H. J. Lee, S.-J. Kim, M. O. Ko, J.-H. Kim, and M. Y. Jeon, “Tunable, multiwavelength-swept fiber laser based on nematic liquid crystal device for fiber-optic electric-field sensor,” Opt. Commun. 410, 637–642 (2018).
[Crossref]
J. Park, Y. S. Kwon, M. O. Ko, and M. Y. Jeon, “Dynamic fiber Bragg grating strain sensor interrogation with real-time measurement,” Opt. Fiber Technol. 38, 147–153 (2017).
[Crossref]
Y. Inoue, M. Hattori, H. Kubo, and H. Moritake, “Faster pitch control of cholesteric liquid crystal,” Jpn. J. Appl. Phys. 56(8), 080302 (2017).
[Crossref]
S. H. Kassani, M. Villiger, N. Uribe-Patarroyo, C. Jun, R. Khazaeinezhad, N. Lippok, and B. E. Bouma, “Extended bandwidth wavelength swept laser source for high resolution optical frequency domain imaging,” Opt. Express 25(7), 8255–8266 (2017).
[Crossref]
[PubMed]
G. J. Choi, H. M. Jung, S. H. Lee, and J. S. Gwag, “Infrared shutter using cholesteric liquid crystal,” Appl. Opt. 55(16), 4436–4440 (2016).
[Crossref]
[PubMed]
Y. Inoue and H. Moritake, “Dynamic control of colorful reflection toward practical cholesteric liquid crystal displays,” Opt. Express 24(20), 23027–23036 (2016).
[Crossref]
[PubMed]
Y. Geng, J. Noh, I. Drevensek-Olenik, R. Rupp, G. Lenzini, and J. P. F. Lagerwall, “High-fidelity spherical cholesteric liquid crystal Bragg reflectors generating unclonable patterns for secure authentication,” Sci. Rep. 6(1), 26840 (2016).
[Crossref]
[PubMed]
C. Jirauschek and R. Huber, “Wavelength shifting of intra-cavity photons: Adiabatic wavelength tuning in rapidly wavelength-swept lasers,” Biomed. Opt. Express 6(7), 2448–2465 (2015).
[Crossref]
[PubMed]
M.-Y. Jeong and J. Cha, “Firsthand in situ observation of active fine laser tuning by combining a temperature gradient and a CLC wedge cell structure,” Opt. Express 23(16), 21243–21253 (2015).
[Crossref]
[PubMed]
S. P. Palto, M. I. Barnik, A. R. Geivandov, I. V. Kasyanova, and V. S. Palto, “Spectral and polarization structure of field-induced photonic bands in cholesteric liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92(3), 032502 (2015).
[Crossref]
[PubMed]
H. Khandelwal, R. C. G. M. Loonen, J. L. M. Hensen, M. G. Debije, and A. P. H. J. Schenning, “Electrically switchable polymer stabilised broadband infrared reflectors and their potential as smart windows for energy saving in buildings,” Sci. Rep. 5(1), 11773 (2015).
[Crossref]
[PubMed]
J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Storey, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27(19), 3014–3018 (2015).
[Crossref]
[PubMed]
K. M. Lee, V. P. Tondiglia, M. E. McConney, L. V. Natarajan, T. J. Bunning, and T. J. White, “Color-Tunable Mirrors Based on Electrically Regulated Bandwidth Broadening in Polymer-Stabilized Cholesteric Liquid Crystals,” ACS Photonics 1(10), 1033–1041 (2014).
[Crossref]
H. Omran, Y. M. Sabry, M. Sadek, K. Hassan, M. Y. Shalaby, and D. Khalil, “Deeply-etched optical MEMS tunable filter for swept laser source applications,” IEEE Photonics Technol. Lett. 26(1), 37–39 (2014).
[Crossref]
S. Tozburun, M. Siddiqui, and B. J. Vakoc, “A rapid, dispersion-based wavelength-stepped and wavelength-swept laser for optical coherence tomography,” Opt. Express 22(3), 3414–3424 (2014).
[Crossref]
[PubMed]
C.-C. Li, H.-Y. Tseng, T.-W. Pai, Y.-C. Wu, W.-H. Hsu, H.-C. Jau, C.-W. Chen, and T.-H. Lin, “Bistable cholesteric liquid crystal light shutter with multielectrode driving,” Appl. Opt. 53(22), E33–E37 (2014).
[Crossref]
[PubMed]
M. O. Ko, S.-J. Kim, J.-H. Kim, B. W. Lee, and M. Y. Jeon, “Dynamic measurement for electric field sensor based on wavelength-swept laser,” Opt. Express 22(13), 16139–16147 (2014).
[Crossref]
[PubMed]
M. Rumi, T. J. White, and T. J. Bunning, “Reflection spectra of distorted cholesteric liquid crystal structures in cells with interdigitated electrodes,” Opt. Express 22(13), 16510–16519 (2014).
[Crossref]
[PubMed]
M. Mohammadimasoudi, J. Beeckman, J. Shin, K. Lee, and K. Neyts, “Widely tunable chiral nematic liquid crystal optical filter with microsecond switching time,” Opt. Express 22(16), 19098–19107 (2014).
[Crossref]
[PubMed]
C. Jun, M. Villiger, W.-Y. Oh, and B. E. Bouma, “All-fiber wavelength swept ring laser based on Fabry-Perot filter for optical frequency domain imaging,” Opt. Express 22(21), 25805–25814 (2014).
[Crossref]
[PubMed]
M. Rumi, V. P. Tondiglia, L. V. Natarajan, T. J. White, and T. J. Bunning, “Non-uniform helix unwinding of cholesteric liquid crystals in cells with interdigitated electrodes,” ChemPhysChem 15(7), 1311–1322 (2014).
[Crossref]
[PubMed]
C. M. Eigenwillig, W. Wieser, S. Todor, B. R. Biedermann, T. Klein, C. Jirauschek, and R. Huber, “Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers,” Nat. Commun. 4(1), 1848 (2013).
[Crossref]
[PubMed]
M. E. McConney, V. P. Tondiglia, L. V. Natarajan, K. M. Lee, T. J. White, and T. J. Bunning, “Electrically induced color changes in polymer-stabilized cholesteric liquid crystals,” Adv. Opt. Mater. 1(6), 417–421 (2013).
[Crossref]
J. Yeon, T.-W. Koh, H. Cho, J. Chung, S. Yoo, and J.-B. Yoon, “Actively transparent display with enhanced legibility based on an organic light-emitting diode and a cholesteric liquid crystal blind panel,” Opt. Express 21(8), 10358–10366 (2013).
[Crossref]
[PubMed]
C. K. Chang, S. W. Chiu, H. L. Kuo, and K. T. Tang, “Cholesteric liquid crystal-carbon nanotube hybrid architectures for gas detection,” Appl. Phys. Lett. 100(4), 043501 (2012).
[Crossref]
J. Schmidtke, G. Jünnemann, S. Keuker-Baumann, and H. S. Kitzerow, “Electrical fine tuning of liquid crystal lasers,” Appl. Phys. Lett. 101(5), 051117 (2012).
[Crossref]
K.-H. Kim, B.-H. Yu, S.-W. Choi, S.-W. Oh, and T.-H. Yoon, “Dual mode switching of cholesteric liquid crystal device with three-terminal electrode structure,” Opt. Express 20(22), 24376–24381 (2012).
[Crossref]
[PubMed]
K.-H. Kim, D. H. Song, Z.-G. Shen, B. W. Park, K.-H. Park, J.-H. Lee, and T.-H. Yoon, “Fast switching of long-pitch cholesteric liquid crystal device,” Opt. Express 19(11), 10174–10179 (2011).
[Crossref]
[PubMed]
A. M. Scarfone, I. Lelidis, and G. Barbero, “Cholesteric-nematic transition induced by a magnetic field in the strong-anchoring model,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(2), 021708 (2011).
[Crossref]
[PubMed]
H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]
H. Hong, H. Shin, and I. Chung, “In-plane switching technology for liquid crystal display television,” J. Disp. Technol. 3(4), 361–370 (2007).
[Crossref]
M. Mitov and N. Dessaud, “Going beyond the reflectance limit of cholesteric liquid crystals,” Nat. Mater. 5(5), 361–364 (2006).
[Crossref]
[PubMed]
D. K. Yang, “Flexible bistable cholesteric reflective displays,” J. Disp. Technol. 2(1), 32–37 (2006).
[Crossref]
V. A. Belyakov, I. W. Stewart, and M. A. Osipov, “Surface anchoring and dynamics of jump-wise director reorientations in planar cholesteric layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 051708 (2005).
[Crossref]
[PubMed]
F. Zhang and D. K. Yang, “Evolution of disclinations in cholesteric liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(4), 041701 (2002).
[Crossref]
[PubMed]
S. P. Palto, “On Mechanisms of the Helix Pitch Variation in a Thin Cholesteric Layer Confined between Two Surfaces,” J. Exp. Theor. Phys. 94(2), 260–269 (2002).
[Crossref]
V. A. Belyakov and E. I. Kats, “Surface anchoring and temperature variations of the pitch in thin cholesteric layers,” J. Exp. Theor. Phys. 91(3), 488–496 (2000).
[Crossref]
A. M. Scarfone, I. Lelidis, and G. Barbero, “Cholesteric-nematic transition induced by a magnetic field in the strong-anchoring model,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(2), 021708 (2011).
[Crossref]
[PubMed]
S. P. Palto, M. I. Barnik, A. R. Geivandov, I. V. Kasyanova, and V. S. Palto, “Spectral and polarization structure of field-induced photonic bands in cholesteric liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92(3), 032502 (2015).
[Crossref]
[PubMed]
V. A. Belyakov, I. W. Stewart, and M. A. Osipov, “Surface anchoring and dynamics of jump-wise director reorientations in planar cholesteric layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 051708 (2005).
[Crossref]
[PubMed]
V. A. Belyakov and E. I. Kats, “Surface anchoring and temperature variations of the pitch in thin cholesteric layers,” J. Exp. Theor. Phys. 91(3), 488–496 (2000).
[Crossref]
C. M. Eigenwillig, W. Wieser, S. Todor, B. R. Biedermann, T. Klein, C. Jirauschek, and R. Huber, “Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers,” Nat. Commun. 4(1), 1848 (2013).
[Crossref]
[PubMed]
S. H. Kassani, M. Villiger, N. Uribe-Patarroyo, C. Jun, R. Khazaeinezhad, N. Lippok, and B. E. Bouma, “Extended bandwidth wavelength swept laser source for high resolution optical frequency domain imaging,” Opt. Express 25(7), 8255–8266 (2017).
[Crossref]
[PubMed]
C. Jun, M. Villiger, W.-Y. Oh, and B. E. Bouma, “All-fiber wavelength swept ring laser based on Fabry-Perot filter for optical frequency domain imaging,” Opt. Express 22(21), 25805–25814 (2014).
[Crossref]
[PubMed]
S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28(20), 1981–1983 (2003).
[Crossref]
[PubMed]
K. M. Lee, V. P. Tondiglia, M. E. McConney, L. V. Natarajan, T. J. Bunning, and T. J. White, “Color-Tunable Mirrors Based on Electrically Regulated Bandwidth Broadening in Polymer-Stabilized Cholesteric Liquid Crystals,” ACS Photonics 1(10), 1033–1041 (2014).
[Crossref]
M. Rumi, T. J. White, and T. J. Bunning, “Reflection spectra of distorted cholesteric liquid crystal structures in cells with interdigitated electrodes,” Opt. Express 22(13), 16510–16519 (2014).
[Crossref]
[PubMed]
M. Rumi, V. P. Tondiglia, L. V. Natarajan, T. J. White, and T. J. Bunning, “Non-uniform helix unwinding of cholesteric liquid crystals in cells with interdigitated electrodes,” ChemPhysChem 15(7), 1311–1322 (2014).
[Crossref]
[PubMed]
M. E. McConney, V. P. Tondiglia, L. V. Natarajan, K. M. Lee, T. J. White, and T. J. Bunning, “Electrically induced color changes in polymer-stabilized cholesteric liquid crystals,” Adv. Opt. Mater. 1(6), 417–421 (2013).
[Crossref]
C. K. Chang, S. W. Chiu, H. L. Kuo, and K. T. Tang, “Cholesteric liquid crystal-carbon nanotube hybrid architectures for gas detection,” Appl. Phys. Lett. 100(4), 043501 (2012).
[Crossref]
C.-C. Li, H.-Y. Tseng, T.-W. Pai, Y.-C. Wu, W.-H. Hsu, H.-C. Jau, C.-W. Chen, and T.-H. Lin, “Bistable cholesteric liquid crystal light shutter with multielectrode driving,” Appl. Opt. 53(22), E33–E37 (2014).
[Crossref]
[PubMed]
C. K. Chang, S. W. Chiu, H. L. Kuo, and K. T. Tang, “Cholesteric liquid crystal-carbon nanotube hybrid architectures for gas detection,” Appl. Phys. Lett. 100(4), 043501 (2012).
[Crossref]
H. Hong, H. Shin, and I. Chung, “In-plane switching technology for liquid crystal display television,” J. Disp. Technol. 3(4), 361–370 (2007).
[Crossref]
H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]
H. Khandelwal, R. C. G. M. Loonen, J. L. M. Hensen, M. G. Debije, and A. P. H. J. Schenning, “Electrically switchable polymer stabilised broadband infrared reflectors and their potential as smart windows for energy saving in buildings,” Sci. Rep. 5(1), 11773 (2015).
[Crossref]
[PubMed]
M. Mitov and N. Dessaud, “Going beyond the reflectance limit of cholesteric liquid crystals,” Nat. Mater. 5(5), 361–364 (2006).
[Crossref]
[PubMed]
Y. Geng, J. Noh, I. Drevensek-Olenik, R. Rupp, G. Lenzini, and J. P. F. Lagerwall, “High-fidelity spherical cholesteric liquid crystal Bragg reflectors generating unclonable patterns for secure authentication,” Sci. Rep. 6(1), 26840 (2016).
[Crossref]
[PubMed]
C. M. Eigenwillig, W. Wieser, S. Todor, B. R. Biedermann, T. Klein, C. Jirauschek, and R. Huber, “Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers,” Nat. Commun. 4(1), 1848 (2013).
[Crossref]
[PubMed]
S. P. Palto, M. I. Barnik, A. R. Geivandov, I. V. Kasyanova, and V. S. Palto, “Spectral and polarization structure of field-induced photonic bands in cholesteric liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92(3), 032502 (2015).
[Crossref]
[PubMed]
Y. Geng, J. Noh, I. Drevensek-Olenik, R. Rupp, G. Lenzini, and J. P. F. Lagerwall, “High-fidelity spherical cholesteric liquid crystal Bragg reflectors generating unclonable patterns for secure authentication,” Sci. Rep. 6(1), 26840 (2016).
[Crossref]
[PubMed]
H. Omran, Y. M. Sabry, M. Sadek, K. Hassan, M. Y. Shalaby, and D. Khalil, “Deeply-etched optical MEMS tunable filter for swept laser source applications,” IEEE Photonics Technol. Lett. 26(1), 37–39 (2014).
[Crossref]
Y. Inoue, M. Hattori, H. Kubo, and H. Moritake, “Faster pitch control of cholesteric liquid crystal,” Jpn. J. Appl. Phys. 56(8), 080302 (2017).
[Crossref]
H. Khandelwal, R. C. G. M. Loonen, J. L. M. Hensen, M. G. Debije, and A. P. H. J. Schenning, “Electrically switchable polymer stabilised broadband infrared reflectors and their potential as smart windows for energy saving in buildings,” Sci. Rep. 5(1), 11773 (2015).
[Crossref]
[PubMed]
H. Hong, H. Shin, and I. Chung, “In-plane switching technology for liquid crystal display television,” J. Disp. Technol. 3(4), 361–370 (2007).
[Crossref]
C.-C. Li, H.-Y. Tseng, T.-W. Pai, Y.-C. Wu, W.-H. Hsu, H.-C. Jau, C.-W. Chen, and T.-H. Lin, “Bistable cholesteric liquid crystal light shutter with multielectrode driving,” Appl. Opt. 53(22), E33–E37 (2014).
[Crossref]
[PubMed]
C. Jirauschek and R. Huber, “Wavelength shifting of intra-cavity photons: Adiabatic wavelength tuning in rapidly wavelength-swept lasers,” Biomed. Opt. Express 6(7), 2448–2465 (2015).
[Crossref]
[PubMed]
C. M. Eigenwillig, W. Wieser, S. Todor, B. R. Biedermann, T. Klein, C. Jirauschek, and R. Huber, “Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers,” Nat. Commun. 4(1), 1848 (2013).
[Crossref]
[PubMed]
J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Storey, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27(19), 3014–3018 (2015).
[Crossref]
[PubMed]
C.-C. Li, H.-Y. Tseng, T.-W. Pai, Y.-C. Wu, W.-H. Hsu, H.-C. Jau, C.-W. Chen, and T.-H. Lin, “Bistable cholesteric liquid crystal light shutter with multielectrode driving,” Appl. Opt. 53(22), E33–E37 (2014).
[Crossref]
[PubMed]
H. J. Lee, S.-J. Kim, M. O. Ko, J.-H. Kim, and M. Y. Jeon, “Tunable, multiwavelength-swept fiber laser based on nematic liquid crystal device for fiber-optic electric-field sensor,” Opt. Commun. 410, 637–642 (2018).
[Crossref]
J. Park, Y. S. Kwon, M. O. Ko, and M. Y. Jeon, “Dynamic fiber Bragg grating strain sensor interrogation with real-time measurement,” Opt. Fiber Technol. 38, 147–153 (2017).
[Crossref]
M. O. Ko, S.-J. Kim, J.-H. Kim, B. W. Lee, and M. Y. Jeon, “Dynamic measurement for electric field sensor based on wavelength-swept laser,” Opt. Express 22(13), 16139–16147 (2014).
[Crossref]
[PubMed]
C. Jirauschek and R. Huber, “Wavelength shifting of intra-cavity photons: Adiabatic wavelength tuning in rapidly wavelength-swept lasers,” Biomed. Opt. Express 6(7), 2448–2465 (2015).
[Crossref]
[PubMed]
C. M. Eigenwillig, W. Wieser, S. Todor, B. R. Biedermann, T. Klein, C. Jirauschek, and R. Huber, “Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers,” Nat. Commun. 4(1), 1848 (2013).
[Crossref]
[PubMed]
S. H. Kassani, M. Villiger, N. Uribe-Patarroyo, C. Jun, R. Khazaeinezhad, N. Lippok, and B. E. Bouma, “Extended bandwidth wavelength swept laser source for high resolution optical frequency domain imaging,” Opt. Express 25(7), 8255–8266 (2017).
[Crossref]
[PubMed]
C. Jun, M. Villiger, W.-Y. Oh, and B. E. Bouma, “All-fiber wavelength swept ring laser based on Fabry-Perot filter for optical frequency domain imaging,” Opt. Express 22(21), 25805–25814 (2014).
[Crossref]
[PubMed]
J. Schmidtke, G. Jünnemann, S. Keuker-Baumann, and H. S. Kitzerow, “Electrical fine tuning of liquid crystal lasers,” Appl. Phys. Lett. 101(5), 051117 (2012).
[Crossref]
S. P. Palto, M. I. Barnik, A. R. Geivandov, I. V. Kasyanova, and V. S. Palto, “Spectral and polarization structure of field-induced photonic bands in cholesteric liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92(3), 032502 (2015).
[Crossref]
[PubMed]
V. A. Belyakov and E. I. Kats, “Surface anchoring and temperature variations of the pitch in thin cholesteric layers,” J. Exp. Theor. Phys. 91(3), 488–496 (2000).
[Crossref]
J. Schmidtke, G. Jünnemann, S. Keuker-Baumann, and H. S. Kitzerow, “Electrical fine tuning of liquid crystal lasers,” Appl. Phys. Lett. 101(5), 051117 (2012).
[Crossref]
H. Omran, Y. M. Sabry, M. Sadek, K. Hassan, M. Y. Shalaby, and D. Khalil, “Deeply-etched optical MEMS tunable filter for swept laser source applications,” IEEE Photonics Technol. Lett. 26(1), 37–39 (2014).
[Crossref]
H. Khandelwal, R. C. G. M. Loonen, J. L. M. Hensen, M. G. Debije, and A. P. H. J. Schenning, “Electrically switchable polymer stabilised broadband infrared reflectors and their potential as smart windows for energy saving in buildings,” Sci. Rep. 5(1), 11773 (2015).
[Crossref]
[PubMed]
H. J. Lee, S.-J. Kim, M. O. Ko, J.-H. Kim, and M. Y. Jeon, “Tunable, multiwavelength-swept fiber laser based on nematic liquid crystal device for fiber-optic electric-field sensor,” Opt. Commun. 410, 637–642 (2018).
[Crossref]
M. O. Ko, S.-J. Kim, J.-H. Kim, B. W. Lee, and M. Y. Jeon, “Dynamic measurement for electric field sensor based on wavelength-swept laser,” Opt. Express 22(13), 16139–16147 (2014).
[Crossref]
[PubMed]
K.-H. Kim, B.-H. Yu, S.-W. Choi, S.-W. Oh, and T.-H. Yoon, “Dual mode switching of cholesteric liquid crystal device with three-terminal electrode structure,” Opt. Express 20(22), 24376–24381 (2012).
[Crossref]
[PubMed]
K.-H. Kim, D. H. Song, Z.-G. Shen, B. W. Park, K.-H. Park, J.-H. Lee, and T.-H. Yoon, “Fast switching of long-pitch cholesteric liquid crystal device,” Opt. Express 19(11), 10174–10179 (2011).
[Crossref]
[PubMed]
H. J. Lee, S.-J. Kim, M. O. Ko, J.-H. Kim, and M. Y. Jeon, “Tunable, multiwavelength-swept fiber laser based on nematic liquid crystal device for fiber-optic electric-field sensor,” Opt. Commun. 410, 637–642 (2018).
[Crossref]
M. O. Ko, S.-J. Kim, J.-H. Kim, B. W. Lee, and M. Y. Jeon, “Dynamic measurement for electric field sensor based on wavelength-swept laser,” Opt. Express 22(13), 16139–16147 (2014).
[Crossref]
[PubMed]
J. Schmidtke, G. Jünnemann, S. Keuker-Baumann, and H. S. Kitzerow, “Electrical fine tuning of liquid crystal lasers,” Appl. Phys. Lett. 101(5), 051117 (2012).
[Crossref]
C. M. Eigenwillig, W. Wieser, S. Todor, B. R. Biedermann, T. Klein, C. Jirauschek, and R. Huber, “Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers,” Nat. Commun. 4(1), 1848 (2013).
[Crossref]
[PubMed]
H. J. Lee, S.-J. Kim, M. O. Ko, J.-H. Kim, and M. Y. Jeon, “Tunable, multiwavelength-swept fiber laser based on nematic liquid crystal device for fiber-optic electric-field sensor,” Opt. Commun. 410, 637–642 (2018).
[Crossref]
J. Park, Y. S. Kwon, M. O. Ko, and M. Y. Jeon, “Dynamic fiber Bragg grating strain sensor interrogation with real-time measurement,” Opt. Fiber Technol. 38, 147–153 (2017).
[Crossref]
M. O. Ko, S.-J. Kim, J.-H. Kim, B. W. Lee, and M. Y. Jeon, “Dynamic measurement for electric field sensor based on wavelength-swept laser,” Opt. Express 22(13), 16139–16147 (2014).
[Crossref]
[PubMed]
Y. Inoue, M. Hattori, H. Kubo, and H. Moritake, “Faster pitch control of cholesteric liquid crystal,” Jpn. J. Appl. Phys. 56(8), 080302 (2017).
[Crossref]
C. K. Chang, S. W. Chiu, H. L. Kuo, and K. T. Tang, “Cholesteric liquid crystal-carbon nanotube hybrid architectures for gas detection,” Appl. Phys. Lett. 100(4), 043501 (2012).
[Crossref]
J. Park, Y. S. Kwon, M. O. Ko, and M. Y. Jeon, “Dynamic fiber Bragg grating strain sensor interrogation with real-time measurement,” Opt. Fiber Technol. 38, 147–153 (2017).
[Crossref]
Y. Geng, J. Noh, I. Drevensek-Olenik, R. Rupp, G. Lenzini, and J. P. F. Lagerwall, “High-fidelity spherical cholesteric liquid crystal Bragg reflectors generating unclonable patterns for secure authentication,” Sci. Rep. 6(1), 26840 (2016).
[Crossref]
[PubMed]
J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Storey, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27(19), 3014–3018 (2015).
[Crossref]
[PubMed]
H. J. Lee, S.-J. Kim, M. O. Ko, J.-H. Kim, and M. Y. Jeon, “Tunable, multiwavelength-swept fiber laser based on nematic liquid crystal device for fiber-optic electric-field sensor,” Opt. Commun. 410, 637–642 (2018).
[Crossref]
K. M. Lee, V. P. Tondiglia, M. E. McConney, L. V. Natarajan, T. J. Bunning, and T. J. White, “Color-Tunable Mirrors Based on Electrically Regulated Bandwidth Broadening in Polymer-Stabilized Cholesteric Liquid Crystals,” ACS Photonics 1(10), 1033–1041 (2014).
[Crossref]
M. E. McConney, V. P. Tondiglia, L. V. Natarajan, K. M. Lee, T. J. White, and T. J. Bunning, “Electrically induced color changes in polymer-stabilized cholesteric liquid crystals,” Adv. Opt. Mater. 1(6), 417–421 (2013).
[Crossref]
A. M. Scarfone, I. Lelidis, and G. Barbero, “Cholesteric-nematic transition induced by a magnetic field in the strong-anchoring model,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(2), 021708 (2011).
[Crossref]
[PubMed]
Y. Geng, J. Noh, I. Drevensek-Olenik, R. Rupp, G. Lenzini, and J. P. F. Lagerwall, “High-fidelity spherical cholesteric liquid crystal Bragg reflectors generating unclonable patterns for secure authentication,” Sci. Rep. 6(1), 26840 (2016).
[Crossref]
[PubMed]
C.-C. Li, H.-Y. Tseng, T.-W. Pai, Y.-C. Wu, W.-H. Hsu, H.-C. Jau, C.-W. Chen, and T.-H. Lin, “Bistable cholesteric liquid crystal light shutter with multielectrode driving,” Appl. Opt. 53(22), E33–E37 (2014).
[Crossref]
[PubMed]
J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Storey, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27(19), 3014–3018 (2015).
[Crossref]
[PubMed]
J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Storey, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27(19), 3014–3018 (2015).
[Crossref]
[PubMed]
C.-C. Li, H.-Y. Tseng, T.-W. Pai, Y.-C. Wu, W.-H. Hsu, H.-C. Jau, C.-W. Chen, and T.-H. Lin, “Bistable cholesteric liquid crystal light shutter with multielectrode driving,” Appl. Opt. 53(22), E33–E37 (2014).
[Crossref]
[PubMed]
H. Khandelwal, R. C. G. M. Loonen, J. L. M. Hensen, M. G. Debije, and A. P. H. J. Schenning, “Electrically switchable polymer stabilised broadband infrared reflectors and their potential as smart windows for energy saving in buildings,” Sci. Rep. 5(1), 11773 (2015).
[Crossref]
[PubMed]
K. M. Lee, V. P. Tondiglia, M. E. McConney, L. V. Natarajan, T. J. Bunning, and T. J. White, “Color-Tunable Mirrors Based on Electrically Regulated Bandwidth Broadening in Polymer-Stabilized Cholesteric Liquid Crystals,” ACS Photonics 1(10), 1033–1041 (2014).
[Crossref]
M. E. McConney, V. P. Tondiglia, L. V. Natarajan, K. M. Lee, T. J. White, and T. J. Bunning, “Electrically induced color changes in polymer-stabilized cholesteric liquid crystals,” Adv. Opt. Mater. 1(6), 417–421 (2013).
[Crossref]
M. Mitov and N. Dessaud, “Going beyond the reflectance limit of cholesteric liquid crystals,” Nat. Mater. 5(5), 361–364 (2006).
[Crossref]
[PubMed]
H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]
K. M. Lee, V. P. Tondiglia, M. E. McConney, L. V. Natarajan, T. J. Bunning, and T. J. White, “Color-Tunable Mirrors Based on Electrically Regulated Bandwidth Broadening in Polymer-Stabilized Cholesteric Liquid Crystals,” ACS Photonics 1(10), 1033–1041 (2014).
[Crossref]
M. Rumi, V. P. Tondiglia, L. V. Natarajan, T. J. White, and T. J. Bunning, “Non-uniform helix unwinding of cholesteric liquid crystals in cells with interdigitated electrodes,” ChemPhysChem 15(7), 1311–1322 (2014).
[Crossref]
[PubMed]
M. E. McConney, V. P. Tondiglia, L. V. Natarajan, K. M. Lee, T. J. White, and T. J. Bunning, “Electrically induced color changes in polymer-stabilized cholesteric liquid crystals,” Adv. Opt. Mater. 1(6), 417–421 (2013).
[Crossref]
Y. Geng, J. Noh, I. Drevensek-Olenik, R. Rupp, G. Lenzini, and J. P. F. Lagerwall, “High-fidelity spherical cholesteric liquid crystal Bragg reflectors generating unclonable patterns for secure authentication,” Sci. Rep. 6(1), 26840 (2016).
[Crossref]
[PubMed]
H. Omran, Y. M. Sabry, M. Sadek, K. Hassan, M. Y. Shalaby, and D. Khalil, “Deeply-etched optical MEMS tunable filter for swept laser source applications,” IEEE Photonics Technol. Lett. 26(1), 37–39 (2014).
[Crossref]
V. A. Belyakov, I. W. Stewart, and M. A. Osipov, “Surface anchoring and dynamics of jump-wise director reorientations in planar cholesteric layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 051708 (2005).
[Crossref]
[PubMed]
C.-C. Li, H.-Y. Tseng, T.-W. Pai, Y.-C. Wu, W.-H. Hsu, H.-C. Jau, C.-W. Chen, and T.-H. Lin, “Bistable cholesteric liquid crystal light shutter with multielectrode driving,” Appl. Opt. 53(22), E33–E37 (2014).
[Crossref]
[PubMed]
S. P. Palto, M. I. Barnik, A. R. Geivandov, I. V. Kasyanova, and V. S. Palto, “Spectral and polarization structure of field-induced photonic bands in cholesteric liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92(3), 032502 (2015).
[Crossref]
[PubMed]
S. P. Palto, “On Mechanisms of the Helix Pitch Variation in a Thin Cholesteric Layer Confined between Two Surfaces,” J. Exp. Theor. Phys. 94(2), 260–269 (2002).
[Crossref]
S. P. Palto, M. I. Barnik, A. R. Geivandov, I. V. Kasyanova, and V. S. Palto, “Spectral and polarization structure of field-induced photonic bands in cholesteric liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92(3), 032502 (2015).
[Crossref]
[PubMed]
J. Park, Y. S. Kwon, M. O. Ko, and M. Y. Jeon, “Dynamic fiber Bragg grating strain sensor interrogation with real-time measurement,” Opt. Fiber Technol. 38, 147–153 (2017).
[Crossref]
J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Storey, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27(19), 3014–3018 (2015).
[Crossref]
[PubMed]
M. Rumi, T. J. White, and T. J. Bunning, “Reflection spectra of distorted cholesteric liquid crystal structures in cells with interdigitated electrodes,” Opt. Express 22(13), 16510–16519 (2014).
[Crossref]
[PubMed]
M. Rumi, V. P. Tondiglia, L. V. Natarajan, T. J. White, and T. J. Bunning, “Non-uniform helix unwinding of cholesteric liquid crystals in cells with interdigitated electrodes,” ChemPhysChem 15(7), 1311–1322 (2014).
[Crossref]
[PubMed]
Y. Geng, J. Noh, I. Drevensek-Olenik, R. Rupp, G. Lenzini, and J. P. F. Lagerwall, “High-fidelity spherical cholesteric liquid crystal Bragg reflectors generating unclonable patterns for secure authentication,” Sci. Rep. 6(1), 26840 (2016).
[Crossref]
[PubMed]
H. Omran, Y. M. Sabry, M. Sadek, K. Hassan, M. Y. Shalaby, and D. Khalil, “Deeply-etched optical MEMS tunable filter for swept laser source applications,” IEEE Photonics Technol. Lett. 26(1), 37–39 (2014).
[Crossref]
H. Omran, Y. M. Sabry, M. Sadek, K. Hassan, M. Y. Shalaby, and D. Khalil, “Deeply-etched optical MEMS tunable filter for swept laser source applications,” IEEE Photonics Technol. Lett. 26(1), 37–39 (2014).
[Crossref]
A. M. Scarfone, I. Lelidis, and G. Barbero, “Cholesteric-nematic transition induced by a magnetic field in the strong-anchoring model,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(2), 021708 (2011).
[Crossref]
[PubMed]
H. Khandelwal, R. C. G. M. Loonen, J. L. M. Hensen, M. G. Debije, and A. P. H. J. Schenning, “Electrically switchable polymer stabilised broadband infrared reflectors and their potential as smart windows for energy saving in buildings,” Sci. Rep. 5(1), 11773 (2015).
[Crossref]
[PubMed]
J. Schmidtke, G. Jünnemann, S. Keuker-Baumann, and H. S. Kitzerow, “Electrical fine tuning of liquid crystal lasers,” Appl. Phys. Lett. 101(5), 051117 (2012).
[Crossref]
H. Omran, Y. M. Sabry, M. Sadek, K. Hassan, M. Y. Shalaby, and D. Khalil, “Deeply-etched optical MEMS tunable filter for swept laser source applications,” IEEE Photonics Technol. Lett. 26(1), 37–39 (2014).
[Crossref]
H. Hong, H. Shin, and I. Chung, “In-plane switching technology for liquid crystal display television,” J. Disp. Technol. 3(4), 361–370 (2007).
[Crossref]
V. A. Belyakov, I. W. Stewart, and M. A. Osipov, “Surface anchoring and dynamics of jump-wise director reorientations in planar cholesteric layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 051708 (2005).
[Crossref]
[PubMed]
J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Storey, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27(19), 3014–3018 (2015).
[Crossref]
[PubMed]
C. K. Chang, S. W. Chiu, H. L. Kuo, and K. T. Tang, “Cholesteric liquid crystal-carbon nanotube hybrid architectures for gas detection,” Appl. Phys. Lett. 100(4), 043501 (2012).
[Crossref]
C. M. Eigenwillig, W. Wieser, S. Todor, B. R. Biedermann, T. Klein, C. Jirauschek, and R. Huber, “Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers,” Nat. Commun. 4(1), 1848 (2013).
[Crossref]
[PubMed]
K. M. Lee, V. P. Tondiglia, M. E. McConney, L. V. Natarajan, T. J. Bunning, and T. J. White, “Color-Tunable Mirrors Based on Electrically Regulated Bandwidth Broadening in Polymer-Stabilized Cholesteric Liquid Crystals,” ACS Photonics 1(10), 1033–1041 (2014).
[Crossref]
M. Rumi, V. P. Tondiglia, L. V. Natarajan, T. J. White, and T. J. Bunning, “Non-uniform helix unwinding of cholesteric liquid crystals in cells with interdigitated electrodes,” ChemPhysChem 15(7), 1311–1322 (2014).
[Crossref]
[PubMed]
M. E. McConney, V. P. Tondiglia, L. V. Natarajan, K. M. Lee, T. J. White, and T. J. Bunning, “Electrically induced color changes in polymer-stabilized cholesteric liquid crystals,” Adv. Opt. Mater. 1(6), 417–421 (2013).
[Crossref]
C.-C. Li, H.-Y. Tseng, T.-W. Pai, Y.-C. Wu, W.-H. Hsu, H.-C. Jau, C.-W. Chen, and T.-H. Lin, “Bistable cholesteric liquid crystal light shutter with multielectrode driving,” Appl. Opt. 53(22), E33–E37 (2014).
[Crossref]
[PubMed]
S. H. Kassani, M. Villiger, N. Uribe-Patarroyo, C. Jun, R. Khazaeinezhad, N. Lippok, and B. E. Bouma, “Extended bandwidth wavelength swept laser source for high resolution optical frequency domain imaging,” Opt. Express 25(7), 8255–8266 (2017).
[Crossref]
[PubMed]
C. Jun, M. Villiger, W.-Y. Oh, and B. E. Bouma, “All-fiber wavelength swept ring laser based on Fabry-Perot filter for optical frequency domain imaging,” Opt. Express 22(21), 25805–25814 (2014).
[Crossref]
[PubMed]
K. M. Lee, V. P. Tondiglia, M. E. McConney, L. V. Natarajan, T. J. Bunning, and T. J. White, “Color-Tunable Mirrors Based on Electrically Regulated Bandwidth Broadening in Polymer-Stabilized Cholesteric Liquid Crystals,” ACS Photonics 1(10), 1033–1041 (2014).
[Crossref]
M. Rumi, T. J. White, and T. J. Bunning, “Reflection spectra of distorted cholesteric liquid crystal structures in cells with interdigitated electrodes,” Opt. Express 22(13), 16510–16519 (2014).
[Crossref]
[PubMed]
M. Rumi, V. P. Tondiglia, L. V. Natarajan, T. J. White, and T. J. Bunning, “Non-uniform helix unwinding of cholesteric liquid crystals in cells with interdigitated electrodes,” ChemPhysChem 15(7), 1311–1322 (2014).
[Crossref]
[PubMed]
M. E. McConney, V. P. Tondiglia, L. V. Natarajan, K. M. Lee, T. J. White, and T. J. Bunning, “Electrically induced color changes in polymer-stabilized cholesteric liquid crystals,” Adv. Opt. Mater. 1(6), 417–421 (2013).
[Crossref]
C. M. Eigenwillig, W. Wieser, S. Todor, B. R. Biedermann, T. Klein, C. Jirauschek, and R. Huber, “Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers,” Nat. Commun. 4(1), 1848 (2013).
[Crossref]
[PubMed]
C.-C. Li, H.-Y. Tseng, T.-W. Pai, Y.-C. Wu, W.-H. Hsu, H.-C. Jau, C.-W. Chen, and T.-H. Lin, “Bistable cholesteric liquid crystal light shutter with multielectrode driving,” Appl. Opt. 53(22), E33–E37 (2014).
[Crossref]
[PubMed]
J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Storey, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27(19), 3014–3018 (2015).
[Crossref]
[PubMed]
D. K. Yang, “Flexible bistable cholesteric reflective displays,” J. Disp. Technol. 2(1), 32–37 (2006).
[Crossref]
F. Zhang and D. K. Yang, “Evolution of disclinations in cholesteric liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(4), 041701 (2002).
[Crossref]
[PubMed]
K.-H. Kim, B.-H. Yu, S.-W. Choi, S.-W. Oh, and T.-H. Yoon, “Dual mode switching of cholesteric liquid crystal device with three-terminal electrode structure,” Opt. Express 20(22), 24376–24381 (2012).
[Crossref]
[PubMed]
K.-H. Kim, D. H. Song, Z.-G. Shen, B. W. Park, K.-H. Park, J.-H. Lee, and T.-H. Yoon, “Fast switching of long-pitch cholesteric liquid crystal device,” Opt. Express 19(11), 10174–10179 (2011).
[Crossref]
[PubMed]
F. Zhang and D. K. Yang, “Evolution of disclinations in cholesteric liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(4), 041701 (2002).
[Crossref]
[PubMed]
K. M. Lee, V. P. Tondiglia, M. E. McConney, L. V. Natarajan, T. J. Bunning, and T. J. White, “Color-Tunable Mirrors Based on Electrically Regulated Bandwidth Broadening in Polymer-Stabilized Cholesteric Liquid Crystals,” ACS Photonics 1(10), 1033–1041 (2014).
[Crossref]
J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Storey, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27(19), 3014–3018 (2015).
[Crossref]
[PubMed]
M. E. McConney, V. P. Tondiglia, L. V. Natarajan, K. M. Lee, T. J. White, and T. J. Bunning, “Electrically induced color changes in polymer-stabilized cholesteric liquid crystals,” Adv. Opt. Mater. 1(6), 417–421 (2013).
[Crossref]
H. Xianyu, S. Faris, and G. P. Crawford, “In-plane switching of cholesteric liquid crystals for visible and near-infrared applications,” Appl. Opt. 43(26), 5006–5015 (2004).
[Crossref]
[PubMed]
C.-C. Li, H.-Y. Tseng, T.-W. Pai, Y.-C. Wu, W.-H. Hsu, H.-C. Jau, C.-W. Chen, and T.-H. Lin, “Bistable cholesteric liquid crystal light shutter with multielectrode driving,” Appl. Opt. 53(22), E33–E37 (2014).
[Crossref]
[PubMed]
G. J. Choi, H. M. Jung, S. H. Lee, and J. S. Gwag, “Infrared shutter using cholesteric liquid crystal,” Appl. Opt. 55(16), 4436–4440 (2016).
[Crossref]
[PubMed]
C. K. Chang, S. W. Chiu, H. L. Kuo, and K. T. Tang, “Cholesteric liquid crystal-carbon nanotube hybrid architectures for gas detection,” Appl. Phys. Lett. 100(4), 043501 (2012).
[Crossref]
J. Schmidtke, G. Jünnemann, S. Keuker-Baumann, and H. S. Kitzerow, “Electrical fine tuning of liquid crystal lasers,” Appl. Phys. Lett. 101(5), 051117 (2012).
[Crossref]
M. Rumi, V. P. Tondiglia, L. V. Natarajan, T. J. White, and T. J. Bunning, “Non-uniform helix unwinding of cholesteric liquid crystals in cells with interdigitated electrodes,” ChemPhysChem 15(7), 1311–1322 (2014).
[Crossref]
[PubMed]
H. Omran, Y. M. Sabry, M. Sadek, K. Hassan, M. Y. Shalaby, and D. Khalil, “Deeply-etched optical MEMS tunable filter for swept laser source applications,” IEEE Photonics Technol. Lett. 26(1), 37–39 (2014).
[Crossref]
H. Hong, H. Shin, and I. Chung, “In-plane switching technology for liquid crystal display television,” J. Disp. Technol. 3(4), 361–370 (2007).
[Crossref]
D. K. Yang, “Flexible bistable cholesteric reflective displays,” J. Disp. Technol. 2(1), 32–37 (2006).
[Crossref]
S. P. Palto, “On Mechanisms of the Helix Pitch Variation in a Thin Cholesteric Layer Confined between Two Surfaces,” J. Exp. Theor. Phys. 94(2), 260–269 (2002).
[Crossref]
V. A. Belyakov and E. I. Kats, “Surface anchoring and temperature variations of the pitch in thin cholesteric layers,” J. Exp. Theor. Phys. 91(3), 488–496 (2000).
[Crossref]
Y. Inoue, M. Hattori, H. Kubo, and H. Moritake, “Faster pitch control of cholesteric liquid crystal,” Jpn. J. Appl. Phys. 56(8), 080302 (2017).
[Crossref]
C. M. Eigenwillig, W. Wieser, S. Todor, B. R. Biedermann, T. Klein, C. Jirauschek, and R. Huber, “Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers,” Nat. Commun. 4(1), 1848 (2013).
[Crossref]
[PubMed]
M. Mitov and N. Dessaud, “Going beyond the reflectance limit of cholesteric liquid crystals,” Nat. Mater. 5(5), 361–364 (2006).
[Crossref]
[PubMed]
H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]
H. J. Lee, S.-J. Kim, M. O. Ko, J.-H. Kim, and M. Y. Jeon, “Tunable, multiwavelength-swept fiber laser based on nematic liquid crystal device for fiber-optic electric-field sensor,” Opt. Commun. 410, 637–642 (2018).
[Crossref]
S. H. Kassani, M. Villiger, N. Uribe-Patarroyo, C. Jun, R. Khazaeinezhad, N. Lippok, and B. E. Bouma, “Extended bandwidth wavelength swept laser source for high resolution optical frequency domain imaging,” Opt. Express 25(7), 8255–8266 (2017).
[Crossref]
[PubMed]
C. Jun, M. Villiger, W.-Y. Oh, and B. E. Bouma, “All-fiber wavelength swept ring laser based on Fabry-Perot filter for optical frequency domain imaging,” Opt. Express 22(21), 25805–25814 (2014).
[Crossref]
[PubMed]
S. Tozburun, M. Siddiqui, and B. J. Vakoc, “A rapid, dispersion-based wavelength-stepped and wavelength-swept laser for optical coherence tomography,” Opt. Express 22(3), 3414–3424 (2014).
[Crossref]
[PubMed]
M. O. Ko, S.-J. Kim, J.-H. Kim, B. W. Lee, and M. Y. Jeon, “Dynamic measurement for electric field sensor based on wavelength-swept laser,” Opt. Express 22(13), 16139–16147 (2014).
[Crossref]
[PubMed]
Y. Inoue and H. Moritake, “Dynamic control of colorful reflection toward practical cholesteric liquid crystal displays,” Opt. Express 24(20), 23027–23036 (2016).
[Crossref]
[PubMed]
M. Mohammadimasoudi, J. Beeckman, J. Shin, K. Lee, and K. Neyts, “Widely tunable chiral nematic liquid crystal optical filter with microsecond switching time,” Opt. Express 22(16), 19098–19107 (2014).
[Crossref]
[PubMed]
J. Yeon, T.-W. Koh, H. Cho, J. Chung, S. Yoo, and J.-B. Yoon, “Actively transparent display with enhanced legibility based on an organic light-emitting diode and a cholesteric liquid crystal blind panel,” Opt. Express 21(8), 10358–10366 (2013).
[Crossref]
[PubMed]
K.-H. Kim, B.-H. Yu, S.-W. Choi, S.-W. Oh, and T.-H. Yoon, “Dual mode switching of cholesteric liquid crystal device with three-terminal electrode structure,” Opt. Express 20(22), 24376–24381 (2012).
[Crossref]
[PubMed]
K.-H. Kim, D. H. Song, Z.-G. Shen, B. W. Park, K.-H. Park, J.-H. Lee, and T.-H. Yoon, “Fast switching of long-pitch cholesteric liquid crystal device,” Opt. Express 19(11), 10174–10179 (2011).
[Crossref]
[PubMed]
P. V. Shibaev, P. Rivera, D. Teter, S. Marsico, M. Sanzari, V. Ramakrishnan, and E. Hanelt, “Color changing and lasing stretchable cholesteric films,” Opt. Express 16(5), 2965–2970 (2008).
[Crossref]
[PubMed]
M. Rumi, T. J. White, and T. J. Bunning, “Reflection spectra of distorted cholesteric liquid crystal structures in cells with interdigitated electrodes,” Opt. Express 22(13), 16510–16519 (2014).
[Crossref]
[PubMed]
M.-Y. Jeong and J. Cha, “Firsthand in situ observation of active fine laser tuning by combining a temperature gradient and a CLC wedge cell structure,” Opt. Express 23(16), 21243–21253 (2015).
[Crossref]
[PubMed]
J. Park, Y. S. Kwon, M. O. Ko, and M. Y. Jeon, “Dynamic fiber Bragg grating strain sensor interrogation with real-time measurement,” Opt. Fiber Technol. 38, 147–153 (2017).
[Crossref]
S. P. Palto, M. I. Barnik, A. R. Geivandov, I. V. Kasyanova, and V. S. Palto, “Spectral and polarization structure of field-induced photonic bands in cholesteric liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92(3), 032502 (2015).
[Crossref]
[PubMed]
V. A. Belyakov, I. W. Stewart, and M. A. Osipov, “Surface anchoring and dynamics of jump-wise director reorientations in planar cholesteric layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 051708 (2005).
[Crossref]
[PubMed]
F. Zhang and D. K. Yang, “Evolution of disclinations in cholesteric liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(4), 041701 (2002).
[Crossref]
[PubMed]
A. M. Scarfone, I. Lelidis, and G. Barbero, “Cholesteric-nematic transition induced by a magnetic field in the strong-anchoring model,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(2), 021708 (2011).
[Crossref]
[PubMed]
Y. Geng, J. Noh, I. Drevensek-Olenik, R. Rupp, G. Lenzini, and J. P. F. Lagerwall, “High-fidelity spherical cholesteric liquid crystal Bragg reflectors generating unclonable patterns for secure authentication,” Sci. Rep. 6(1), 26840 (2016).
[Crossref]
[PubMed]
H. Khandelwal, R. C. G. M. Loonen, J. L. M. Hensen, M. G. Debije, and A. P. H. J. Schenning, “Electrically switchable polymer stabilised broadband infrared reflectors and their potential as smart windows for energy saving in buildings,” Sci. Rep. 5(1), 11773 (2015).
[Crossref]
[PubMed]
D. Yang and S. Wu, Fundamentals of Liquid Crystal Devices (John Wiley & Sons, 2006).