Abstract

With theoretical analyses and numerical calculations, we show that a passive scatterer at the sub-wavelength scale can simultaneously exhibit both nearly zero forward scattering (NZFS) and nearly zero backward scattering (NZBS). It is related to the interference of dipolar quadrupole modes of different origin, leading to coexistence of Kerker’s first and second conditions at the same time. For optical frequencies, we propose two different sets of composited materials in multi-layered nano-structures, i.e., CdTe/Si/TiO2 and TiO2/Au/Si, for the experimental realization.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broadband zero backward scattering by all-dielectric core-shell nanoparticles

Runmin Li, Xin Zhou, Mingcheng Panmai, Jin Xiang, Haiying Liu, Min Ouyang, Haihua Fan, Qiaofeng Dai, and Zhongchao Wei
Opt. Express 26(22) 28891-28901 (2018)

Multiple unidirectional forward scattering of hybrid metal-dielectric nanoantenna in the near-infrared region

Haiwei Mu, Jingwei Lv, Xiaoming Zhang, Xili Lu, Wei Liu, Qiang Liu, Famei Wang, Lin Yang, Chao Liu, Tao Sun, and Paul K. Chu
Opt. Mater. Express 8(11) 3410-3423 (2018)

Exception for the zero-forward-scattering theory

B. García-Cámara, F. González, F. Moreno, and J. M. Saiz
J. Opt. Soc. Am. A 25(11) 2875-2878 (2008)

References

  • View by:
  • |
  • |
  • |

  1. J. D. Jackson, Classical Electrodynamics (Wiley, 1975).
  2. P. Grahn, A. Shevchenko, and M. Kaivola, “Electromagnetic multipole theory for optical nanomaterials,” New J. Phys. 14, 093033 (2012).
    [Crossref]
  3. M. Kerker, D.-S. Wang, and C. L. Giles, “Electromagnetic scattering by magnetic spheres,” J. Opt. Soc. Am. 73, 765–767 (1983).
    [Crossref]
  4. A. Alú and N. Engheta, “How does zero forward-scattering in magnetodielectric nanoparticles comply with the optical theorem?” J. Nanophoton. 4, 041590 (2010).
    [Crossref]
  5. H. Ramachandran and N. Kumar, “Comment on “Experimental evidence of zero forward scattering by magnetic spheres”,” Phys. Rev. Lett. 100, 229703 (2008).
    [Crossref]
  6. J. Y. Lee, A. E. Miroshnichenko, and R.-K. Lee, “Reexamination of Kerker’s conditions by means of the phase diagram,” Phys. Rev. A 96, 043846 (2017).
    [Crossref]
  7. B. Rolly, B. Stout, and N. Bonod, “Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles,” Opt. Express 20, 20376–20386 (2012).
    [Crossref] [PubMed]
  8. R. P.- Dominguez, Y. F. Yu, A. E. Miroshnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. S. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalized Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
    [Crossref]
  9. M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
    [Crossref]
  10. A. I. Kuznetsov, A. E. Miroshnichenko, M. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, 2472 (2016).
    [Crossref]
  11. Y. S. Kivshar and A. E. Miroshnichenko, “Meta-optics with Mie resonances,” Opt. Photon. News 28, 24–31 (2017).
    [Crossref]
  12. S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).
    [Crossref] [PubMed]
  13. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
    [Crossref] [PubMed]
  14. M. I. Tribelsky, J.-M. Geffrin, A. Litman, C. Eyraud, and F. Moreno, “Small dielectric spheres with high refractive index as new multifunctional elements for optical devices,” Sci. Rep. 5, 12288 (2015).
    [Crossref] [PubMed]
  15. R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, “Experimental evidence of zero forward scattering by magnetic spheres,” Phys. Rev. Lett. 96, 127402 (2006).
    [Crossref] [PubMed]
  16. J. Y. Lee and R.-K. Lee, “Phase diagram for passive electromagnetic scatterers,” Opt. Express 24, 6480–6489 (2016).
    [Crossref] [PubMed]
  17. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  18. R. G. Newton, “Optical theorem and beyond,” Am. J. Phys. 44, 639 (1976).
    [Crossref]
  19. A. E. Miroshnichenko, “Non-Rayleigh limit of the Lorenz-Mie solution and suppression of scattering by spheres of negative refractive index,” Phys. Rev. A 80, 013808 (2009).
    [Crossref]
  20. W. Liu and Y. S. Kivshar, “Generalized Kerker effects in nanophotonics and meta-optics [Invited],” Opt. Express 26, 13085–13105 (2018).
    [Crossref] [PubMed]
  21. R. G. Chaudhuri and S. Paria, “Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications,” Chem. Rev. 112, 2373–2433 (2011).
    [Crossref]
  22. J.-Y. Lee, M.-C. Tsai, P.-C Chen, T.-T. Chen, K.-L. Chan, C.-Y. Lee, and R.-K. Lee, “Thickness effect on light absorption and scattering for nanoparticles in the shape of hollow spheres,” J. Phys. Chem. C 119, 25754–25760 (2015).
    [Crossref]
  23. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  24. P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96, 035443 (2017).
    [Crossref]
  25. A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
    [Crossref] [PubMed]

2018 (1)

2017 (3)

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96, 035443 (2017).
[Crossref]

J. Y. Lee, A. E. Miroshnichenko, and R.-K. Lee, “Reexamination of Kerker’s conditions by means of the phase diagram,” Phys. Rev. A 96, 043846 (2017).
[Crossref]

Y. S. Kivshar and A. E. Miroshnichenko, “Meta-optics with Mie resonances,” Opt. Photon. News 28, 24–31 (2017).
[Crossref]

2016 (3)

J. Y. Lee and R.-K. Lee, “Phase diagram for passive electromagnetic scatterers,” Opt. Express 24, 6480–6489 (2016).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, M. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, 2472 (2016).
[Crossref]

R. P.- Dominguez, Y. F. Yu, A. E. Miroshnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. S. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalized Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref]

2015 (4)

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

M. I. Tribelsky, J.-M. Geffrin, A. Litman, C. Eyraud, and F. Moreno, “Small dielectric spheres with high refractive index as new multifunctional elements for optical devices,” Sci. Rep. 5, 12288 (2015).
[Crossref] [PubMed]

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[Crossref] [PubMed]

J.-Y. Lee, M.-C. Tsai, P.-C Chen, T.-T. Chen, K.-L. Chan, C.-Y. Lee, and R.-K. Lee, “Thickness effect on light absorption and scattering for nanoparticles in the shape of hollow spheres,” J. Phys. Chem. C 119, 25754–25760 (2015).
[Crossref]

2013 (2)

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).
[Crossref] [PubMed]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

2012 (2)

B. Rolly, B. Stout, and N. Bonod, “Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles,” Opt. Express 20, 20376–20386 (2012).
[Crossref] [PubMed]

P. Grahn, A. Shevchenko, and M. Kaivola, “Electromagnetic multipole theory for optical nanomaterials,” New J. Phys. 14, 093033 (2012).
[Crossref]

2011 (1)

R. G. Chaudhuri and S. Paria, “Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications,” Chem. Rev. 112, 2373–2433 (2011).
[Crossref]

2010 (1)

A. Alú and N. Engheta, “How does zero forward-scattering in magnetodielectric nanoparticles comply with the optical theorem?” J. Nanophoton. 4, 041590 (2010).
[Crossref]

2009 (1)

A. E. Miroshnichenko, “Non-Rayleigh limit of the Lorenz-Mie solution and suppression of scattering by spheres of negative refractive index,” Phys. Rev. A 80, 013808 (2009).
[Crossref]

2008 (1)

H. Ramachandran and N. Kumar, “Comment on “Experimental evidence of zero forward scattering by magnetic spheres”,” Phys. Rev. Lett. 100, 229703 (2008).
[Crossref]

2006 (1)

R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, “Experimental evidence of zero forward scattering by magnetic spheres,” Phys. Rev. Lett. 96, 127402 (2006).
[Crossref] [PubMed]

1983 (1)

1976 (1)

R. G. Newton, “Optical theorem and beyond,” Am. J. Phys. 44, 639 (1976).
[Crossref]

Alú, A.

A. Alú and N. Engheta, “How does zero forward-scattering in magnetodielectric nanoparticles comply with the optical theorem?” J. Nanophoton. 4, 041590 (2010).
[Crossref]

Artemyev, Y. A.

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96, 035443 (2017).
[Crossref]

Bakker, R. M.

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[Crossref] [PubMed]

Baryshnikova, K. V.

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96, 035443 (2017).
[Crossref]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Bonod, N.

Brener, I.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Brongersma, M.

A. I. Kuznetsov, A. E. Miroshnichenko, M. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, 2472 (2016).
[Crossref]

Chan, K.-L.

J.-Y. Lee, M.-C. Tsai, P.-C Chen, T.-T. Chen, K.-L. Chan, C.-Y. Lee, and R.-K. Lee, “Thickness effect on light absorption and scattering for nanoparticles in the shape of hollow spheres,” J. Phys. Chem. C 119, 25754–25760 (2015).
[Crossref]

Chaudhuri, R. G.

R. G. Chaudhuri and S. Paria, “Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications,” Chem. Rev. 112, 2373–2433 (2011).
[Crossref]

Chen, P.-C

J.-Y. Lee, M.-C. Tsai, P.-C Chen, T.-T. Chen, K.-L. Chan, C.-Y. Lee, and R.-K. Lee, “Thickness effect on light absorption and scattering for nanoparticles in the shape of hollow spheres,” J. Phys. Chem. C 119, 25754–25760 (2015).
[Crossref]

Chen, T.-T.

J.-Y. Lee, M.-C. Tsai, P.-C Chen, T.-T. Chen, K.-L. Chan, C.-Y. Lee, and R.-K. Lee, “Thickness effect on light absorption and scattering for nanoparticles in the shape of hollow spheres,” J. Phys. Chem. C 119, 25754–25760 (2015).
[Crossref]

Chichkov, B. N.

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[Crossref] [PubMed]

Chipouline, A.

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[Crossref] [PubMed]

Decker, M.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Desai, R.

R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, “Experimental evidence of zero forward scattering by magnetic spheres,” Phys. Rev. Lett. 96, 127402 (2006).
[Crossref] [PubMed]

Dominguez, J.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Dominguez, R. P.-

R. P.- Dominguez, Y. F. Yu, A. E. Miroshnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. S. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalized Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref]

Engheta, N.

A. Alú and N. Engheta, “How does zero forward-scattering in magnetodielectric nanoparticles comply with the optical theorem?” J. Nanophoton. 4, 041590 (2010).
[Crossref]

Evlyukhin, A. B.

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96, 035443 (2017).
[Crossref]

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[Crossref] [PubMed]

Eyraud, C.

M. I. Tribelsky, J.-M. Geffrin, A. Litman, C. Eyraud, and F. Moreno, “Small dielectric spheres with high refractive index as new multifunctional elements for optical devices,” Sci. Rep. 5, 12288 (2015).
[Crossref] [PubMed]

Falkner, M.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Fu, Y. H.

R. P.- Dominguez, Y. F. Yu, A. E. Miroshnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. S. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalized Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Geffrin, J.-M.

M. I. Tribelsky, J.-M. Geffrin, A. Litman, C. Eyraud, and F. Moreno, “Small dielectric spheres with high refractive index as new multifunctional elements for optical devices,” Sci. Rep. 5, 12288 (2015).
[Crossref] [PubMed]

Giles, C. L.

Gonzaga, L.

R. P.- Dominguez, Y. F. Yu, A. E. Miroshnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. S. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalized Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref]

Grahn, P.

P. Grahn, A. Shevchenko, and M. Kaivola, “Electromagnetic multipole theory for optical nanomaterials,” New J. Phys. 14, 093033 (2012).
[Crossref]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, 1975).

Jain, M.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).
[Crossref] [PubMed]

Kaivola, M.

P. Grahn, A. Shevchenko, and M. Kaivola, “Electromagnetic multipole theory for optical nanomaterials,” New J. Phys. 14, 093033 (2012).
[Crossref]

Karabchevsky, A.

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96, 035443 (2017).
[Crossref]

Kay, A. Y. S.

R. P.- Dominguez, Y. F. Yu, A. E. Miroshnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. S. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalized Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref]

Kerker, M.

Kivshar, Y. S.

W. Liu and Y. S. Kivshar, “Generalized Kerker effects in nanophotonics and meta-optics [Invited],” Opt. Express 26, 13085–13105 (2018).
[Crossref] [PubMed]

Y. S. Kivshar and A. E. Miroshnichenko, “Meta-optics with Mie resonances,” Opt. Photon. News 28, 24–31 (2017).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, 2472 (2016).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[Crossref] [PubMed]

Krivitsky, L. A.

R. P.- Dominguez, Y. F. Yu, A. E. Miroshnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. S. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalized Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref]

Kumar, N.

H. Ramachandran and N. Kumar, “Comment on “Experimental evidence of zero forward scattering by magnetic spheres”,” Phys. Rev. Lett. 100, 229703 (2008).
[Crossref]

Kuznetsov, A. I.

R. P.- Dominguez, Y. F. Yu, A. E. Miroshnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. S. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalized Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, 2472 (2016).
[Crossref]

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[Crossref] [PubMed]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Lapin, Z.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).
[Crossref] [PubMed]

Lee, C.-Y.

J.-Y. Lee, M.-C. Tsai, P.-C Chen, T.-T. Chen, K.-L. Chan, C.-Y. Lee, and R.-K. Lee, “Thickness effect on light absorption and scattering for nanoparticles in the shape of hollow spheres,” J. Phys. Chem. C 119, 25754–25760 (2015).
[Crossref]

Lee, J. Y.

J. Y. Lee, A. E. Miroshnichenko, and R.-K. Lee, “Reexamination of Kerker’s conditions by means of the phase diagram,” Phys. Rev. A 96, 043846 (2017).
[Crossref]

J. Y. Lee and R.-K. Lee, “Phase diagram for passive electromagnetic scatterers,” Opt. Express 24, 6480–6489 (2016).
[Crossref] [PubMed]

Lee, J.-Y.

J.-Y. Lee, M.-C. Tsai, P.-C Chen, T.-T. Chen, K.-L. Chan, C.-Y. Lee, and R.-K. Lee, “Thickness effect on light absorption and scattering for nanoparticles in the shape of hollow spheres,” J. Phys. Chem. C 119, 25754–25760 (2015).
[Crossref]

Lee, R.-K.

J. Y. Lee, A. E. Miroshnichenko, and R.-K. Lee, “Reexamination of Kerker’s conditions by means of the phase diagram,” Phys. Rev. A 96, 043846 (2017).
[Crossref]

J. Y. Lee and R.-K. Lee, “Phase diagram for passive electromagnetic scatterers,” Opt. Express 24, 6480–6489 (2016).
[Crossref] [PubMed]

J.-Y. Lee, M.-C. Tsai, P.-C Chen, T.-T. Chen, K.-L. Chan, C.-Y. Lee, and R.-K. Lee, “Thickness effect on light absorption and scattering for nanoparticles in the shape of hollow spheres,” J. Phys. Chem. C 119, 25754–25760 (2015).
[Crossref]

Litman, A.

M. I. Tribelsky, J.-M. Geffrin, A. Litman, C. Eyraud, and F. Moreno, “Small dielectric spheres with high refractive index as new multifunctional elements for optical devices,” Sci. Rep. 5, 12288 (2015).
[Crossref] [PubMed]

Liu, W.

Luk’yanchuk, B.

A. I. Kuznetsov, A. E. Miroshnichenko, M. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, 2472 (2016).
[Crossref]

R. P.- Dominguez, Y. F. Yu, A. E. Miroshnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. S. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalized Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref]

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[Crossref] [PubMed]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Mehta, R. V.

R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, “Experimental evidence of zero forward scattering by magnetic spheres,” Phys. Rev. Lett. 96, 127402 (2006).
[Crossref] [PubMed]

Miroshnichenko, A. E.

J. Y. Lee, A. E. Miroshnichenko, and R.-K. Lee, “Reexamination of Kerker’s conditions by means of the phase diagram,” Phys. Rev. A 96, 043846 (2017).
[Crossref]

Y. S. Kivshar and A. E. Miroshnichenko, “Meta-optics with Mie resonances,” Opt. Photon. News 28, 24–31 (2017).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, 2472 (2016).
[Crossref]

R. P.- Dominguez, Y. F. Yu, A. E. Miroshnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. S. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalized Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref]

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[Crossref] [PubMed]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

A. E. Miroshnichenko, “Non-Rayleigh limit of the Lorenz-Mie solution and suppression of scattering by spheres of negative refractive index,” Phys. Rev. A 80, 013808 (2009).
[Crossref]

Moreno, F.

M. I. Tribelsky, J.-M. Geffrin, A. Litman, C. Eyraud, and F. Moreno, “Small dielectric spheres with high refractive index as new multifunctional elements for optical devices,” Sci. Rep. 5, 12288 (2015).
[Crossref] [PubMed]

Neshev, D. N.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Newton, R. G.

R. G. Newton, “Optical theorem and beyond,” Am. J. Phys. 44, 639 (1976).
[Crossref]

Novotny, L.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).
[Crossref] [PubMed]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

Parekh, K.

R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, “Experimental evidence of zero forward scattering by magnetic spheres,” Phys. Rev. Lett. 96, 127402 (2006).
[Crossref] [PubMed]

Paria, S.

R. G. Chaudhuri and S. Paria, “Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications,” Chem. Rev. 112, 2373–2433 (2011).
[Crossref]

Patel, R.

R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, “Experimental evidence of zero forward scattering by magnetic spheres,” Phys. Rev. Lett. 96, 127402 (2006).
[Crossref] [PubMed]

Person, S.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).
[Crossref] [PubMed]

Pertsch, T.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Ramachandran, H.

H. Ramachandran and N. Kumar, “Comment on “Experimental evidence of zero forward scattering by magnetic spheres”,” Phys. Rev. Lett. 100, 229703 (2008).
[Crossref]

Rolly, B.

Sáenz, J. J.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).
[Crossref] [PubMed]

Shalin, A. S.

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96, 035443 (2017).
[Crossref]

Shevchenko, A.

P. Grahn, A. Shevchenko, and M. Kaivola, “Electromagnetic multipole theory for optical nanomaterials,” New J. Phys. 14, 093033 (2012).
[Crossref]

Staude, I.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Stout, B.

Terekhov, P. D.

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96, 035443 (2017).
[Crossref]

Toh, Y. T.

R. P.- Dominguez, Y. F. Yu, A. E. Miroshnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. S. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalized Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref]

Tribelsky, M. I.

M. I. Tribelsky, J.-M. Geffrin, A. Litman, C. Eyraud, and F. Moreno, “Small dielectric spheres with high refractive index as new multifunctional elements for optical devices,” Sci. Rep. 5, 12288 (2015).
[Crossref] [PubMed]

Tsai, M.-C.

J.-Y. Lee, M.-C. Tsai, P.-C Chen, T.-T. Chen, K.-L. Chan, C.-Y. Lee, and R.-K. Lee, “Thickness effect on light absorption and scattering for nanoparticles in the shape of hollow spheres,” J. Phys. Chem. C 119, 25754–25760 (2015).
[Crossref]

Upadhyay, R. V.

R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, “Experimental evidence of zero forward scattering by magnetic spheres,” Phys. Rev. Lett. 96, 127402 (2006).
[Crossref] [PubMed]

Valuckas, V.

R. P.- Dominguez, Y. F. Yu, A. E. Miroshnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. S. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalized Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref]

Wang, D.-S.

Wicks, G.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).
[Crossref] [PubMed]

Yu, Y. F.

R. P.- Dominguez, Y. F. Yu, A. E. Miroshnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. S. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalized Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref]

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[Crossref] [PubMed]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Am. J. Phys. (1)

R. G. Newton, “Optical theorem and beyond,” Am. J. Phys. 44, 639 (1976).
[Crossref]

Chem. Rev. (1)

R. G. Chaudhuri and S. Paria, “Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications,” Chem. Rev. 112, 2373–2433 (2011).
[Crossref]

J. Nanophoton. (1)

A. Alú and N. Engheta, “How does zero forward-scattering in magnetodielectric nanoparticles comply with the optical theorem?” J. Nanophoton. 4, 041590 (2010).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. Chem. C (1)

J.-Y. Lee, M.-C. Tsai, P.-C Chen, T.-T. Chen, K.-L. Chan, C.-Y. Lee, and R.-K. Lee, “Thickness effect on light absorption and scattering for nanoparticles in the shape of hollow spheres,” J. Phys. Chem. C 119, 25754–25760 (2015).
[Crossref]

Nano Lett. (1)

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).
[Crossref] [PubMed]

Nat. Commun. (3)

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

R. P.- Dominguez, Y. F. Yu, A. E. Miroshnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. S. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalized Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref]

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[Crossref] [PubMed]

New J. Phys. (1)

P. Grahn, A. Shevchenko, and M. Kaivola, “Electromagnetic multipole theory for optical nanomaterials,” New J. Phys. 14, 093033 (2012).
[Crossref]

Opt. Express (3)

Opt. Photon. News (1)

Y. S. Kivshar and A. E. Miroshnichenko, “Meta-optics with Mie resonances,” Opt. Photon. News 28, 24–31 (2017).
[Crossref]

Phys. Rev. A (2)

J. Y. Lee, A. E. Miroshnichenko, and R.-K. Lee, “Reexamination of Kerker’s conditions by means of the phase diagram,” Phys. Rev. A 96, 043846 (2017).
[Crossref]

A. E. Miroshnichenko, “Non-Rayleigh limit of the Lorenz-Mie solution and suppression of scattering by spheres of negative refractive index,” Phys. Rev. A 80, 013808 (2009).
[Crossref]

Phys. Rev. B (1)

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96, 035443 (2017).
[Crossref]

Phys. Rev. Lett. (2)

H. Ramachandran and N. Kumar, “Comment on “Experimental evidence of zero forward scattering by magnetic spheres”,” Phys. Rev. Lett. 100, 229703 (2008).
[Crossref]

R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, “Experimental evidence of zero forward scattering by magnetic spheres,” Phys. Rev. Lett. 96, 127402 (2006).
[Crossref] [PubMed]

Sci. Rep. (1)

M. I. Tribelsky, J.-M. Geffrin, A. Litman, C. Eyraud, and F. Moreno, “Small dielectric spheres with high refractive index as new multifunctional elements for optical devices,” Sci. Rep. 5, 12288 (2015).
[Crossref] [PubMed]

Science (1)

A. I. Kuznetsov, A. E. Miroshnichenko, M. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, 2472 (2016).
[Crossref]

Other (3)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

J. D. Jackson, Classical Electrodynamics (Wiley, 1975).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1 (a)–(b) Scattered electric field patterns for electric dipole (ED), magnetic dipole (MD), electric quadrupole (EQ), and magnetic quadrupole (MQ) in plane (solid line) and in ŷ plane (dash line). Yellow arrows denote the scattered electric fields in forward and backward directions, whose upper and downward represent out of phase and in phase to incident electric field. (c) Localizations in phase diagram for the dominant four multipoles: a1, b1, a2, and b2. Inset depicts our studying system, which is a three-layered nano-sphere. (d) Forward, backward, and total scattering cross sections, as a function of incident wavelength from 480nm to 520nm. (e) The corresponding spectra for the absolute values of these four lowest multipole moments. At the operation wavelength λ = 500nm, the resulting (f)–(h) 3D and 2D radiation patterns at (g) φ = 0 and (h) φ = π/2, along plane and ŷ plane, respectively.
Fig. 2
Fig. 2 (a) Spectra for forward, backward, and total scattering cross sections within λ = 720nm to 770nm; and (b) spectra for the absolute values of four dominant scattering coefficients, with (c) their locations in phase digram. At the operation wavelength λ = 748.7nm, the resulting (d) 3D and 2D radiation patterns, along (e) plane and (f) ŷ plane. If material loss is taken into account, the corresponding 3D radiation pattern is depicted in (g).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d σ scat d Ω = 1 k 0 2 { cos 2 ϕ | S | | ( θ ) | 2 + sin 2 ϕ | S ( θ ) | 2 } .
S | | ( θ ) n = 1 n = 2 n + 1 n ( n + 1 ) [ a n d P n ( 1 ) ( cos θ ) d θ + b n P n ( 1 ) ( cos θ ) sin θ ] , S ( θ ) n = 1 n = 2 n + 1 n ( n + 1 ) [ b n d P n ( 1 ) ( cos θ ) d θ + a n P n ( 1 ) ( cos θ ) sin θ ] ,
3 b 1 + 3 a 1 cos θ = 5 b 2 cos θ 5 a 2 ( 1 2 sin 2 θ ) ,
3 b 1 cos θ + 3 a 1 = 5 b 2 ( 1 2 sin 2 θ ) 5 a 2 cos θ .
a 1 = 5 3 b 2 ; b 1 = 5 3 a 2 .
d σ scat d Ω cos 2 ϕ sin 4 θ | a 2 | 2 + sin 2 ϕ sin 4 θ | b 2 | 2 ,

Metrics