Abstract

A novel real-time full-field phase unwrapping framework is proposed for the one-projector and one-camera structured light system. In this framework, only four patterns (including three fringe patterns and a binary speckle pattern) are required to measure the absolute 3D shape of the targets. We use the structured light system to capture four images of a nearly planar target (e.g. wall), of which the speckle image is taken as the reference image, and the corresponding absolute phase map is computed and stored, before measuring. So each pixel in the reference image can be mapped to an absolute phase value. In this way, if we can create the correspondences between the current and the reference speckle images in the process of measurement by using a matching algorithm, we can directly map the absolute values for the pixels of the current image. The mapped absolute phases can be used to determine the period of the relative phases. The experimental results verified the effectiveness and efficiency of the proposed framework. On a consumer-grade GPU (Nvidia GTX1060), our method can run at 187 fps.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Pixel-wise absolute phase unwrapping using geometric constraints of structured light system

Yatong An, Jae-Sang Hyun, and Song Zhang
Opt. Express 24(16) 18445-18459 (2016)

Absolute three-dimensional shape measurement using coded fringe patterns without phase unwrapping or projector calibration

William Lohry, Vincent Chen, and Song Zhang
Opt. Express 22(2) 1287-1301 (2014)

High-speed 3D shape measurement using the optimized composite fringe patterns and stereo-assisted structured light system

Wei Yin, Shijie Feng, Tianyang Tao, Lei Huang, Maciej Trusiak, Qian Chen, and Chao Zuo
Opt. Express 27(3) 2411-2431 (2019)

References

  • View by:
  • |
  • |
  • |

  1. F. Blais, “Review of 20 years of range sensor development,” J. Electron. Imaging 13(1), 231–243 (2004).
    [Crossref]
  2. S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45(8), 083601 (2006).
    [Crossref]
  3. J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp, M. Cook, M. Finocchio, R. Moore, P. Kohli, A. Criminisi, A. Kipman, and A. Blake, “Efficient human pose estimation from single depth images,” IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2821–2840 (2013).
    [Crossref] [PubMed]
  4. S. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe projection techniques,” Opt. Lasers Eng. 48(2), 149–158 (2010).
    [Crossref]
  5. W. Lohry, V. Chen, and S. Zhang, “Absolute three-dimensional shape measurement using coded fringe patterns without phase unwrapping or projector calibration,” Opt. Express 22(2), 1287–1301 (2014).
    [Crossref] [PubMed]
  6. W. Lohry and S. Zhang, “High-speed absolute three-dimensional shape measurement using three binary dithered patterns,” Opt. Express 22(22), 26752–26762 (2014).
    [Crossref] [PubMed]
  7. S. Zhang and S. T. Yau, “High-resolution, real-time 3-d absolute coordinate measurement based on a phase-shifting method,” Opt. Express 14(7), 2644–2649 (2006).
    [Crossref] [PubMed]
  8. H. Cui, W. Liao, N. Dai, and X. Cheng, “A flexible phase-shifting method with absolute phase marker retrieval,” Measurement 45(1), 101–108 (2012).
    [Crossref]
  9. G. Sansoni, M. Carocci, and R. Rodella, “Three-dimensional vision based on a combination of gray-code and phase-shift light projection: analysis and compensation of the systematic errors,” Appl. Opt. 38(31), 6565–6573 (1999).
    [Crossref] [PubMed]
  10. Q. Zhang, X. Su, L. Xiang, and X. Sun, “3-D shape measurement based on complementary Gray-code light,” Opt. Lasers Eng. 50(4), 574–579 (2012).
    [Crossref]
  11. D. Zheng and F. Da, “Phase coding method for absolute phase retrieval with a large number of codewords,” Opt. Express 20(22), 24139–24150 (2012).
    [Crossref] [PubMed]
  12. S. Zhang, “Composite phase-shifting algorithm for absolute phase measurement,” Opt. Lasers Eng. 50(11), 1538–1541 (2012).
    [Crossref]
  13. C. Zuo, Q. Chen, G. Gu, S. Feng, and F. Feng, “High-speed three-dimensional profilometry for multiple objects with complex shapes,” Opt. Express 20(17), 19493–19510 (2012).
    [Crossref] [PubMed]
  14. J. S. Hyun and S. Zhang, “Superfast 3D absolute shape measurement using five binary patterns,” Opt. Lasers Eng. 90, 217–224 (2017).
    [Crossref]
  15. B. Freedman, A. Shpunt, and M. Machline, “Depth mapping using projected patterns,” U.S. Patent 8,150,142. 2012–4-3.
  16. G. Wang, X. Yin, X. Pei, and C. Shi, “Depth estimation for speckle projection system using progressive reliable points growing matching,” Appl. Opt. 52(3), 516–524 (2013).
    [Crossref] [PubMed]
  17. X. Yin, G. Wang, C. Shi, and Q. Liao, “Efficient active depth sensing by laser speckle projection system,” Opt. Eng. 53(1), 013105 (2014).
    [Crossref]
  18. W. Bao, X. Xiao, Y. Xu, and X. Zhang, “Phase Unwrapping Source Code,” github (2018), [retrieved 4 Apr 2018], https://github.com/YuhuaXu/PhaseUnwrapping .
  19. Y. An and S. Zhang, “Three-dimensional absolute shape measurement by combining binary statistical pattern matching with phase-shifting methods,” Appl. Opt. 56(19), 5418–5426 (2017).
    [Crossref] [PubMed]
  20. Y. Zhang, Z. Xiong, Z. Yang, and F. Wu, “Real-time scalable depth sensing with hybrid structured light illumination,” IEEE Trans. Image Process. 23(1), 97–109 (2014).
    [Crossref] [PubMed]
  21. A. Fusiello, E. Trucco, and A. Verri, “A compact algorithm for rectification of stereo pairs,” Mach. Vis. Appl. 12(1), 16–22 (2000).
    [Crossref]
  22. D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspondence algorithms,” Int. J. Comput. Vis. 47(1–3), 7–42 (2002).
    [Crossref]
  23. D. Scharstein, R. Szeliski, and H. Hirschmüller, “Middlebury Stereo Vision,” http://vision.middlebury.edu/stereo .
  24. M. Bleyer, C. Rhemann, and C. Rother, “PatchMatch stereo - stereo matching with slanted support windows,” in Proceedings of the British Machine Vision Conference (BMVC, 2011), pp. 1–11.
  25. S. R. Fanello, J. Valentin, C. Rhemann, A. Kowdle, V. Tankovich, P. Davidson, and S. Izadi, “UltraStereo: Efficient learning-based matching for active stereo systems,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2017), pp. 6535–6544.
    [Crossref]
  26. M. Zollhöfer, C. Theobalt, M. Stamminger, M. Nießner, S. Izadi, C. Rehmann, C. Zach, M. Fisher, C. Wu, A. Fitzgibbon, and C. Loop, “Real-time non-rigid reconstruction using an RGB-D camera,” in Proceedings of ACM Transactions on Graphics (ACM 2014), pp. 1–12.
    [Crossref]
  27. R. Zabih and J. Woodfill, “Non-parametric local transforms for computing visual correspondence,” in Proceedings of European Conference on Computer Vision (Springer, 1994), pp. 151–158.
    [Crossref]
  28. H. Hirschmüller and D. Scharstein, “Evaluation of cost functions for stereo matching,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2007), pp. 1–8.
    [Crossref]
  29. S. Zhang and S. T. Yau, “Generic nonsinusoidal phase error correction for three-dimensional shape measurement using a digital video projector,” Appl. Opt. 46(1), 36–43 (2007).
    [Crossref] [PubMed]

2017 (2)

2014 (4)

W. Lohry, V. Chen, and S. Zhang, “Absolute three-dimensional shape measurement using coded fringe patterns without phase unwrapping or projector calibration,” Opt. Express 22(2), 1287–1301 (2014).
[Crossref] [PubMed]

W. Lohry and S. Zhang, “High-speed absolute three-dimensional shape measurement using three binary dithered patterns,” Opt. Express 22(22), 26752–26762 (2014).
[Crossref] [PubMed]

Y. Zhang, Z. Xiong, Z. Yang, and F. Wu, “Real-time scalable depth sensing with hybrid structured light illumination,” IEEE Trans. Image Process. 23(1), 97–109 (2014).
[Crossref] [PubMed]

X. Yin, G. Wang, C. Shi, and Q. Liao, “Efficient active depth sensing by laser speckle projection system,” Opt. Eng. 53(1), 013105 (2014).
[Crossref]

2013 (2)

G. Wang, X. Yin, X. Pei, and C. Shi, “Depth estimation for speckle projection system using progressive reliable points growing matching,” Appl. Opt. 52(3), 516–524 (2013).
[Crossref] [PubMed]

J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp, M. Cook, M. Finocchio, R. Moore, P. Kohli, A. Criminisi, A. Kipman, and A. Blake, “Efficient human pose estimation from single depth images,” IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2821–2840 (2013).
[Crossref] [PubMed]

2012 (5)

H. Cui, W. Liao, N. Dai, and X. Cheng, “A flexible phase-shifting method with absolute phase marker retrieval,” Measurement 45(1), 101–108 (2012).
[Crossref]

Q. Zhang, X. Su, L. Xiang, and X. Sun, “3-D shape measurement based on complementary Gray-code light,” Opt. Lasers Eng. 50(4), 574–579 (2012).
[Crossref]

S. Zhang, “Composite phase-shifting algorithm for absolute phase measurement,” Opt. Lasers Eng. 50(11), 1538–1541 (2012).
[Crossref]

C. Zuo, Q. Chen, G. Gu, S. Feng, and F. Feng, “High-speed three-dimensional profilometry for multiple objects with complex shapes,” Opt. Express 20(17), 19493–19510 (2012).
[Crossref] [PubMed]

D. Zheng and F. Da, “Phase coding method for absolute phase retrieval with a large number of codewords,” Opt. Express 20(22), 24139–24150 (2012).
[Crossref] [PubMed]

2010 (1)

S. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe projection techniques,” Opt. Lasers Eng. 48(2), 149–158 (2010).
[Crossref]

2007 (1)

2006 (2)

2004 (1)

F. Blais, “Review of 20 years of range sensor development,” J. Electron. Imaging 13(1), 231–243 (2004).
[Crossref]

2002 (1)

D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspondence algorithms,” Int. J. Comput. Vis. 47(1–3), 7–42 (2002).
[Crossref]

2000 (1)

A. Fusiello, E. Trucco, and A. Verri, “A compact algorithm for rectification of stereo pairs,” Mach. Vis. Appl. 12(1), 16–22 (2000).
[Crossref]

1999 (1)

An, Y.

Blais, F.

F. Blais, “Review of 20 years of range sensor development,” J. Electron. Imaging 13(1), 231–243 (2004).
[Crossref]

Blake, A.

J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp, M. Cook, M. Finocchio, R. Moore, P. Kohli, A. Criminisi, A. Kipman, and A. Blake, “Efficient human pose estimation from single depth images,” IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2821–2840 (2013).
[Crossref] [PubMed]

Carocci, M.

Chen, Q.

Chen, V.

Cheng, X.

H. Cui, W. Liao, N. Dai, and X. Cheng, “A flexible phase-shifting method with absolute phase marker retrieval,” Measurement 45(1), 101–108 (2012).
[Crossref]

Cook, M.

J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp, M. Cook, M. Finocchio, R. Moore, P. Kohli, A. Criminisi, A. Kipman, and A. Blake, “Efficient human pose estimation from single depth images,” IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2821–2840 (2013).
[Crossref] [PubMed]

Criminisi, A.

J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp, M. Cook, M. Finocchio, R. Moore, P. Kohli, A. Criminisi, A. Kipman, and A. Blake, “Efficient human pose estimation from single depth images,” IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2821–2840 (2013).
[Crossref] [PubMed]

Cui, H.

H. Cui, W. Liao, N. Dai, and X. Cheng, “A flexible phase-shifting method with absolute phase marker retrieval,” Measurement 45(1), 101–108 (2012).
[Crossref]

Da, F.

Dai, N.

H. Cui, W. Liao, N. Dai, and X. Cheng, “A flexible phase-shifting method with absolute phase marker retrieval,” Measurement 45(1), 101–108 (2012).
[Crossref]

Davidson, P.

S. R. Fanello, J. Valentin, C. Rhemann, A. Kowdle, V. Tankovich, P. Davidson, and S. Izadi, “UltraStereo: Efficient learning-based matching for active stereo systems,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2017), pp. 6535–6544.
[Crossref]

Fanello, S. R.

S. R. Fanello, J. Valentin, C. Rhemann, A. Kowdle, V. Tankovich, P. Davidson, and S. Izadi, “UltraStereo: Efficient learning-based matching for active stereo systems,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2017), pp. 6535–6544.
[Crossref]

Feng, F.

Feng, S.

Finocchio, M.

J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp, M. Cook, M. Finocchio, R. Moore, P. Kohli, A. Criminisi, A. Kipman, and A. Blake, “Efficient human pose estimation from single depth images,” IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2821–2840 (2013).
[Crossref] [PubMed]

Fisher, M.

M. Zollhöfer, C. Theobalt, M. Stamminger, M. Nießner, S. Izadi, C. Rehmann, C. Zach, M. Fisher, C. Wu, A. Fitzgibbon, and C. Loop, “Real-time non-rigid reconstruction using an RGB-D camera,” in Proceedings of ACM Transactions on Graphics (ACM 2014), pp. 1–12.
[Crossref]

Fitzgibbon, A.

J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp, M. Cook, M. Finocchio, R. Moore, P. Kohli, A. Criminisi, A. Kipman, and A. Blake, “Efficient human pose estimation from single depth images,” IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2821–2840 (2013).
[Crossref] [PubMed]

M. Zollhöfer, C. Theobalt, M. Stamminger, M. Nießner, S. Izadi, C. Rehmann, C. Zach, M. Fisher, C. Wu, A. Fitzgibbon, and C. Loop, “Real-time non-rigid reconstruction using an RGB-D camera,” in Proceedings of ACM Transactions on Graphics (ACM 2014), pp. 1–12.
[Crossref]

Fusiello, A.

A. Fusiello, E. Trucco, and A. Verri, “A compact algorithm for rectification of stereo pairs,” Mach. Vis. Appl. 12(1), 16–22 (2000).
[Crossref]

Girshick, R.

J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp, M. Cook, M. Finocchio, R. Moore, P. Kohli, A. Criminisi, A. Kipman, and A. Blake, “Efficient human pose estimation from single depth images,” IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2821–2840 (2013).
[Crossref] [PubMed]

Gu, G.

Hirschmüller, H.

H. Hirschmüller and D. Scharstein, “Evaluation of cost functions for stereo matching,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2007), pp. 1–8.
[Crossref]

Huang, P. S.

S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45(8), 083601 (2006).
[Crossref]

Hyun, J. S.

J. S. Hyun and S. Zhang, “Superfast 3D absolute shape measurement using five binary patterns,” Opt. Lasers Eng. 90, 217–224 (2017).
[Crossref]

Izadi, S.

M. Zollhöfer, C. Theobalt, M. Stamminger, M. Nießner, S. Izadi, C. Rehmann, C. Zach, M. Fisher, C. Wu, A. Fitzgibbon, and C. Loop, “Real-time non-rigid reconstruction using an RGB-D camera,” in Proceedings of ACM Transactions on Graphics (ACM 2014), pp. 1–12.
[Crossref]

S. R. Fanello, J. Valentin, C. Rhemann, A. Kowdle, V. Tankovich, P. Davidson, and S. Izadi, “UltraStereo: Efficient learning-based matching for active stereo systems,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2017), pp. 6535–6544.
[Crossref]

Kipman, A.

J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp, M. Cook, M. Finocchio, R. Moore, P. Kohli, A. Criminisi, A. Kipman, and A. Blake, “Efficient human pose estimation from single depth images,” IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2821–2840 (2013).
[Crossref] [PubMed]

Kohli, P.

J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp, M. Cook, M. Finocchio, R. Moore, P. Kohli, A. Criminisi, A. Kipman, and A. Blake, “Efficient human pose estimation from single depth images,” IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2821–2840 (2013).
[Crossref] [PubMed]

Kowdle, A.

S. R. Fanello, J. Valentin, C. Rhemann, A. Kowdle, V. Tankovich, P. Davidson, and S. Izadi, “UltraStereo: Efficient learning-based matching for active stereo systems,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2017), pp. 6535–6544.
[Crossref]

Liao, Q.

X. Yin, G. Wang, C. Shi, and Q. Liao, “Efficient active depth sensing by laser speckle projection system,” Opt. Eng. 53(1), 013105 (2014).
[Crossref]

Liao, W.

H. Cui, W. Liao, N. Dai, and X. Cheng, “A flexible phase-shifting method with absolute phase marker retrieval,” Measurement 45(1), 101–108 (2012).
[Crossref]

Lohry, W.

Loop, C.

M. Zollhöfer, C. Theobalt, M. Stamminger, M. Nießner, S. Izadi, C. Rehmann, C. Zach, M. Fisher, C. Wu, A. Fitzgibbon, and C. Loop, “Real-time non-rigid reconstruction using an RGB-D camera,” in Proceedings of ACM Transactions on Graphics (ACM 2014), pp. 1–12.
[Crossref]

Moore, R.

J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp, M. Cook, M. Finocchio, R. Moore, P. Kohli, A. Criminisi, A. Kipman, and A. Blake, “Efficient human pose estimation from single depth images,” IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2821–2840 (2013).
[Crossref] [PubMed]

Nießner, M.

M. Zollhöfer, C. Theobalt, M. Stamminger, M. Nießner, S. Izadi, C. Rehmann, C. Zach, M. Fisher, C. Wu, A. Fitzgibbon, and C. Loop, “Real-time non-rigid reconstruction using an RGB-D camera,” in Proceedings of ACM Transactions on Graphics (ACM 2014), pp. 1–12.
[Crossref]

Pei, X.

Rehmann, C.

M. Zollhöfer, C. Theobalt, M. Stamminger, M. Nießner, S. Izadi, C. Rehmann, C. Zach, M. Fisher, C. Wu, A. Fitzgibbon, and C. Loop, “Real-time non-rigid reconstruction using an RGB-D camera,” in Proceedings of ACM Transactions on Graphics (ACM 2014), pp. 1–12.
[Crossref]

Rhemann, C.

S. R. Fanello, J. Valentin, C. Rhemann, A. Kowdle, V. Tankovich, P. Davidson, and S. Izadi, “UltraStereo: Efficient learning-based matching for active stereo systems,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2017), pp. 6535–6544.
[Crossref]

Rodella, R.

Sansoni, G.

Scharstein, D.

D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspondence algorithms,” Int. J. Comput. Vis. 47(1–3), 7–42 (2002).
[Crossref]

H. Hirschmüller and D. Scharstein, “Evaluation of cost functions for stereo matching,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2007), pp. 1–8.
[Crossref]

Sharp, T.

J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp, M. Cook, M. Finocchio, R. Moore, P. Kohli, A. Criminisi, A. Kipman, and A. Blake, “Efficient human pose estimation from single depth images,” IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2821–2840 (2013).
[Crossref] [PubMed]

Shi, C.

X. Yin, G. Wang, C. Shi, and Q. Liao, “Efficient active depth sensing by laser speckle projection system,” Opt. Eng. 53(1), 013105 (2014).
[Crossref]

G. Wang, X. Yin, X. Pei, and C. Shi, “Depth estimation for speckle projection system using progressive reliable points growing matching,” Appl. Opt. 52(3), 516–524 (2013).
[Crossref] [PubMed]

Shotton, J.

J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp, M. Cook, M. Finocchio, R. Moore, P. Kohli, A. Criminisi, A. Kipman, and A. Blake, “Efficient human pose estimation from single depth images,” IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2821–2840 (2013).
[Crossref] [PubMed]

Stamminger, M.

M. Zollhöfer, C. Theobalt, M. Stamminger, M. Nießner, S. Izadi, C. Rehmann, C. Zach, M. Fisher, C. Wu, A. Fitzgibbon, and C. Loop, “Real-time non-rigid reconstruction using an RGB-D camera,” in Proceedings of ACM Transactions on Graphics (ACM 2014), pp. 1–12.
[Crossref]

Su, X.

Q. Zhang, X. Su, L. Xiang, and X. Sun, “3-D shape measurement based on complementary Gray-code light,” Opt. Lasers Eng. 50(4), 574–579 (2012).
[Crossref]

Sun, X.

Q. Zhang, X. Su, L. Xiang, and X. Sun, “3-D shape measurement based on complementary Gray-code light,” Opt. Lasers Eng. 50(4), 574–579 (2012).
[Crossref]

Szeliski, R.

D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspondence algorithms,” Int. J. Comput. Vis. 47(1–3), 7–42 (2002).
[Crossref]

Tankovich, V.

S. R. Fanello, J. Valentin, C. Rhemann, A. Kowdle, V. Tankovich, P. Davidson, and S. Izadi, “UltraStereo: Efficient learning-based matching for active stereo systems,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2017), pp. 6535–6544.
[Crossref]

Theobalt, C.

M. Zollhöfer, C. Theobalt, M. Stamminger, M. Nießner, S. Izadi, C. Rehmann, C. Zach, M. Fisher, C. Wu, A. Fitzgibbon, and C. Loop, “Real-time non-rigid reconstruction using an RGB-D camera,” in Proceedings of ACM Transactions on Graphics (ACM 2014), pp. 1–12.
[Crossref]

Trucco, E.

A. Fusiello, E. Trucco, and A. Verri, “A compact algorithm for rectification of stereo pairs,” Mach. Vis. Appl. 12(1), 16–22 (2000).
[Crossref]

Valentin, J.

S. R. Fanello, J. Valentin, C. Rhemann, A. Kowdle, V. Tankovich, P. Davidson, and S. Izadi, “UltraStereo: Efficient learning-based matching for active stereo systems,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2017), pp. 6535–6544.
[Crossref]

Verri, A.

A. Fusiello, E. Trucco, and A. Verri, “A compact algorithm for rectification of stereo pairs,” Mach. Vis. Appl. 12(1), 16–22 (2000).
[Crossref]

Wang, G.

X. Yin, G. Wang, C. Shi, and Q. Liao, “Efficient active depth sensing by laser speckle projection system,” Opt. Eng. 53(1), 013105 (2014).
[Crossref]

G. Wang, X. Yin, X. Pei, and C. Shi, “Depth estimation for speckle projection system using progressive reliable points growing matching,” Appl. Opt. 52(3), 516–524 (2013).
[Crossref] [PubMed]

Woodfill, J.

R. Zabih and J. Woodfill, “Non-parametric local transforms for computing visual correspondence,” in Proceedings of European Conference on Computer Vision (Springer, 1994), pp. 151–158.
[Crossref]

Wu, C.

M. Zollhöfer, C. Theobalt, M. Stamminger, M. Nießner, S. Izadi, C. Rehmann, C. Zach, M. Fisher, C. Wu, A. Fitzgibbon, and C. Loop, “Real-time non-rigid reconstruction using an RGB-D camera,” in Proceedings of ACM Transactions on Graphics (ACM 2014), pp. 1–12.
[Crossref]

Wu, F.

Y. Zhang, Z. Xiong, Z. Yang, and F. Wu, “Real-time scalable depth sensing with hybrid structured light illumination,” IEEE Trans. Image Process. 23(1), 97–109 (2014).
[Crossref] [PubMed]

Xiang, L.

Q. Zhang, X. Su, L. Xiang, and X. Sun, “3-D shape measurement based on complementary Gray-code light,” Opt. Lasers Eng. 50(4), 574–579 (2012).
[Crossref]

Xiong, Z.

Y. Zhang, Z. Xiong, Z. Yang, and F. Wu, “Real-time scalable depth sensing with hybrid structured light illumination,” IEEE Trans. Image Process. 23(1), 97–109 (2014).
[Crossref] [PubMed]

Yang, Z.

Y. Zhang, Z. Xiong, Z. Yang, and F. Wu, “Real-time scalable depth sensing with hybrid structured light illumination,” IEEE Trans. Image Process. 23(1), 97–109 (2014).
[Crossref] [PubMed]

Yau, S. T.

Yin, X.

X. Yin, G. Wang, C. Shi, and Q. Liao, “Efficient active depth sensing by laser speckle projection system,” Opt. Eng. 53(1), 013105 (2014).
[Crossref]

G. Wang, X. Yin, X. Pei, and C. Shi, “Depth estimation for speckle projection system using progressive reliable points growing matching,” Appl. Opt. 52(3), 516–524 (2013).
[Crossref] [PubMed]

Zabih, R.

R. Zabih and J. Woodfill, “Non-parametric local transforms for computing visual correspondence,” in Proceedings of European Conference on Computer Vision (Springer, 1994), pp. 151–158.
[Crossref]

Zach, C.

M. Zollhöfer, C. Theobalt, M. Stamminger, M. Nießner, S. Izadi, C. Rehmann, C. Zach, M. Fisher, C. Wu, A. Fitzgibbon, and C. Loop, “Real-time non-rigid reconstruction using an RGB-D camera,” in Proceedings of ACM Transactions on Graphics (ACM 2014), pp. 1–12.
[Crossref]

Zhang, Q.

Q. Zhang, X. Su, L. Xiang, and X. Sun, “3-D shape measurement based on complementary Gray-code light,” Opt. Lasers Eng. 50(4), 574–579 (2012).
[Crossref]

Zhang, S.

J. S. Hyun and S. Zhang, “Superfast 3D absolute shape measurement using five binary patterns,” Opt. Lasers Eng. 90, 217–224 (2017).
[Crossref]

Y. An and S. Zhang, “Three-dimensional absolute shape measurement by combining binary statistical pattern matching with phase-shifting methods,” Appl. Opt. 56(19), 5418–5426 (2017).
[Crossref] [PubMed]

W. Lohry and S. Zhang, “High-speed absolute three-dimensional shape measurement using three binary dithered patterns,” Opt. Express 22(22), 26752–26762 (2014).
[Crossref] [PubMed]

W. Lohry, V. Chen, and S. Zhang, “Absolute three-dimensional shape measurement using coded fringe patterns without phase unwrapping or projector calibration,” Opt. Express 22(2), 1287–1301 (2014).
[Crossref] [PubMed]

S. Zhang, “Composite phase-shifting algorithm for absolute phase measurement,” Opt. Lasers Eng. 50(11), 1538–1541 (2012).
[Crossref]

S. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe projection techniques,” Opt. Lasers Eng. 48(2), 149–158 (2010).
[Crossref]

S. Zhang and S. T. Yau, “Generic nonsinusoidal phase error correction for three-dimensional shape measurement using a digital video projector,” Appl. Opt. 46(1), 36–43 (2007).
[Crossref] [PubMed]

S. Zhang and S. T. Yau, “High-resolution, real-time 3-d absolute coordinate measurement based on a phase-shifting method,” Opt. Express 14(7), 2644–2649 (2006).
[Crossref] [PubMed]

S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45(8), 083601 (2006).
[Crossref]

Zhang, Y.

Y. Zhang, Z. Xiong, Z. Yang, and F. Wu, “Real-time scalable depth sensing with hybrid structured light illumination,” IEEE Trans. Image Process. 23(1), 97–109 (2014).
[Crossref] [PubMed]

Zheng, D.

Zollhöfer, M.

M. Zollhöfer, C. Theobalt, M. Stamminger, M. Nießner, S. Izadi, C. Rehmann, C. Zach, M. Fisher, C. Wu, A. Fitzgibbon, and C. Loop, “Real-time non-rigid reconstruction using an RGB-D camera,” in Proceedings of ACM Transactions on Graphics (ACM 2014), pp. 1–12.
[Crossref]

Zuo, C.

Appl. Opt. (4)

IEEE Trans. Image Process. (1)

Y. Zhang, Z. Xiong, Z. Yang, and F. Wu, “Real-time scalable depth sensing with hybrid structured light illumination,” IEEE Trans. Image Process. 23(1), 97–109 (2014).
[Crossref] [PubMed]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp, M. Cook, M. Finocchio, R. Moore, P. Kohli, A. Criminisi, A. Kipman, and A. Blake, “Efficient human pose estimation from single depth images,” IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2821–2840 (2013).
[Crossref] [PubMed]

Int. J. Comput. Vis. (1)

D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspondence algorithms,” Int. J. Comput. Vis. 47(1–3), 7–42 (2002).
[Crossref]

J. Electron. Imaging (1)

F. Blais, “Review of 20 years of range sensor development,” J. Electron. Imaging 13(1), 231–243 (2004).
[Crossref]

Mach. Vis. Appl. (1)

A. Fusiello, E. Trucco, and A. Verri, “A compact algorithm for rectification of stereo pairs,” Mach. Vis. Appl. 12(1), 16–22 (2000).
[Crossref]

Measurement (1)

H. Cui, W. Liao, N. Dai, and X. Cheng, “A flexible phase-shifting method with absolute phase marker retrieval,” Measurement 45(1), 101–108 (2012).
[Crossref]

Opt. Eng. (2)

X. Yin, G. Wang, C. Shi, and Q. Liao, “Efficient active depth sensing by laser speckle projection system,” Opt. Eng. 53(1), 013105 (2014).
[Crossref]

S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45(8), 083601 (2006).
[Crossref]

Opt. Express (5)

Opt. Lasers Eng. (4)

J. S. Hyun and S. Zhang, “Superfast 3D absolute shape measurement using five binary patterns,” Opt. Lasers Eng. 90, 217–224 (2017).
[Crossref]

S. Zhang, “Composite phase-shifting algorithm for absolute phase measurement,” Opt. Lasers Eng. 50(11), 1538–1541 (2012).
[Crossref]

Q. Zhang, X. Su, L. Xiang, and X. Sun, “3-D shape measurement based on complementary Gray-code light,” Opt. Lasers Eng. 50(4), 574–579 (2012).
[Crossref]

S. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe projection techniques,” Opt. Lasers Eng. 48(2), 149–158 (2010).
[Crossref]

Other (8)

B. Freedman, A. Shpunt, and M. Machline, “Depth mapping using projected patterns,” U.S. Patent 8,150,142. 2012–4-3.

W. Bao, X. Xiao, Y. Xu, and X. Zhang, “Phase Unwrapping Source Code,” github (2018), [retrieved 4 Apr 2018], https://github.com/YuhuaXu/PhaseUnwrapping .

D. Scharstein, R. Szeliski, and H. Hirschmüller, “Middlebury Stereo Vision,” http://vision.middlebury.edu/stereo .

M. Bleyer, C. Rhemann, and C. Rother, “PatchMatch stereo - stereo matching with slanted support windows,” in Proceedings of the British Machine Vision Conference (BMVC, 2011), pp. 1–11.

S. R. Fanello, J. Valentin, C. Rhemann, A. Kowdle, V. Tankovich, P. Davidson, and S. Izadi, “UltraStereo: Efficient learning-based matching for active stereo systems,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2017), pp. 6535–6544.
[Crossref]

M. Zollhöfer, C. Theobalt, M. Stamminger, M. Nießner, S. Izadi, C. Rehmann, C. Zach, M. Fisher, C. Wu, A. Fitzgibbon, and C. Loop, “Real-time non-rigid reconstruction using an RGB-D camera,” in Proceedings of ACM Transactions on Graphics (ACM 2014), pp. 1–12.
[Crossref]

R. Zabih and J. Woodfill, “Non-parametric local transforms for computing visual correspondence,” in Proceedings of European Conference on Computer Vision (Springer, 1994), pp. 151–158.
[Crossref]

H. Hirschmüller and D. Scharstein, “Evaluation of cost functions for stereo matching,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2007), pp. 1–8.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Reference image based absolute phase mapping.
Fig. 2
Fig. 2 Reference image based unwrapping framework.
Fig. 3
Fig. 3 Binary speckle pattern.
Fig. 4
Fig. 4 Geometry of the structured light system.
Fig. 5
Fig. 5 Results of David plaster statue. (a) Disparity map after random initialization. (b) Disparity map after propagation. (c) Disparity map after post-processing. (d) The relative phase map. (e) The absolute phase map. (f) 3D reconstruction result.
Fig. 6
Fig. 6 Results of two isolated objects. (a) Speckle image. (b) Disparity map. (c) The relative phase map. (d) The final absolute phase map. (e) 3D reconstruction result.
Fig. 7
Fig. 7 Results of colorful cloth. (a) Gray image. (b) Speckle image. (c) Dense disparity map. (d) The relative phase map. (e) The final absolute phase map. (f) 3D reconstruction result.
Fig. 8
Fig. 8 Relationship among the rough absolute phase, accurate absolute phase and relative phase.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

I 1 (x,y)= I (x,y)+ I (x,y)cos(ϕ(x,y)2π/3) I 2 (x,y)= I (x,y)+ I (x,y)cos(ϕ(x,y)) I 3 (x,y)= I (x,y)+ I (x,y)cos((ϕ(x,y)+2π/3)
ϕ= x p w 2πN
ϕ (x,y)=arctan( 3 ( I 1 I 3 ) 2 I 2 I 1 I 3 )
ϕ(x,y)= ϕ (x,y)+2kπ
k=round( ϕ rough (x,y) ϕ (x,y) 2π )
r 1 = ( o c o p )/ o c o p
r 2 = r ¯ 3 × r 1
r 3 = r 1 × r 2
R=( r 1 T r 2 T r 3 T )
Census(p,i)={ 1I(p,i)>I(p) 0I(p,i)I(p)
Census(p,i)={ 1I(p,i)>u(p) 0I(p,i)u(p)
| ϕ ( p c ) ϕ ( p r ) |< T ϕ

Metrics