind deconvolution of widefield fluorescence microscopic data by regularization of the optical transfer function (OTF),” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2013), pp. 2179–2186.

L. Gao, L. Shao, B.-C. Chen, and E. Betzig, “3D live fluorescence imaging of cellular dynamics using Bessel beam plane illumination microscopy,” Nat. Protoc. 9, 1083–1101 (2014).

[Crossref]
[PubMed]

R. W. Cole, T. Jinadasa, and C. M. Brown, “Measuring and interpreting point spread functions to determine confocal microscope resolution and ensure quality control,” Nat. Protoc. 6, 1929–1941 (2011).

[Crossref]
[PubMed]

S. Hell, G. Reiner, C. Cremer, and E. H. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169, 391–405 (1993).

[Crossref]

F. Soulez, L. Denis, Y. Tourneur, and É. Thiébaut, “Blind deconvolution of 3D data in wide field fluorescence microscopy,” in Proceedings of IEEE International Symposium on Biomedical Imaging (IEEE, 2012), pp. 1735–1738.

S. Dmitrieff and F. Nédélec, “ConfocalGN: A minimalistic confocal image generator,” SoftwareX 6, 243–247 (2017).

[Crossref]

D. Sage, L. Donati, F. Soulez, D. Fortun, G. Schmit, A. Seitz, R. Guiet, C. Vonesch, and M. Unser, “Deconvolutionlab2: An open-source software for deconvolution microscopy,” Methods 115, 28–41 (2017).

[Crossref]
[PubMed]

M. Štefko, B. Ottino, K. M. Douglass, and S. Manley, “Design principles for autonomous illumination control in localization microscopy,” bioRxiv 295519; doi: https://doi.org/10.1101/295519 .

J. Boulanger, C. Kervrann, P. Bouthemy, P. Elbau, J.-B. Sibarita, and J. Salamero, “Patch-based nonlocal functional for denoising fluorescence microscopy image sequences,” IEEE Trans. Med. Imag. 29, 442–454 (2010).

[Crossref]

Y. Li, M. Mund, P. Hoess, U. Matti, B. Nijmeijer, V. J. Sabinina, J. Ellenberg, I. Schoen, and J. Ries, “Fast, robust and precise 3d localization for arbitrary point spread functions,” bioRxiv 172643; doi: https://doi.org/10.1101/172643 .

T. Kenig, Z. Kam, and A. Feuer, “Blind image deconvolution using machine learning for three-dimensional microscopy,” IEEE Trans. Pattern Anal. Mach. Intell. 32, 2191–2204 (2010).

[Crossref]
[PubMed]

D. A. Fish, A. M. Brinicombe, E. R. Pike, J. G. Walker, and R. L. Algorithm, “Blind deconvolution by means of the Richardson-Lucy algorithm,” Appl. Opt. 12, 58–65 (1995).

D. Sage, L. Donati, F. Soulez, D. Fortun, G. Schmit, A. Seitz, R. Guiet, C. Vonesch, and M. Unser, “Deconvolutionlab2: An open-source software for deconvolution microscopy,” Methods 115, 28–41 (2017).

[Crossref]
[PubMed]

L. Gao, L. Shao, B.-C. Chen, and E. Betzig, “3D live fluorescence imaging of cellular dynamics using Bessel beam plane illumination microscopy,” Nat. Protoc. 9, 1083–1101 (2014).

[Crossref]
[PubMed]

D. Sage, L. Donati, F. Soulez, D. Fortun, G. Schmit, A. Seitz, R. Guiet, C. Vonesch, and M. Unser, “Deconvolutionlab2: An open-source software for deconvolution microscopy,” Methods 115, 28–41 (2017).

[Crossref]
[PubMed]

O. Haeberlé, “Focusing of light through a stratified medium: a practical approach for computing microscope point spread functions. Part I: conventional microscopy,” Opt. Commun. 216, 55–63 (2003).

[Crossref]

S. Hell, G. Reiner, C. Cremer, and E. H. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169, 391–405 (1993).

[Crossref]

M. Keuper, T. Schmidt, M. Temerinac-Ott, J. Padeken, P. Heun, O. Ronneberger, and T. Brox, “Blind deconvolution of widefield fluorescence microscopic data by regularization of the optical transfer function (OTF),” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2013), pp. 2179–2186.

Y. Hiraoka, J. W. Sedat, and D. A. Agard, “Determination of three-dimensional imaging properties of a light microscope system. partial confocal behavior in epifluorescence microscopy,” Biophys. J. 57, 325–333 (1990).

[Crossref]
[PubMed]

Y. Li, M. Mund, P. Hoess, U. Matti, B. Nijmeijer, V. J. Sabinina, J. Ellenberg, I. Schoen, and J. Ries, “Fast, robust and precise 3d localization for arbitrary point spread functions,” bioRxiv 172643; doi: https://doi.org/10.1101/172643 .

R. W. Cole, T. Jinadasa, and C. M. Brown, “Measuring and interpreting point spread functions to determine confocal microscope resolution and ensure quality control,” Nat. Protoc. 6, 1929–1941 (2011).

[Crossref]
[PubMed]

T. Kenig, Z. Kam, and A. Feuer, “Blind image deconvolution using machine learning for three-dimensional microscopy,” IEEE Trans. Pattern Anal. Mach. Intell. 32, 2191–2204 (2010).

[Crossref]
[PubMed]

P. Pankajakshan, B. Zhang, L. Blanc-Féraud, Z. Kam, J.-C. Olivo-Marin, and J. Zerubia, “Blind deconvolution for thin-layered confocal imaging,” Appl. Opt. 48, 4437–4448 (2009).

[Crossref]
[PubMed]

T. Kenig, Z. Kam, and A. Feuer, “Blind image deconvolution using machine learning for three-dimensional microscopy,” IEEE Trans. Pattern Anal. Mach. Intell. 32, 2191–2204 (2010).

[Crossref]
[PubMed]

J. Boulanger, C. Kervrann, P. Bouthemy, P. Elbau, J.-B. Sibarita, and J. Salamero, “Patch-based nonlocal functional for denoising fluorescence microscopy image sequences,” IEEE Trans. Med. Imag. 29, 442–454 (2010).

[Crossref]

M. Keuper, T. Schmidt, M. Temerinac-Ott, J. Padeken, P. Heun, O. Ronneberger, and T. Brox, “Blind deconvolution of widefield fluorescence microscopic data by regularization of the optical transfer function (OTF),” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2013), pp. 2179–2186.

D. Sage, H. Kirshner, T. Pengo, N. Stuurman, J. Min, S. Manley, and M. Unser, “Quantitative evaluation of software packages for single-molecule localization microscopy,” Nat. Methods 12, 717–724 (2015).

[Crossref]
[PubMed]

H. Kirshner, F. Aguet, D. Sage, and M. Unser, “3-D PSF fitting for fluorescence microscopy: implementation and localization application,” J. Microsc. 249, 13–25 (2013).

[Crossref]

P. Theer, C. Mongis, and M. Knop, “PSFj: know your fluorescence microscope,” Nat. Methods 11, 981–982 (2014).

[Crossref]
[PubMed]

J.-S. Lee, T.-L. E. Wee, and C. M. Brown, “Calibration of wide-field deconvolution microscopy for quantitative fluorescence imaging,” J. Biomol. Tech. 25, 31 (2014).

[Crossref]
[PubMed]

J. Li, F. Luisier, and T. Blu, “PURE-LET Image Deconvolution,” IEEE Trans. Image Process. 27, 92–105 (2018).

[Crossref]

J. Li, F. Xue, and T. Blu, “Fast and accurate three-dimensional point spread function computation for fluorescence microscopy,” J. Opt. Soc. Am. A 34, 1029–1034 (2017).

[Crossref]

J. Li, F. Xue, and T. Blu, “Accurate 3D PSF estimation from a wide-field microscopy image,” in Proceedings of IEEE International Symposium on Biomedical Imaging, (IEEE, 2018), pp. 501–504.

J. Li, F. Xue, and T. Blu, “Gaussian blur estimation for photon-limited images,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2017), pp. 495–499.

J. Li, F. Luisier, and T. Blu, “PURE-LET deconvolution of 3D fluorescence microscopy images,” in Proceedings of IEEE International Symposium on Biomedical Imaging (IEEE, 2017), pp. 723–727.

Y. Li, M. Mund, P. Hoess, U. Matti, B. Nijmeijer, V. J. Sabinina, J. Ellenberg, I. Schoen, and J. Ries, “Fast, robust and precise 3d localization for arbitrary point spread functions,” bioRxiv 172643; doi: https://doi.org/10.1101/172643 .

J. Li, F. Luisier, and T. Blu, “PURE-LET Image Deconvolution,” IEEE Trans. Image Process. 27, 92–105 (2018).

[Crossref]

F. Luisier, T. Blu, and M. Unser, “Image denoising in mixed Poisson-Gaussian noise,” IEEE Trans. Image Process. 20, 696–708 (2011).

[Crossref]

J. Li, F. Luisier, and T. Blu, “PURE-LET deconvolution of 3D fluorescence microscopy images,” in Proceedings of IEEE International Symposium on Biomedical Imaging (IEEE, 2017), pp. 723–727.

D. Sage, H. Kirshner, T. Pengo, N. Stuurman, J. Min, S. Manley, and M. Unser, “Quantitative evaluation of software packages for single-molecule localization microscopy,” Nat. Methods 12, 717–724 (2015).

[Crossref]
[PubMed]

M. Štefko, B. Ottino, K. M. Douglass, and S. Manley, “Design principles for autonomous illumination control in localization microscopy,” bioRxiv 295519; doi: https://doi.org/10.1101/295519 .

Y. Li, M. Mund, P. Hoess, U. Matti, B. Nijmeijer, V. J. Sabinina, J. Ellenberg, I. Schoen, and J. Ries, “Fast, robust and precise 3d localization for arbitrary point spread functions,” bioRxiv 172643; doi: https://doi.org/10.1101/172643 .

D. Sage, H. Kirshner, T. Pengo, N. Stuurman, J. Min, S. Manley, and M. Unser, “Quantitative evaluation of software packages for single-molecule localization microscopy,” Nat. Methods 12, 717–724 (2015).

[Crossref]
[PubMed]

P. Theer, C. Mongis, and M. Knop, “PSFj: know your fluorescence microscope,” Nat. Methods 11, 981–982 (2014).

[Crossref]
[PubMed]

Y. Li, M. Mund, P. Hoess, U. Matti, B. Nijmeijer, V. J. Sabinina, J. Ellenberg, I. Schoen, and J. Ries, “Fast, robust and precise 3d localization for arbitrary point spread functions,” bioRxiv 172643; doi: https://doi.org/10.1101/172643 .

B. Kim and T. Naemura, “Blind depth-variant deconvolution of 3D data in wide-field fluorescence microscopy,” Sci. Rep. 5, 9894 (2015).

[Crossref]
[PubMed]

S. Dmitrieff and F. Nédélec, “ConfocalGN: A minimalistic confocal image generator,” SoftwareX 6, 243–247 (2017).

[Crossref]

P. Sarder and A. Nehorai, “Deconvolution methods for 3-D fluorescence microscopy images,” IEEE Signal Process. Mag. 23, 32–45 (2006).

[Crossref]

Y. Li, M. Mund, P. Hoess, U. Matti, B. Nijmeijer, V. J. Sabinina, J. Ellenberg, I. Schoen, and J. Ries, “Fast, robust and precise 3d localization for arbitrary point spread functions,” bioRxiv 172643; doi: https://doi.org/10.1101/172643 .

P. Pankajakshan, B. Zhang, L. Blanc-Féraud, Z. Kam, J.-C. Olivo-Marin, and J. Zerubia, “Blind deconvolution for thin-layered confocal imaging,” Appl. Opt. 48, 4437–4448 (2009).

[Crossref]
[PubMed]

B. Zhang, J. Zerubia, and J.-C. Olivo-Marin, “Gaussian approximations of fluorescence microscope point-spread function models,” Appl. Opt. 46, 1819–1829 (2007).

[Crossref]
[PubMed]

M. Štefko, B. Ottino, K. M. Douglass, and S. Manley, “Design principles for autonomous illumination control in localization microscopy,” bioRxiv 295519; doi: https://doi.org/10.1101/295519 .

M. Keuper, T. Schmidt, M. Temerinac-Ott, J. Padeken, P. Heun, O. Ronneberger, and T. Brox, “Blind deconvolution of widefield fluorescence microscopic data by regularization of the optical transfer function (OTF),” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2013), pp. 2179–2186.

D. Sage, H. Kirshner, T. Pengo, N. Stuurman, J. Min, S. Manley, and M. Unser, “Quantitative evaluation of software packages for single-molecule localization microscopy,” Nat. Methods 12, 717–724 (2015).

[Crossref]
[PubMed]

D. A. Fish, A. M. Brinicombe, E. R. Pike, J. G. Walker, and R. L. Algorithm, “Blind deconvolution by means of the Richardson-Lucy algorithm,” Appl. Opt. 12, 58–65 (1995).

S. Hell, G. Reiner, C. Cremer, and E. H. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169, 391–405 (1993).

[Crossref]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. structure of the image field in an aplanatic system,” P. Roy. Soc. Lond. A Mat. 253, 358–379 (1959).

[Crossref]

Y. Li, M. Mund, P. Hoess, U. Matti, B. Nijmeijer, V. J. Sabinina, J. Ellenberg, I. Schoen, and J. Ries, “Fast, robust and precise 3d localization for arbitrary point spread functions,” bioRxiv 172643; doi: https://doi.org/10.1101/172643 .

M. Keuper, T. Schmidt, M. Temerinac-Ott, J. Padeken, P. Heun, O. Ronneberger, and T. Brox, “Blind deconvolution of widefield fluorescence microscopic data by regularization of the optical transfer function (OTF),” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2013), pp. 2179–2186.

Y. Li, M. Mund, P. Hoess, U. Matti, B. Nijmeijer, V. J. Sabinina, J. Ellenberg, I. Schoen, and J. Ries, “Fast, robust and precise 3d localization for arbitrary point spread functions,” bioRxiv 172643; doi: https://doi.org/10.1101/172643 .

D. Sage, L. Donati, F. Soulez, D. Fortun, G. Schmit, A. Seitz, R. Guiet, C. Vonesch, and M. Unser, “Deconvolutionlab2: An open-source software for deconvolution microscopy,” Methods 115, 28–41 (2017).

[Crossref]
[PubMed]

D. Sage, H. Kirshner, T. Pengo, N. Stuurman, J. Min, S. Manley, and M. Unser, “Quantitative evaluation of software packages for single-molecule localization microscopy,” Nat. Methods 12, 717–724 (2015).

[Crossref]
[PubMed]

H. Kirshner, F. Aguet, D. Sage, and M. Unser, “3-D PSF fitting for fluorescence microscopy: implementation and localization application,” J. Microsc. 249, 13–25 (2013).

[Crossref]

J. Boulanger, C. Kervrann, P. Bouthemy, P. Elbau, J.-B. Sibarita, and J. Salamero, “Patch-based nonlocal functional for denoising fluorescence microscopy image sequences,” IEEE Trans. Med. Imag. 29, 442–454 (2010).

[Crossref]

P. Sarder and A. Nehorai, “Deconvolution methods for 3-D fluorescence microscopy images,” IEEE Signal Process. Mag. 23, 32–45 (2006).

[Crossref]

W. Wallace, L. H. Schaefer, and J. R. Swedlow, “A workingperson’s guide to deconvolution in light microscopy,” Biotechniques 31, 1076–1097 (2001).

[Crossref]

M. Keuper, T. Schmidt, M. Temerinac-Ott, J. Padeken, P. Heun, O. Ronneberger, and T. Brox, “Blind deconvolution of widefield fluorescence microscopic data by regularization of the optical transfer function (OTF),” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2013), pp. 2179–2186.

D. Sage, L. Donati, F. Soulez, D. Fortun, G. Schmit, A. Seitz, R. Guiet, C. Vonesch, and M. Unser, “Deconvolutionlab2: An open-source software for deconvolution microscopy,” Methods 115, 28–41 (2017).

[Crossref]
[PubMed]

Y. Li, M. Mund, P. Hoess, U. Matti, B. Nijmeijer, V. J. Sabinina, J. Ellenberg, I. Schoen, and J. Ries, “Fast, robust and precise 3d localization for arbitrary point spread functions,” bioRxiv 172643; doi: https://doi.org/10.1101/172643 .

M. Arigovindan, J. Shaevitz, J. McGowan, J. W. Sedat, and D. A. Agard, “A parallel product-convolution approach for representing depth varying point spread functions in 3D widefield microscopy based on principal component analysis,” Opt. Express 18, 6461–6476 (2010).

[Crossref]
[PubMed]

E. F. Y. Hom, F. Marchis, T. K. Lee, S. Haase, D. A. Agard, and J. W. Sedat, “AIDA: an adaptive image deconvolution algorithm with application to multi-frame and three-dimensional data,” J. Opt. Soc. Am. A 24, 1580–1600 (2007).

[Crossref]

Y. Hiraoka, J. W. Sedat, and D. A. Agard, “Determination of three-dimensional imaging properties of a light microscope system. partial confocal behavior in epifluorescence microscopy,” Biophys. J. 57, 325–333 (1990).

[Crossref]
[PubMed]

D. Sage, L. Donati, F. Soulez, D. Fortun, G. Schmit, A. Seitz, R. Guiet, C. Vonesch, and M. Unser, “Deconvolutionlab2: An open-source software for deconvolution microscopy,” Methods 115, 28–41 (2017).

[Crossref]
[PubMed]

L. Gao, L. Shao, B.-C. Chen, and E. Betzig, “3D live fluorescence imaging of cellular dynamics using Bessel beam plane illumination microscopy,” Nat. Protoc. 9, 1083–1101 (2014).

[Crossref]
[PubMed]

J. Boulanger, C. Kervrann, P. Bouthemy, P. Elbau, J.-B. Sibarita, and J. Salamero, “Patch-based nonlocal functional for denoising fluorescence microscopy image sequences,” IEEE Trans. Med. Imag. 29, 442–454 (2010).

[Crossref]

M. Siemons, C. Hulleman, R. Thorsen, C. Smith, and S. Stallinga, “High precision wavefront control in point spread function engineering for single emitter localization,” Opt. Express 26, 8397–8416 (2018).

[Crossref]
[PubMed]

C. Smith, M. Huisman, M. Siemons, D. Grünwald, and S. Stallinga, “Simultaneous measurement of emission color and 3d position of single molecules,” Opt. Express 24, 4996–5013 (2016).

[Crossref]
[PubMed]

A. Small and S. Stahlheber, “Fluorophore localization algorithms for super-resolution microscopy,” Nat. Methods 11, 267–279 (2014).

[Crossref]
[PubMed]

M. Siemons, C. Hulleman, R. Thorsen, C. Smith, and S. Stallinga, “High precision wavefront control in point spread function engineering for single emitter localization,” Opt. Express 26, 8397–8416 (2018).

[Crossref]
[PubMed]

C. Smith, M. Huisman, M. Siemons, D. Grünwald, and S. Stallinga, “Simultaneous measurement of emission color and 3d position of single molecules,” Opt. Express 24, 4996–5013 (2016).

[Crossref]
[PubMed]

D. Sage, L. Donati, F. Soulez, D. Fortun, G. Schmit, A. Seitz, R. Guiet, C. Vonesch, and M. Unser, “Deconvolutionlab2: An open-source software for deconvolution microscopy,” Methods 115, 28–41 (2017).

[Crossref]
[PubMed]

F. Soulez, L. Denis, Y. Tourneur, and É. Thiébaut, “Blind deconvolution of 3D data in wide field fluorescence microscopy,” in Proceedings of IEEE International Symposium on Biomedical Imaging (IEEE, 2012), pp. 1735–1738.

A. Small and S. Stahlheber, “Fluorophore localization algorithms for super-resolution microscopy,” Nat. Methods 11, 267–279 (2014).

[Crossref]
[PubMed]

M. Siemons, C. Hulleman, R. Thorsen, C. Smith, and S. Stallinga, “High precision wavefront control in point spread function engineering for single emitter localization,” Opt. Express 26, 8397–8416 (2018).

[Crossref]
[PubMed]

C. Smith, M. Huisman, M. Siemons, D. Grünwald, and S. Stallinga, “Simultaneous measurement of emission color and 3d position of single molecules,” Opt. Express 24, 4996–5013 (2016).

[Crossref]
[PubMed]

M. Štefko, B. Ottino, K. M. Douglass, and S. Manley, “Design principles for autonomous illumination control in localization microscopy,” bioRxiv 295519; doi: https://doi.org/10.1101/295519 .

S. Hell, G. Reiner, C. Cremer, and E. H. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169, 391–405 (1993).

[Crossref]

D. Sage, H. Kirshner, T. Pengo, N. Stuurman, J. Min, S. Manley, and M. Unser, “Quantitative evaluation of software packages for single-molecule localization microscopy,” Nat. Methods 12, 717–724 (2015).

[Crossref]
[PubMed]

W. Wallace, L. H. Schaefer, and J. R. Swedlow, “A workingperson’s guide to deconvolution in light microscopy,” Biotechniques 31, 1076–1097 (2001).

[Crossref]

M. Keuper, T. Schmidt, M. Temerinac-Ott, J. Padeken, P. Heun, O. Ronneberger, and T. Brox, “Blind deconvolution of widefield fluorescence microscopic data by regularization of the optical transfer function (OTF),” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2013), pp. 2179–2186.

P. Theer, C. Mongis, and M. Knop, “PSFj: know your fluorescence microscope,” Nat. Methods 11, 981–982 (2014).

[Crossref]
[PubMed]

F. Soulez, L. Denis, Y. Tourneur, and É. Thiébaut, “Blind deconvolution of 3D data in wide field fluorescence microscopy,” in Proceedings of IEEE International Symposium on Biomedical Imaging (IEEE, 2012), pp. 1735–1738.

F. Soulez, L. Denis, Y. Tourneur, and É. Thiébaut, “Blind deconvolution of 3D data in wide field fluorescence microscopy,” in Proceedings of IEEE International Symposium on Biomedical Imaging (IEEE, 2012), pp. 1735–1738.

D. Sage, L. Donati, F. Soulez, D. Fortun, G. Schmit, A. Seitz, R. Guiet, C. Vonesch, and M. Unser, “Deconvolutionlab2: An open-source software for deconvolution microscopy,” Methods 115, 28–41 (2017).

[Crossref]
[PubMed]

D. Sage, H. Kirshner, T. Pengo, N. Stuurman, J. Min, S. Manley, and M. Unser, “Quantitative evaluation of software packages for single-molecule localization microscopy,” Nat. Methods 12, 717–724 (2015).

[Crossref]
[PubMed]

H. Kirshner, F. Aguet, D. Sage, and M. Unser, “3-D PSF fitting for fluorescence microscopy: implementation and localization application,” J. Microsc. 249, 13–25 (2013).

[Crossref]

F. Luisier, T. Blu, and M. Unser, “Image denoising in mixed Poisson-Gaussian noise,” IEEE Trans. Image Process. 20, 696–708 (2011).

[Crossref]

C. Vonesch, F. Aguet, J.-L. Vonesch, and M. Unser, “The colored revolution of bioimaging,” IEEE Signal Process. Mag. 23, 20–31 (2006).

[Crossref]

F. Aguet, D. Van De Ville, and M. Unser, “A maximum-likelihood formalism for sub-resolution axial localization of fluorescent nanoparticles,” Opt. Express 13, 10503–10522 (2005).

[Crossref]
[PubMed]

D. Sage, L. Donati, F. Soulez, D. Fortun, G. Schmit, A. Seitz, R. Guiet, C. Vonesch, and M. Unser, “Deconvolutionlab2: An open-source software for deconvolution microscopy,” Methods 115, 28–41 (2017).

[Crossref]
[PubMed]

C. Vonesch, F. Aguet, J.-L. Vonesch, and M. Unser, “The colored revolution of bioimaging,” IEEE Signal Process. Mag. 23, 20–31 (2006).

[Crossref]

C. Vonesch, F. Aguet, J.-L. Vonesch, and M. Unser, “The colored revolution of bioimaging,” IEEE Signal Process. Mag. 23, 20–31 (2006).

[Crossref]

D. A. Fish, A. M. Brinicombe, E. R. Pike, J. G. Walker, and R. L. Algorithm, “Blind deconvolution by means of the Richardson-Lucy algorithm,” Appl. Opt. 12, 58–65 (1995).

W. Wallace, L. H. Schaefer, and J. R. Swedlow, “A workingperson’s guide to deconvolution in light microscopy,” Biotechniques 31, 1076–1097 (2001).

[Crossref]

J.-S. Lee, T.-L. E. Wee, and C. M. Brown, “Calibration of wide-field deconvolution microscopy for quantitative fluorescence imaging,” J. Biomol. Tech. 25, 31 (2014).

[Crossref]
[PubMed]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. structure of the image field in an aplanatic system,” P. Roy. Soc. Lond. A Mat. 253, 358–379 (1959).

[Crossref]

M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Cambridge University, 1999).

[Crossref]

J. Li, F. Xue, and T. Blu, “Fast and accurate three-dimensional point spread function computation for fluorescence microscopy,” J. Opt. Soc. Am. A 34, 1029–1034 (2017).

[Crossref]

F. Xue and T. Blu, “A novel SURE-based criterion for parametric PSF estimation,” IEEE Trans. Image Process. 24, 595–607 (2015).

[Crossref]

J. Li, F. Xue, and T. Blu, “Gaussian blur estimation for photon-limited images,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2017), pp. 495–499.

J. Li, F. Xue, and T. Blu, “Accurate 3D PSF estimation from a wide-field microscopy image,” in Proceedings of IEEE International Symposium on Biomedical Imaging, (IEEE, 2018), pp. 501–504.

P. Pankajakshan, B. Zhang, L. Blanc-Féraud, Z. Kam, J.-C. Olivo-Marin, and J. Zerubia, “Blind deconvolution for thin-layered confocal imaging,” Appl. Opt. 48, 4437–4448 (2009).

[Crossref]
[PubMed]

B. Zhang, J. Zerubia, and J.-C. Olivo-Marin, “Gaussian approximations of fluorescence microscope point-spread function models,” Appl. Opt. 46, 1819–1829 (2007).

[Crossref]
[PubMed]

P. Pankajakshan, B. Zhang, L. Blanc-Féraud, Z. Kam, J.-C. Olivo-Marin, and J. Zerubia, “Blind deconvolution for thin-layered confocal imaging,” Appl. Opt. 48, 4437–4448 (2009).

[Crossref]
[PubMed]

B. Zhang, J. Zerubia, and J.-C. Olivo-Marin, “Gaussian approximations of fluorescence microscope point-spread function models,” Appl. Opt. 46, 1819–1829 (2007).

[Crossref]
[PubMed]

H. P. Babcock and X. Zhuang, “Analyzing single molecule localization microscopy data using cubic splines,” Sci. Rep. 7, 552 (2017).

[Crossref]
[PubMed]

P. Török and P. Varga, “Electromagnetic diffraction of light focused through a stratified medium,” Appl. Opt. 36, 2305–2312 (1997).

[Crossref]
[PubMed]

P. Pankajakshan, B. Zhang, L. Blanc-Féraud, Z. Kam, J.-C. Olivo-Marin, and J. Zerubia, “Blind deconvolution for thin-layered confocal imaging,” Appl. Opt. 48, 4437–4448 (2009).

[Crossref]
[PubMed]

B. Zhang, J. Zerubia, and J.-C. Olivo-Marin, “Gaussian approximations of fluorescence microscope point-spread function models,” Appl. Opt. 46, 1819–1829 (2007).

[Crossref]
[PubMed]

D. A. Fish, A. M. Brinicombe, E. R. Pike, J. G. Walker, and R. L. Algorithm, “Blind deconvolution by means of the Richardson-Lucy algorithm,” Appl. Opt. 12, 58–65 (1995).

N. Patwary and C. Preza, “Image restoration for three-dimensional fluorescence microscopy using an orthonormal basis for efficient representation of depth-variant point-spread functions,” Biomed. Opt. Express 6, 3826–3841 (2015).

[Crossref]
[PubMed]

J. Huang, M. Sun, K. Gumpper, Y. Chi, and J. Ma, “3D multifocus astigmatism and compressed sensing (3D MACS) based superresolution reconstruction,” Biomed. Opt. Express 6, 902–917 (2015).

[Crossref]
[PubMed]

Y. Hiraoka, J. W. Sedat, and D. A. Agard, “Determination of three-dimensional imaging properties of a light microscope system. partial confocal behavior in epifluorescence microscopy,” Biophys. J. 57, 325–333 (1990).

[Crossref]
[PubMed]

W. Wallace, L. H. Schaefer, and J. R. Swedlow, “A workingperson’s guide to deconvolution in light microscopy,” Biotechniques 31, 1076–1097 (2001).

[Crossref]

P. Sarder and A. Nehorai, “Deconvolution methods for 3-D fluorescence microscopy images,” IEEE Signal Process. Mag. 23, 32–45 (2006).

[Crossref]

C. Vonesch, F. Aguet, J.-L. Vonesch, and M. Unser, “The colored revolution of bioimaging,” IEEE Signal Process. Mag. 23, 20–31 (2006).

[Crossref]

J. Li, F. Luisier, and T. Blu, “PURE-LET Image Deconvolution,” IEEE Trans. Image Process. 27, 92–105 (2018).

[Crossref]

F. Luisier, T. Blu, and M. Unser, “Image denoising in mixed Poisson-Gaussian noise,” IEEE Trans. Image Process. 20, 696–708 (2011).

[Crossref]

F. Xue and T. Blu, “A novel SURE-based criterion for parametric PSF estimation,” IEEE Trans. Image Process. 24, 595–607 (2015).

[Crossref]

J. Boulanger, C. Kervrann, P. Bouthemy, P. Elbau, J.-B. Sibarita, and J. Salamero, “Patch-based nonlocal functional for denoising fluorescence microscopy image sequences,” IEEE Trans. Med. Imag. 29, 442–454 (2010).

[Crossref]

T. Kenig, Z. Kam, and A. Feuer, “Blind image deconvolution using machine learning for three-dimensional microscopy,” IEEE Trans. Pattern Anal. Mach. Intell. 32, 2191–2204 (2010).

[Crossref]
[PubMed]

J.-S. Lee, T.-L. E. Wee, and C. M. Brown, “Calibration of wide-field deconvolution microscopy for quantitative fluorescence imaging,” J. Biomol. Tech. 25, 31 (2014).

[Crossref]
[PubMed]

S. Hell, G. Reiner, C. Cremer, and E. H. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169, 391–405 (1993).

[Crossref]

H. Kirshner, F. Aguet, D. Sage, and M. Unser, “3-D PSF fitting for fluorescence microscopy: implementation and localization application,” J. Microsc. 249, 13–25 (2013).

[Crossref]

J. Li, F. Xue, and T. Blu, “Fast and accurate three-dimensional point spread function computation for fluorescence microscopy,” J. Opt. Soc. Am. A 34, 1029–1034 (2017).

[Crossref]

C. Preza and J.-A. Conchello, “Depth-variant maximum-likelihood restoration for three-dimensional fluorescence microscopy,” J. Opt. Soc. Am. A 21, 1593–1601 (2004).

[Crossref]

E. F. Y. Hom, F. Marchis, T. K. Lee, S. Haase, D. A. Agard, and J. W. Sedat, “AIDA: an adaptive image deconvolution algorithm with application to multi-frame and three-dimensional data,” J. Opt. Soc. Am. A 24, 1580–1600 (2007).

[Crossref]

J. Markham and J.-A. Conchello, “Parametric blind deconvolution: a robust method for the simultaneous estimation of image and blur,” J. Opt. Soc. Am. A 16, 2377–2391 (1999).

[Crossref]

J. W. Shaevitz and D. A. Fletcher, “Enhanced three-dimensional deconvolution microscopy using a measured depth-varying point-spread function,” J. Opt. Soc. Am. A 24, 2622–2627 (2007).

[Crossref]

S. F. Gibson and F. Lanni, “Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy,” J. Opt. Soc. Am. A 9, 154–166 (1992).

[Crossref]
[PubMed]

D. Sage, L. Donati, F. Soulez, D. Fortun, G. Schmit, A. Seitz, R. Guiet, C. Vonesch, and M. Unser, “Deconvolutionlab2: An open-source software for deconvolution microscopy,” Methods 115, 28–41 (2017).

[Crossref]
[PubMed]

P. Theer, C. Mongis, and M. Knop, “PSFj: know your fluorescence microscope,” Nat. Methods 11, 981–982 (2014).

[Crossref]
[PubMed]

A. Small and S. Stahlheber, “Fluorophore localization algorithms for super-resolution microscopy,” Nat. Methods 11, 267–279 (2014).

[Crossref]
[PubMed]

D. Sage, H. Kirshner, T. Pengo, N. Stuurman, J. Min, S. Manley, and M. Unser, “Quantitative evaluation of software packages for single-molecule localization microscopy,” Nat. Methods 12, 717–724 (2015).

[Crossref]
[PubMed]

L. Gao, L. Shao, B.-C. Chen, and E. Betzig, “3D live fluorescence imaging of cellular dynamics using Bessel beam plane illumination microscopy,” Nat. Protoc. 9, 1083–1101 (2014).

[Crossref]
[PubMed]

R. W. Cole, T. Jinadasa, and C. M. Brown, “Measuring and interpreting point spread functions to determine confocal microscope resolution and ensure quality control,” Nat. Protoc. 6, 1929–1941 (2011).

[Crossref]
[PubMed]

O. Haeberlé, “Focusing of light through a stratified medium: a practical approach for computing microscope point spread functions. Part I: conventional microscopy,” Opt. Commun. 216, 55–63 (2003).

[Crossref]

M. Arigovindan, J. Shaevitz, J. McGowan, J. W. Sedat, and D. A. Agard, “A parallel product-convolution approach for representing depth varying point spread functions in 3D widefield microscopy based on principal component analysis,” Opt. Express 18, 6461–6476 (2010).

[Crossref]
[PubMed]

M. Siemons, C. Hulleman, R. Thorsen, C. Smith, and S. Stallinga, “High precision wavefront control in point spread function engineering for single emitter localization,” Opt. Express 26, 8397–8416 (2018).

[Crossref]
[PubMed]

J. Kim, S. An, S. Ahn, and B. Kim, “Depth-variant deconvolution of 3D widefield fluorescence microscopy using the penalized maximum likelihood estimation method,” Opt. Express 21, 27668–27681 (2013).

[Crossref]

F. Aguet, D. Van De Ville, and M. Unser, “A maximum-likelihood formalism for sub-resolution axial localization of fluorescent nanoparticles,” Opt. Express 13, 10503–10522 (2005).

[Crossref]
[PubMed]

C. Smith, M. Huisman, M. Siemons, D. Grünwald, and S. Stallinga, “Simultaneous measurement of emission color and 3d position of single molecules,” Opt. Express 24, 4996–5013 (2016).

[Crossref]
[PubMed]

S. Liu, E. B. Kromann, W. D. Krueger, J. Bewersdorf, and K. A. Lidke, “Three dimensional single molecule localization using a phase retrieved pupil function,” Opt. Express 21, 29462–29487 (2013).

[Crossref]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. structure of the image field in an aplanatic system,” P. Roy. Soc. Lond. A Mat. 253, 358–379 (1959).

[Crossref]

H. P. Babcock and X. Zhuang, “Analyzing single molecule localization microscopy data using cubic splines,” Sci. Rep. 7, 552 (2017).

[Crossref]
[PubMed]

B. Kim and T. Naemura, “Blind depth-variant deconvolution of 3D data in wide-field fluorescence microscopy,” Sci. Rep. 5, 9894 (2015).

[Crossref]
[PubMed]

S. Dmitrieff and F. Nédélec, “ConfocalGN: A minimalistic confocal image generator,” SoftwareX 6, 243–247 (2017).

[Crossref]

F. Aguet, “Super-resolution fluorescence microscopy based on physical models,” Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne (2009).

J. Li, F. Xue, and T. Blu, “Accurate 3D PSF estimation from a wide-field microscopy image,” in Proceedings of IEEE International Symposium on Biomedical Imaging, (IEEE, 2018), pp. 501–504.

M. Keuper, T. Schmidt, M. Temerinac-Ott, J. Padeken, P. Heun, O. Ronneberger, and T. Brox, “Blind deconvolution of widefield fluorescence microscopic data by regularization of the optical transfer function (OTF),” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2013), pp. 2179–2186.

Y. Li, M. Mund, P. Hoess, U. Matti, B. Nijmeijer, V. J. Sabinina, J. Ellenberg, I. Schoen, and J. Ries, “Fast, robust and precise 3d localization for arbitrary point spread functions,” bioRxiv 172643; doi: https://doi.org/10.1101/172643 .

J. Li, F. Luisier, and T. Blu, “PURE-LET deconvolution of 3D fluorescence microscopy images,” in Proceedings of IEEE International Symposium on Biomedical Imaging (IEEE, 2017), pp. 723–727.

M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Cambridge University, 1999).

[Crossref]

J. Li, F. Xue, and T. Blu, “Gaussian blur estimation for photon-limited images,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2017), pp. 495–499.

M. Štefko, B. Ottino, K. M. Douglass, and S. Manley, “Design principles for autonomous illumination control in localization microscopy,” bioRxiv 295519; doi: https://doi.org/10.1101/295519 .

F. Soulez, L. Denis, Y. Tourneur, and É. Thiébaut, “Blind deconvolution of 3D data in wide field fluorescence microscopy,” in Proceedings of IEEE International Symposium on Biomedical Imaging (IEEE, 2012), pp. 1735–1738.