Abstract

In this study, the distributed temperature and strain sensing with an annealed single mode gold-coated optical fiber over a wide temperature range up to 1000 °C is demonstrated by using the differential pulse pair (DPP) Brillouin optical time domain analysis (BOTDA). Owing to the protection provided by the gold coating, the fiber can withstand high temperature environments and maintain a high strength, which enables the gold-coated fiber acting as a repeatable high-temperature sensor. After annealing twice to remove the internal stress, the temperature coefficient of the gold-coated fiber is stable and consistent with a nonlinear function. Owing to the residual stress accumulated during the cooling process of coating and the low yield strength of gold, a pre-pulling test is essential to measure the strain of a gold-coated fiber. An equal axial force model is used to recalculate the strain distribution induced by the large temperature difference within the furnace. The high-temperature strain coefficient of an annealed gold-coated fiber decreases with temperature, i.e. from ~0.046 MHz/με at 100 °C to ~0.022 MHz/με at 1000 °C, mainly due to the increase in Young’s modulus of silica with temperature. To the best of our knowledge, this is the first time that an annealed gold-coated fiber has been applied for distributed high-temperature strain sensing, which demonstrates the potential applications for strain monitoring in complex, high-temperature devices such as jet engines or turbines.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
1200°C high-temperature distributed optical fiber sensing using Brillouin optical time domain analysis

Pengbai Xu, Yongkang Dong, Dengwang Zhou, Cheng Fu, Juwang Zhang, Hongying Zhang, Zhiwei Lu, Liang Chen, and Xiaoyi Bao
Appl. Opt. 55(21) 5471-5478 (2016)

Bend-insensitive distributed sensing in singlemode-multimode-singlemode optical fiber structure by using Brillouin optical time-domain analysis

Pengbai Xu, Yongkang Dong, Juwang Zhang, Dengwang Zhou, Taofei Jiang, Jinlong Xu, Hongying Zhang, Tao Zhu, Zhiwei Lu, Liang Chen, and Xiaoyi Bao
Opt. Express 23(17) 22714-22722 (2015)

Optimization of a DPP-BOTDA sensor with 25 cm spatial resolution over 60 km standard single-mode fiber using Simplex codes and optical pre-amplification

Marcelo A. Soto, Mohammad Taki, Gabriele Bolognini, and Fabrizio Di Pasquale
Opt. Express 20(7) 6860-6869 (2012)

References

  • View by:
  • |
  • |
  • |

  1. Y. Dong, L. Chen, and X. Bao, “Extending the sensing range of Brillouin optical time-domain analysis combining frequency-division multiplexing and in-line EDFAs,” J. Lightwave Technol. 30(8), 1161–1167 (2012).
    [Crossref]
  2. A. Denisov, M. A. Soto, and L. Thévenaz, “Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration,” Light Sci. Appl. 5(5), e16074 (2016).
    [Crossref] [PubMed]
  3. Y. Dong, H. Zhang, L. Chen, and X. Bao, “2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair,” Appl. Opt. 51(9), 1229–1235 (2012).
    [Crossref] [PubMed]
  4. M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett. 35(2), 259–261 (2010).
    [Crossref] [PubMed]
  5. F. Rodríguez-Barrios, S. Martín-López, A. Carrasco-Sanz, P. Corredera, J. D. Ania-Castañón, L. Thévenaz, and M. González-Herráez, “Distributed Brillouin fiber sensor assisted by first-order Raman amplification,” J. Lightwave Technol. 28(15), 2162–2172 (2010).
    [Crossref]
  6. J. Urricelqui, M. Sagues, and A. Loayssa, “Brillouin optical time-domain analysis sensor assisted by Brillouin distributed amplification of pump pulses,” Opt. Express 23(23), 30448–30458 (2015).
    [Crossref] [PubMed]
  7. W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16(26), 21616–21625 (2008).
    [Crossref] [PubMed]
  8. D. Ba, D. Zhou, B. Wang, Z. Lu, Z. Fan, Y. Dong, and H. Li, “Dynamic Distributed Brillouin Optical Fiber Sensing Based on Dual-Modulation by Combining Single Frequency Modulation and Frequency-Agility Modulation,” IEEE Photonics J. 9(3), 1–8 (2017).
    [Crossref]
  9. Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
    [Crossref] [PubMed]
  10. D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultrafast measurement,” Light Sci. Appl. 7(1), 32 (2018).
    [Crossref]
  11. Y. Dong, P. Xu, H. Zhang, Z. Lu, L. Chen, and X. Bao, “Characterization of evolution of mode coupling in a graded-index polymer optical fiber by using Brillouin optical time-domain analysis,” Opt. Express 22(22), 26510–26516 (2014).
    [Crossref] [PubMed]
  12. N. Hayashi, Y. Mizuno, and K. Nakamura, “Brillouin gain spectrum dependence on large strain in perfluorinated graded-index polymer optical fiber,” Opt. Express 20(19), 21101–21106 (2012).
    [Crossref] [PubMed]
  13. A. Li, Y. Wang, J. Fang, M.-J. Li, B. Y. Kim, and W. Shieh, “Few-mode fiber multi-parameter sensor with distributed temperature and strain discrimination,” Opt. Lett. 40(7), 1488–1491 (2015).
    [Crossref] [PubMed]
  14. W. Zou, Z. He, and K. Hotate, “Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber,” Opt. Express 17(3), 1248–1255 (2009).
    [Crossref] [PubMed]
  15. P. Xu, Y. Dong, J. Zhang, D. Zhou, T. Jiang, J. Xu, H. Zhang, T. Zhu, Z. Lu, L. Chen, and X. Bao, “Bend-insensitive distributed sensing in singlemode-multimode-singlemode optical fiber structure by using Brillouin optical time-domain analysis,” Opt. Express 23(17), 22714–22722 (2015).
    [Crossref] [PubMed]
  16. P. Xu, Y. Dong, D. Zhou, C. Fu, J. Zhang, H. Zhang, Z. Lu, L. Chen, and X. Bao, “1200°C high-temperature distributed optical fiber sensing using Brillouin optical time domain analysis,” Appl. Opt. 55(21), 5471–5478 (2016).
    [Crossref] [PubMed]
  17. Y. Bao and G. Chen, “High-temperature measurement with Brillouin optical time domain analysis of an annealed fused-silica single-mode fiber,” Opt. Lett. 41(14), 3177–3180 (2016).
    [Crossref] [PubMed]
  18. C. R. Kurkjian, J. T. Krause, and M. J. Matthewson, “Strength and fatigue of silica optical fibers,” J. Lightwave Technol. 7(9), 1360–1370 (1989).
    [Crossref]
  19. A. H. Rose, “Devitrification in annealed optical fiber,” J. Lightwave Technol. 15(5), 808–814 (1997).
    [Crossref]
  20. D. A. Pinnow, G. D. Robertson, and J. A. Wysocki, “Reductions in static fatigue of silica fibers by hermetic jacketing,” Appl. Phys. Lett. 34(1), 17–19 (1979).
    [Crossref]
  21. R. Ruiz-Lombera, I. Laarossi, L. Rodríguez-Cobo, M. Á. Quintela, J. M. López-Higuera, and J. Mirapeix, “Distributed High-Temperature Optical Fiber Sensor Based on a Brillouin Optical Time Domain Analyzer and Multimode Gold-Coated Fiber,” IEEE Sens. J. 17(8), 2393–2397 (2017).
    [Crossref]
  22. R. G. C. Arridge and D. Heywood, “The freeze-coating of filaments,” Br. J. Appl. Phys. 18(4), 447–457 (1967).
    [Crossref]
  23. A. Méndez and T. F. Morse, Specialty optical fibers handbook (Academic, 2011), Chap. 15.
  24. R. Bernini, A. Minardo, and L. Zeni, “Dynamic strain measurement in optical fibers by stimulated Brillouin scattering,” Opt. Lett. 34(17), 2613–2615 (2009).
    [Crossref] [PubMed]
  25. H. Lee, N. Hayashi, Y. Mizuno, and K. Nakamura, “Slope-assisted Brillouin optical correlation-domain reflectometry: proof of concept,” IEEE Photonics J. 8(3), 6802807 (2016).
    [Crossref]
  26. J. A. Bucaro and H. D. Dardy, “High-temperature Brillouin scattering in fused quartz,” J. Appl. Phys. 45(12), 5324–5329 (1974).
    [Crossref]
  27. S. M. Collard and R. B. McLellan, “High-temperature elastic constants of gold single-crystals,” Acta Metall. Mater. 39(12), 3143–3151 (1991).
    [Crossref]
  28. Y. Jaewang, K. Il-Bum, and O. Kyunghwan, “Analysis of Brillouin frequency shift and longitudinal acoustic wave in a silica optical fiber with a triple-layered structure,” J. Lightwave Technol. 21(8), 1779–1786 (2003).
    [Crossref]
  29. D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” Proc. SPIE 6273, 62732K (2006).
    [Crossref]

2018 (1)

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultrafast measurement,” Light Sci. Appl. 7(1), 32 (2018).
[Crossref]

2017 (2)

D. Ba, D. Zhou, B. Wang, Z. Lu, Z. Fan, Y. Dong, and H. Li, “Dynamic Distributed Brillouin Optical Fiber Sensing Based on Dual-Modulation by Combining Single Frequency Modulation and Frequency-Agility Modulation,” IEEE Photonics J. 9(3), 1–8 (2017).
[Crossref]

R. Ruiz-Lombera, I. Laarossi, L. Rodríguez-Cobo, M. Á. Quintela, J. M. López-Higuera, and J. Mirapeix, “Distributed High-Temperature Optical Fiber Sensor Based on a Brillouin Optical Time Domain Analyzer and Multimode Gold-Coated Fiber,” IEEE Sens. J. 17(8), 2393–2397 (2017).
[Crossref]

2016 (5)

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref] [PubMed]

H. Lee, N. Hayashi, Y. Mizuno, and K. Nakamura, “Slope-assisted Brillouin optical correlation-domain reflectometry: proof of concept,” IEEE Photonics J. 8(3), 6802807 (2016).
[Crossref]

A. Denisov, M. A. Soto, and L. Thévenaz, “Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration,” Light Sci. Appl. 5(5), e16074 (2016).
[Crossref] [PubMed]

Y. Bao and G. Chen, “High-temperature measurement with Brillouin optical time domain analysis of an annealed fused-silica single-mode fiber,” Opt. Lett. 41(14), 3177–3180 (2016).
[Crossref] [PubMed]

P. Xu, Y. Dong, D. Zhou, C. Fu, J. Zhang, H. Zhang, Z. Lu, L. Chen, and X. Bao, “1200°C high-temperature distributed optical fiber sensing using Brillouin optical time domain analysis,” Appl. Opt. 55(21), 5471–5478 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (1)

2012 (3)

2010 (2)

2009 (2)

2008 (1)

2006 (1)

D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” Proc. SPIE 6273, 62732K (2006).
[Crossref]

2003 (1)

1997 (1)

A. H. Rose, “Devitrification in annealed optical fiber,” J. Lightwave Technol. 15(5), 808–814 (1997).
[Crossref]

1991 (1)

S. M. Collard and R. B. McLellan, “High-temperature elastic constants of gold single-crystals,” Acta Metall. Mater. 39(12), 3143–3151 (1991).
[Crossref]

1989 (1)

C. R. Kurkjian, J. T. Krause, and M. J. Matthewson, “Strength and fatigue of silica optical fibers,” J. Lightwave Technol. 7(9), 1360–1370 (1989).
[Crossref]

1979 (1)

D. A. Pinnow, G. D. Robertson, and J. A. Wysocki, “Reductions in static fatigue of silica fibers by hermetic jacketing,” Appl. Phys. Lett. 34(1), 17–19 (1979).
[Crossref]

1974 (1)

J. A. Bucaro and H. D. Dardy, “High-temperature Brillouin scattering in fused quartz,” J. Appl. Phys. 45(12), 5324–5329 (1974).
[Crossref]

1967 (1)

R. G. C. Arridge and D. Heywood, “The freeze-coating of filaments,” Br. J. Appl. Phys. 18(4), 447–457 (1967).
[Crossref]

Ania-Castañón, J. D.

Arridge, R. G. C.

R. G. C. Arridge and D. Heywood, “The freeze-coating of filaments,” Br. J. Appl. Phys. 18(4), 447–457 (1967).
[Crossref]

Ba, D.

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultrafast measurement,” Light Sci. Appl. 7(1), 32 (2018).
[Crossref]

D. Ba, D. Zhou, B. Wang, Z. Lu, Z. Fan, Y. Dong, and H. Li, “Dynamic Distributed Brillouin Optical Fiber Sensing Based on Dual-Modulation by Combining Single Frequency Modulation and Frequency-Agility Modulation,” IEEE Photonics J. 9(3), 1–8 (2017).
[Crossref]

Bao, X.

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultrafast measurement,” Light Sci. Appl. 7(1), 32 (2018).
[Crossref]

P. Xu, Y. Dong, D. Zhou, C. Fu, J. Zhang, H. Zhang, Z. Lu, L. Chen, and X. Bao, “1200°C high-temperature distributed optical fiber sensing using Brillouin optical time domain analysis,” Appl. Opt. 55(21), 5471–5478 (2016).
[Crossref] [PubMed]

P. Xu, Y. Dong, J. Zhang, D. Zhou, T. Jiang, J. Xu, H. Zhang, T. Zhu, Z. Lu, L. Chen, and X. Bao, “Bend-insensitive distributed sensing in singlemode-multimode-singlemode optical fiber structure by using Brillouin optical time-domain analysis,” Opt. Express 23(17), 22714–22722 (2015).
[Crossref] [PubMed]

Y. Dong, P. Xu, H. Zhang, Z. Lu, L. Chen, and X. Bao, “Characterization of evolution of mode coupling in a graded-index polymer optical fiber by using Brillouin optical time-domain analysis,” Opt. Express 22(22), 26510–26516 (2014).
[Crossref] [PubMed]

Y. Dong, H. Zhang, L. Chen, and X. Bao, “2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair,” Appl. Opt. 51(9), 1229–1235 (2012).
[Crossref] [PubMed]

Y. Dong, L. Chen, and X. Bao, “Extending the sensing range of Brillouin optical time-domain analysis combining frequency-division multiplexing and in-line EDFAs,” J. Lightwave Technol. 30(8), 1161–1167 (2012).
[Crossref]

W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16(26), 21616–21625 (2008).
[Crossref] [PubMed]

Bao, Y.

Bernini, R.

Bolognini, G.

Bucaro, J. A.

J. A. Bucaro and H. D. Dardy, “High-temperature Brillouin scattering in fused quartz,” J. Appl. Phys. 45(12), 5324–5329 (1974).
[Crossref]

Carrasco-Sanz, A.

Chen, G.

Chen, L.

Collard, S. M.

S. M. Collard and R. B. McLellan, “High-temperature elastic constants of gold single-crystals,” Acta Metall. Mater. 39(12), 3143–3151 (1991).
[Crossref]

Corredera, P.

Dardy, H. D.

J. A. Bucaro and H. D. Dardy, “High-temperature Brillouin scattering in fused quartz,” J. Appl. Phys. 45(12), 5324–5329 (1974).
[Crossref]

Denisov, A.

A. Denisov, M. A. Soto, and L. Thévenaz, “Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration,” Light Sci. Appl. 5(5), e16074 (2016).
[Crossref] [PubMed]

Di Pasquale, F.

Dong, Y.

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultrafast measurement,” Light Sci. Appl. 7(1), 32 (2018).
[Crossref]

D. Ba, D. Zhou, B. Wang, Z. Lu, Z. Fan, Y. Dong, and H. Li, “Dynamic Distributed Brillouin Optical Fiber Sensing Based on Dual-Modulation by Combining Single Frequency Modulation and Frequency-Agility Modulation,” IEEE Photonics J. 9(3), 1–8 (2017).
[Crossref]

P. Xu, Y. Dong, D. Zhou, C. Fu, J. Zhang, H. Zhang, Z. Lu, L. Chen, and X. Bao, “1200°C high-temperature distributed optical fiber sensing using Brillouin optical time domain analysis,” Appl. Opt. 55(21), 5471–5478 (2016).
[Crossref] [PubMed]

P. Xu, Y. Dong, J. Zhang, D. Zhou, T. Jiang, J. Xu, H. Zhang, T. Zhu, Z. Lu, L. Chen, and X. Bao, “Bend-insensitive distributed sensing in singlemode-multimode-singlemode optical fiber structure by using Brillouin optical time-domain analysis,” Opt. Express 23(17), 22714–22722 (2015).
[Crossref] [PubMed]

Y. Dong, P. Xu, H. Zhang, Z. Lu, L. Chen, and X. Bao, “Characterization of evolution of mode coupling in a graded-index polymer optical fiber by using Brillouin optical time-domain analysis,” Opt. Express 22(22), 26510–26516 (2014).
[Crossref] [PubMed]

Y. Dong, L. Chen, and X. Bao, “Extending the sensing range of Brillouin optical time-domain analysis combining frequency-division multiplexing and in-line EDFAs,” J. Lightwave Technol. 30(8), 1161–1167 (2012).
[Crossref]

Y. Dong, H. Zhang, L. Chen, and X. Bao, “2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair,” Appl. Opt. 51(9), 1229–1235 (2012).
[Crossref] [PubMed]

Fan, Z.

D. Ba, D. Zhou, B. Wang, Z. Lu, Z. Fan, Y. Dong, and H. Li, “Dynamic Distributed Brillouin Optical Fiber Sensing Based on Dual-Modulation by Combining Single Frequency Modulation and Frequency-Agility Modulation,” IEEE Photonics J. 9(3), 1–8 (2017).
[Crossref]

Fang, J.

Frey, B. J.

D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” Proc. SPIE 6273, 62732K (2006).
[Crossref]

Fu, C.

Fukuda, H.

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref] [PubMed]

González-Herráez, M.

Hayashi, N.

H. Lee, N. Hayashi, Y. Mizuno, and K. Nakamura, “Slope-assisted Brillouin optical correlation-domain reflectometry: proof of concept,” IEEE Photonics J. 8(3), 6802807 (2016).
[Crossref]

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref] [PubMed]

N. Hayashi, Y. Mizuno, and K. Nakamura, “Brillouin gain spectrum dependence on large strain in perfluorinated graded-index polymer optical fiber,” Opt. Express 20(19), 21101–21106 (2012).
[Crossref] [PubMed]

He, Z.

Heywood, D.

R. G. C. Arridge and D. Heywood, “The freeze-coating of filaments,” Br. J. Appl. Phys. 18(4), 447–457 (1967).
[Crossref]

Hotate, K.

Il-Bum, K.

Jaewang, Y.

Jiang, T.

Kim, B. Y.

Krause, J. T.

C. R. Kurkjian, J. T. Krause, and M. J. Matthewson, “Strength and fatigue of silica optical fibers,” J. Lightwave Technol. 7(9), 1360–1370 (1989).
[Crossref]

Kurkjian, C. R.

C. R. Kurkjian, J. T. Krause, and M. J. Matthewson, “Strength and fatigue of silica optical fibers,” J. Lightwave Technol. 7(9), 1360–1370 (1989).
[Crossref]

Kyunghwan, O.

Laarossi, I.

R. Ruiz-Lombera, I. Laarossi, L. Rodríguez-Cobo, M. Á. Quintela, J. M. López-Higuera, and J. Mirapeix, “Distributed High-Temperature Optical Fiber Sensor Based on a Brillouin Optical Time Domain Analyzer and Multimode Gold-Coated Fiber,” IEEE Sens. J. 17(8), 2393–2397 (2017).
[Crossref]

Lee, H.

H. Lee, N. Hayashi, Y. Mizuno, and K. Nakamura, “Slope-assisted Brillouin optical correlation-domain reflectometry: proof of concept,” IEEE Photonics J. 8(3), 6802807 (2016).
[Crossref]

Leviton, D. B.

D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” Proc. SPIE 6273, 62732K (2006).
[Crossref]

Li, A.

Li, H.

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultrafast measurement,” Light Sci. Appl. 7(1), 32 (2018).
[Crossref]

D. Ba, D. Zhou, B. Wang, Z. Lu, Z. Fan, Y. Dong, and H. Li, “Dynamic Distributed Brillouin Optical Fiber Sensing Based on Dual-Modulation by Combining Single Frequency Modulation and Frequency-Agility Modulation,” IEEE Photonics J. 9(3), 1–8 (2017).
[Crossref]

Li, M.-J.

Li, W.

Li, Y.

Loayssa, A.

López-Higuera, J. M.

R. Ruiz-Lombera, I. Laarossi, L. Rodríguez-Cobo, M. Á. Quintela, J. M. López-Higuera, and J. Mirapeix, “Distributed High-Temperature Optical Fiber Sensor Based on a Brillouin Optical Time Domain Analyzer and Multimode Gold-Coated Fiber,” IEEE Sens. J. 17(8), 2393–2397 (2017).
[Crossref]

Lu, Z.

Martín-López, S.

Matthewson, M. J.

C. R. Kurkjian, J. T. Krause, and M. J. Matthewson, “Strength and fatigue of silica optical fibers,” J. Lightwave Technol. 7(9), 1360–1370 (1989).
[Crossref]

McLellan, R. B.

S. M. Collard and R. B. McLellan, “High-temperature elastic constants of gold single-crystals,” Acta Metall. Mater. 39(12), 3143–3151 (1991).
[Crossref]

Minardo, A.

Mirapeix, J.

R. Ruiz-Lombera, I. Laarossi, L. Rodríguez-Cobo, M. Á. Quintela, J. M. López-Higuera, and J. Mirapeix, “Distributed High-Temperature Optical Fiber Sensor Based on a Brillouin Optical Time Domain Analyzer and Multimode Gold-Coated Fiber,” IEEE Sens. J. 17(8), 2393–2397 (2017).
[Crossref]

Mizuno, Y.

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref] [PubMed]

H. Lee, N. Hayashi, Y. Mizuno, and K. Nakamura, “Slope-assisted Brillouin optical correlation-domain reflectometry: proof of concept,” IEEE Photonics J. 8(3), 6802807 (2016).
[Crossref]

N. Hayashi, Y. Mizuno, and K. Nakamura, “Brillouin gain spectrum dependence on large strain in perfluorinated graded-index polymer optical fiber,” Opt. Express 20(19), 21101–21106 (2012).
[Crossref] [PubMed]

Nakamura, K.

H. Lee, N. Hayashi, Y. Mizuno, and K. Nakamura, “Slope-assisted Brillouin optical correlation-domain reflectometry: proof of concept,” IEEE Photonics J. 8(3), 6802807 (2016).
[Crossref]

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref] [PubMed]

N. Hayashi, Y. Mizuno, and K. Nakamura, “Brillouin gain spectrum dependence on large strain in perfluorinated graded-index polymer optical fiber,” Opt. Express 20(19), 21101–21106 (2012).
[Crossref] [PubMed]

Pang, C.

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultrafast measurement,” Light Sci. Appl. 7(1), 32 (2018).
[Crossref]

Pinnow, D. A.

D. A. Pinnow, G. D. Robertson, and J. A. Wysocki, “Reductions in static fatigue of silica fibers by hermetic jacketing,” Appl. Phys. Lett. 34(1), 17–19 (1979).
[Crossref]

Quintela, M. Á.

R. Ruiz-Lombera, I. Laarossi, L. Rodríguez-Cobo, M. Á. Quintela, J. M. López-Higuera, and J. Mirapeix, “Distributed High-Temperature Optical Fiber Sensor Based on a Brillouin Optical Time Domain Analyzer and Multimode Gold-Coated Fiber,” IEEE Sens. J. 17(8), 2393–2397 (2017).
[Crossref]

Robertson, G. D.

D. A. Pinnow, G. D. Robertson, and J. A. Wysocki, “Reductions in static fatigue of silica fibers by hermetic jacketing,” Appl. Phys. Lett. 34(1), 17–19 (1979).
[Crossref]

Rodríguez-Barrios, F.

Rodríguez-Cobo, L.

R. Ruiz-Lombera, I. Laarossi, L. Rodríguez-Cobo, M. Á. Quintela, J. M. López-Higuera, and J. Mirapeix, “Distributed High-Temperature Optical Fiber Sensor Based on a Brillouin Optical Time Domain Analyzer and Multimode Gold-Coated Fiber,” IEEE Sens. J. 17(8), 2393–2397 (2017).
[Crossref]

Rose, A. H.

A. H. Rose, “Devitrification in annealed optical fiber,” J. Lightwave Technol. 15(5), 808–814 (1997).
[Crossref]

Ruiz-Lombera, R.

R. Ruiz-Lombera, I. Laarossi, L. Rodríguez-Cobo, M. Á. Quintela, J. M. López-Higuera, and J. Mirapeix, “Distributed High-Temperature Optical Fiber Sensor Based on a Brillouin Optical Time Domain Analyzer and Multimode Gold-Coated Fiber,” IEEE Sens. J. 17(8), 2393–2397 (2017).
[Crossref]

Sagues, M.

Shieh, W.

Song, K. Y.

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref] [PubMed]

Soto, M. A.

A. Denisov, M. A. Soto, and L. Thévenaz, “Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration,” Light Sci. Appl. 5(5), e16074 (2016).
[Crossref] [PubMed]

M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett. 35(2), 259–261 (2010).
[Crossref] [PubMed]

Thévenaz, L.

Urricelqui, J.

Wang, B.

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultrafast measurement,” Light Sci. Appl. 7(1), 32 (2018).
[Crossref]

D. Ba, D. Zhou, B. Wang, Z. Lu, Z. Fan, Y. Dong, and H. Li, “Dynamic Distributed Brillouin Optical Fiber Sensing Based on Dual-Modulation by Combining Single Frequency Modulation and Frequency-Agility Modulation,” IEEE Photonics J. 9(3), 1–8 (2017).
[Crossref]

Wang, Y.

Wysocki, J. A.

D. A. Pinnow, G. D. Robertson, and J. A. Wysocki, “Reductions in static fatigue of silica fibers by hermetic jacketing,” Appl. Phys. Lett. 34(1), 17–19 (1979).
[Crossref]

Xu, J.

Xu, P.

Zeni, L.

Zhang, H.

Zhang, J.

Zhou, D.

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultrafast measurement,” Light Sci. Appl. 7(1), 32 (2018).
[Crossref]

D. Ba, D. Zhou, B. Wang, Z. Lu, Z. Fan, Y. Dong, and H. Li, “Dynamic Distributed Brillouin Optical Fiber Sensing Based on Dual-Modulation by Combining Single Frequency Modulation and Frequency-Agility Modulation,” IEEE Photonics J. 9(3), 1–8 (2017).
[Crossref]

P. Xu, Y. Dong, D. Zhou, C. Fu, J. Zhang, H. Zhang, Z. Lu, L. Chen, and X. Bao, “1200°C high-temperature distributed optical fiber sensing using Brillouin optical time domain analysis,” Appl. Opt. 55(21), 5471–5478 (2016).
[Crossref] [PubMed]

P. Xu, Y. Dong, J. Zhang, D. Zhou, T. Jiang, J. Xu, H. Zhang, T. Zhu, Z. Lu, L. Chen, and X. Bao, “Bend-insensitive distributed sensing in singlemode-multimode-singlemode optical fiber structure by using Brillouin optical time-domain analysis,” Opt. Express 23(17), 22714–22722 (2015).
[Crossref] [PubMed]

Zhu, T.

Zou, W.

Acta Metall. Mater. (1)

S. M. Collard and R. B. McLellan, “High-temperature elastic constants of gold single-crystals,” Acta Metall. Mater. 39(12), 3143–3151 (1991).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

D. A. Pinnow, G. D. Robertson, and J. A. Wysocki, “Reductions in static fatigue of silica fibers by hermetic jacketing,” Appl. Phys. Lett. 34(1), 17–19 (1979).
[Crossref]

Br. J. Appl. Phys. (1)

R. G. C. Arridge and D. Heywood, “The freeze-coating of filaments,” Br. J. Appl. Phys. 18(4), 447–457 (1967).
[Crossref]

IEEE Photonics J. (2)

D. Ba, D. Zhou, B. Wang, Z. Lu, Z. Fan, Y. Dong, and H. Li, “Dynamic Distributed Brillouin Optical Fiber Sensing Based on Dual-Modulation by Combining Single Frequency Modulation and Frequency-Agility Modulation,” IEEE Photonics J. 9(3), 1–8 (2017).
[Crossref]

H. Lee, N. Hayashi, Y. Mizuno, and K. Nakamura, “Slope-assisted Brillouin optical correlation-domain reflectometry: proof of concept,” IEEE Photonics J. 8(3), 6802807 (2016).
[Crossref]

IEEE Sens. J. (1)

R. Ruiz-Lombera, I. Laarossi, L. Rodríguez-Cobo, M. Á. Quintela, J. M. López-Higuera, and J. Mirapeix, “Distributed High-Temperature Optical Fiber Sensor Based on a Brillouin Optical Time Domain Analyzer and Multimode Gold-Coated Fiber,” IEEE Sens. J. 17(8), 2393–2397 (2017).
[Crossref]

J. Appl. Phys. (1)

J. A. Bucaro and H. D. Dardy, “High-temperature Brillouin scattering in fused quartz,” J. Appl. Phys. 45(12), 5324–5329 (1974).
[Crossref]

J. Lightwave Technol. (5)

Light Sci. Appl. (3)

A. Denisov, M. A. Soto, and L. Thévenaz, “Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration,” Light Sci. Appl. 5(5), e16074 (2016).
[Crossref] [PubMed]

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref] [PubMed]

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultrafast measurement,” Light Sci. Appl. 7(1), 32 (2018).
[Crossref]

Opt. Express (6)

Opt. Lett. (4)

Proc. SPIE (1)

D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” Proc. SPIE 6273, 62732K (2006).
[Crossref]

Other (1)

A. Méndez and T. F. Morse, Specialty optical fibers handbook (Academic, 2011), Chap. 15.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Experimental setup: C, coupler; PC, polarization controller; MZM, Mach-Zehnder modulator; DC, direct current; AFG, arbitrary function generator; RF, radio frequency; PS, polarization scrambler; EDFA, erbium-doped fiber amplifier; FBG, fiber Bragg grating; PD, photo detector; OSC, oscilloscope.
Fig. 2
Fig. 2 1000 °C repeated distributed high temperature measurements of 1-m-long gold coated fiber by DPP-BOTDA with 20-cm spatial resolution. (a) 5 measurements of a single sensing point from 100 to 1000 °C with a step of 50 °C, temperature coefficient of gold-coated fiber changes with temperature nonlinearly; (b) BFS difference between every 2 adjacent measurements, the maximum difference in the last 3 measurements is within ± 2.15 MHz (beyond 300 °C).
Fig. 3
Fig. 3 The temperature and strain coefficients of gold-coated fiber before and after annealing. (a) Temperature coefficient from room temperature to 90 °C; (b) strain coefficient at room temperature.
Fig. 4
Fig. 4 Four strain measurements at room temperature. (a) Unannealed and (b) annealed gold-coated fiber, the BFS at 0 strain is elevated after the 1st measurement.
Fig. 5
Fig. 5 The increase in BFS of annealed gold-coated fiber with the imposed strain in the first strain measurement.
Fig. 6
Fig. 6 Experimental setup of gold-coated fiber for high-temperature strain measurement with a spatial resolution of 5cm.
Fig. 7
Fig. 7 The distributed high-temperature strain measurements post the pre-pulling test with a step of 222 με at (a) 400 °C, (b) 600 °C, (c) 800 °C and (d) 1000 °C.
Fig. 8
Fig. 8 Equal axial force model used to analyze the strain distribution of gold-coated fiber.
Fig. 9
Fig. 9 Strain distribution along the 45-cm-long gold-coated fiber with an elongation of 1000 μm at 1000 °C.
Fig. 10
Fig. 10 High-temperature strain coefficients of annealed gold-coated fiber from 100 to 1000°C. (a) BFS with strain at a position of 3.6 m as shown in Fig. 7; (b) strain coefficients for all the data in a span of 25 cm as indicated in Fig. 7.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

υ BFS = 10771.2 + 1.7 × T - 1.93 × 10 - 3 T 2 +1 .8 × 10 - 6 T 3 - 7 × 10 - 10 T 4
Δ L = i Δ L i
Δ L i = ε i L 0 = F i L 0 E i ( x ) A i ( x )
E i ( x ) A i ( x ) = E s i ( x ) A s i ( x ) + E g i ( x ) A g i ( x )
ε i ( x ) = F i E i ( x ) A i ( x )

Metrics