Abstract

We present a high-resolution polarization crosstalk measurement method for polarization maintaining fiber (PMF) with considerable dispersion. The birefringence dispersion of the PMF severely degrades the spatial resolution of the distributed polarization crosstalk measurement. Conventional dispersion compensation methods are effective for modest birefringence dispersion coefficients (for instance, of 0.0014 ps/nm/km). We present an iterative matched filter (IMF) method to cope with the case of considerable birefringence dispersion. We measured the distributed polarization crosstalk of a PMF coil with a birefringence dispersion coefficient of 0.235 ps/nm/km. By applying the IMF method, we obtained a spatial resolution of 0.09 m at any position of the PMF (a maximum of 12.36 m without dispersion compensation).

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Influence of ghost coupling points on distributed polarization crosstalk measurements in high birefringence fiber and its solution

Dianyou Song, Zhiyong Wang, Xinwei Chen, Hongxia Zhang, and Tiegen Liu
Appl. Opt. 54(8) 1918-1925 (2015)

Characterization of birefringence dispersion in polarization-maintaining fibers by use of white-light interferometry

Feng Tang, Xiang-zhao Wang, Yimo Zhang, and Wencai Jing
Appl. Opt. 46(19) 4073-4080 (2007)

Quasi-distributed birefringence dispersion measurement for polarization maintain device with high accuracy based on white light interferometry

Zhangjun Yu, Jun Yang, Yonggui Yuan, Chuang Li, Shuai Liang, Lu Hou, Feng Peng, Bing Wu, Jianzhong Zhang, Zhihai Liu, and Libo Yuan
Opt. Express 24(2) 1587-1597 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. Zhang, Y. Wang, G. Wen, D. Jia, and T. Liu, “Frequency demodulation of dynamic stress based on distributed polarization coupling system,” J. Lightwave Technol. 36(11), 2094–2099 (2018).
    [Crossref]
  2. H. Zhang, Y. Wang, G. Wen, D. Jia, and T. Liu, “Frequency measurement of dynamic stress in polarization maintaining fibers,” IEEE Photonics J. 10(3), 1–11 (2018).
    [Crossref]
  3. P. Liu, X. Li, X. Guang, G. Li, and L. Guan, “Bias error caused by the Faraday effect in fiber optical gyroscope with double sensitivity,” IEEE Photonics Technol. Lett. 29(15), 1273–1276 (2017).
    [Crossref]
  4. P. Lu, Z. Wang, R. Luo, D. Zhao, C. Peng, and Z. Li, “Polarization nonreciprocity suppression of dual-polarization fiber-optic gyroscope under temperature variation,” Opt. Lett. 40(8), 1826–1829 (2015).
    [Crossref] [PubMed]
  5. Z. Wang, Y. Yang, P. Lu, R. Luo, Y. Li, D. Zhao, C. Peng, and Z. Li, “Dual-polarization interferometric fiber-optic gyroscope with an ultra-simple configuration,” Opt. Lett. 39(8), 2463–2466 (2014).
    [Crossref] [PubMed]
  6. Z. Wang, Y. Yang, P. Lu, C. Liu, D. Zhao, C. Peng, Z. Zhang, and Z. Li, “Optically compensated polarization reciprocity in interferometric fiber-optic gyroscopes,” Opt. Express 22(5), 4908–4919 (2014).
    [Crossref] [PubMed]
  7. Y. Yang, Z. Wang, and Z. Li, “Optically compensated dual-polarization interferometric fiber-optic gyroscope,” Opt. Lett. 37(14), 2841–2843 (2012).
    [Crossref] [PubMed]
  8. F. Peng, Y. Lv, H. Li, S. Tian, W. Chen, and J. Yang, “Sensitivity prediction of multiturn fiber coil-based fiber-optic flexural disk seismometer via finite element method analysis,” J. Lightwave Technol. 35(18), 3870–3876 (2017).
    [Crossref]
  9. Z. Li, X. S. Yao, X. Chen, H. Chen, Z. Meng, and T. Liu, “Complete characterization of polarization-maintaining fibers using distributed polarization analysis,” J. Lightwave Technol. 33(2), 372–380 (2015).
    [Crossref]
  10. C. Li, J. Yang, Z. Yu, Y. Yuan, B. Wu, F. Peng, J. Zhang, A. Zhou, Y. Zhang, Z. Liu, and L. Yuan, “Dynamic range beyond 100 dB for polarization mode coupling measurement based on white light interferometer,” Opt. Express 24(15), 16247–16257 (2016).
    [Crossref] [PubMed]
  11. Y. Jun, Y. Yonggui, Z. Ai, C. Jun, L. Chuang, Y. Dekai, H. Sheng, P. Feng, W. Bing, Z. Yu, L. Zhihai, and Y. Libo, “Full evaluation of polarization characteristics of multifunctional integrated optic chip with high accuracy,” J. Lightwave Technol. 32(22), 4243–4252 (2014).
    [Crossref]
  12. J. Jin, S. Wang, J. Song, N. Song, Z. Sun, and M. Jiang, “Novel dispersion compensation method for cross-coupling measurement in PM-PCF based on OCDP,” Opt. Fiber Technol. 19(5), 495–500 (2013).
    [Crossref]
  13. Z. H. Li, Z. Meng, X. J. Chen, T. G. Liu, and X. S. Yao, “Method for improving the resolution and accuracy against birefringence dispersion in distributed polarization cross-talk measurements,” Opt. Lett. 37(14), 2775–2777 (2012).
    [Crossref]
  14. H. Zhang, J. Yang, C. Li, Z. Yu, Z. Yang, Y. Yuan, F. Peng, H. Li, C. Hou, J. Zhang, L. Yuan, J. Xu, C. Zhang, and Q. Yu, “Measurement error analysis for polarization extinction ratio of multifunctional integrated optic chips,” Appl. Opt. 56(24), 6873–6880 (2017).
    [Crossref] [PubMed]
  15. Z. Yu, J. Yang, Y. Yuan, F. Peng, H. Li, C. Hou, C. Hou, Z. Liu, and L. Yuan, “High-resolution distributed dispersion characterization for polarization maintaining fibers based on a closed-loop measurement framework,” IEEE Photonics J. 9(3), 1–8 (2017).
    [Crossref]
  16. F. Tang, X. Z. Wang, Y. Zhang, and W. Jing, “Characterization of birefringence dispersion in polarization-maintaining fibers by use of white-light interferometry,” Appl. Opt. 46(19), 4073–4080 (2007).
    [Crossref] [PubMed]
  17. C. K. Hitzenberger, A. Baumgartner, and A. F. Fercher, “Dispersion induced multiple signal peak splitting in partial coherence interferometry,” Opt. Commun. 154(4), 179–185 (1998).
    [Crossref]
  18. E. D. Smith, A. V. Zvyagin, and D. D. Sampson, “Real-time dispersion compensation in scanning interferometry,” Opt. Lett. 27(22), 1998–2000 (2002).
    [Crossref] [PubMed]
  19. X. Liu, M. J. Cobb, and X. Li, “Rapid scanning all-reflective optical delay line for real-time optical coherence tomography,” Opt. Lett. 29(1), 80–82 (2004).
    [Crossref] [PubMed]
  20. H. Zhang, X. Chen, W. Ye, T. Xu, D. Jia, and Y. Zhang, “Mitigation of the birefringence dispersion on the polarization coupling measurement in a long-distance high-birefringence fiber,” Meas. Sci. Technol. 23, 025203 (2012).

2018 (2)

H. Zhang, Y. Wang, G. Wen, D. Jia, and T. Liu, “Frequency demodulation of dynamic stress based on distributed polarization coupling system,” J. Lightwave Technol. 36(11), 2094–2099 (2018).
[Crossref]

H. Zhang, Y. Wang, G. Wen, D. Jia, and T. Liu, “Frequency measurement of dynamic stress in polarization maintaining fibers,” IEEE Photonics J. 10(3), 1–11 (2018).
[Crossref]

2017 (4)

P. Liu, X. Li, X. Guang, G. Li, and L. Guan, “Bias error caused by the Faraday effect in fiber optical gyroscope with double sensitivity,” IEEE Photonics Technol. Lett. 29(15), 1273–1276 (2017).
[Crossref]

H. Zhang, J. Yang, C. Li, Z. Yu, Z. Yang, Y. Yuan, F. Peng, H. Li, C. Hou, J. Zhang, L. Yuan, J. Xu, C. Zhang, and Q. Yu, “Measurement error analysis for polarization extinction ratio of multifunctional integrated optic chips,” Appl. Opt. 56(24), 6873–6880 (2017).
[Crossref] [PubMed]

Z. Yu, J. Yang, Y. Yuan, F. Peng, H. Li, C. Hou, C. Hou, Z. Liu, and L. Yuan, “High-resolution distributed dispersion characterization for polarization maintaining fibers based on a closed-loop measurement framework,” IEEE Photonics J. 9(3), 1–8 (2017).
[Crossref]

F. Peng, Y. Lv, H. Li, S. Tian, W. Chen, and J. Yang, “Sensitivity prediction of multiturn fiber coil-based fiber-optic flexural disk seismometer via finite element method analysis,” J. Lightwave Technol. 35(18), 3870–3876 (2017).
[Crossref]

2016 (1)

2015 (2)

2014 (3)

2013 (1)

J. Jin, S. Wang, J. Song, N. Song, Z. Sun, and M. Jiang, “Novel dispersion compensation method for cross-coupling measurement in PM-PCF based on OCDP,” Opt. Fiber Technol. 19(5), 495–500 (2013).
[Crossref]

2012 (3)

2007 (1)

2004 (1)

2002 (1)

1998 (1)

C. K. Hitzenberger, A. Baumgartner, and A. F. Fercher, “Dispersion induced multiple signal peak splitting in partial coherence interferometry,” Opt. Commun. 154(4), 179–185 (1998).
[Crossref]

Ai, Z.

Y. Jun, Y. Yonggui, Z. Ai, C. Jun, L. Chuang, Y. Dekai, H. Sheng, P. Feng, W. Bing, Z. Yu, L. Zhihai, and Y. Libo, “Full evaluation of polarization characteristics of multifunctional integrated optic chip with high accuracy,” J. Lightwave Technol. 32(22), 4243–4252 (2014).
[Crossref]

Baumgartner, A.

C. K. Hitzenberger, A. Baumgartner, and A. F. Fercher, “Dispersion induced multiple signal peak splitting in partial coherence interferometry,” Opt. Commun. 154(4), 179–185 (1998).
[Crossref]

Bing, W.

Y. Jun, Y. Yonggui, Z. Ai, C. Jun, L. Chuang, Y. Dekai, H. Sheng, P. Feng, W. Bing, Z. Yu, L. Zhihai, and Y. Libo, “Full evaluation of polarization characteristics of multifunctional integrated optic chip with high accuracy,” J. Lightwave Technol. 32(22), 4243–4252 (2014).
[Crossref]

Chen, H.

Chen, W.

Chen, X.

Z. Li, X. S. Yao, X. Chen, H. Chen, Z. Meng, and T. Liu, “Complete characterization of polarization-maintaining fibers using distributed polarization analysis,” J. Lightwave Technol. 33(2), 372–380 (2015).
[Crossref]

H. Zhang, X. Chen, W. Ye, T. Xu, D. Jia, and Y. Zhang, “Mitigation of the birefringence dispersion on the polarization coupling measurement in a long-distance high-birefringence fiber,” Meas. Sci. Technol. 23, 025203 (2012).

Chen, X. J.

Chuang, L.

Y. Jun, Y. Yonggui, Z. Ai, C. Jun, L. Chuang, Y. Dekai, H. Sheng, P. Feng, W. Bing, Z. Yu, L. Zhihai, and Y. Libo, “Full evaluation of polarization characteristics of multifunctional integrated optic chip with high accuracy,” J. Lightwave Technol. 32(22), 4243–4252 (2014).
[Crossref]

Cobb, M. J.

Dekai, Y.

Y. Jun, Y. Yonggui, Z. Ai, C. Jun, L. Chuang, Y. Dekai, H. Sheng, P. Feng, W. Bing, Z. Yu, L. Zhihai, and Y. Libo, “Full evaluation of polarization characteristics of multifunctional integrated optic chip with high accuracy,” J. Lightwave Technol. 32(22), 4243–4252 (2014).
[Crossref]

Feng, P.

Y. Jun, Y. Yonggui, Z. Ai, C. Jun, L. Chuang, Y. Dekai, H. Sheng, P. Feng, W. Bing, Z. Yu, L. Zhihai, and Y. Libo, “Full evaluation of polarization characteristics of multifunctional integrated optic chip with high accuracy,” J. Lightwave Technol. 32(22), 4243–4252 (2014).
[Crossref]

Fercher, A. F.

C. K. Hitzenberger, A. Baumgartner, and A. F. Fercher, “Dispersion induced multiple signal peak splitting in partial coherence interferometry,” Opt. Commun. 154(4), 179–185 (1998).
[Crossref]

Guan, L.

P. Liu, X. Li, X. Guang, G. Li, and L. Guan, “Bias error caused by the Faraday effect in fiber optical gyroscope with double sensitivity,” IEEE Photonics Technol. Lett. 29(15), 1273–1276 (2017).
[Crossref]

Guang, X.

P. Liu, X. Li, X. Guang, G. Li, and L. Guan, “Bias error caused by the Faraday effect in fiber optical gyroscope with double sensitivity,” IEEE Photonics Technol. Lett. 29(15), 1273–1276 (2017).
[Crossref]

Hitzenberger, C. K.

C. K. Hitzenberger, A. Baumgartner, and A. F. Fercher, “Dispersion induced multiple signal peak splitting in partial coherence interferometry,” Opt. Commun. 154(4), 179–185 (1998).
[Crossref]

Hou, C.

Z. Yu, J. Yang, Y. Yuan, F. Peng, H. Li, C. Hou, C. Hou, Z. Liu, and L. Yuan, “High-resolution distributed dispersion characterization for polarization maintaining fibers based on a closed-loop measurement framework,” IEEE Photonics J. 9(3), 1–8 (2017).
[Crossref]

Z. Yu, J. Yang, Y. Yuan, F. Peng, H. Li, C. Hou, C. Hou, Z. Liu, and L. Yuan, “High-resolution distributed dispersion characterization for polarization maintaining fibers based on a closed-loop measurement framework,” IEEE Photonics J. 9(3), 1–8 (2017).
[Crossref]

H. Zhang, J. Yang, C. Li, Z. Yu, Z. Yang, Y. Yuan, F. Peng, H. Li, C. Hou, J. Zhang, L. Yuan, J. Xu, C. Zhang, and Q. Yu, “Measurement error analysis for polarization extinction ratio of multifunctional integrated optic chips,” Appl. Opt. 56(24), 6873–6880 (2017).
[Crossref] [PubMed]

Jia, D.

H. Zhang, Y. Wang, G. Wen, D. Jia, and T. Liu, “Frequency measurement of dynamic stress in polarization maintaining fibers,” IEEE Photonics J. 10(3), 1–11 (2018).
[Crossref]

H. Zhang, Y. Wang, G. Wen, D. Jia, and T. Liu, “Frequency demodulation of dynamic stress based on distributed polarization coupling system,” J. Lightwave Technol. 36(11), 2094–2099 (2018).
[Crossref]

H. Zhang, X. Chen, W. Ye, T. Xu, D. Jia, and Y. Zhang, “Mitigation of the birefringence dispersion on the polarization coupling measurement in a long-distance high-birefringence fiber,” Meas. Sci. Technol. 23, 025203 (2012).

Jiang, M.

J. Jin, S. Wang, J. Song, N. Song, Z. Sun, and M. Jiang, “Novel dispersion compensation method for cross-coupling measurement in PM-PCF based on OCDP,” Opt. Fiber Technol. 19(5), 495–500 (2013).
[Crossref]

Jin, J.

J. Jin, S. Wang, J. Song, N. Song, Z. Sun, and M. Jiang, “Novel dispersion compensation method for cross-coupling measurement in PM-PCF based on OCDP,” Opt. Fiber Technol. 19(5), 495–500 (2013).
[Crossref]

Jing, W.

Jun, C.

Y. Jun, Y. Yonggui, Z. Ai, C. Jun, L. Chuang, Y. Dekai, H. Sheng, P. Feng, W. Bing, Z. Yu, L. Zhihai, and Y. Libo, “Full evaluation of polarization characteristics of multifunctional integrated optic chip with high accuracy,” J. Lightwave Technol. 32(22), 4243–4252 (2014).
[Crossref]

Jun, Y.

Y. Jun, Y. Yonggui, Z. Ai, C. Jun, L. Chuang, Y. Dekai, H. Sheng, P. Feng, W. Bing, Z. Yu, L. Zhihai, and Y. Libo, “Full evaluation of polarization characteristics of multifunctional integrated optic chip with high accuracy,” J. Lightwave Technol. 32(22), 4243–4252 (2014).
[Crossref]

Li, C.

Li, G.

P. Liu, X. Li, X. Guang, G. Li, and L. Guan, “Bias error caused by the Faraday effect in fiber optical gyroscope with double sensitivity,” IEEE Photonics Technol. Lett. 29(15), 1273–1276 (2017).
[Crossref]

Li, H.

Li, X.

P. Liu, X. Li, X. Guang, G. Li, and L. Guan, “Bias error caused by the Faraday effect in fiber optical gyroscope with double sensitivity,” IEEE Photonics Technol. Lett. 29(15), 1273–1276 (2017).
[Crossref]

X. Liu, M. J. Cobb, and X. Li, “Rapid scanning all-reflective optical delay line for real-time optical coherence tomography,” Opt. Lett. 29(1), 80–82 (2004).
[Crossref] [PubMed]

Li, Y.

Li, Z.

Li, Z. H.

Libo, Y.

Y. Jun, Y. Yonggui, Z. Ai, C. Jun, L. Chuang, Y. Dekai, H. Sheng, P. Feng, W. Bing, Z. Yu, L. Zhihai, and Y. Libo, “Full evaluation of polarization characteristics of multifunctional integrated optic chip with high accuracy,” J. Lightwave Technol. 32(22), 4243–4252 (2014).
[Crossref]

Liu, C.

Liu, P.

P. Liu, X. Li, X. Guang, G. Li, and L. Guan, “Bias error caused by the Faraday effect in fiber optical gyroscope with double sensitivity,” IEEE Photonics Technol. Lett. 29(15), 1273–1276 (2017).
[Crossref]

Liu, T.

Liu, T. G.

Liu, X.

Liu, Z.

Z. Yu, J. Yang, Y. Yuan, F. Peng, H. Li, C. Hou, C. Hou, Z. Liu, and L. Yuan, “High-resolution distributed dispersion characterization for polarization maintaining fibers based on a closed-loop measurement framework,” IEEE Photonics J. 9(3), 1–8 (2017).
[Crossref]

C. Li, J. Yang, Z. Yu, Y. Yuan, B. Wu, F. Peng, J. Zhang, A. Zhou, Y. Zhang, Z. Liu, and L. Yuan, “Dynamic range beyond 100 dB for polarization mode coupling measurement based on white light interferometer,” Opt. Express 24(15), 16247–16257 (2016).
[Crossref] [PubMed]

Lu, P.

Luo, R.

Lv, Y.

Meng, Z.

Peng, C.

Peng, F.

Sampson, D. D.

Sheng, H.

Y. Jun, Y. Yonggui, Z. Ai, C. Jun, L. Chuang, Y. Dekai, H. Sheng, P. Feng, W. Bing, Z. Yu, L. Zhihai, and Y. Libo, “Full evaluation of polarization characteristics of multifunctional integrated optic chip with high accuracy,” J. Lightwave Technol. 32(22), 4243–4252 (2014).
[Crossref]

Smith, E. D.

Song, J.

J. Jin, S. Wang, J. Song, N. Song, Z. Sun, and M. Jiang, “Novel dispersion compensation method for cross-coupling measurement in PM-PCF based on OCDP,” Opt. Fiber Technol. 19(5), 495–500 (2013).
[Crossref]

Song, N.

J. Jin, S. Wang, J. Song, N. Song, Z. Sun, and M. Jiang, “Novel dispersion compensation method for cross-coupling measurement in PM-PCF based on OCDP,” Opt. Fiber Technol. 19(5), 495–500 (2013).
[Crossref]

Sun, Z.

J. Jin, S. Wang, J. Song, N. Song, Z. Sun, and M. Jiang, “Novel dispersion compensation method for cross-coupling measurement in PM-PCF based on OCDP,” Opt. Fiber Technol. 19(5), 495–500 (2013).
[Crossref]

Tang, F.

Tian, S.

Wang, S.

J. Jin, S. Wang, J. Song, N. Song, Z. Sun, and M. Jiang, “Novel dispersion compensation method for cross-coupling measurement in PM-PCF based on OCDP,” Opt. Fiber Technol. 19(5), 495–500 (2013).
[Crossref]

Wang, X. Z.

Wang, Y.

H. Zhang, Y. Wang, G. Wen, D. Jia, and T. Liu, “Frequency measurement of dynamic stress in polarization maintaining fibers,” IEEE Photonics J. 10(3), 1–11 (2018).
[Crossref]

H. Zhang, Y. Wang, G. Wen, D. Jia, and T. Liu, “Frequency demodulation of dynamic stress based on distributed polarization coupling system,” J. Lightwave Technol. 36(11), 2094–2099 (2018).
[Crossref]

Wang, Z.

Wen, G.

H. Zhang, Y. Wang, G. Wen, D. Jia, and T. Liu, “Frequency measurement of dynamic stress in polarization maintaining fibers,” IEEE Photonics J. 10(3), 1–11 (2018).
[Crossref]

H. Zhang, Y. Wang, G. Wen, D. Jia, and T. Liu, “Frequency demodulation of dynamic stress based on distributed polarization coupling system,” J. Lightwave Technol. 36(11), 2094–2099 (2018).
[Crossref]

Wu, B.

Xu, J.

Xu, T.

H. Zhang, X. Chen, W. Ye, T. Xu, D. Jia, and Y. Zhang, “Mitigation of the birefringence dispersion on the polarization coupling measurement in a long-distance high-birefringence fiber,” Meas. Sci. Technol. 23, 025203 (2012).

Yang, J.

Yang, Y.

Yang, Z.

Yao, X. S.

Ye, W.

H. Zhang, X. Chen, W. Ye, T. Xu, D. Jia, and Y. Zhang, “Mitigation of the birefringence dispersion on the polarization coupling measurement in a long-distance high-birefringence fiber,” Meas. Sci. Technol. 23, 025203 (2012).

Yonggui, Y.

Y. Jun, Y. Yonggui, Z. Ai, C. Jun, L. Chuang, Y. Dekai, H. Sheng, P. Feng, W. Bing, Z. Yu, L. Zhihai, and Y. Libo, “Full evaluation of polarization characteristics of multifunctional integrated optic chip with high accuracy,” J. Lightwave Technol. 32(22), 4243–4252 (2014).
[Crossref]

Yu, Q.

Yu, Z.

H. Zhang, J. Yang, C. Li, Z. Yu, Z. Yang, Y. Yuan, F. Peng, H. Li, C. Hou, J. Zhang, L. Yuan, J. Xu, C. Zhang, and Q. Yu, “Measurement error analysis for polarization extinction ratio of multifunctional integrated optic chips,” Appl. Opt. 56(24), 6873–6880 (2017).
[Crossref] [PubMed]

Z. Yu, J. Yang, Y. Yuan, F. Peng, H. Li, C. Hou, C. Hou, Z. Liu, and L. Yuan, “High-resolution distributed dispersion characterization for polarization maintaining fibers based on a closed-loop measurement framework,” IEEE Photonics J. 9(3), 1–8 (2017).
[Crossref]

C. Li, J. Yang, Z. Yu, Y. Yuan, B. Wu, F. Peng, J. Zhang, A. Zhou, Y. Zhang, Z. Liu, and L. Yuan, “Dynamic range beyond 100 dB for polarization mode coupling measurement based on white light interferometer,” Opt. Express 24(15), 16247–16257 (2016).
[Crossref] [PubMed]

Y. Jun, Y. Yonggui, Z. Ai, C. Jun, L. Chuang, Y. Dekai, H. Sheng, P. Feng, W. Bing, Z. Yu, L. Zhihai, and Y. Libo, “Full evaluation of polarization characteristics of multifunctional integrated optic chip with high accuracy,” J. Lightwave Technol. 32(22), 4243–4252 (2014).
[Crossref]

Yuan, L.

Yuan, Y.

Zhang, C.

Zhang, H.

H. Zhang, Y. Wang, G. Wen, D. Jia, and T. Liu, “Frequency measurement of dynamic stress in polarization maintaining fibers,” IEEE Photonics J. 10(3), 1–11 (2018).
[Crossref]

H. Zhang, Y. Wang, G. Wen, D. Jia, and T. Liu, “Frequency demodulation of dynamic stress based on distributed polarization coupling system,” J. Lightwave Technol. 36(11), 2094–2099 (2018).
[Crossref]

H. Zhang, J. Yang, C. Li, Z. Yu, Z. Yang, Y. Yuan, F. Peng, H. Li, C. Hou, J. Zhang, L. Yuan, J. Xu, C. Zhang, and Q. Yu, “Measurement error analysis for polarization extinction ratio of multifunctional integrated optic chips,” Appl. Opt. 56(24), 6873–6880 (2017).
[Crossref] [PubMed]

H. Zhang, X. Chen, W. Ye, T. Xu, D. Jia, and Y. Zhang, “Mitigation of the birefringence dispersion on the polarization coupling measurement in a long-distance high-birefringence fiber,” Meas. Sci. Technol. 23, 025203 (2012).

Zhang, J.

Zhang, Y.

Zhang, Z.

Zhao, D.

Zhihai, L.

Y. Jun, Y. Yonggui, Z. Ai, C. Jun, L. Chuang, Y. Dekai, H. Sheng, P. Feng, W. Bing, Z. Yu, L. Zhihai, and Y. Libo, “Full evaluation of polarization characteristics of multifunctional integrated optic chip with high accuracy,” J. Lightwave Technol. 32(22), 4243–4252 (2014).
[Crossref]

Zhou, A.

Zvyagin, A. V.

Appl. Opt. (2)

IEEE Photonics J. (2)

H. Zhang, Y. Wang, G. Wen, D. Jia, and T. Liu, “Frequency measurement of dynamic stress in polarization maintaining fibers,” IEEE Photonics J. 10(3), 1–11 (2018).
[Crossref]

Z. Yu, J. Yang, Y. Yuan, F. Peng, H. Li, C. Hou, C. Hou, Z. Liu, and L. Yuan, “High-resolution distributed dispersion characterization for polarization maintaining fibers based on a closed-loop measurement framework,” IEEE Photonics J. 9(3), 1–8 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (1)

P. Liu, X. Li, X. Guang, G. Li, and L. Guan, “Bias error caused by the Faraday effect in fiber optical gyroscope with double sensitivity,” IEEE Photonics Technol. Lett. 29(15), 1273–1276 (2017).
[Crossref]

J. Lightwave Technol. (4)

Meas. Sci. Technol. (1)

H. Zhang, X. Chen, W. Ye, T. Xu, D. Jia, and Y. Zhang, “Mitigation of the birefringence dispersion on the polarization coupling measurement in a long-distance high-birefringence fiber,” Meas. Sci. Technol. 23, 025203 (2012).

Opt. Commun. (1)

C. K. Hitzenberger, A. Baumgartner, and A. F. Fercher, “Dispersion induced multiple signal peak splitting in partial coherence interferometry,” Opt. Commun. 154(4), 179–185 (1998).
[Crossref]

Opt. Express (2)

Opt. Fiber Technol. (1)

J. Jin, S. Wang, J. Song, N. Song, Z. Sun, and M. Jiang, “Novel dispersion compensation method for cross-coupling measurement in PM-PCF based on OCDP,” Opt. Fiber Technol. 19(5), 495–500 (2013).
[Crossref]

Opt. Lett. (6)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of measurement principle of optical-fiber-based OCDP system. SLD: superluminescent diode; C1, C2: couplers; PC: polarization state controller; PD: photodiode; DAQ: data acquisition; EM: excited mode; CM: coupled mode; OPD: optical path difference.
Fig. 2
Fig. 2 Birefringence dispersion effect on envelope shape of interferometric peaks. “None reported” means that such cases have never been reported before in any literature.
Fig. 3
Fig. 3 (a) Matched filter property of phase packet method; (b,c,d) Birefringence dispersion evolution of interferogram when using IMF method; (e) Flowchart of IMF algorithm.
Fig. 4
Fig. 4 Dispersion compensation results using phase packet method with different matching dispersions. There are nine perturbation points with identical polarization crosstalk coefficients located at η = 2.5 m, 3 m, 3.5 m, 102.5 m, 103 m, 103.5 m, 402.5 m, 403 m, and 403.5 m. (a1–a3) Original simulation data of distributed polarization crosstalk of nine points; (b1–b3) Dispersion compensation results using phase packet method with position matched at 100 m; (c1–c3) Dispersion compensation results using phase packet method with position matched at 400 m.
Fig. 5
Fig. 5 Dispersion compensation results using IMF method with different iterations. (a) Original simulation data of distributed polarization crosstalk of 16 perturbation points with identical polarization crosstalk coefficients; (b2–b4) Dispersion compensation results of first three iterations using the IMF method; (c5–c8) Dispersion compensation results of last four iterations using IMF method.
Fig. 6
Fig. 6 Configuration of experimental setup. (rad.: radius)
Fig. 7
Fig. 7 (a) Distributed polarization crosstalk direct measurement result of 3-km-length PMF coil; (b) Dispersion compensation result using IMF method. Inset: close-up view of labeled dashed boxes, (i)–(vi).
Fig. 8
Fig. 8 Comparison between different measurement directions. Inset: close-up view of labeled dashed boxes, (i)–(ii).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E HE = 2 2 [ E x ( t ) + j = 1 n E y j ( t ) ]
I ( τ ) = 1 4 [ E x ( t + τ ) + j = 1 n E y j ( t + τ ) ] * [ E x ( t ) + j = 1 n E y j ( t ) ]
I c ouple ( τ ) = 1 4 j = 1 n E x * ( t + τ ) E y j ( t ) = 1 8 j = 1 n { Γ ( L j ) ω | E ( ω ) | 2 exp [ i ω τ i Δ β ( ω ) L j ] d ω }
Δ β ( ω ) = Δ n g ω 0 / c + Δ N g ( ω ω 0 ) / c Δ D 2 ! 2 π c ω 0 2 ( ω ω 0 ) 2 + 1 3 ! 4 π c ω 0 3 ( π c ω 0 Δ S + Δ D ) ( ω ω 0 ) 3 +
l c = 4 ln 2 π Δ N g λ 0 2 Δ λ
I couple ( τ ) = 1 8 Γ ( L j ) ω | E ( ω ) | 2 exp [ i ω ( τ Δ N g L j / c ) ] × exp [ i L j φ ( ω , Δ D , Δ S ) ] d ω
I c ( τ ) = F 1 { F [ I c o u p l e ( τ ) ] × e x p [ i L j φ ( ω , Δ D , Δ S ) ] } = 1 8 Γ ( L j ) ω | E ( ω ) | 2 e x p [ i ω ( τ Δ N g L j / c ) ] d ω
I c ouple ( τ ) = 1 8 j = 1 n { Γ ( L j ) ω | E ( ω ) | 2 exp [ i ω ( τ Δ N g L j / c ) ] × exp [ i ( L j ξ ) φ ( ω , Δ D , Δ S ) ] d ω
{ I = 1 1 + η 2 4 I 0 η = 2 π c Δ D l ( 1 2 2 ln 2 Δ λ λ 0 ) 2
l = 4 ln 2 π c 10 Δ I / 5 1 Δ D ( λ 0 Δ λ ) 2

Metrics