Abstract

The mode orthogonality fundamentally influences the scattering spectra of multi-resonance systems, such as plasmonic color filters. We show that planar arrays of silver nanostructures with dual localized surface plasmon resonances and the right mode orthogonality can function as transmissive RGB color filters with peak transmittances higher than 70%, and color gamut areas larger than 90% of the sRGB space. These are the brightest and most saturated of all designs proposed thus far. We present the Pareto frontier from designs with more than 80% peak transmittance, to designs that achieve a color gamut larger than 120% of the sRGB space.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Hyper-selective plasmonic color filters

Dagny Fleischman, Luke A. Sweatlock, Hirotaka Murakami, and Harry Atwater
Opt. Express 25(22) 27386-27395 (2017)

Guided-mode resonant polarization-controlled tunable color filters

Mohammad Jalal Uddin, Tanzina Khaleque, and Robert Magnusson
Opt. Express 22(10) 12307-12315 (2014)

Uniformly thick tri-color filters capitalizing on an etalon with a nanostructured cavity

Wenjing Yue, Sang-Shin Lee, Eun-Soo Kim, and Byung-Gook Lee
Appl. Opt. 54(18) 5866-5871 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. Berthier, E. Charron, and A. Da Silva, “Determination of the cuticle index of the scales of the iridescent butterfly Morpho menelaus,” Opt. Commun. 228(4-6), 349–356 (2003).
    [Crossref]
  2. J. J. Wild and J. M. Reid, “Application of echo-ranging techniques to the determination of structure of biological tissues,” Science 115(2983), 226–230 (1952).
    [Crossref] [PubMed]
  3. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic Press, 1969).
  4. F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
    [Crossref] [PubMed]
  5. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref] [PubMed]
  6. L. Verslegers, Z. Yu, P. B. Catrysse, and S. Fan, “Temporal coupled-mode theory for resonant apertures,” J. Opt. Soc. Am. B 27(10), 1947 (2010).
    [Crossref]
  7. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003).
    [Crossref] [PubMed]
  8. W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004).
    [Crossref]
  9. R. W. Sabnis, “Color filter technology for liquid crystal displays,” Displays 20(3), 119–129 (1999).
    [Crossref]
  10. T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
    [Crossref] [PubMed]
  11. M. J. Uddin and R. Magnusson, “Efficient guided-mode-resonant tunable color filters,” IEEE Photonics Technol. Lett. 24(17), 1552–1554 (2012).
    [Crossref]
  12. B. Zeng, Y. Gao, F. J. Bartoli, D. J. Norris, and M. Masuda, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci. Rep. 3(1), 2840 (2013).
    [Crossref] [PubMed]
  13. Y.-K. R. Wu, A. E. Hollowell, C. Zhang, L. J. Guo, and R. Quidant, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3(1), 1194 (2013).
    [Crossref] [PubMed]
  14. L. Wen, Q. Chen, F. Sun, S. Song, L. Jin, and Y. Yu, “Theoretical design of multi-colored semi-transparent organic solar cells with both efficient color filtering and light harvesting,” Sci. Rep. 4(1), 7036 (2014).
    [Crossref] [PubMed]
  15. V. Raj Shrestha, S.-S. Lee, E.-S. Kim, D.-Y. Choi, and M. J. Bloemer, “Polarization-tuned dynamic color filters incorporating a dielectric-loaded aluminum nanowire array,” Sci. Rep. 5(1), 12450 (2015).
    [Crossref] [PubMed]
  16. J. K. Hyun, T. Kang, H. Baek, D. S. Kim, and G. C. Yi, “Nanoscale single-element color filters,” Nano Lett. 15(9), 5938–5943 (2015).
    [Crossref] [PubMed]
  17. L. Duempelmann, A. Luu-Dinh, B. Gallinet, and L. Novotny, “Four-fold color filter based on plasmonic phase retarder,” ACS Photonics 3(2), 190–196 (2016).
    [Crossref]
  18. A. F. Kaplan, T. Xu, and L. Jay Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99(14), 143111 (2011).
    [Crossref]
  19. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  20. S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
    [Crossref] [PubMed]
  21. Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24(23), OP131–OP135 (2012).
    [Crossref] [PubMed]
  22. S. P. Burgos, S. Yokogawa, and H. A. Atwater, “Color imaging via nearest neighbor hole coupling in plasmonic color filters integrated onto a complementary metal-oxide semiconductor image sensor,” ACS Nano 7(11), 10038–10047 (2013).
    [Crossref] [PubMed]
  23. R. Rajasekharan, E. Balaur, A. Minovich, S. Collins, T. D. James, A. Djalalian-Assl, K. Ganesan, S. Tomljenovic-Hanic, S. Kandasamy, E. Skafidas, D. N. Neshev, P. Mulvaney, A. Roberts, and S. Prawer, “Filling schemes at submicron scale: Development of submicron sized plasmonic colour filters,” Sci. Rep. 4(1), 6435 (2014).
    [Crossref] [PubMed]
  24. L. Wen, Q. Chen, S. Song, Y. Yu, L. Jin, and X. Hu, “Photon harvesting, coloring and polarizing in photovoltaic cell integrated color filters: efficient energy routing strategies for power-saving displays,” Nanotechnology 26(26), 265203 (2015).
    [Crossref] [PubMed]
  25. Z. Li, A. W. Clark, and J. M. Cooper, “Dual color plasmonic pixels create a polarization controlled nano color palette,” ACS Nano 10(1), 492–498 (2016).
    [Crossref] [PubMed]
  26. E. Balaur, C. Sadatnajafi, S. S. Kou, J. Lin, and B. Abbey, “Continuously tunable, polarization controlled, colour palette produced from nanoscale plasmonic pixels,” Sci. Rep. 6(1), 28062 (2016).
    [Crossref] [PubMed]
  27. F. Gan, Y. Wang, C. Sun, G. Zhang, H. Li, J. Chen, and Q. Gong, “Widely tuning surface plasmon polaritons with laser-induced bubbles,” Adv. Opt. Mater. 5(4), 1600545 (2017).
    [Crossref]
  28. Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
    [Crossref] [PubMed]
  29. T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
    [Crossref] [PubMed]
  30. V. R. Shrestha, S.-S. Lee, E.-S. Kim, and D.-Y. Choi, “Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array,” Nano Lett. 14(11), 6672–6678 (2014).
    [Crossref] [PubMed]
  31. L. Wang, R. J. H. Ng, S. Safari Dinachali, M. Jalali, Y. Yu, and J. K. W. Yang, “Large area plasmonic color palettes with expanded gamut using colloidal self-assembly,” ACS Photonics 3(4), 627–633 (2016).
    [Crossref]
  32. R. Proietti Zaccaria, F. Bisio, G. Das, G. Maidecchi, M. Caminale, C. D. Vu, F. De Angelis, E. Di Fabrizio, A. Toma, and M. Canepa, “Plasmonic color-graded nanosystems with achromatic subwavelength architectures for light filtering and advanced SERS detection,” ACS Appl. Mater. Interfaces 8(12), 8024–8031 (2016).
    [Crossref] [PubMed]
  33. K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable color filters based on metal-insulator-metal resonators,” Nano Lett. 9(7), 2579–2583 (2009).
    [Crossref] [PubMed]
  34. L. Frey, P. Parrein, J. Raby, C. Pellé, D. Hérault, M. Marty, and J. Michailos, “Color filters including infrared cut-off integrated on CMOS image sensor,” Opt. Express 19(14), 13073–13080 (2011).
    [Crossref] [PubMed]
  35. C.-J. Yu, “Transmissive color filtering using plasmonic multilayer structure,” Opt. Eng. 51(4), 44001 (2012).
    [Crossref]
  36. K.-T. Lee, S. Seo, J. Yong Lee, and L. Jay Guo, “Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters,” Appl. Phys. Lett. 104(23), 231112 (2014).
    [Crossref]
  37. K.-T. Lee, S. Seo, and L. J. Guo, “High-color-purity subtractive color filters with a wide viewing angle based on plasmonic perfect absorbers,” Adv. Opt. Mater. 3(3), 347–352 (2015).
    [Crossref]
  38. Z. Li, S. Butun, and K. Aydin, “Large-Area, Lithography-Free Super Absorbers and Color Filters at Visible Frequencies Using Ultrathin Metallic Films,” ACS Photonics 2(2), 183–188 (2015).
    [Crossref]
  39. Y. J. Jung and N. Park, “Independent color filtering of differently polarized light using metal-insulator-metal type guided mode resonance structure,” J. Opt. Soc. Korea 20(1), 180–187 (2016).
    [Crossref]
  40. S. U. Lee, B.-K. Ju, E. S. Kim, D. Y. Choi, and H. J. Lezec, “Wide-gamut plasmonic color filters using a complementary design method,” Sci. Rep. 7(1), 40649 (2017).
    [Crossref] [PubMed]
  41. P. Neutens, L. Lagae, G. Borghs, and P. Van Dorpe, “Plasmon filters and resonators in metal-insulator-metal waveguides,” Opt. Express 20(4), 3408–3423 (2012).
    [Crossref] [PubMed]
  42. L. De Sio, G. Klein, S. Serak, N. Tabiryan, A. Cunningham, C. M. Tone, F. Ciuchi, T. Bürgi, C. Umeton, and T. Bunning, “All-optical control of localized plasmonic resonance realized by photoalignment of liquid crystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(45), 7483 (2013).
    [Crossref]
  43. K.-T. Lee, S. Y. Han, and H. J. Park, “Omnidirectional flexible transmissive structural colors with high-color-purity and high-efficiency exploiting multicavity resonances,” Adv. Opt. Mater. 5(14), 1700284 (2017).
    [Crossref]
  44. R. B. M. (Richard B. M.) Schasfoort and A. J. Tudos, Handbook of Surface Plasmon Resonance (Royal Society of Chemistry, 2008).
  45. J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Trans. Antenn. Propag. 52(2), 397–407 (2004).
    [Crossref]
  46. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
  47. M. J. Dodge, “Refractive properties of magnesium fluoride,” Appl. Opt. 23(12), 1980 (1984).
    [Crossref] [PubMed]
  48. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  49. V. Teoh, “Samsung UE65JS9500 SUHD TV review,” (HDTV test, 2015) http://www.hdtvtest.co.uk/news/ue65js9500-201502234012.htm .

2017 (3)

F. Gan, Y. Wang, C. Sun, G. Zhang, H. Li, J. Chen, and Q. Gong, “Widely tuning surface plasmon polaritons with laser-induced bubbles,” Adv. Opt. Mater. 5(4), 1600545 (2017).
[Crossref]

S. U. Lee, B.-K. Ju, E. S. Kim, D. Y. Choi, and H. J. Lezec, “Wide-gamut plasmonic color filters using a complementary design method,” Sci. Rep. 7(1), 40649 (2017).
[Crossref] [PubMed]

K.-T. Lee, S. Y. Han, and H. J. Park, “Omnidirectional flexible transmissive structural colors with high-color-purity and high-efficiency exploiting multicavity resonances,” Adv. Opt. Mater. 5(14), 1700284 (2017).
[Crossref]

2016 (6)

Y. J. Jung and N. Park, “Independent color filtering of differently polarized light using metal-insulator-metal type guided mode resonance structure,” J. Opt. Soc. Korea 20(1), 180–187 (2016).
[Crossref]

Z. Li, A. W. Clark, and J. M. Cooper, “Dual color plasmonic pixels create a polarization controlled nano color palette,” ACS Nano 10(1), 492–498 (2016).
[Crossref] [PubMed]

E. Balaur, C. Sadatnajafi, S. S. Kou, J. Lin, and B. Abbey, “Continuously tunable, polarization controlled, colour palette produced from nanoscale plasmonic pixels,” Sci. Rep. 6(1), 28062 (2016).
[Crossref] [PubMed]

L. Wang, R. J. H. Ng, S. Safari Dinachali, M. Jalali, Y. Yu, and J. K. W. Yang, “Large area plasmonic color palettes with expanded gamut using colloidal self-assembly,” ACS Photonics 3(4), 627–633 (2016).
[Crossref]

R. Proietti Zaccaria, F. Bisio, G. Das, G. Maidecchi, M. Caminale, C. D. Vu, F. De Angelis, E. Di Fabrizio, A. Toma, and M. Canepa, “Plasmonic color-graded nanosystems with achromatic subwavelength architectures for light filtering and advanced SERS detection,” ACS Appl. Mater. Interfaces 8(12), 8024–8031 (2016).
[Crossref] [PubMed]

L. Duempelmann, A. Luu-Dinh, B. Gallinet, and L. Novotny, “Four-fold color filter based on plasmonic phase retarder,” ACS Photonics 3(2), 190–196 (2016).
[Crossref]

2015 (5)

V. Raj Shrestha, S.-S. Lee, E.-S. Kim, D.-Y. Choi, and M. J. Bloemer, “Polarization-tuned dynamic color filters incorporating a dielectric-loaded aluminum nanowire array,” Sci. Rep. 5(1), 12450 (2015).
[Crossref] [PubMed]

J. K. Hyun, T. Kang, H. Baek, D. S. Kim, and G. C. Yi, “Nanoscale single-element color filters,” Nano Lett. 15(9), 5938–5943 (2015).
[Crossref] [PubMed]

L. Wen, Q. Chen, S. Song, Y. Yu, L. Jin, and X. Hu, “Photon harvesting, coloring and polarizing in photovoltaic cell integrated color filters: efficient energy routing strategies for power-saving displays,” Nanotechnology 26(26), 265203 (2015).
[Crossref] [PubMed]

K.-T. Lee, S. Seo, and L. J. Guo, “High-color-purity subtractive color filters with a wide viewing angle based on plasmonic perfect absorbers,” Adv. Opt. Mater. 3(3), 347–352 (2015).
[Crossref]

Z. Li, S. Butun, and K. Aydin, “Large-Area, Lithography-Free Super Absorbers and Color Filters at Visible Frequencies Using Ultrathin Metallic Films,” ACS Photonics 2(2), 183–188 (2015).
[Crossref]

2014 (4)

V. R. Shrestha, S.-S. Lee, E.-S. Kim, and D.-Y. Choi, “Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array,” Nano Lett. 14(11), 6672–6678 (2014).
[Crossref] [PubMed]

K.-T. Lee, S. Seo, J. Yong Lee, and L. Jay Guo, “Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters,” Appl. Phys. Lett. 104(23), 231112 (2014).
[Crossref]

R. Rajasekharan, E. Balaur, A. Minovich, S. Collins, T. D. James, A. Djalalian-Assl, K. Ganesan, S. Tomljenovic-Hanic, S. Kandasamy, E. Skafidas, D. N. Neshev, P. Mulvaney, A. Roberts, and S. Prawer, “Filling schemes at submicron scale: Development of submicron sized plasmonic colour filters,” Sci. Rep. 4(1), 6435 (2014).
[Crossref] [PubMed]

L. Wen, Q. Chen, F. Sun, S. Song, L. Jin, and Y. Yu, “Theoretical design of multi-colored semi-transparent organic solar cells with both efficient color filtering and light harvesting,” Sci. Rep. 4(1), 7036 (2014).
[Crossref] [PubMed]

2013 (4)

B. Zeng, Y. Gao, F. J. Bartoli, D. J. Norris, and M. Masuda, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci. Rep. 3(1), 2840 (2013).
[Crossref] [PubMed]

Y.-K. R. Wu, A. E. Hollowell, C. Zhang, L. J. Guo, and R. Quidant, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3(1), 1194 (2013).
[Crossref] [PubMed]

S. P. Burgos, S. Yokogawa, and H. A. Atwater, “Color imaging via nearest neighbor hole coupling in plasmonic color filters integrated onto a complementary metal-oxide semiconductor image sensor,” ACS Nano 7(11), 10038–10047 (2013).
[Crossref] [PubMed]

L. De Sio, G. Klein, S. Serak, N. Tabiryan, A. Cunningham, C. M. Tone, F. Ciuchi, T. Bürgi, C. Umeton, and T. Bunning, “All-optical control of localized plasmonic resonance realized by photoalignment of liquid crystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(45), 7483 (2013).
[Crossref]

2012 (6)

P. Neutens, L. Lagae, G. Borghs, and P. Van Dorpe, “Plasmon filters and resonators in metal-insulator-metal waveguides,” Opt. Express 20(4), 3408–3423 (2012).
[Crossref] [PubMed]

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref] [PubMed]

Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24(23), OP131–OP135 (2012).
[Crossref] [PubMed]

C.-J. Yu, “Transmissive color filtering using plasmonic multilayer structure,” Opt. Eng. 51(4), 44001 (2012).
[Crossref]

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[Crossref] [PubMed]

M. J. Uddin and R. Magnusson, “Efficient guided-mode-resonant tunable color filters,” IEEE Photonics Technol. Lett. 24(17), 1552–1554 (2012).
[Crossref]

2011 (2)

A. F. Kaplan, T. Xu, and L. Jay Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99(14), 143111 (2011).
[Crossref]

L. Frey, P. Parrein, J. Raby, C. Pellé, D. Hérault, M. Marty, and J. Michailos, “Color filters including infrared cut-off integrated on CMOS image sensor,” Opt. Express 19(14), 13073–13080 (2011).
[Crossref] [PubMed]

2010 (3)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

L. Verslegers, Z. Yu, P. B. Catrysse, and S. Fan, “Temporal coupled-mode theory for resonant apertures,” J. Opt. Soc. Am. B 27(10), 1947 (2010).
[Crossref]

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
[Crossref] [PubMed]

2009 (1)

K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable color filters based on metal-insulator-metal resonators,” Nano Lett. 9(7), 2579–2583 (2009).
[Crossref] [PubMed]

2008 (1)

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

2004 (2)

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004).
[Crossref]

J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Trans. Antenn. Propag. 52(2), 397–407 (2004).
[Crossref]

2003 (4)

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003).
[Crossref] [PubMed]

S. Berthier, E. Charron, and A. Da Silva, “Determination of the cuticle index of the scales of the iridescent butterfly Morpho menelaus,” Opt. Commun. 228(4-6), 349–356 (2003).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
[Crossref] [PubMed]

1999 (1)

R. W. Sabnis, “Color filter technology for liquid crystal displays,” Displays 20(3), 119–129 (1999).
[Crossref]

1984 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1952 (1)

J. J. Wild and J. M. Reid, “Application of echo-ranging techniques to the determination of structure of biological tissues,” Science 115(2983), 226–230 (1952).
[Crossref] [PubMed]

Abbey, B.

E. Balaur, C. Sadatnajafi, S. S. Kou, J. Lin, and B. Abbey, “Continuously tunable, polarization controlled, colour palette produced from nanoscale plasmonic pixels,” Sci. Rep. 6(1), 28062 (2016).
[Crossref] [PubMed]

Atwater, H. A.

S. P. Burgos, S. Yokogawa, and H. A. Atwater, “Color imaging via nearest neighbor hole coupling in plasmonic color filters integrated onto a complementary metal-oxide semiconductor image sensor,” ACS Nano 7(11), 10038–10047 (2013).
[Crossref] [PubMed]

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref] [PubMed]

K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable color filters based on metal-insulator-metal resonators,” Nano Lett. 9(7), 2579–2583 (2009).
[Crossref] [PubMed]

Aydin, K.

Z. Li, S. Butun, and K. Aydin, “Large-Area, Lithography-Free Super Absorbers and Color Filters at Visible Frequencies Using Ultrathin Metallic Films,” ACS Photonics 2(2), 183–188 (2015).
[Crossref]

Baek, H.

J. K. Hyun, T. Kang, H. Baek, D. S. Kim, and G. C. Yi, “Nanoscale single-element color filters,” Nano Lett. 15(9), 5938–5943 (2015).
[Crossref] [PubMed]

Balaur, E.

E. Balaur, C. Sadatnajafi, S. S. Kou, J. Lin, and B. Abbey, “Continuously tunable, polarization controlled, colour palette produced from nanoscale plasmonic pixels,” Sci. Rep. 6(1), 28062 (2016).
[Crossref] [PubMed]

R. Rajasekharan, E. Balaur, A. Minovich, S. Collins, T. D. James, A. Djalalian-Assl, K. Ganesan, S. Tomljenovic-Hanic, S. Kandasamy, E. Skafidas, D. N. Neshev, P. Mulvaney, A. Roberts, and S. Prawer, “Filling schemes at submicron scale: Development of submicron sized plasmonic colour filters,” Sci. Rep. 4(1), 6435 (2014).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Bartoli, F. J.

B. Zeng, Y. Gao, F. J. Bartoli, D. J. Norris, and M. Masuda, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci. Rep. 3(1), 2840 (2013).
[Crossref] [PubMed]

Berthier, S.

S. Berthier, E. Charron, and A. Da Silva, “Determination of the cuticle index of the scales of the iridescent butterfly Morpho menelaus,” Opt. Commun. 228(4-6), 349–356 (2003).
[Crossref]

Bisio, F.

R. Proietti Zaccaria, F. Bisio, G. Das, G. Maidecchi, M. Caminale, C. D. Vu, F. De Angelis, E. Di Fabrizio, A. Toma, and M. Canepa, “Plasmonic color-graded nanosystems with achromatic subwavelength architectures for light filtering and advanced SERS detection,” ACS Appl. Mater. Interfaces 8(12), 8024–8031 (2016).
[Crossref] [PubMed]

Bloemer, M. J.

V. Raj Shrestha, S.-S. Lee, E.-S. Kim, D.-Y. Choi, and M. J. Bloemer, “Polarization-tuned dynamic color filters incorporating a dielectric-loaded aluminum nanowire array,” Sci. Rep. 5(1), 12450 (2015).
[Crossref] [PubMed]

Borghs, G.

Bunning, T.

L. De Sio, G. Klein, S. Serak, N. Tabiryan, A. Cunningham, C. M. Tone, F. Ciuchi, T. Bürgi, C. Umeton, and T. Bunning, “All-optical control of localized plasmonic resonance realized by photoalignment of liquid crystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(45), 7483 (2013).
[Crossref]

Bürgi, T.

L. De Sio, G. Klein, S. Serak, N. Tabiryan, A. Cunningham, C. M. Tone, F. Ciuchi, T. Bürgi, C. Umeton, and T. Bunning, “All-optical control of localized plasmonic resonance realized by photoalignment of liquid crystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(45), 7483 (2013).
[Crossref]

Burgos, S. P.

S. P. Burgos, S. Yokogawa, and H. A. Atwater, “Color imaging via nearest neighbor hole coupling in plasmonic color filters integrated onto a complementary metal-oxide semiconductor image sensor,” ACS Nano 7(11), 10038–10047 (2013).
[Crossref] [PubMed]

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref] [PubMed]

Butun, S.

Z. Li, S. Butun, and K. Aydin, “Large-Area, Lithography-Free Super Absorbers and Color Filters at Visible Frequencies Using Ultrathin Metallic Films,” ACS Photonics 2(2), 183–188 (2015).
[Crossref]

Caminale, M.

R. Proietti Zaccaria, F. Bisio, G. Das, G. Maidecchi, M. Caminale, C. D. Vu, F. De Angelis, E. Di Fabrizio, A. Toma, and M. Canepa, “Plasmonic color-graded nanosystems with achromatic subwavelength architectures for light filtering and advanced SERS detection,” ACS Appl. Mater. Interfaces 8(12), 8024–8031 (2016).
[Crossref] [PubMed]

Canepa, M.

R. Proietti Zaccaria, F. Bisio, G. Das, G. Maidecchi, M. Caminale, C. D. Vu, F. De Angelis, E. Di Fabrizio, A. Toma, and M. Canepa, “Plasmonic color-graded nanosystems with achromatic subwavelength architectures for light filtering and advanced SERS detection,” ACS Appl. Mater. Interfaces 8(12), 8024–8031 (2016).
[Crossref] [PubMed]

Catrysse, P. B.

Charron, E.

S. Berthier, E. Charron, and A. Da Silva, “Determination of the cuticle index of the scales of the iridescent butterfly Morpho menelaus,” Opt. Commun. 228(4-6), 349–356 (2003).
[Crossref]

Chen, J.

F. Gan, Y. Wang, C. Sun, G. Zhang, H. Li, J. Chen, and Q. Gong, “Widely tuning surface plasmon polaritons with laser-induced bubbles,” Adv. Opt. Mater. 5(4), 1600545 (2017).
[Crossref]

Chen, Q.

L. Wen, Q. Chen, S. Song, Y. Yu, L. Jin, and X. Hu, “Photon harvesting, coloring and polarizing in photovoltaic cell integrated color filters: efficient energy routing strategies for power-saving displays,” Nanotechnology 26(26), 265203 (2015).
[Crossref] [PubMed]

L. Wen, Q. Chen, F. Sun, S. Song, L. Jin, and Y. Yu, “Theoretical design of multi-colored semi-transparent organic solar cells with both efficient color filtering and light harvesting,” Sci. Rep. 4(1), 7036 (2014).
[Crossref] [PubMed]

Choi, D. Y.

S. U. Lee, B.-K. Ju, E. S. Kim, D. Y. Choi, and H. J. Lezec, “Wide-gamut plasmonic color filters using a complementary design method,” Sci. Rep. 7(1), 40649 (2017).
[Crossref] [PubMed]

Choi, D.-Y.

V. Raj Shrestha, S.-S. Lee, E.-S. Kim, D.-Y. Choi, and M. J. Bloemer, “Polarization-tuned dynamic color filters incorporating a dielectric-loaded aluminum nanowire array,” Sci. Rep. 5(1), 12450 (2015).
[Crossref] [PubMed]

V. R. Shrestha, S.-S. Lee, E.-S. Kim, and D.-Y. Choi, “Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array,” Nano Lett. 14(11), 6672–6678 (2014).
[Crossref] [PubMed]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Ciuchi, F.

L. De Sio, G. Klein, S. Serak, N. Tabiryan, A. Cunningham, C. M. Tone, F. Ciuchi, T. Bürgi, C. Umeton, and T. Bunning, “All-optical control of localized plasmonic resonance realized by photoalignment of liquid crystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(45), 7483 (2013).
[Crossref]

Clark, A. W.

Z. Li, A. W. Clark, and J. M. Cooper, “Dual color plasmonic pixels create a polarization controlled nano color palette,” ACS Nano 10(1), 492–498 (2016).
[Crossref] [PubMed]

Collins, S.

R. Rajasekharan, E. Balaur, A. Minovich, S. Collins, T. D. James, A. Djalalian-Assl, K. Ganesan, S. Tomljenovic-Hanic, S. Kandasamy, E. Skafidas, D. N. Neshev, P. Mulvaney, A. Roberts, and S. Prawer, “Filling schemes at submicron scale: Development of submicron sized plasmonic colour filters,” Sci. Rep. 4(1), 6435 (2014).
[Crossref] [PubMed]

Cooper, J. M.

Z. Li, A. W. Clark, and J. M. Cooper, “Dual color plasmonic pixels create a polarization controlled nano color palette,” ACS Nano 10(1), 492–498 (2016).
[Crossref] [PubMed]

Crozier, K. B.

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[Crossref] [PubMed]

Cunningham, A.

L. De Sio, G. Klein, S. Serak, N. Tabiryan, A. Cunningham, C. M. Tone, F. Ciuchi, T. Bürgi, C. Umeton, and T. Bunning, “All-optical control of localized plasmonic resonance realized by photoalignment of liquid crystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(45), 7483 (2013).
[Crossref]

Da Silva, A.

S. Berthier, E. Charron, and A. Da Silva, “Determination of the cuticle index of the scales of the iridescent butterfly Morpho menelaus,” Opt. Commun. 228(4-6), 349–356 (2003).
[Crossref]

Danner, A. J.

Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24(23), OP131–OP135 (2012).
[Crossref] [PubMed]

Das, G.

R. Proietti Zaccaria, F. Bisio, G. Das, G. Maidecchi, M. Caminale, C. D. Vu, F. De Angelis, E. Di Fabrizio, A. Toma, and M. Canepa, “Plasmonic color-graded nanosystems with achromatic subwavelength architectures for light filtering and advanced SERS detection,” ACS Appl. Mater. Interfaces 8(12), 8024–8031 (2016).
[Crossref] [PubMed]

De Angelis, F.

R. Proietti Zaccaria, F. Bisio, G. Das, G. Maidecchi, M. Caminale, C. D. Vu, F. De Angelis, E. Di Fabrizio, A. Toma, and M. Canepa, “Plasmonic color-graded nanosystems with achromatic subwavelength architectures for light filtering and advanced SERS detection,” ACS Appl. Mater. Interfaces 8(12), 8024–8031 (2016).
[Crossref] [PubMed]

De Sio, L.

L. De Sio, G. Klein, S. Serak, N. Tabiryan, A. Cunningham, C. M. Tone, F. Ciuchi, T. Bürgi, C. Umeton, and T. Bunning, “All-optical control of localized plasmonic resonance realized by photoalignment of liquid crystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(45), 7483 (2013).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Di Fabrizio, E.

R. Proietti Zaccaria, F. Bisio, G. Das, G. Maidecchi, M. Caminale, C. D. Vu, F. De Angelis, E. Di Fabrizio, A. Toma, and M. Canepa, “Plasmonic color-graded nanosystems with achromatic subwavelength architectures for light filtering and advanced SERS detection,” ACS Appl. Mater. Interfaces 8(12), 8024–8031 (2016).
[Crossref] [PubMed]

Diest, K.

K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable color filters based on metal-insulator-metal resonators,” Nano Lett. 9(7), 2579–2583 (2009).
[Crossref] [PubMed]

Dionne, J. A.

K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable color filters based on metal-insulator-metal resonators,” Nano Lett. 9(7), 2579–2583 (2009).
[Crossref] [PubMed]

Djalalian-Assl, A.

R. Rajasekharan, E. Balaur, A. Minovich, S. Collins, T. D. James, A. Djalalian-Assl, K. Ganesan, S. Tomljenovic-Hanic, S. Kandasamy, E. Skafidas, D. N. Neshev, P. Mulvaney, A. Roberts, and S. Prawer, “Filling schemes at submicron scale: Development of submicron sized plasmonic colour filters,” Sci. Rep. 4(1), 6435 (2014).
[Crossref] [PubMed]

Dodge, M. J.

Dorpe, P. V.

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Duempelmann, L.

L. Duempelmann, A. Luu-Dinh, B. Gallinet, and L. Novotny, “Four-fold color filter based on plasmonic phase retarder,” ACS Photonics 3(2), 190–196 (2016).
[Crossref]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Ellenbogen, T.

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[Crossref] [PubMed]

Fan, S.

Frey, L.

Fujii, T.

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
[Crossref] [PubMed]

Fujishima, A.

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
[Crossref] [PubMed]

Gallinet, B.

L. Duempelmann, A. Luu-Dinh, B. Gallinet, and L. Novotny, “Four-fold color filter based on plasmonic phase retarder,” ACS Photonics 3(2), 190–196 (2016).
[Crossref]

Gan, F.

F. Gan, Y. Wang, C. Sun, G. Zhang, H. Li, J. Chen, and Q. Gong, “Widely tuning surface plasmon polaritons with laser-induced bubbles,” Adv. Opt. Mater. 5(4), 1600545 (2017).
[Crossref]

Ganesan, K.

R. Rajasekharan, E. Balaur, A. Minovich, S. Collins, T. D. James, A. Djalalian-Assl, K. Ganesan, S. Tomljenovic-Hanic, S. Kandasamy, E. Skafidas, D. N. Neshev, P. Mulvaney, A. Roberts, and S. Prawer, “Filling schemes at submicron scale: Development of submicron sized plasmonic colour filters,” Sci. Rep. 4(1), 6435 (2014).
[Crossref] [PubMed]

Gao, Y.

B. Zeng, Y. Gao, F. J. Bartoli, D. J. Norris, and M. Masuda, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci. Rep. 3(1), 2840 (2013).
[Crossref] [PubMed]

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Gong, Q.

F. Gan, Y. Wang, C. Sun, G. Zhang, H. Li, J. Chen, and Q. Gong, “Widely tuning surface plasmon polaritons with laser-induced bubbles,” Adv. Opt. Mater. 5(4), 1600545 (2017).
[Crossref]

Guo, L. J.

K.-T. Lee, S. Seo, and L. J. Guo, “High-color-purity subtractive color filters with a wide viewing angle based on plasmonic perfect absorbers,” Adv. Opt. Mater. 3(3), 347–352 (2015).
[Crossref]

Y.-K. R. Wu, A. E. Hollowell, C. Zhang, L. J. Guo, and R. Quidant, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3(1), 1194 (2013).
[Crossref] [PubMed]

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
[Crossref] [PubMed]

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Han, S. Y.

K.-T. Lee, S. Y. Han, and H. J. Park, “Omnidirectional flexible transmissive structural colors with high-color-purity and high-efficiency exploiting multicavity resonances,” Adv. Opt. Mater. 5(14), 1700284 (2017).
[Crossref]

Hao, F.

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Hérault, D.

Hollowell, A. E.

Y.-K. R. Wu, A. E. Hollowell, C. Zhang, L. J. Guo, and R. Quidant, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3(1), 1194 (2013).
[Crossref] [PubMed]

Hu, X.

L. Wen, Q. Chen, S. Song, Y. Yu, L. Jin, and X. Hu, “Photon harvesting, coloring and polarizing in photovoltaic cell integrated color filters: efficient energy routing strategies for power-saving displays,” Nanotechnology 26(26), 265203 (2015).
[Crossref] [PubMed]

Hyun, J. K.

J. K. Hyun, T. Kang, H. Baek, D. S. Kim, and G. C. Yi, “Nanoscale single-element color filters,” Nano Lett. 15(9), 5938–5943 (2015).
[Crossref] [PubMed]

Jalali, M.

L. Wang, R. J. H. Ng, S. Safari Dinachali, M. Jalali, Y. Yu, and J. K. W. Yang, “Large area plasmonic color palettes with expanded gamut using colloidal self-assembly,” ACS Photonics 3(4), 627–633 (2016).
[Crossref]

James, T. D.

R. Rajasekharan, E. Balaur, A. Minovich, S. Collins, T. D. James, A. Djalalian-Assl, K. Ganesan, S. Tomljenovic-Hanic, S. Kandasamy, E. Skafidas, D. N. Neshev, P. Mulvaney, A. Roberts, and S. Prawer, “Filling schemes at submicron scale: Development of submicron sized plasmonic colour filters,” Sci. Rep. 4(1), 6435 (2014).
[Crossref] [PubMed]

Jay Guo, L.

K.-T. Lee, S. Seo, J. Yong Lee, and L. Jay Guo, “Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters,” Appl. Phys. Lett. 104(23), 231112 (2014).
[Crossref]

A. F. Kaplan, T. Xu, and L. Jay Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99(14), 143111 (2011).
[Crossref]

Jin, L.

L. Wen, Q. Chen, S. Song, Y. Yu, L. Jin, and X. Hu, “Photon harvesting, coloring and polarizing in photovoltaic cell integrated color filters: efficient energy routing strategies for power-saving displays,” Nanotechnology 26(26), 265203 (2015).
[Crossref] [PubMed]

L. Wen, Q. Chen, F. Sun, S. Song, L. Jin, and Y. Yu, “Theoretical design of multi-colored semi-transparent organic solar cells with both efficient color filtering and light harvesting,” Sci. Rep. 4(1), 7036 (2014).
[Crossref] [PubMed]

Joannopoulos, J. D.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Ju, B.-K.

S. U. Lee, B.-K. Ju, E. S. Kim, D. Y. Choi, and H. J. Lezec, “Wide-gamut plasmonic color filters using a complementary design method,” Sci. Rep. 7(1), 40649 (2017).
[Crossref] [PubMed]

Jung, Y. J.

Kandasamy, S.

R. Rajasekharan, E. Balaur, A. Minovich, S. Collins, T. D. James, A. Djalalian-Assl, K. Ganesan, S. Tomljenovic-Hanic, S. Kandasamy, E. Skafidas, D. N. Neshev, P. Mulvaney, A. Roberts, and S. Prawer, “Filling schemes at submicron scale: Development of submicron sized plasmonic colour filters,” Sci. Rep. 4(1), 6435 (2014).
[Crossref] [PubMed]

Kang, T.

J. K. Hyun, T. Kang, H. Baek, D. S. Kim, and G. C. Yi, “Nanoscale single-element color filters,” Nano Lett. 15(9), 5938–5943 (2015).
[Crossref] [PubMed]

Kaplan, A. F.

A. F. Kaplan, T. Xu, and L. Jay Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99(14), 143111 (2011).
[Crossref]

Kim, D. S.

J. K. Hyun, T. Kang, H. Baek, D. S. Kim, and G. C. Yi, “Nanoscale single-element color filters,” Nano Lett. 15(9), 5938–5943 (2015).
[Crossref] [PubMed]

Kim, E. S.

S. U. Lee, B.-K. Ju, E. S. Kim, D. Y. Choi, and H. J. Lezec, “Wide-gamut plasmonic color filters using a complementary design method,” Sci. Rep. 7(1), 40649 (2017).
[Crossref] [PubMed]

Kim, E.-S.

V. Raj Shrestha, S.-S. Lee, E.-S. Kim, D.-Y. Choi, and M. J. Bloemer, “Polarization-tuned dynamic color filters incorporating a dielectric-loaded aluminum nanowire array,” Sci. Rep. 5(1), 12450 (2015).
[Crossref] [PubMed]

V. R. Shrestha, S.-S. Lee, E.-S. Kim, and D.-Y. Choi, “Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array,” Nano Lett. 14(11), 6672–6678 (2014).
[Crossref] [PubMed]

Klein, G.

L. De Sio, G. Klein, S. Serak, N. Tabiryan, A. Cunningham, C. M. Tone, F. Ciuchi, T. Bürgi, C. Umeton, and T. Bunning, “All-optical control of localized plasmonic resonance realized by photoalignment of liquid crystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(45), 7483 (2013).
[Crossref]

Kou, S. S.

E. Balaur, C. Sadatnajafi, S. S. Kou, J. Lin, and B. Abbey, “Continuously tunable, polarization controlled, colour palette produced from nanoscale plasmonic pixels,” Sci. Rep. 6(1), 28062 (2016).
[Crossref] [PubMed]

Kubota, Y.

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
[Crossref] [PubMed]

Lagae, L.

Lee, K.-T.

K.-T. Lee, S. Y. Han, and H. J. Park, “Omnidirectional flexible transmissive structural colors with high-color-purity and high-efficiency exploiting multicavity resonances,” Adv. Opt. Mater. 5(14), 1700284 (2017).
[Crossref]

K.-T. Lee, S. Seo, and L. J. Guo, “High-color-purity subtractive color filters with a wide viewing angle based on plasmonic perfect absorbers,” Adv. Opt. Mater. 3(3), 347–352 (2015).
[Crossref]

K.-T. Lee, S. Seo, J. Yong Lee, and L. Jay Guo, “Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters,” Appl. Phys. Lett. 104(23), 231112 (2014).
[Crossref]

Lee, S. U.

S. U. Lee, B.-K. Ju, E. S. Kim, D. Y. Choi, and H. J. Lezec, “Wide-gamut plasmonic color filters using a complementary design method,” Sci. Rep. 7(1), 40649 (2017).
[Crossref] [PubMed]

Lee, S.-S.

V. Raj Shrestha, S.-S. Lee, E.-S. Kim, D.-Y. Choi, and M. J. Bloemer, “Polarization-tuned dynamic color filters incorporating a dielectric-loaded aluminum nanowire array,” Sci. Rep. 5(1), 12450 (2015).
[Crossref] [PubMed]

V. R. Shrestha, S.-S. Lee, E.-S. Kim, and D.-Y. Choi, “Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array,” Nano Lett. 14(11), 6672–6678 (2014).
[Crossref] [PubMed]

Leong, E. S. P.

Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24(23), OP131–OP135 (2012).
[Crossref] [PubMed]

Lezec, H. J.

S. U. Lee, B.-K. Ju, E. S. Kim, D. Y. Choi, and H. J. Lezec, “Wide-gamut plasmonic color filters using a complementary design method,” Sci. Rep. 7(1), 40649 (2017).
[Crossref] [PubMed]

Li, H.

F. Gan, Y. Wang, C. Sun, G. Zhang, H. Li, J. Chen, and Q. Gong, “Widely tuning surface plasmon polaritons with laser-induced bubbles,” Adv. Opt. Mater. 5(4), 1600545 (2017).
[Crossref]

Li, Z.

Z. Li, A. W. Clark, and J. M. Cooper, “Dual color plasmonic pixels create a polarization controlled nano color palette,” ACS Nano 10(1), 492–498 (2016).
[Crossref] [PubMed]

Z. Li, S. Butun, and K. Aydin, “Large-Area, Lithography-Free Super Absorbers and Color Filters at Visible Frequencies Using Ultrathin Metallic Films,” ACS Photonics 2(2), 183–188 (2015).
[Crossref]

Lin, J.

E. Balaur, C. Sadatnajafi, S. S. Kou, J. Lin, and B. Abbey, “Continuously tunable, polarization controlled, colour palette produced from nanoscale plasmonic pixels,” Sci. Rep. 6(1), 28062 (2016).
[Crossref] [PubMed]

Liu, Y. J.

Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24(23), OP131–OP135 (2012).
[Crossref] [PubMed]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Luo, X.

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
[Crossref] [PubMed]

Luu-Dinh, A.

L. Duempelmann, A. Luu-Dinh, B. Gallinet, and L. Novotny, “Four-fold color filter based on plasmonic phase retarder,” ACS Photonics 3(2), 190–196 (2016).
[Crossref]

Magnusson, R.

M. J. Uddin and R. Magnusson, “Efficient guided-mode-resonant tunable color filters,” IEEE Photonics Technol. Lett. 24(17), 1552–1554 (2012).
[Crossref]

Maidecchi, G.

R. Proietti Zaccaria, F. Bisio, G. Das, G. Maidecchi, M. Caminale, C. D. Vu, F. De Angelis, E. Di Fabrizio, A. Toma, and M. Canepa, “Plasmonic color-graded nanosystems with achromatic subwavelength architectures for light filtering and advanced SERS detection,” ACS Appl. Mater. Interfaces 8(12), 8024–8031 (2016).
[Crossref] [PubMed]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Marty, M.

Masuda, M.

B. Zeng, Y. Gao, F. J. Bartoli, D. J. Norris, and M. Masuda, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci. Rep. 3(1), 2840 (2013).
[Crossref] [PubMed]

Michailos, J.

Minovich, A.

R. Rajasekharan, E. Balaur, A. Minovich, S. Collins, T. D. James, A. Djalalian-Assl, K. Ganesan, S. Tomljenovic-Hanic, S. Kandasamy, E. Skafidas, D. N. Neshev, P. Mulvaney, A. Roberts, and S. Prawer, “Filling schemes at submicron scale: Development of submicron sized plasmonic colour filters,” Sci. Rep. 4(1), 6435 (2014).
[Crossref] [PubMed]

Mulvaney, P.

R. Rajasekharan, E. Balaur, A. Minovich, S. Collins, T. D. James, A. Djalalian-Assl, K. Ganesan, S. Tomljenovic-Hanic, S. Kandasamy, E. Skafidas, D. N. Neshev, P. Mulvaney, A. Roberts, and S. Prawer, “Filling schemes at submicron scale: Development of submicron sized plasmonic colour filters,” Sci. Rep. 4(1), 6435 (2014).
[Crossref] [PubMed]

Naoi, K.

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
[Crossref] [PubMed]

Neshev, D. N.

R. Rajasekharan, E. Balaur, A. Minovich, S. Collins, T. D. James, A. Djalalian-Assl, K. Ganesan, S. Tomljenovic-Hanic, S. Kandasamy, E. Skafidas, D. N. Neshev, P. Mulvaney, A. Roberts, and S. Prawer, “Filling schemes at submicron scale: Development of submicron sized plasmonic colour filters,” Sci. Rep. 4(1), 6435 (2014).
[Crossref] [PubMed]

Neutens, P.

Ng, R. J. H.

L. Wang, R. J. H. Ng, S. Safari Dinachali, M. Jalali, Y. Yu, and J. K. W. Yang, “Large area plasmonic color palettes with expanded gamut using colloidal self-assembly,” ACS Photonics 3(4), 627–633 (2016).
[Crossref]

Niwa, C.

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
[Crossref] [PubMed]

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Norris, D. J.

B. Zeng, Y. Gao, F. J. Bartoli, D. J. Norris, and M. Masuda, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci. Rep. 3(1), 2840 (2013).
[Crossref] [PubMed]

Novotny, L.

L. Duempelmann, A. Luu-Dinh, B. Gallinet, and L. Novotny, “Four-fold color filter based on plasmonic phase retarder,” ACS Photonics 3(2), 190–196 (2016).
[Crossref]

Ohko, Y.

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
[Crossref] [PubMed]

Park, H. J.

K.-T. Lee, S. Y. Han, and H. J. Park, “Omnidirectional flexible transmissive structural colors with high-color-purity and high-efficiency exploiting multicavity resonances,” Adv. Opt. Mater. 5(14), 1700284 (2017).
[Crossref]

Park, N.

Parrein, P.

Pellé, C.

Prawer, S.

R. Rajasekharan, E. Balaur, A. Minovich, S. Collins, T. D. James, A. Djalalian-Assl, K. Ganesan, S. Tomljenovic-Hanic, S. Kandasamy, E. Skafidas, D. N. Neshev, P. Mulvaney, A. Roberts, and S. Prawer, “Filling schemes at submicron scale: Development of submicron sized plasmonic colour filters,” Sci. Rep. 4(1), 6435 (2014).
[Crossref] [PubMed]

Proietti Zaccaria, R.

R. Proietti Zaccaria, F. Bisio, G. Das, G. Maidecchi, M. Caminale, C. D. Vu, F. De Angelis, E. Di Fabrizio, A. Toma, and M. Canepa, “Plasmonic color-graded nanosystems with achromatic subwavelength architectures for light filtering and advanced SERS detection,” ACS Appl. Mater. Interfaces 8(12), 8024–8031 (2016).
[Crossref] [PubMed]

Quidant, R.

Y.-K. R. Wu, A. E. Hollowell, C. Zhang, L. J. Guo, and R. Quidant, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3(1), 1194 (2013).
[Crossref] [PubMed]

Raby, J.

Rahmat-Samii, Y.

J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Trans. Antenn. Propag. 52(2), 397–407 (2004).
[Crossref]

Raj Shrestha, V.

V. Raj Shrestha, S.-S. Lee, E.-S. Kim, D.-Y. Choi, and M. J. Bloemer, “Polarization-tuned dynamic color filters incorporating a dielectric-loaded aluminum nanowire array,” Sci. Rep. 5(1), 12450 (2015).
[Crossref] [PubMed]

Rajasekharan, R.

R. Rajasekharan, E. Balaur, A. Minovich, S. Collins, T. D. James, A. Djalalian-Assl, K. Ganesan, S. Tomljenovic-Hanic, S. Kandasamy, E. Skafidas, D. N. Neshev, P. Mulvaney, A. Roberts, and S. Prawer, “Filling schemes at submicron scale: Development of submicron sized plasmonic colour filters,” Sci. Rep. 4(1), 6435 (2014).
[Crossref] [PubMed]

Reid, J. M.

J. J. Wild and J. M. Reid, “Application of echo-ranging techniques to the determination of structure of biological tissues,” Science 115(2983), 226–230 (1952).
[Crossref] [PubMed]

Roberts, A.

R. Rajasekharan, E. Balaur, A. Minovich, S. Collins, T. D. James, A. Djalalian-Assl, K. Ganesan, S. Tomljenovic-Hanic, S. Kandasamy, E. Skafidas, D. N. Neshev, P. Mulvaney, A. Roberts, and S. Prawer, “Filling schemes at submicron scale: Development of submicron sized plasmonic colour filters,” Sci. Rep. 4(1), 6435 (2014).
[Crossref] [PubMed]

Robinson, J.

J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Trans. Antenn. Propag. 52(2), 397–407 (2004).
[Crossref]

Sabnis, R. W.

R. W. Sabnis, “Color filter technology for liquid crystal displays,” Displays 20(3), 119–129 (1999).
[Crossref]

Sadatnajafi, C.

E. Balaur, C. Sadatnajafi, S. S. Kou, J. Lin, and B. Abbey, “Continuously tunable, polarization controlled, colour palette produced from nanoscale plasmonic pixels,” Sci. Rep. 6(1), 28062 (2016).
[Crossref] [PubMed]

Safari Dinachali, S.

L. Wang, R. J. H. Ng, S. Safari Dinachali, M. Jalali, Y. Yu, and J. K. W. Yang, “Large area plasmonic color palettes with expanded gamut using colloidal self-assembly,” ACS Photonics 3(4), 627–633 (2016).
[Crossref]

Seo, K.

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[Crossref] [PubMed]

Seo, S.

K.-T. Lee, S. Seo, and L. J. Guo, “High-color-purity subtractive color filters with a wide viewing angle based on plasmonic perfect absorbers,” Adv. Opt. Mater. 3(3), 347–352 (2015).
[Crossref]

K.-T. Lee, S. Seo, J. Yong Lee, and L. Jay Guo, “Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters,” Appl. Phys. Lett. 104(23), 231112 (2014).
[Crossref]

Serak, S.

L. De Sio, G. Klein, S. Serak, N. Tabiryan, A. Cunningham, C. M. Tone, F. Ciuchi, T. Bürgi, C. Umeton, and T. Bunning, “All-optical control of localized plasmonic resonance realized by photoalignment of liquid crystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(45), 7483 (2013).
[Crossref]

Shrestha, V. R.

V. R. Shrestha, S.-S. Lee, E.-S. Kim, and D.-Y. Choi, “Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array,” Nano Lett. 14(11), 6672–6678 (2014).
[Crossref] [PubMed]

Si, G. Y.

Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24(23), OP131–OP135 (2012).
[Crossref] [PubMed]

Skafidas, E.

R. Rajasekharan, E. Balaur, A. Minovich, S. Collins, T. D. James, A. Djalalian-Assl, K. Ganesan, S. Tomljenovic-Hanic, S. Kandasamy, E. Skafidas, D. N. Neshev, P. Mulvaney, A. Roberts, and S. Prawer, “Filling schemes at submicron scale: Development of submicron sized plasmonic colour filters,” Sci. Rep. 4(1), 6435 (2014).
[Crossref] [PubMed]

Song, S.

L. Wen, Q. Chen, S. Song, Y. Yu, L. Jin, and X. Hu, “Photon harvesting, coloring and polarizing in photovoltaic cell integrated color filters: efficient energy routing strategies for power-saving displays,” Nanotechnology 26(26), 265203 (2015).
[Crossref] [PubMed]

L. Wen, Q. Chen, F. Sun, S. Song, L. Jin, and Y. Yu, “Theoretical design of multi-colored semi-transparent organic solar cells with both efficient color filtering and light harvesting,” Sci. Rep. 4(1), 7036 (2014).
[Crossref] [PubMed]

Sonnefraud, Y.

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Spain, M.

K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable color filters based on metal-insulator-metal resonators,” Nano Lett. 9(7), 2579–2583 (2009).
[Crossref] [PubMed]

Suh, W.

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004).
[Crossref]

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003).
[Crossref] [PubMed]

Sun, C.

F. Gan, Y. Wang, C. Sun, G. Zhang, H. Li, J. Chen, and Q. Gong, “Widely tuning surface plasmon polaritons with laser-induced bubbles,” Adv. Opt. Mater. 5(4), 1600545 (2017).
[Crossref]

Sun, F.

L. Wen, Q. Chen, F. Sun, S. Song, L. Jin, and Y. Yu, “Theoretical design of multi-colored semi-transparent organic solar cells with both efficient color filtering and light harvesting,” Sci. Rep. 4(1), 7036 (2014).
[Crossref] [PubMed]

Tabiryan, N.

L. De Sio, G. Klein, S. Serak, N. Tabiryan, A. Cunningham, C. M. Tone, F. Ciuchi, T. Bürgi, C. Umeton, and T. Bunning, “All-optical control of localized plasmonic resonance realized by photoalignment of liquid crystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(45), 7483 (2013).
[Crossref]

Tatsuma, T.

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
[Crossref] [PubMed]

Teng, J. H.

Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24(23), OP131–OP135 (2012).
[Crossref] [PubMed]

Toma, A.

R. Proietti Zaccaria, F. Bisio, G. Das, G. Maidecchi, M. Caminale, C. D. Vu, F. De Angelis, E. Di Fabrizio, A. Toma, and M. Canepa, “Plasmonic color-graded nanosystems with achromatic subwavelength architectures for light filtering and advanced SERS detection,” ACS Appl. Mater. Interfaces 8(12), 8024–8031 (2016).
[Crossref] [PubMed]

Tomljenovic-Hanic, S.

R. Rajasekharan, E. Balaur, A. Minovich, S. Collins, T. D. James, A. Djalalian-Assl, K. Ganesan, S. Tomljenovic-Hanic, S. Kandasamy, E. Skafidas, D. N. Neshev, P. Mulvaney, A. Roberts, and S. Prawer, “Filling schemes at submicron scale: Development of submicron sized plasmonic colour filters,” Sci. Rep. 4(1), 6435 (2014).
[Crossref] [PubMed]

Tone, C. M.

L. De Sio, G. Klein, S. Serak, N. Tabiryan, A. Cunningham, C. M. Tone, F. Ciuchi, T. Bürgi, C. Umeton, and T. Bunning, “All-optical control of localized plasmonic resonance realized by photoalignment of liquid crystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(45), 7483 (2013).
[Crossref]

Uddin, M. J.

M. J. Uddin and R. Magnusson, “Efficient guided-mode-resonant tunable color filters,” IEEE Photonics Technol. Lett. 24(17), 1552–1554 (2012).
[Crossref]

Umeton, C.

L. De Sio, G. Klein, S. Serak, N. Tabiryan, A. Cunningham, C. M. Tone, F. Ciuchi, T. Bürgi, C. Umeton, and T. Bunning, “All-optical control of localized plasmonic resonance realized by photoalignment of liquid crystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(45), 7483 (2013).
[Crossref]

Van Dorpe, P.

Verslegers, L.

Vu, C. D.

R. Proietti Zaccaria, F. Bisio, G. Das, G. Maidecchi, M. Caminale, C. D. Vu, F. De Angelis, E. Di Fabrizio, A. Toma, and M. Canepa, “Plasmonic color-graded nanosystems with achromatic subwavelength architectures for light filtering and advanced SERS detection,” ACS Appl. Mater. Interfaces 8(12), 8024–8031 (2016).
[Crossref] [PubMed]

Wang, L.

L. Wang, R. J. H. Ng, S. Safari Dinachali, M. Jalali, Y. Yu, and J. K. W. Yang, “Large area plasmonic color palettes with expanded gamut using colloidal self-assembly,” ACS Photonics 3(4), 627–633 (2016).
[Crossref]

Wang, Y.

F. Gan, Y. Wang, C. Sun, G. Zhang, H. Li, J. Chen, and Q. Gong, “Widely tuning surface plasmon polaritons with laser-induced bubbles,” Adv. Opt. Mater. 5(4), 1600545 (2017).
[Crossref]

Wang, Z.

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004).
[Crossref]

Wen, L.

L. Wen, Q. Chen, S. Song, Y. Yu, L. Jin, and X. Hu, “Photon harvesting, coloring and polarizing in photovoltaic cell integrated color filters: efficient energy routing strategies for power-saving displays,” Nanotechnology 26(26), 265203 (2015).
[Crossref] [PubMed]

L. Wen, Q. Chen, F. Sun, S. Song, L. Jin, and Y. Yu, “Theoretical design of multi-colored semi-transparent organic solar cells with both efficient color filtering and light harvesting,” Sci. Rep. 4(1), 7036 (2014).
[Crossref] [PubMed]

Wild, J. J.

J. J. Wild and J. M. Reid, “Application of echo-ranging techniques to the determination of structure of biological tissues,” Science 115(2983), 226–230 (1952).
[Crossref] [PubMed]

Wu, Y.-K.

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
[Crossref] [PubMed]

Wu, Y.-K. R.

Y.-K. R. Wu, A. E. Hollowell, C. Zhang, L. J. Guo, and R. Quidant, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3(1), 1194 (2013).
[Crossref] [PubMed]

Xiang, N.

Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24(23), OP131–OP135 (2012).
[Crossref] [PubMed]

Xu, T.

A. F. Kaplan, T. Xu, and L. Jay Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99(14), 143111 (2011).
[Crossref]

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
[Crossref] [PubMed]

Yang, J. K. W.

L. Wang, R. J. H. Ng, S. Safari Dinachali, M. Jalali, Y. Yu, and J. K. W. Yang, “Large area plasmonic color palettes with expanded gamut using colloidal self-assembly,” ACS Photonics 3(4), 627–633 (2016).
[Crossref]

Yi, G. C.

J. K. Hyun, T. Kang, H. Baek, D. S. Kim, and G. C. Yi, “Nanoscale single-element color filters,” Nano Lett. 15(9), 5938–5943 (2015).
[Crossref] [PubMed]

Yokogawa, S.

S. P. Burgos, S. Yokogawa, and H. A. Atwater, “Color imaging via nearest neighbor hole coupling in plasmonic color filters integrated onto a complementary metal-oxide semiconductor image sensor,” ACS Nano 7(11), 10038–10047 (2013).
[Crossref] [PubMed]

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref] [PubMed]

Yong Lee, J.

K.-T. Lee, S. Seo, J. Yong Lee, and L. Jay Guo, “Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters,” Appl. Phys. Lett. 104(23), 231112 (2014).
[Crossref]

Yu, C.-J.

C.-J. Yu, “Transmissive color filtering using plasmonic multilayer structure,” Opt. Eng. 51(4), 44001 (2012).
[Crossref]

Yu, Y.

L. Wang, R. J. H. Ng, S. Safari Dinachali, M. Jalali, Y. Yu, and J. K. W. Yang, “Large area plasmonic color palettes with expanded gamut using colloidal self-assembly,” ACS Photonics 3(4), 627–633 (2016).
[Crossref]

L. Wen, Q. Chen, S. Song, Y. Yu, L. Jin, and X. Hu, “Photon harvesting, coloring and polarizing in photovoltaic cell integrated color filters: efficient energy routing strategies for power-saving displays,” Nanotechnology 26(26), 265203 (2015).
[Crossref] [PubMed]

L. Wen, Q. Chen, F. Sun, S. Song, L. Jin, and Y. Yu, “Theoretical design of multi-colored semi-transparent organic solar cells with both efficient color filtering and light harvesting,” Sci. Rep. 4(1), 7036 (2014).
[Crossref] [PubMed]

Yu, Z.

Zeng, B.

B. Zeng, Y. Gao, F. J. Bartoli, D. J. Norris, and M. Masuda, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci. Rep. 3(1), 2840 (2013).
[Crossref] [PubMed]

Zhang, C.

Y.-K. R. Wu, A. E. Hollowell, C. Zhang, L. J. Guo, and R. Quidant, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3(1), 1194 (2013).
[Crossref] [PubMed]

Zhang, G.

F. Gan, Y. Wang, C. Sun, G. Zhang, H. Li, J. Chen, and Q. Gong, “Widely tuning surface plasmon polaritons with laser-induced bubbles,” Adv. Opt. Mater. 5(4), 1600545 (2017).
[Crossref]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

R. Proietti Zaccaria, F. Bisio, G. Das, G. Maidecchi, M. Caminale, C. D. Vu, F. De Angelis, E. Di Fabrizio, A. Toma, and M. Canepa, “Plasmonic color-graded nanosystems with achromatic subwavelength architectures for light filtering and advanced SERS detection,” ACS Appl. Mater. Interfaces 8(12), 8024–8031 (2016).
[Crossref] [PubMed]

ACS Nano (2)

S. P. Burgos, S. Yokogawa, and H. A. Atwater, “Color imaging via nearest neighbor hole coupling in plasmonic color filters integrated onto a complementary metal-oxide semiconductor image sensor,” ACS Nano 7(11), 10038–10047 (2013).
[Crossref] [PubMed]

Z. Li, A. W. Clark, and J. M. Cooper, “Dual color plasmonic pixels create a polarization controlled nano color palette,” ACS Nano 10(1), 492–498 (2016).
[Crossref] [PubMed]

ACS Photonics (3)

L. Wang, R. J. H. Ng, S. Safari Dinachali, M. Jalali, Y. Yu, and J. K. W. Yang, “Large area plasmonic color palettes with expanded gamut using colloidal self-assembly,” ACS Photonics 3(4), 627–633 (2016).
[Crossref]

L. Duempelmann, A. Luu-Dinh, B. Gallinet, and L. Novotny, “Four-fold color filter based on plasmonic phase retarder,” ACS Photonics 3(2), 190–196 (2016).
[Crossref]

Z. Li, S. Butun, and K. Aydin, “Large-Area, Lithography-Free Super Absorbers and Color Filters at Visible Frequencies Using Ultrathin Metallic Films,” ACS Photonics 2(2), 183–188 (2015).
[Crossref]

Adv. Mater. (1)

Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24(23), OP131–OP135 (2012).
[Crossref] [PubMed]

Adv. Opt. Mater. (3)

F. Gan, Y. Wang, C. Sun, G. Zhang, H. Li, J. Chen, and Q. Gong, “Widely tuning surface plasmon polaritons with laser-induced bubbles,” Adv. Opt. Mater. 5(4), 1600545 (2017).
[Crossref]

K.-T. Lee, S. Seo, and L. J. Guo, “High-color-purity subtractive color filters with a wide viewing angle based on plasmonic perfect absorbers,” Adv. Opt. Mater. 3(3), 347–352 (2015).
[Crossref]

K.-T. Lee, S. Y. Han, and H. J. Park, “Omnidirectional flexible transmissive structural colors with high-color-purity and high-efficiency exploiting multicavity resonances,” Adv. Opt. Mater. 5(14), 1700284 (2017).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

K.-T. Lee, S. Seo, J. Yong Lee, and L. Jay Guo, “Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters,” Appl. Phys. Lett. 104(23), 231112 (2014).
[Crossref]

A. F. Kaplan, T. Xu, and L. Jay Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99(14), 143111 (2011).
[Crossref]

Displays (1)

R. W. Sabnis, “Color filter technology for liquid crystal displays,” Displays 20(3), 119–129 (1999).
[Crossref]

IEEE J. Quantum Electron. (1)

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. J. Uddin and R. Magnusson, “Efficient guided-mode-resonant tunable color filters,” IEEE Photonics Technol. Lett. 24(17), 1552–1554 (2012).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Trans. Antenn. Propag. 52(2), 397–407 (2004).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

L. De Sio, G. Klein, S. Serak, N. Tabiryan, A. Cunningham, C. M. Tone, F. Ciuchi, T. Bürgi, C. Umeton, and T. Bunning, “All-optical control of localized plasmonic resonance realized by photoalignment of liquid crystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(45), 7483 (2013).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Opt. Soc. Korea (1)

Nano Lett. (6)

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

J. K. Hyun, T. Kang, H. Baek, D. S. Kim, and G. C. Yi, “Nanoscale single-element color filters,” Nano Lett. 15(9), 5938–5943 (2015).
[Crossref] [PubMed]

K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable color filters based on metal-insulator-metal resonators,” Nano Lett. 9(7), 2579–2583 (2009).
[Crossref] [PubMed]

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[Crossref] [PubMed]

V. R. Shrestha, S.-S. Lee, E.-S. Kim, and D.-Y. Choi, “Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array,” Nano Lett. 14(11), 6672–6678 (2014).
[Crossref] [PubMed]

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref] [PubMed]

Nanotechnology (1)

L. Wen, Q. Chen, S. Song, Y. Yu, L. Jin, and X. Hu, “Photon harvesting, coloring and polarizing in photovoltaic cell integrated color filters: efficient energy routing strategies for power-saving displays,” Nanotechnology 26(26), 265203 (2015).
[Crossref] [PubMed]

Nat. Commun. (1)

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
[Crossref] [PubMed]

Nat. Mater. (2)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
[Crossref] [PubMed]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

S. Berthier, E. Charron, and A. Da Silva, “Determination of the cuticle index of the scales of the iridescent butterfly Morpho menelaus,” Opt. Commun. 228(4-6), 349–356 (2003).
[Crossref]

Opt. Eng. (1)

C.-J. Yu, “Transmissive color filtering using plasmonic multilayer structure,” Opt. Eng. 51(4), 44001 (2012).
[Crossref]

Opt. Express (2)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Sci. Rep. (7)

S. U. Lee, B.-K. Ju, E. S. Kim, D. Y. Choi, and H. J. Lezec, “Wide-gamut plasmonic color filters using a complementary design method,” Sci. Rep. 7(1), 40649 (2017).
[Crossref] [PubMed]

E. Balaur, C. Sadatnajafi, S. S. Kou, J. Lin, and B. Abbey, “Continuously tunable, polarization controlled, colour palette produced from nanoscale plasmonic pixels,” Sci. Rep. 6(1), 28062 (2016).
[Crossref] [PubMed]

R. Rajasekharan, E. Balaur, A. Minovich, S. Collins, T. D. James, A. Djalalian-Assl, K. Ganesan, S. Tomljenovic-Hanic, S. Kandasamy, E. Skafidas, D. N. Neshev, P. Mulvaney, A. Roberts, and S. Prawer, “Filling schemes at submicron scale: Development of submicron sized plasmonic colour filters,” Sci. Rep. 4(1), 6435 (2014).
[Crossref] [PubMed]

B. Zeng, Y. Gao, F. J. Bartoli, D. J. Norris, and M. Masuda, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci. Rep. 3(1), 2840 (2013).
[Crossref] [PubMed]

Y.-K. R. Wu, A. E. Hollowell, C. Zhang, L. J. Guo, and R. Quidant, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3(1), 1194 (2013).
[Crossref] [PubMed]

L. Wen, Q. Chen, F. Sun, S. Song, L. Jin, and Y. Yu, “Theoretical design of multi-colored semi-transparent organic solar cells with both efficient color filtering and light harvesting,” Sci. Rep. 4(1), 7036 (2014).
[Crossref] [PubMed]

V. Raj Shrestha, S.-S. Lee, E.-S. Kim, D.-Y. Choi, and M. J. Bloemer, “Polarization-tuned dynamic color filters incorporating a dielectric-loaded aluminum nanowire array,” Sci. Rep. 5(1), 12450 (2015).
[Crossref] [PubMed]

Science (1)

J. J. Wild and J. M. Reid, “Application of echo-ranging techniques to the determination of structure of biological tissues,” Science 115(2983), 226–230 (1952).
[Crossref] [PubMed]

Other (4)

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic Press, 1969).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).

R. B. M. (Richard B. M.) Schasfoort and A. J. Tudos, Handbook of Surface Plasmon Resonance (Royal Society of Chemistry, 2008).

V. Teoh, “Samsung UE65JS9500 SUHD TV review,” (HDTV test, 2015) http://www.hdtvtest.co.uk/news/ue65js9500-201502234012.htm .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Ideal transmission spectra and CMT applied transmission spectra of bright and saturated color filters. Optimization results of ideal color filters spectra and CMT based spectra for the (a) red, (b) green, and (c) blue color filters. (d) Color gamut of dual resonance spectra indicated in CIE1931 color space.
Fig. 2
Fig. 2 Schematic diagrams of (a) MIM nanodisk structures and (b) di-atomic structures.
Fig. 3
Fig. 3 FDTD field profile results for the MIM structure for the excitation of orthogonal modes. (a) Amplitude and (b) phase for the E x profile of the electric resonance mode (at 472 nm); (c) amplitude and (d) phase for the scattered E x profile of the magnetic resonance mode (at 712 nm) near the MIM structure.
Fig. 4
Fig. 4 FDTD field profile results for the di-atomic structure for the excitation of non-orthogonal modes. (a) Amplitude and (b) phase for the E x profile of the electric resonance mode excited in a square-shape silver structure (at 492 nm); (c) amplitude and (d) phase for the scattered E x profile of the electric resonance mode excited in a cross-shape silver structure (at 802 nm).
Fig. 5
Fig. 5 Transmittance of the MIM structure for several different (a) periods (p) and (b) thicknesses of the SiO2 layer (tSiO2). The transmittance of the di-atomic structures for several different sizes of the (c) square and (d) cross. The default structural parameters for (a) and (b) are p = 250 nm, d = 150 nm, tAg = 30 nm, and tSiO2 = 30 nm (square lattice) and, for (c) and (d), p = 250 nm, tAg = 30 nm, w = 50 nm, a = 200 nm, and b = 100 nm (square lattice).
Fig. 6
Fig. 6 PSO results from FDTD simulations of the (non-)orthogonality controlled structure. Transmittance of (a) red, (b) green, and (c) blue color filters with Tmax higher than 50%, 70%, and 85%. (d) The white solid line presents the color gamut of the sRGB reference and black lines present the color gamuts of the simulated color filters shown in (a–c) with D65 standard illumination. In (a–d), the dashed, solid, and dotted lines represent the simulation results of color filters with Tmax higher than 50%, 70%, and 85%, respectively. (e) Pareto frontier (black line) obtained by orthogonality controlled dual-resonance modes structures. Results of some of the recently proposed transmissive RGB plasmonic color filters are plotted for comparison.
Fig. 7
Fig. 7 (a) Pareto frontier of optimized color filters with D65 and QDEF illuminations, and (b) their color gamuts in the CIE1931 chromaticity diagram for Tmax = 70%.
Fig. 8
Fig. 8 Sensitivity of the color filter spectra on the changes of the structural parameters. (a) Red and blue filters with ± 10% variation of the disk diameter. (b) All filters with ± 10% variation of the metal thickness. The color filters with Tmax = 70% are used as the reference.
Fig. 9
Fig. 9 Transmittance and color gamut results for the red filter FDTD simulations with angled incident light source. Transmittance results of the FDTD simulations with the (a) s- and (b) p-polarized angled incident light source. (c) Gradual transition of the chromaticity of the optimized color filter with the increase in incident angle occurs along the direction of the arrow.

Tables (5)

Tables Icon

Table 1 Conditions for the linear optimization. (xtarget, ytarget) are the target chromaticity coordinates of a given color gamut, SD65 is the power spectral density of the CIE Standard Illumination D65, T(λ) is the transmittance at each wavelength, and, x ¯ , y ¯ and z ¯ are color matching functions.

Tables Icon

Table 2 Optimized parameters of the non-absorptive dual-resonance systems

Tables Icon

Table 3 Transmittance values of an optimized set of color filters with Tmax≥70%. The maximum value is presented for the passband of each color filter. The minimum value is presented for the rejection bands.

Tables Icon

Table 4 Structure parameters of the best color filters which have Tmax equal to or larger than 85%, 70%, and 50%.

Tables Icon

Table 5 Structural parameters of the samples on the Pareto frontier with minimum Tmax of 90%, 75%, 60%, 45%, 30%, and 15%.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

a 1 = γ 1 exp(j θ 11 ) jωj ω 1 + γ 1 ,
a 2 = γ 2 exp(j θ 12 ) jωj ω 2 + γ 2 ,
a 1 = (jωj ω 2 ) γ 1 (jωj ω 1 + γ 1 )(jωj ω 2 + γ 2 ) ,
a 2 = (jωj ω 1 ) γ 2 (jωj ω 1 + γ 1 )(jωj ω 2 + γ 2 ) ,
t= t b γ 1 ( r b + t b ) (jωj ω 1 + γ 1 ) + γ 2 ( r b t b ) (jωj ω 2 + γ 2 ) ,
t= t b ( r b + t b )[ γ 1 (jωj ω 2 )+ γ 2 (jωj ω 1 ) ] (jωj ω 1 + γ 1 )(jωj ω 2 + γ 2 ) γ 1 γ 2 ,
(FOM)= p m q n ,
p= 1 2 ( | d || cosθ |cosθ | d 0 | +1 ),
q= 1 π arctan[ a( T max T c ) ]+ 1 2 ,

Metrics