Abstract

In this paper we present a high power long-wave infrared ZnGeP2 (ZGP) optical parametric amplifier (OPA) pumped by a 2097-nm Q-switched Ho:YAG laser with pulse repetition frequency of 20 kHz. When the incident Ho pump power was 116.0 W, the maximum average output power of 11.4 W at 8.3 μm was achieved in the ZGP OPA. The optical conversion efficiency from Ho to long-wave infrared was about 9.8%. The ZGP OPA produced 30.4 ns long-wave infrared laser pulse. The beam quality factor (M2) of ZGP OPA was measured to be about 2.9 at the maximum average output power.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High repetition rate 102  W middle infrared ZnGeP2 master oscillator power amplifier system with thermal lens compensation

Chuan-Peng Qian, Bao-Quan Yao, Ben-Rui Zhao, Gao-You Liu, Xiao-Ming Duan, Tong-Yu Dai, You-Lun Ju, and Yue-Zhu Wang
Opt. Lett. 44(3) 715-718 (2019)

Efficient mid-infrared laser using 1.9-µm-pumped Ho:YAG and ZnGeP2 optical parametric oscillators

P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis
J. Opt. Soc. Am. B 17(5) 723-728 (2000)

Tunable Mid-infrared ZnGeP2 RISTRA OPO pumped by periodically-poled Rb:KTP optical parametric master-oscillator power amplifier

G. Stoeppler, N. Thilmann, V. Pasiskevicius, A. Zukauskas, C. Canalias, and M. Eichhorn
Opt. Express 20(4) 4509-4517 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. E. Webber, M. Pushkarsky, and C. K. N. Patel, “Optical detection of chemical warfare agents and toxic industrial chemicals: Simulation,” J. Appl. Phys. 97(11), 113101 (2005).
    [Crossref]
  2. T. H. Allik, S. Chandra, D. M. Rines, P. G. Schunemann, J. A. Hutchinson, and R. Utano, “Tunable 7 12-microm optical parametric oscillator using a Cr,Er:YSGG laser to pump CdSe and ZnGeP2 crystals,” Opt. Lett. 22(9), 597–599 (1997).
    [Crossref] [PubMed]
  3. P. G. Schunemann, “Nonlinear frequency generation and conversion: materials, devices, and applications VI,” Proc. SPIE 6455, 64550R (2007).
    [Crossref]
  4. P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, “Efficient mid-infrared laser using 1.9-μm-pumped Ho:YAG and ZnGeP2 optical parametric oscillator,” J. Opt. Soc. Am. B 17(5), 723–728 (2000).
    [Crossref]
  5. A. Hemming, J. Richards, A. Davidson, N. Carmody, S. Bennetts, N. Simakov, and J. Haub, “99 W mid-IR operation of a ZGP OPO at 25% duty cycle,” Opt. Express 21(8), 10062–10069 (2013).
    [Crossref] [PubMed]
  6. E. Lippert, S. Nicolas, G. Arisholm, K. Stenersen, and G. Rustad, “Midinfrared laser source with high power and beam quality,” Appl. Opt. 45(16), 3839–3845 (2006).
    [Crossref] [PubMed]
  7. K. L. Vodopyanov, F. Ganikhanov, J. P. Maffetone, I. Zwieback, and W. Ruderman, “ZnGeP2 optical parametric oscillator with 3.8-12.4-mum tunability,” Opt. Lett. 25(11), 841–843 (2000).
    [Crossref] [PubMed]
  8. G. Rustad, S. Nicolas, E. Lippert, K. Stenersen, and G. Arisholm, “Tuning and dual wavelength operation of a ZGP OPO in the 8-11 micron range” in Advanced Solid-State Photonics, OSA Trends in Optics and Photonic Vol. 83, J. J. Zayhowski, ed. (Optical Society of America, Washington, DC, 2003), pp. 333–338.
  9. E. Lippert, G. Rustad, and K. Stenersen, “High power and efficient far infrared ZnGeP2-based optical parametric oscillator,” Proc. SPIE 6738, 67380D (2007).
    [Crossref]
  10. E. Lippert, H. Fonnum, and K. Stenersen, “High power multi-wavelength infrared source,” Proc. SPIE 7836, 78360D (2010).
    [Crossref]
  11. E. Lippert, “Progress with OPO-based systems for mid-IR generation,” Proc. SPIE 8187, 81870F (2011).
    [Crossref]
  12. M. W. Haakestad, G. Arisholm, E. Lippert, S. Nicolas, G. Rustad, and K. Stenersen, “High-pulse-energy mid-infrared laser source based on optical parametric amplification in ZnGeP2.,” Opt. Express 16(18), 14263–14273 (2008).
    [Crossref] [PubMed]
  13. Q. Clément, J. M. Melkonian, J. Barrientos-Barria, J. B. Dherbecourt, M. Raybaut, and A. Godard, “Tunable optical parametric amplification of a single-frequency quantum cascade laser around 8 μm in ZnGeP2.,” Opt. Lett. 38(20), 4046–4049 (2013).
    [Crossref] [PubMed]
  14. H. Fonnum, A. Bakkland, and M. W. Haakestad, “Optical parametric oscillator at 8 μm with high pulse energy and good beam quality,” in Conference on Lasers and Electro-Optics (CLEO) (2016), paper MS4C. 5.
  15. A. Bakkland, H. Fonnum, E. Lippert, and M. W. Haakestad, “Long-wave infrared source with 45 mJ pulse energy based on nonlinear conversion in ZnGeP2,”in Conference on Lasers and Electro-Optics (CLEO) (2016), paper Stu1Q. 8.
    [Crossref]
  16. B. Q. Yao, Y. J. Shen, X. M. Duan, T. Y. Dai, Y. L. Ju, and Y. Z. Wang, “A 41-W ZnGeP2 optical parametric oscillator pumped by a Q-switched Ho:YAG laser,” Opt. Lett. 39(23), 6589–6592 (2014).
    [Crossref] [PubMed]
  17. G. Arisholm, E. Lippert, G. Rustad, and K. Stenersen, “Effect of resonator length on a doubly resonant optical parametric oscillator pumped by a multilongitudinal-mode beam,” Opt. Lett. 25(22), 1654–1656 (2000).
    [Crossref] [PubMed]

2014 (1)

2013 (2)

2011 (1)

E. Lippert, “Progress with OPO-based systems for mid-IR generation,” Proc. SPIE 8187, 81870F (2011).
[Crossref]

2010 (1)

E. Lippert, H. Fonnum, and K. Stenersen, “High power multi-wavelength infrared source,” Proc. SPIE 7836, 78360D (2010).
[Crossref]

2008 (1)

2007 (2)

E. Lippert, G. Rustad, and K. Stenersen, “High power and efficient far infrared ZnGeP2-based optical parametric oscillator,” Proc. SPIE 6738, 67380D (2007).
[Crossref]

P. G. Schunemann, “Nonlinear frequency generation and conversion: materials, devices, and applications VI,” Proc. SPIE 6455, 64550R (2007).
[Crossref]

2006 (1)

2005 (1)

M. E. Webber, M. Pushkarsky, and C. K. N. Patel, “Optical detection of chemical warfare agents and toxic industrial chemicals: Simulation,” J. Appl. Phys. 97(11), 113101 (2005).
[Crossref]

2000 (3)

1997 (1)

Allik, T. H.

Arisholm, G.

Bakkland, A.

H. Fonnum, A. Bakkland, and M. W. Haakestad, “Optical parametric oscillator at 8 μm with high pulse energy and good beam quality,” in Conference on Lasers and Electro-Optics (CLEO) (2016), paper MS4C. 5.

Barrientos-Barria, J.

Bennetts, S.

Budni, P. A.

Carmody, N.

Chandra, S.

Chicklis, E. P.

Clément, Q.

Dai, T. Y.

Davidson, A.

Dherbecourt, J. B.

Duan, X. M.

Fonnum, H.

E. Lippert, H. Fonnum, and K. Stenersen, “High power multi-wavelength infrared source,” Proc. SPIE 7836, 78360D (2010).
[Crossref]

H. Fonnum, A. Bakkland, and M. W. Haakestad, “Optical parametric oscillator at 8 μm with high pulse energy and good beam quality,” in Conference on Lasers and Electro-Optics (CLEO) (2016), paper MS4C. 5.

Ganikhanov, F.

Godard, A.

Haakestad, M. W.

M. W. Haakestad, G. Arisholm, E. Lippert, S. Nicolas, G. Rustad, and K. Stenersen, “High-pulse-energy mid-infrared laser source based on optical parametric amplification in ZnGeP2.,” Opt. Express 16(18), 14263–14273 (2008).
[Crossref] [PubMed]

H. Fonnum, A. Bakkland, and M. W. Haakestad, “Optical parametric oscillator at 8 μm with high pulse energy and good beam quality,” in Conference on Lasers and Electro-Optics (CLEO) (2016), paper MS4C. 5.

Haub, J.

Hemming, A.

Hutchinson, J. A.

Ju, Y. L.

Lemons, M. L.

Lippert, E.

Maffetone, J. P.

Melkonian, J. M.

Miller, C. A.

Mosto, J. R.

Nicolas, S.

Patel, C. K. N.

M. E. Webber, M. Pushkarsky, and C. K. N. Patel, “Optical detection of chemical warfare agents and toxic industrial chemicals: Simulation,” J. Appl. Phys. 97(11), 113101 (2005).
[Crossref]

Pomeranz, L. A.

Pushkarsky, M.

M. E. Webber, M. Pushkarsky, and C. K. N. Patel, “Optical detection of chemical warfare agents and toxic industrial chemicals: Simulation,” J. Appl. Phys. 97(11), 113101 (2005).
[Crossref]

Raybaut, M.

Richards, J.

Rines, D. M.

Ruderman, W.

Rustad, G.

Schunemann, P. G.

Shen, Y. J.

Simakov, N.

Stenersen, K.

Utano, R.

Vodopyanov, K. L.

Wang, Y. Z.

Webber, M. E.

M. E. Webber, M. Pushkarsky, and C. K. N. Patel, “Optical detection of chemical warfare agents and toxic industrial chemicals: Simulation,” J. Appl. Phys. 97(11), 113101 (2005).
[Crossref]

Yao, B. Q.

Zwieback, I.

Appl. Opt. (1)

J. Appl. Phys. (1)

M. E. Webber, M. Pushkarsky, and C. K. N. Patel, “Optical detection of chemical warfare agents and toxic industrial chemicals: Simulation,” J. Appl. Phys. 97(11), 113101 (2005).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (2)

Opt. Lett. (5)

Proc. SPIE (4)

P. G. Schunemann, “Nonlinear frequency generation and conversion: materials, devices, and applications VI,” Proc. SPIE 6455, 64550R (2007).
[Crossref]

E. Lippert, G. Rustad, and K. Stenersen, “High power and efficient far infrared ZnGeP2-based optical parametric oscillator,” Proc. SPIE 6738, 67380D (2007).
[Crossref]

E. Lippert, H. Fonnum, and K. Stenersen, “High power multi-wavelength infrared source,” Proc. SPIE 7836, 78360D (2010).
[Crossref]

E. Lippert, “Progress with OPO-based systems for mid-IR generation,” Proc. SPIE 8187, 81870F (2011).
[Crossref]

Other (3)

H. Fonnum, A. Bakkland, and M. W. Haakestad, “Optical parametric oscillator at 8 μm with high pulse energy and good beam quality,” in Conference on Lasers and Electro-Optics (CLEO) (2016), paper MS4C. 5.

A. Bakkland, H. Fonnum, E. Lippert, and M. W. Haakestad, “Long-wave infrared source with 45 mJ pulse energy based on nonlinear conversion in ZnGeP2,”in Conference on Lasers and Electro-Optics (CLEO) (2016), paper Stu1Q. 8.
[Crossref]

G. Rustad, S. Nicolas, E. Lippert, K. Stenersen, and G. Arisholm, “Tuning and dual wavelength operation of a ZGP OPO in the 8-11 micron range” in Advanced Solid-State Photonics, OSA Trends in Optics and Photonic Vol. 83, J. J. Zayhowski, ed. (Optical Society of America, Washington, DC, 2003), pp. 333–338.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Layout of the OPO and subsequent OPA laser.
Fig. 2
Fig. 2 The output power of ZGP OPO laser.
Fig. 3
Fig. 3 The output performance of the ZGP OPA laser.
Fig. 4
Fig. 4 The oscilloscope temporal profile of the 8.3 μm with the highest output power of 11.4 W.
Fig. 5
Fig. 5 The output spectrum of the OPO and subsequent OPA laser.
Fig. 6
Fig. 6 The beam quality of the OPA laser under the highest output power.

Metrics