Abstract

A novel concept of on-chip Fourier transform spectrometer is proposed. It consists of semiconductor waveguide directional couplers and NEMS actuators. The optical path difference can be tuned by controlling the NEMS actuators to couple or decouple the directional couplers. With 9 stages of directional couplers, we demonstrate numerically that the spectral resolution can reach up to 4 nm in 1.5 μm to 1.8 μm wavelength range. Further enhancement can be achieved by increasing the number of integrated NEMS driven directional couplers. This design meets the requirement of small size, weight and power and may be useful in future on-chip spectroscopic sensors.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Design of a compact and ultrahigh-resolution Fourier-transform spectrometer

B. Imran Akca
Opt. Express 25(2) 1487-1494 (2017)

Fiber-to-chip coupler designed using an optical transformation

Petr Markov, Jason G. Valentine, and Sharon M. Weiss
Opt. Express 20(13) 14705-14713 (2012)

Athermal planar-waveguide Fourier-transform spectrometer for methane detection

Hugh Podmore, Alan Scott, Pavel Cheben, Chris Sioris, Peter Cameron, Jens H. Schmid, Andrew Lohmann, Zachary Corriveau, and Regina Lee
Opt. Express 25(26) 33018-33028 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Thorne, U. Litzen, and S. Johansson, Spectrophysics Principles and Applications (Springer, 1999).
  2. X. Ma, M. Li, and J. J. He, “CMOS-compatible integrated spectrometer based on Echelle diffraction grating and MSM photodetector array,” IEEE Photonics J. 5(2), 6600807 (2013).
    [Crossref]
  3. E. le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
    [Crossref]
  4. Y. M. Sabry, D. Khalil, and T. Bourouina, “Monolithic silicon-micromachined free-space optical interferometers onchip,” Laser Photonics Rev. 9(1), 1–24 (2015).
    [Crossref]
  5. B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).
    [Crossref]
  6. B. B. C. Kyotoku, L. Chen, and M. Lipson, “Sub-nm resolution cavity enhanced microspectrometer,” Opt. Express 18(1), 102–107 (2010).
    [Crossref] [PubMed]
  7. X. Nie, E. Ryckeboer, G. Roelkens, and R. Baets, “CMOS-compatible broadband co-propagative stationary Fourier transform spectrometer integrated on a silicon nitride photonics platform,” Opt. Express 25(8), A409–A418 (2017).
    [Crossref] [PubMed]
  8. H. Podmore, A. Scott, P. Cheben, A. V. Velasco, J. H. Schmid, M. Vachon, and R. Lee, “Demonstration of a compressive-sensing Fourier-transform on-chip spectrometer,” Opt. Lett. 42(7), 1440–1443 (2017).
    [Crossref] [PubMed]
  9. A. Herrero-Bermello, A. V. Velasco, H. Podmore, P. Cheben, J. H. Schmid, S. Janz, M. L. Calvo, D. X. Xu, A. Scott, and P. Corredera, “Temperature dependence mitigation in stationary Fourier-transform on-chip spectrometers,” Opt. Lett. 42(11), 2239–2242 (2017).
    [Crossref] [PubMed]
  10. B. Redding, S. Fatt Liew, Y. Bromberg, R. Sarma, and H. Cao, “Evanescently coupled multimode spiral spectrometer,” Optica 3(9), 956–962 (2016).
    [Crossref]
  11. A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. De Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. Van Dorpe, J. Van Campenhout, W. Bogaerts, P. Bienstman, N. Le Thomas, D. Van Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited],” Photon. Res. 3(5), B47–B59 (2015).
    [Crossref]
  12. M. C. M. M. Souza, A. Grieco, N. C. Frateschi, and Y. Fainman, “Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction,” Nat. Commun. 9(1), 665 (2018).
    [Crossref] [PubMed]
  13. B. I. Akca, “Design of a compact and ultrahigh-resolution Fourier-transform spectrometer,” Opt. Express 25(2), 1487–1494 (2017).
    [Crossref] [PubMed]
  14. M. Erfan, Y. M. Sabry, M. Sakr, B. Mortada, M. Medhat, and D. Khalil, “On-chip micro-electro-mechanical system Fourier transform infrared (MEMS FT-IR) spectrometer-based gas sensing,” Appl. Spectrosc. 70(5), 897–904 (2016).
    [Crossref] [PubMed]
  15. M. Florjaczyk, P. Cheben, S. Janz, B. Lamontagne, J. Lapointe, A. Scott, B. Solheim, and D. X. Xu, “Development of a slab waveguide spatial heterodyne spectrometer for remote sensing,” in Proceedings of SPIE 7594, MOEMS and Miniaturized Systems IX, 75940R (2010).
  16. J. Li, D. F. Lu, and Z. M. Qi, “Miniature Fourier transform spectrometer based on wavelength dependence of half-wave voltage of a LiNbO3 waveguide interferometer,” Opt. Lett. 39(13), 3923–3926 (2014).
    [Crossref] [PubMed]
  17. Y. M. Sabry, H. Omran, and D. Khalil, “Intrinsic improvement of diffraction-limited resolution in optical MEMS Fourier-transform spectrometers,” inProceedings of 31th National Radio Science Conference, (2014) pp. 326–333.
  18. D. M. Kita, H. Lin, A. Agarwal, K. Richardson, I. Luzinov, T. Gu, and J. Hu, “On-chip infrared spectroscopic sensing: redefining the benefits of scaling,” IEEE J. Sel. Top. Quantum Electron. 23(2), 340–349 (2017).
    [Crossref]
  19. J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523(7558), 67–70 (2015).
    [Crossref] [PubMed]
  20. K. Yu, D. Lee, U. Krishnamoorthy, N. Park, and O. Solgaard, “Micromachined Fourier transform spectrometer on silicon optical bench platform,” Sens. Actuators A Phys. 130–131, 523–530 (2006).
    [Crossref]
  21. D. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “Digital Fourier transform spectroscopy: a high-performance, scalable technology for on-chip spectrum analysis,” https://arxiv.org/abs/1802.05270 .
  22. M. Harwit, Hadamard Transform Optics (The Netherlands: Elsevier, 1979).
  23. A. Rollier, B. Legrand, D. Collard, and L. Buchaillot, “The stability and pull-in voltage of electrostatic parallel-plate actuators in liquid solutions,” J. Micromech. Microeng. 16(4), 794–801 (2006).
    [Crossref]
  24. S. Abe, M. H. Chu, T. Sasaki, and K. Hane, “Time response of a microelectromechanical silicon photonic waveguide coupler switch,” IEEE Photonics Technol. Lett. 26(15), 1553–1556 (2014).
    [Crossref]
  25. X. Chew, G. Zhou, H. Yu, F. S. Chau, J. Deng, Y. C. Loke, and X. Tang, “An in-plane nano-mechanics approach to achieve reversible resonance control of photonic crystal nanocavities,” Opt. Express 18(21), 22232–22244 (2010).
    [Crossref] [PubMed]
  26. T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(2), 646–647 (2004).
    [Crossref]
  27. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
    [Crossref]

2018 (1)

M. C. M. M. Souza, A. Grieco, N. C. Frateschi, and Y. Fainman, “Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction,” Nat. Commun. 9(1), 665 (2018).
[Crossref] [PubMed]

2017 (5)

2016 (2)

2015 (3)

2014 (2)

S. Abe, M. H. Chu, T. Sasaki, and K. Hane, “Time response of a microelectromechanical silicon photonic waveguide coupler switch,” IEEE Photonics Technol. Lett. 26(15), 1553–1556 (2014).
[Crossref]

J. Li, D. F. Lu, and Z. M. Qi, “Miniature Fourier transform spectrometer based on wavelength dependence of half-wave voltage of a LiNbO3 waveguide interferometer,” Opt. Lett. 39(13), 3923–3926 (2014).
[Crossref] [PubMed]

2013 (2)

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).
[Crossref]

X. Ma, M. Li, and J. J. He, “CMOS-compatible integrated spectrometer based on Echelle diffraction grating and MSM photodetector array,” IEEE Photonics J. 5(2), 6600807 (2013).
[Crossref]

2010 (3)

2007 (1)

E. le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[Crossref]

2006 (2)

K. Yu, D. Lee, U. Krishnamoorthy, N. Park, and O. Solgaard, “Micromachined Fourier transform spectrometer on silicon optical bench platform,” Sens. Actuators A Phys. 130–131, 523–530 (2006).
[Crossref]

A. Rollier, B. Legrand, D. Collard, and L. Buchaillot, “The stability and pull-in voltage of electrostatic parallel-plate actuators in liquid solutions,” J. Micromech. Microeng. 16(4), 794–801 (2006).
[Crossref]

2004 (1)

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(2), 646–647 (2004).
[Crossref]

1973 (1)

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
[Crossref]

Abe, S.

S. Abe, M. H. Chu, T. Sasaki, and K. Hane, “Time response of a microelectromechanical silicon photonic waveguide coupler switch,” IEEE Photonics Technol. Lett. 26(15), 1553–1556 (2014).
[Crossref]

Agarwal, A.

D. M. Kita, H. Lin, A. Agarwal, K. Richardson, I. Luzinov, T. Gu, and J. Hu, “On-chip infrared spectroscopic sensing: redefining the benefits of scaling,” IEEE J. Sel. Top. Quantum Electron. 23(2), 340–349 (2017).
[Crossref]

Akca, B. I.

Baba, T.

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(2), 646–647 (2004).
[Crossref]

Baets, R.

Bao, J.

J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523(7558), 67–70 (2015).
[Crossref] [PubMed]

Bawendi, M. G.

J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523(7558), 67–70 (2015).
[Crossref] [PubMed]

Benech, P.

E. le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[Crossref]

Bienstman, P.

Blaize, S.

E. le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[Crossref]

Bogaerts, W.

Bourouina, T.

Y. M. Sabry, D. Khalil, and T. Bourouina, “Monolithic silicon-micromachined free-space optical interferometers onchip,” Laser Photonics Rev. 9(1), 1–24 (2015).
[Crossref]

Bromberg, Y.

Buchaillot, L.

A. Rollier, B. Legrand, D. Collard, and L. Buchaillot, “The stability and pull-in voltage of electrostatic parallel-plate actuators in liquid solutions,” J. Micromech. Microeng. 16(4), 794–801 (2006).
[Crossref]

Calvo, M. L.

Cao, H.

B. Redding, S. Fatt Liew, Y. Bromberg, R. Sarma, and H. Cao, “Evanescently coupled multimode spiral spectrometer,” Optica 3(9), 956–962 (2016).
[Crossref]

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).
[Crossref]

Chau, F. S.

Cheben, P.

Chen, L.

Chew, X.

Chu, M. H.

S. Abe, M. H. Chu, T. Sasaki, and K. Hane, “Time response of a microelectromechanical silicon photonic waveguide coupler switch,” IEEE Photonics Technol. Lett. 26(15), 1553–1556 (2014).
[Crossref]

Collard, D.

A. Rollier, B. Legrand, D. Collard, and L. Buchaillot, “The stability and pull-in voltage of electrostatic parallel-plate actuators in liquid solutions,” J. Micromech. Microeng. 16(4), 794–801 (2006).
[Crossref]

Corredera, P.

Dave, U. D.

De Groote, A.

Deng, J.

Dhakal, A.

Erfan, M.

Fainman, Y.

M. C. M. M. Souza, A. Grieco, N. C. Frateschi, and Y. Fainman, “Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction,” Nat. Commun. 9(1), 665 (2018).
[Crossref] [PubMed]

Fatt Liew, S.

Fedeli, J. M.

E. le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[Crossref]

Florjaczyk, M.

M. Florjaczyk, P. Cheben, S. Janz, B. Lamontagne, J. Lapointe, A. Scott, B. Solheim, and D. X. Xu, “Development of a slab waveguide spatial heterodyne spectrometer for remote sensing,” in Proceedings of SPIE 7594, MOEMS and Miniaturized Systems IX, 75940R (2010).

Frateschi, N. C.

M. C. M. M. Souza, A. Grieco, N. C. Frateschi, and Y. Fainman, “Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction,” Nat. Commun. 9(1), 665 (2018).
[Crossref] [PubMed]

Fukazawa, T.

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(2), 646–647 (2004).
[Crossref]

Grieco, A.

M. C. M. M. Souza, A. Grieco, N. C. Frateschi, and Y. Fainman, “Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction,” Nat. Commun. 9(1), 665 (2018).
[Crossref] [PubMed]

Gu, T.

D. M. Kita, H. Lin, A. Agarwal, K. Richardson, I. Luzinov, T. Gu, and J. Hu, “On-chip infrared spectroscopic sensing: redefining the benefits of scaling,” IEEE J. Sel. Top. Quantum Electron. 23(2), 340–349 (2017).
[Crossref]

Hane, K.

S. Abe, M. H. Chu, T. Sasaki, and K. Hane, “Time response of a microelectromechanical silicon photonic waveguide coupler switch,” IEEE Photonics Technol. Lett. 26(15), 1553–1556 (2014).
[Crossref]

He, J. J.

X. Ma, M. Li, and J. J. He, “CMOS-compatible integrated spectrometer based on Echelle diffraction grating and MSM photodetector array,” IEEE Photonics J. 5(2), 6600807 (2013).
[Crossref]

Hens, Z.

Herrero-Bermello, A.

Hirano, T.

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(2), 646–647 (2004).
[Crossref]

Hu, J.

D. M. Kita, H. Lin, A. Agarwal, K. Richardson, I. Luzinov, T. Gu, and J. Hu, “On-chip infrared spectroscopic sensing: redefining the benefits of scaling,” IEEE J. Sel. Top. Quantum Electron. 23(2), 340–349 (2017).
[Crossref]

Janz, S.

A. Herrero-Bermello, A. V. Velasco, H. Podmore, P. Cheben, J. H. Schmid, S. Janz, M. L. Calvo, D. X. Xu, A. Scott, and P. Corredera, “Temperature dependence mitigation in stationary Fourier-transform on-chip spectrometers,” Opt. Lett. 42(11), 2239–2242 (2017).
[Crossref] [PubMed]

M. Florjaczyk, P. Cheben, S. Janz, B. Lamontagne, J. Lapointe, A. Scott, B. Solheim, and D. X. Xu, “Development of a slab waveguide spatial heterodyne spectrometer for remote sensing,” in Proceedings of SPIE 7594, MOEMS and Miniaturized Systems IX, 75940R (2010).

Kern, P.

E. le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[Crossref]

Khalil, D.

M. Erfan, Y. M. Sabry, M. Sakr, B. Mortada, M. Medhat, and D. Khalil, “On-chip micro-electro-mechanical system Fourier transform infrared (MEMS FT-IR) spectrometer-based gas sensing,” Appl. Spectrosc. 70(5), 897–904 (2016).
[Crossref] [PubMed]

Y. M. Sabry, D. Khalil, and T. Bourouina, “Monolithic silicon-micromachined free-space optical interferometers onchip,” Laser Photonics Rev. 9(1), 1–24 (2015).
[Crossref]

Y. M. Sabry, H. Omran, and D. Khalil, “Intrinsic improvement of diffraction-limited resolution in optical MEMS Fourier-transform spectrometers,” inProceedings of 31th National Radio Science Conference, (2014) pp. 326–333.

Kita, D. M.

D. M. Kita, H. Lin, A. Agarwal, K. Richardson, I. Luzinov, T. Gu, and J. Hu, “On-chip infrared spectroscopic sensing: redefining the benefits of scaling,” IEEE J. Sel. Top. Quantum Electron. 23(2), 340–349 (2017).
[Crossref]

Krishnamoorthy, U.

K. Yu, D. Lee, U. Krishnamoorthy, N. Park, and O. Solgaard, “Micromachined Fourier transform spectrometer on silicon optical bench platform,” Sens. Actuators A Phys. 130–131, 523–530 (2006).
[Crossref]

Kuyken, B.

Kyotoku, B. B. C.

Lamontagne, B.

M. Florjaczyk, P. Cheben, S. Janz, B. Lamontagne, J. Lapointe, A. Scott, B. Solheim, and D. X. Xu, “Development of a slab waveguide spatial heterodyne spectrometer for remote sensing,” in Proceedings of SPIE 7594, MOEMS and Miniaturized Systems IX, 75940R (2010).

Lapointe, J.

M. Florjaczyk, P. Cheben, S. Janz, B. Lamontagne, J. Lapointe, A. Scott, B. Solheim, and D. X. Xu, “Development of a slab waveguide spatial heterodyne spectrometer for remote sensing,” in Proceedings of SPIE 7594, MOEMS and Miniaturized Systems IX, 75940R (2010).

le Coarer, E.

E. le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[Crossref]

Le Thomas, N.

Leblond, G.

E. le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[Crossref]

Lee, D.

K. Yu, D. Lee, U. Krishnamoorthy, N. Park, and O. Solgaard, “Micromachined Fourier transform spectrometer on silicon optical bench platform,” Sens. Actuators A Phys. 130–131, 523–530 (2006).
[Crossref]

Lee, R.

Legrand, B.

A. Rollier, B. Legrand, D. Collard, and L. Buchaillot, “The stability and pull-in voltage of electrostatic parallel-plate actuators in liquid solutions,” J. Micromech. Microeng. 16(4), 794–801 (2006).
[Crossref]

Leo, F.

Lérondel, G.

E. le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[Crossref]

Li, J.

Li, M.

X. Ma, M. Li, and J. J. He, “CMOS-compatible integrated spectrometer based on Echelle diffraction grating and MSM photodetector array,” IEEE Photonics J. 5(2), 6600807 (2013).
[Crossref]

Liew, S. F.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).
[Crossref]

Lin, H.

D. M. Kita, H. Lin, A. Agarwal, K. Richardson, I. Luzinov, T. Gu, and J. Hu, “On-chip infrared spectroscopic sensing: redefining the benefits of scaling,” IEEE J. Sel. Top. Quantum Electron. 23(2), 340–349 (2017).
[Crossref]

Lipson, M.

Loke, Y. C.

Lu, D. F.

Luzinov, I.

D. M. Kita, H. Lin, A. Agarwal, K. Richardson, I. Luzinov, T. Gu, and J. Hu, “On-chip infrared spectroscopic sensing: redefining the benefits of scaling,” IEEE J. Sel. Top. Quantum Electron. 23(2), 340–349 (2017).
[Crossref]

Ma, X.

X. Ma, M. Li, and J. J. He, “CMOS-compatible integrated spectrometer based on Echelle diffraction grating and MSM photodetector array,” IEEE Photonics J. 5(2), 6600807 (2013).
[Crossref]

Malik, A.

Martens, D.

Medhat, M.

Morand, A.

E. le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[Crossref]

Mortada, B.

Muneeb, M.

Nie, X.

Ohno, F.

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(2), 646–647 (2004).
[Crossref]

Omran, H.

Y. M. Sabry, H. Omran, and D. Khalil, “Intrinsic improvement of diffraction-limited resolution in optical MEMS Fourier-transform spectrometers,” inProceedings of 31th National Radio Science Conference, (2014) pp. 326–333.

Park, N.

K. Yu, D. Lee, U. Krishnamoorthy, N. Park, and O. Solgaard, “Micromachined Fourier transform spectrometer on silicon optical bench platform,” Sens. Actuators A Phys. 130–131, 523–530 (2006).
[Crossref]

Pathak, S.

Peyskens, F.

Podmore, H.

Qi, Z. M.

Redding, B.

B. Redding, S. Fatt Liew, Y. Bromberg, R. Sarma, and H. Cao, “Evanescently coupled multimode spiral spectrometer,” Optica 3(9), 956–962 (2016).
[Crossref]

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).
[Crossref]

Richardson, K.

D. M. Kita, H. Lin, A. Agarwal, K. Richardson, I. Luzinov, T. Gu, and J. Hu, “On-chip infrared spectroscopic sensing: redefining the benefits of scaling,” IEEE J. Sel. Top. Quantum Electron. 23(2), 340–349 (2017).
[Crossref]

Roelkens, G.

Rollier, A.

A. Rollier, B. Legrand, D. Collard, and L. Buchaillot, “The stability and pull-in voltage of electrostatic parallel-plate actuators in liquid solutions,” J. Micromech. Microeng. 16(4), 794–801 (2006).
[Crossref]

Royer, P.

E. le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[Crossref]

Ruocco, A.

Ryckeboer, E.

Sabry, Y. M.

M. Erfan, Y. M. Sabry, M. Sakr, B. Mortada, M. Medhat, and D. Khalil, “On-chip micro-electro-mechanical system Fourier transform infrared (MEMS FT-IR) spectrometer-based gas sensing,” Appl. Spectrosc. 70(5), 897–904 (2016).
[Crossref] [PubMed]

Y. M. Sabry, D. Khalil, and T. Bourouina, “Monolithic silicon-micromachined free-space optical interferometers onchip,” Laser Photonics Rev. 9(1), 1–24 (2015).
[Crossref]

Y. M. Sabry, H. Omran, and D. Khalil, “Intrinsic improvement of diffraction-limited resolution in optical MEMS Fourier-transform spectrometers,” inProceedings of 31th National Radio Science Conference, (2014) pp. 326–333.

Sakr, M.

Sarma, R.

B. Redding, S. Fatt Liew, Y. Bromberg, R. Sarma, and H. Cao, “Evanescently coupled multimode spiral spectrometer,” Optica 3(9), 956–962 (2016).
[Crossref]

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).
[Crossref]

Sasaki, T.

S. Abe, M. H. Chu, T. Sasaki, and K. Hane, “Time response of a microelectromechanical silicon photonic waveguide coupler switch,” IEEE Photonics Technol. Lett. 26(15), 1553–1556 (2014).
[Crossref]

Schmid, J. H.

Scott, A.

Solgaard, O.

K. Yu, D. Lee, U. Krishnamoorthy, N. Park, and O. Solgaard, “Micromachined Fourier transform spectrometer on silicon optical bench platform,” Sens. Actuators A Phys. 130–131, 523–530 (2006).
[Crossref]

Solheim, B.

M. Florjaczyk, P. Cheben, S. Janz, B. Lamontagne, J. Lapointe, A. Scott, B. Solheim, and D. X. Xu, “Development of a slab waveguide spatial heterodyne spectrometer for remote sensing,” in Proceedings of SPIE 7594, MOEMS and Miniaturized Systems IX, 75940R (2010).

Souza, M. C. M. M.

M. C. M. M. Souza, A. Grieco, N. C. Frateschi, and Y. Fainman, “Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction,” Nat. Commun. 9(1), 665 (2018).
[Crossref] [PubMed]

Stefanon, I.

E. le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[Crossref]

Subramanian, A. Z.

Tang, X.

Vachon, M.

Van Campenhout, J.

Van Dorpe, P.

Van Thourhout, D.

Velasco, A. V.

Wuytens, P.

Xie, W.

Xu, D. X.

A. Herrero-Bermello, A. V. Velasco, H. Podmore, P. Cheben, J. H. Schmid, S. Janz, M. L. Calvo, D. X. Xu, A. Scott, and P. Corredera, “Temperature dependence mitigation in stationary Fourier-transform on-chip spectrometers,” Opt. Lett. 42(11), 2239–2242 (2017).
[Crossref] [PubMed]

M. Florjaczyk, P. Cheben, S. Janz, B. Lamontagne, J. Lapointe, A. Scott, B. Solheim, and D. X. Xu, “Development of a slab waveguide spatial heterodyne spectrometer for remote sensing,” in Proceedings of SPIE 7594, MOEMS and Miniaturized Systems IX, 75940R (2010).

Yariv, A.

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
[Crossref]

Yu, H.

Yu, K.

K. Yu, D. Lee, U. Krishnamoorthy, N. Park, and O. Solgaard, “Micromachined Fourier transform spectrometer on silicon optical bench platform,” Sens. Actuators A Phys. 130–131, 523–530 (2006).
[Crossref]

Zhao, H.

Zhou, G.

Appl. Spectrosc. (1)

IEEE J. Quantum Electron. (1)

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

D. M. Kita, H. Lin, A. Agarwal, K. Richardson, I. Luzinov, T. Gu, and J. Hu, “On-chip infrared spectroscopic sensing: redefining the benefits of scaling,” IEEE J. Sel. Top. Quantum Electron. 23(2), 340–349 (2017).
[Crossref]

IEEE Photonics J. (1)

X. Ma, M. Li, and J. J. He, “CMOS-compatible integrated spectrometer based on Echelle diffraction grating and MSM photodetector array,” IEEE Photonics J. 5(2), 6600807 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S. Abe, M. H. Chu, T. Sasaki, and K. Hane, “Time response of a microelectromechanical silicon photonic waveguide coupler switch,” IEEE Photonics Technol. Lett. 26(15), 1553–1556 (2014).
[Crossref]

in Proceedings of SPIE 7594, MOEMS and Miniaturized Systems (1)

M. Florjaczyk, P. Cheben, S. Janz, B. Lamontagne, J. Lapointe, A. Scott, B. Solheim, and D. X. Xu, “Development of a slab waveguide spatial heterodyne spectrometer for remote sensing,” in Proceedings of SPIE 7594, MOEMS and Miniaturized Systems IX, 75940R (2010).

J. Micromech. Microeng. (1)

A. Rollier, B. Legrand, D. Collard, and L. Buchaillot, “The stability and pull-in voltage of electrostatic parallel-plate actuators in liquid solutions,” J. Micromech. Microeng. 16(4), 794–801 (2006).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(2), 646–647 (2004).
[Crossref]

Laser Photonics Rev. (1)

Y. M. Sabry, D. Khalil, and T. Bourouina, “Monolithic silicon-micromachined free-space optical interferometers onchip,” Laser Photonics Rev. 9(1), 1–24 (2015).
[Crossref]

Nat. Commun. (1)

M. C. M. M. Souza, A. Grieco, N. C. Frateschi, and Y. Fainman, “Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction,” Nat. Commun. 9(1), 665 (2018).
[Crossref] [PubMed]

Nat. Photonics (2)

E. le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[Crossref]

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).
[Crossref]

Nature (1)

J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523(7558), 67–70 (2015).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (3)

Optica (1)

Photon. Res. (1)

Sens. Actuators A Phys. (1)

K. Yu, D. Lee, U. Krishnamoorthy, N. Park, and O. Solgaard, “Micromachined Fourier transform spectrometer on silicon optical bench platform,” Sens. Actuators A Phys. 130–131, 523–530 (2006).
[Crossref]

Other (4)

D. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “Digital Fourier transform spectroscopy: a high-performance, scalable technology for on-chip spectrum analysis,” https://arxiv.org/abs/1802.05270 .

M. Harwit, Hadamard Transform Optics (The Netherlands: Elsevier, 1979).

A. Thorne, U. Litzen, and S. Johansson, Spectrophysics Principles and Applications (Springer, 1999).

Y. M. Sabry, H. Omran, and D. Khalil, “Intrinsic improvement of diffraction-limited resolution in optical MEMS Fourier-transform spectrometers,” inProceedings of 31th National Radio Science Conference, (2014) pp. 326–333.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) If two single waveguides are placed closed enough, two supermodes are formed. (b) Schematic of a typical directional coupler.
Fig. 2
Fig. 2 (a) System schematic of the spectrometer. (b) Out-of-plane bending actuation using electrostatic parallel plates. (c) In-plane actuation using electrostatic comb drives.
Fig. 3
Fig. 3 (a) Effective indices of SM0, SM1 and their difference ∆n. (b) Relationship between λ/∆n and wavelength λ.
Fig. 4
Fig. 4 The S-parameters (a) τ and (b) κ of the first stage, respectively, when waveguides are coupled. (c) The S-parameters τ of the first stage, when waveguides are decoupled.
Fig. 5
Fig. 5 (a) One target spectrum. (b) The interferograms collected in the through and coupled ports of the final stage. (c) The quasi-recovered spectrum which the horizontal axis is λ/∆n. (d) The final recovered spectrum.
Fig. 6
Fig. 6 Recovered spectrum vs. the original. The light spectrum has three Gaussian peaks with different intensities.
Fig. 7
Fig. 7 (a) Recovered spectra of single wavelength light source at 1.5, 1.6 and 1.7 μm. (b) Simulated FWHM resolution.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P through (L, λ 0 )= B 0 ( λ 0 ) cos 2 ( πΔn λ 0 L)
P coupled (L, λ 0 )= B 0 ( λ 0 ) sin 2 ( πΔn λ 0 L)
I D (x, λ 0 )=2 B 0 ( λ 0 )(1+cos( 2πx λ 0 )) =4 B 0 ( λ 0 ) cos 2 ( πx λ 0 )
P through (x, λ 0 )= B 0 ( λ 0 ) cos 2 ( πx λ 0 )
P coupled (x, λ 0 )= B 0 ( λ 0 ) sin 2 ( πx λ 0 )
( 0 E through E coupled 0 ) λ = ( 0 τ κ 0 τ 0 0 κ κ 0 0 τ 0 κ τ 0 ) λ ( E in 0 0 E isolated ) λ

Metrics