Abstract

High resolution spectroscopy, metrology and quantum technologies (e.g. trapping and cooling) require precision laser sources with narrow linewidth and wavelength tunability. The widespread use of these lasers will be promoted if they are cost-effective, compact and efficient. Alexandrite lasers with a broad tuning band pumped efficiently by low-cost red diodes are a potential candidate, but full performance as a precision light source has not been fully achieved. We present in this work the first continuous-wave (CW) and single-frequency operation of a unidirectional diode-end-pumped Alexandrite ring laser with wavelength tunability. An ultra-compact bow-tie ring cavity is developed with astigmatic compensation and a novel ‘displaced mode’ design producing CW output power > 1 W in excellent TEM00 mode (M2 < 1.2) when using a low brightness pump (M2 ≥ 30). Wavelength tuning from 727 - 792 nm is demonstrated using a birefringent filter plate. This successful operation opens the prospects of precision light source applications.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Diode-pumped Alexandrite lasers in Q-switched and cavity-dumped Q-switched operation

G. M. Thomas, A. Minassian, X. Sheng, and M. J. Damzen
Opt. Express 24(24) 27212-27224 (2016)

Tapered diode-pumped continuous-wave alexandrite laser

Ersen Beyatli, Ilyes Baali, Bernd Sumpf, Götz Erbert, Alfred Leitenstorfer, Alphan Sennaroglu, and Umit Demirbas
J. Opt. Soc. Am. B 30(12) 3184-3192 (2013)

Unidirectional single-frequency operation of a Nd:YVO4 ring laser with and without a Faraday element

Benjamin A. Thompson, Ara Minassian, and Michael J. Damzen
Appl. Opt. 43(15) 3174-3177 (2004)

References

  • View by:
  • |
  • |
  • |

  1. R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56(23), 2288–2290 (1990).
    [Crossref]
  2. R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an Alexandrite laser,” Opt. Commun. 97(5–6), 363–366 (1993).
    [Crossref]
  3. X. Peng, A. Marrakchi, J. C. Walling, and D. F. Heller, “Watt-level red and UV output from a CW diode array pumped tunable Alexandrite laser,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2005), paper CMAA5.
    [Crossref]
  4. E. Beyatli, I. Baali, B. Sumpf, G. Erbert, A. Leitenstorfer, A. Sennaroglu, and U. Demirbas, “Tapered diode pumped continuous-wave alexandrite laser,” J. Opt. Soc. Am. B 30(12), 3184–3192 (2013).
    [Crossref]
  5. I. Yorulmaz, E. Beyatli, A. Kurt, A. Sennaroglu, and U. Demirbas, “Efficient and low-threshold Alexandrite laser pumped by a single-mode diode,” Opt. Mater. Express 4(4), 776–789 (2014).
    [Crossref]
  6. A. Teppitaksak, A. Minassian, G. M. Thomas, and M. J. Damzen, “High efficiency >26 W diode end-pumped Alexandrite laser,” Opt. Express 22(13), 16386–16392 (2014).
    [Crossref] [PubMed]
  7. E. Arbabzadah and M. Damzen, “Fibre-coupled red diode-pumped alexandrite TEM00 laser with single and double-pass end-pumping,” Laser Phys. Lett. 13(6), 065002 (2016).
    [Crossref]
  8. G. M. Thomas, A. Minassian, X. Sheng, and M. J. Damzen, “Diode-pumped Alexandrite lasers in Q-switched and cavity-dumped Q-switched operation,” Opt. Express 24(24), 27212–27224 (2016).
    [Crossref] [PubMed]
  9. M. J. Damzen, G. M. Thomas, and A. Minassian, “Diode-side-pumped Alexandrite slab lasers,” Opt. Express 25(10), 11622–11636 (2017).
    [Crossref] [PubMed]
  10. W. R. Kerridge-Johns and M. J. Damzen, “Temperature effects on tunable cw Alexandrite lasers under diode end-pumping,” Opt. Express 26(6), 7771–7785 (2018).
    [Crossref] [PubMed]
  11. U. Parali, X. Sheng, A. Minassian, G. Tawy, J. Sathian, G. M. Thomas, and M. J. Damzen, “Diode-pumped Alexandrite laser with passive SESAM Q-switching and wavelength tunability,” Opt. Commun. 410, 970–976 (2018).
    [Crossref]
  12. A. Munk, B. Jungbluth, M. Strotkamp, S. Gaussmann, D. Hoffmann, R. Poprawe, and J. Hoeffner, “Diode pumped Alexandrite ring laser,” in Proc. Advanced Solid State Lasers (Optical Society of America, 2015), paper ATh2A.46.
  13. A. Munk, B. Jungbluth, M. Strotkamp, H.-D. Hoffmann, R. Poprawe, J. Höffner, and F.-J. Lübken, “Diode-pumped alexandrite ring laser in single-longitudinal mode operation for atmospheric lidar measurements,” Opt. Express 26(12), 14928–14935 (2018).
    [Crossref] [PubMed]
  14. J. Walling, O. Peterson, H. Jenssen, R. Morris, and E. O’Dell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
    [Crossref]
  15. J. W. Kuper, T. Chin, and H. E. Aschoff, “Extended Tuning Range of Alexandrite at Elevated Temperatures,” in Advanced Solid State Lasers, Vol. 6 of OSA Proceedings Series (Optical Society of America, 1990), paper CL3.
  16. J. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. Pete, and R. C. Morris, “Tunable alexandrite lasers: Development and performance,” IEEE J. Quantum Electron. 21(10), 1568–1581 (1985).
    [Crossref]
  17. V. Wulfmeyer and J. Bösenberg, “Single-mode operation of an injection-seeded alexandrite ring laser for application in water-vapor and temperature differential absorption lidar,” Opt. Lett. 21(15), 1150–1152 (1996).
    [Crossref] [PubMed]
  18. V. Wulfmeyer, “Ground-based differential absorption lidar for water-vapor and temperature profiling: development and specifications of a high-performance laser transmitter,” Appl. Opt. 37(18), 3804–3824 (1998).
    [Crossref] [PubMed]
  19. S. C. Collins, T. D. Wilkerson, V. B. Wickwar, D. Rees, J. C. Walling, and D. F. Heller, “The alexandrite ring laser: A spectrally narrow lidar light source for atmospheric fluorescence and absorption observations,” in Advances in atmospheric remote sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, and U. Wandinger, ed. (Springer Verlag, Berlin, 1997).
  20. X. Chu, “Alexandrite-ring-laser-based Fe Doppler lidar for mobile/airborne deployment,” in Proceeding of the 23rd International Laser Radar Conference (2006), pp. 385–388.
  21. P. Bakule, P. E. G. Baird, M. G. Boshier, S. L. Cornish, D. F. Heller, K. Jungmann, I. C. Lane, V. Meyer, P. H. G. Sandars, W. T. Toner, M. Towrie, and J. C. Walling, “A chirp-compensated, injection-seeded alexandrite laser,” Appl. Phys. B 71(1), 11–17 (2000).
    [Crossref]
  22. S. Burd, D. Leibfried, A. C. Wilson, and D. J. Wineland, “Optically pumped semiconductor lasers for atomic and molecular physics,” Proc. SPIE 9349, 93490P (2015).
    [Crossref]
  23. D. M. Kane, “Ti:sapphire laser cavity mode and pump-laser mode calculations,” Appl. Opt. 33(18), 3849–3856 (1994).
    [Crossref] [PubMed]
  24. H. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. 8(3), 373–379 (1972).
    [Crossref]
  25. B. Zhou, T. J. Kane, G. J. Dixon, and R. L. Byer, “Efficient, frequency-stable laser-diode-pumped Nd:YAG laser,” Opt. Lett. 10(2), 62–64 (1985).
    [Crossref] [PubMed]
  26. R. A. Fields, M. Birnbaum, and C. L. Fincher, “Highly efficient Nd:YVO4 diode-laser end-pumped laser,” Appl. Phys. Lett. 51(23), 1885–1886 (1987).
    [Crossref]
  27. D. L. Sipes, “Highly efficient neodymium: yttrium aluminum garnet lasers end pumped by a semiconductor laser array,” Appl. Phys. Lett. 47(2), 74–76 (1985).
    [Crossref]

2018 (3)

2017 (1)

2016 (2)

G. M. Thomas, A. Minassian, X. Sheng, and M. J. Damzen, “Diode-pumped Alexandrite lasers in Q-switched and cavity-dumped Q-switched operation,” Opt. Express 24(24), 27212–27224 (2016).
[Crossref] [PubMed]

E. Arbabzadah and M. Damzen, “Fibre-coupled red diode-pumped alexandrite TEM00 laser with single and double-pass end-pumping,” Laser Phys. Lett. 13(6), 065002 (2016).
[Crossref]

2015 (1)

S. Burd, D. Leibfried, A. C. Wilson, and D. J. Wineland, “Optically pumped semiconductor lasers for atomic and molecular physics,” Proc. SPIE 9349, 93490P (2015).
[Crossref]

2014 (2)

2013 (1)

2000 (1)

P. Bakule, P. E. G. Baird, M. G. Boshier, S. L. Cornish, D. F. Heller, K. Jungmann, I. C. Lane, V. Meyer, P. H. G. Sandars, W. T. Toner, M. Towrie, and J. C. Walling, “A chirp-compensated, injection-seeded alexandrite laser,” Appl. Phys. B 71(1), 11–17 (2000).
[Crossref]

1998 (1)

1996 (1)

1994 (1)

1993 (1)

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an Alexandrite laser,” Opt. Commun. 97(5–6), 363–366 (1993).
[Crossref]

1990 (1)

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56(23), 2288–2290 (1990).
[Crossref]

1987 (1)

R. A. Fields, M. Birnbaum, and C. L. Fincher, “Highly efficient Nd:YVO4 diode-laser end-pumped laser,” Appl. Phys. Lett. 51(23), 1885–1886 (1987).
[Crossref]

1985 (3)

D. L. Sipes, “Highly efficient neodymium: yttrium aluminum garnet lasers end pumped by a semiconductor laser array,” Appl. Phys. Lett. 47(2), 74–76 (1985).
[Crossref]

B. Zhou, T. J. Kane, G. J. Dixon, and R. L. Byer, “Efficient, frequency-stable laser-diode-pumped Nd:YAG laser,” Opt. Lett. 10(2), 62–64 (1985).
[Crossref] [PubMed]

J. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. Pete, and R. C. Morris, “Tunable alexandrite lasers: Development and performance,” IEEE J. Quantum Electron. 21(10), 1568–1581 (1985).
[Crossref]

1980 (1)

J. Walling, O. Peterson, H. Jenssen, R. Morris, and E. O’Dell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[Crossref]

1972 (1)

H. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. 8(3), 373–379 (1972).
[Crossref]

Arbabzadah, E.

E. Arbabzadah and M. Damzen, “Fibre-coupled red diode-pumped alexandrite TEM00 laser with single and double-pass end-pumping,” Laser Phys. Lett. 13(6), 065002 (2016).
[Crossref]

Baali, I.

Baird, P. E. G.

P. Bakule, P. E. G. Baird, M. G. Boshier, S. L. Cornish, D. F. Heller, K. Jungmann, I. C. Lane, V. Meyer, P. H. G. Sandars, W. T. Toner, M. Towrie, and J. C. Walling, “A chirp-compensated, injection-seeded alexandrite laser,” Appl. Phys. B 71(1), 11–17 (2000).
[Crossref]

Bakule, P.

P. Bakule, P. E. G. Baird, M. G. Boshier, S. L. Cornish, D. F. Heller, K. Jungmann, I. C. Lane, V. Meyer, P. H. G. Sandars, W. T. Toner, M. Towrie, and J. C. Walling, “A chirp-compensated, injection-seeded alexandrite laser,” Appl. Phys. B 71(1), 11–17 (2000).
[Crossref]

Beyatli, E.

Birnbaum, M.

R. A. Fields, M. Birnbaum, and C. L. Fincher, “Highly efficient Nd:YVO4 diode-laser end-pumped laser,” Appl. Phys. Lett. 51(23), 1885–1886 (1987).
[Crossref]

Bösenberg, J.

Boshier, M. G.

P. Bakule, P. E. G. Baird, M. G. Boshier, S. L. Cornish, D. F. Heller, K. Jungmann, I. C. Lane, V. Meyer, P. H. G. Sandars, W. T. Toner, M. Towrie, and J. C. Walling, “A chirp-compensated, injection-seeded alexandrite laser,” Appl. Phys. B 71(1), 11–17 (2000).
[Crossref]

Burd, S.

S. Burd, D. Leibfried, A. C. Wilson, and D. J. Wineland, “Optically pumped semiconductor lasers for atomic and molecular physics,” Proc. SPIE 9349, 93490P (2015).
[Crossref]

Byer, R. L.

Chu, X.

X. Chu, “Alexandrite-ring-laser-based Fe Doppler lidar for mobile/airborne deployment,” in Proceeding of the 23rd International Laser Radar Conference (2006), pp. 385–388.

Cornish, S. L.

P. Bakule, P. E. G. Baird, M. G. Boshier, S. L. Cornish, D. F. Heller, K. Jungmann, I. C. Lane, V. Meyer, P. H. G. Sandars, W. T. Toner, M. Towrie, and J. C. Walling, “A chirp-compensated, injection-seeded alexandrite laser,” Appl. Phys. B 71(1), 11–17 (2000).
[Crossref]

Damzen, M.

E. Arbabzadah and M. Damzen, “Fibre-coupled red diode-pumped alexandrite TEM00 laser with single and double-pass end-pumping,” Laser Phys. Lett. 13(6), 065002 (2016).
[Crossref]

Damzen, M. J.

Demirbas, U.

Dienes, A.

H. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. 8(3), 373–379 (1972).
[Crossref]

Dixon, G. J.

Erbert, G.

Fields, R. A.

R. A. Fields, M. Birnbaum, and C. L. Fincher, “Highly efficient Nd:YVO4 diode-laser end-pumped laser,” Appl. Phys. Lett. 51(23), 1885–1886 (1987).
[Crossref]

Fincher, C. L.

R. A. Fields, M. Birnbaum, and C. L. Fincher, “Highly efficient Nd:YVO4 diode-laser end-pumped laser,” Appl. Phys. Lett. 51(23), 1885–1886 (1987).
[Crossref]

Gately, B. M.

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56(23), 2288–2290 (1990).
[Crossref]

Glesne, T. R.

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an Alexandrite laser,” Opt. Commun. 97(5–6), 363–366 (1993).
[Crossref]

Harter, D. J.

J. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. Pete, and R. C. Morris, “Tunable alexandrite lasers: Development and performance,” IEEE J. Quantum Electron. 21(10), 1568–1581 (1985).
[Crossref]

Heller, D. F.

P. Bakule, P. E. G. Baird, M. G. Boshier, S. L. Cornish, D. F. Heller, K. Jungmann, I. C. Lane, V. Meyer, P. H. G. Sandars, W. T. Toner, M. Towrie, and J. C. Walling, “A chirp-compensated, injection-seeded alexandrite laser,” Appl. Phys. B 71(1), 11–17 (2000).
[Crossref]

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56(23), 2288–2290 (1990).
[Crossref]

J. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. Pete, and R. C. Morris, “Tunable alexandrite lasers: Development and performance,” IEEE J. Quantum Electron. 21(10), 1568–1581 (1985).
[Crossref]

X. Peng, A. Marrakchi, J. C. Walling, and D. F. Heller, “Watt-level red and UV output from a CW diode array pumped tunable Alexandrite laser,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2005), paper CMAA5.
[Crossref]

Hoffmann, H.-D.

Höffner, J.

Ippen, E. P.

H. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. 8(3), 373–379 (1972).
[Crossref]

Jenssen, H.

J. Walling, O. Peterson, H. Jenssen, R. Morris, and E. O’Dell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[Crossref]

Jungbluth, B.

Jungmann, K.

P. Bakule, P. E. G. Baird, M. G. Boshier, S. L. Cornish, D. F. Heller, K. Jungmann, I. C. Lane, V. Meyer, P. H. G. Sandars, W. T. Toner, M. Towrie, and J. C. Walling, “A chirp-compensated, injection-seeded alexandrite laser,” Appl. Phys. B 71(1), 11–17 (2000).
[Crossref]

Kane, D. M.

Kane, T. J.

Kerridge-Johns, W. R.

Kogelnik, H.

H. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. 8(3), 373–379 (1972).
[Crossref]

Krasinski, J. S.

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56(23), 2288–2290 (1990).
[Crossref]

Kurt, A.

Lane, I. C.

P. Bakule, P. E. G. Baird, M. G. Boshier, S. L. Cornish, D. F. Heller, K. Jungmann, I. C. Lane, V. Meyer, P. H. G. Sandars, W. T. Toner, M. Towrie, and J. C. Walling, “A chirp-compensated, injection-seeded alexandrite laser,” Appl. Phys. B 71(1), 11–17 (2000).
[Crossref]

Leibfried, D.

S. Burd, D. Leibfried, A. C. Wilson, and D. J. Wineland, “Optically pumped semiconductor lasers for atomic and molecular physics,” Proc. SPIE 9349, 93490P (2015).
[Crossref]

Leitenstorfer, A.

Lübken, F.-J.

Marrakchi, A.

X. Peng, A. Marrakchi, J. C. Walling, and D. F. Heller, “Watt-level red and UV output from a CW diode array pumped tunable Alexandrite laser,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2005), paper CMAA5.
[Crossref]

Meyer, V.

P. Bakule, P. E. G. Baird, M. G. Boshier, S. L. Cornish, D. F. Heller, K. Jungmann, I. C. Lane, V. Meyer, P. H. G. Sandars, W. T. Toner, M. Towrie, and J. C. Walling, “A chirp-compensated, injection-seeded alexandrite laser,” Appl. Phys. B 71(1), 11–17 (2000).
[Crossref]

Minassian, A.

Morris, R.

J. Walling, O. Peterson, H. Jenssen, R. Morris, and E. O’Dell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[Crossref]

Morris, R. C.

J. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. Pete, and R. C. Morris, “Tunable alexandrite lasers: Development and performance,” IEEE J. Quantum Electron. 21(10), 1568–1581 (1985).
[Crossref]

Munk, A.

Myers, J. F.

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an Alexandrite laser,” Opt. Commun. 97(5–6), 363–366 (1993).
[Crossref]

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56(23), 2288–2290 (1990).
[Crossref]

O’Dell, E.

J. Walling, O. Peterson, H. Jenssen, R. Morris, and E. O’Dell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[Crossref]

Parali, U.

U. Parali, X. Sheng, A. Minassian, G. Tawy, J. Sathian, G. M. Thomas, and M. J. Damzen, “Diode-pumped Alexandrite laser with passive SESAM Q-switching and wavelength tunability,” Opt. Commun. 410, 970–976 (2018).
[Crossref]

Peng, X.

X. Peng, A. Marrakchi, J. C. Walling, and D. F. Heller, “Watt-level red and UV output from a CW diode array pumped tunable Alexandrite laser,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2005), paper CMAA5.
[Crossref]

Pete, J.

J. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. Pete, and R. C. Morris, “Tunable alexandrite lasers: Development and performance,” IEEE J. Quantum Electron. 21(10), 1568–1581 (1985).
[Crossref]

Peterson, O.

J. Walling, O. Peterson, H. Jenssen, R. Morris, and E. O’Dell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[Crossref]

Poprawe, R.

Samelson, H.

J. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. Pete, and R. C. Morris, “Tunable alexandrite lasers: Development and performance,” IEEE J. Quantum Electron. 21(10), 1568–1581 (1985).
[Crossref]

Sandars, P. H. G.

P. Bakule, P. E. G. Baird, M. G. Boshier, S. L. Cornish, D. F. Heller, K. Jungmann, I. C. Lane, V. Meyer, P. H. G. Sandars, W. T. Toner, M. Towrie, and J. C. Walling, “A chirp-compensated, injection-seeded alexandrite laser,” Appl. Phys. B 71(1), 11–17 (2000).
[Crossref]

Sathian, J.

U. Parali, X. Sheng, A. Minassian, G. Tawy, J. Sathian, G. M. Thomas, and M. J. Damzen, “Diode-pumped Alexandrite laser with passive SESAM Q-switching and wavelength tunability,” Opt. Commun. 410, 970–976 (2018).
[Crossref]

Scheps, R.

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an Alexandrite laser,” Opt. Commun. 97(5–6), 363–366 (1993).
[Crossref]

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56(23), 2288–2290 (1990).
[Crossref]

Sennaroglu, A.

Serreze, H. B.

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an Alexandrite laser,” Opt. Commun. 97(5–6), 363–366 (1993).
[Crossref]

Shank, C. V.

H. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. 8(3), 373–379 (1972).
[Crossref]

Sheng, X.

U. Parali, X. Sheng, A. Minassian, G. Tawy, J. Sathian, G. M. Thomas, and M. J. Damzen, “Diode-pumped Alexandrite laser with passive SESAM Q-switching and wavelength tunability,” Opt. Commun. 410, 970–976 (2018).
[Crossref]

G. M. Thomas, A. Minassian, X. Sheng, and M. J. Damzen, “Diode-pumped Alexandrite lasers in Q-switched and cavity-dumped Q-switched operation,” Opt. Express 24(24), 27212–27224 (2016).
[Crossref] [PubMed]

Sipes, D. L.

D. L. Sipes, “Highly efficient neodymium: yttrium aluminum garnet lasers end pumped by a semiconductor laser array,” Appl. Phys. Lett. 47(2), 74–76 (1985).
[Crossref]

Strotkamp, M.

Sumpf, B.

Tawy, G.

U. Parali, X. Sheng, A. Minassian, G. Tawy, J. Sathian, G. M. Thomas, and M. J. Damzen, “Diode-pumped Alexandrite laser with passive SESAM Q-switching and wavelength tunability,” Opt. Commun. 410, 970–976 (2018).
[Crossref]

Teppitaksak, A.

Thomas, G. M.

Toner, W. T.

P. Bakule, P. E. G. Baird, M. G. Boshier, S. L. Cornish, D. F. Heller, K. Jungmann, I. C. Lane, V. Meyer, P. H. G. Sandars, W. T. Toner, M. Towrie, and J. C. Walling, “A chirp-compensated, injection-seeded alexandrite laser,” Appl. Phys. B 71(1), 11–17 (2000).
[Crossref]

Towrie, M.

P. Bakule, P. E. G. Baird, M. G. Boshier, S. L. Cornish, D. F. Heller, K. Jungmann, I. C. Lane, V. Meyer, P. H. G. Sandars, W. T. Toner, M. Towrie, and J. C. Walling, “A chirp-compensated, injection-seeded alexandrite laser,” Appl. Phys. B 71(1), 11–17 (2000).
[Crossref]

Walling, J.

J. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. Pete, and R. C. Morris, “Tunable alexandrite lasers: Development and performance,” IEEE J. Quantum Electron. 21(10), 1568–1581 (1985).
[Crossref]

J. Walling, O. Peterson, H. Jenssen, R. Morris, and E. O’Dell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[Crossref]

Walling, J. C.

P. Bakule, P. E. G. Baird, M. G. Boshier, S. L. Cornish, D. F. Heller, K. Jungmann, I. C. Lane, V. Meyer, P. H. G. Sandars, W. T. Toner, M. Towrie, and J. C. Walling, “A chirp-compensated, injection-seeded alexandrite laser,” Appl. Phys. B 71(1), 11–17 (2000).
[Crossref]

X. Peng, A. Marrakchi, J. C. Walling, and D. F. Heller, “Watt-level red and UV output from a CW diode array pumped tunable Alexandrite laser,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2005), paper CMAA5.
[Crossref]

Wilson, A. C.

S. Burd, D. Leibfried, A. C. Wilson, and D. J. Wineland, “Optically pumped semiconductor lasers for atomic and molecular physics,” Proc. SPIE 9349, 93490P (2015).
[Crossref]

Wineland, D. J.

S. Burd, D. Leibfried, A. C. Wilson, and D. J. Wineland, “Optically pumped semiconductor lasers for atomic and molecular physics,” Proc. SPIE 9349, 93490P (2015).
[Crossref]

Wulfmeyer, V.

Yorulmaz, I.

Zhou, B.

Appl. Opt. (2)

Appl. Phys. B (1)

P. Bakule, P. E. G. Baird, M. G. Boshier, S. L. Cornish, D. F. Heller, K. Jungmann, I. C. Lane, V. Meyer, P. H. G. Sandars, W. T. Toner, M. Towrie, and J. C. Walling, “A chirp-compensated, injection-seeded alexandrite laser,” Appl. Phys. B 71(1), 11–17 (2000).
[Crossref]

Appl. Phys. Lett. (3)

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56(23), 2288–2290 (1990).
[Crossref]

R. A. Fields, M. Birnbaum, and C. L. Fincher, “Highly efficient Nd:YVO4 diode-laser end-pumped laser,” Appl. Phys. Lett. 51(23), 1885–1886 (1987).
[Crossref]

D. L. Sipes, “Highly efficient neodymium: yttrium aluminum garnet lasers end pumped by a semiconductor laser array,” Appl. Phys. Lett. 47(2), 74–76 (1985).
[Crossref]

IEEE J. Quantum Electron. (3)

H. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. 8(3), 373–379 (1972).
[Crossref]

J. Walling, O. Peterson, H. Jenssen, R. Morris, and E. O’Dell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[Crossref]

J. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. Pete, and R. C. Morris, “Tunable alexandrite lasers: Development and performance,” IEEE J. Quantum Electron. 21(10), 1568–1581 (1985).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

E. Arbabzadah and M. Damzen, “Fibre-coupled red diode-pumped alexandrite TEM00 laser with single and double-pass end-pumping,” Laser Phys. Lett. 13(6), 065002 (2016).
[Crossref]

Opt. Commun. (2)

U. Parali, X. Sheng, A. Minassian, G. Tawy, J. Sathian, G. M. Thomas, and M. J. Damzen, “Diode-pumped Alexandrite laser with passive SESAM Q-switching and wavelength tunability,” Opt. Commun. 410, 970–976 (2018).
[Crossref]

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an Alexandrite laser,” Opt. Commun. 97(5–6), 363–366 (1993).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Opt. Mater. Express (1)

Proc. SPIE (1)

S. Burd, D. Leibfried, A. C. Wilson, and D. J. Wineland, “Optically pumped semiconductor lasers for atomic and molecular physics,” Proc. SPIE 9349, 93490P (2015).
[Crossref]

Other (5)

S. C. Collins, T. D. Wilkerson, V. B. Wickwar, D. Rees, J. C. Walling, and D. F. Heller, “The alexandrite ring laser: A spectrally narrow lidar light source for atmospheric fluorescence and absorption observations,” in Advances in atmospheric remote sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, and U. Wandinger, ed. (Springer Verlag, Berlin, 1997).

X. Chu, “Alexandrite-ring-laser-based Fe Doppler lidar for mobile/airborne deployment,” in Proceeding of the 23rd International Laser Radar Conference (2006), pp. 385–388.

X. Peng, A. Marrakchi, J. C. Walling, and D. F. Heller, “Watt-level red and UV output from a CW diode array pumped tunable Alexandrite laser,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2005), paper CMAA5.
[Crossref]

J. W. Kuper, T. Chin, and H. E. Aschoff, “Extended Tuning Range of Alexandrite at Elevated Temperatures,” in Advanced Solid State Lasers, Vol. 6 of OSA Proceedings Series (Optical Society of America, 1990), paper CL3.

A. Munk, B. Jungbluth, M. Strotkamp, S. Gaussmann, D. Hoffmann, R. Poprawe, and J. Hoeffner, “Diode pumped Alexandrite ring laser,” in Proc. Advanced Solid State Lasers (Optical Society of America, 2015), paper ATh2A.46.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of diode-pumped Alexandrite Brewster-cut rod with compact linear laser cavity. BM is a dichroic back mirror, OC is an output coupler with R = 98.8%, fp is an aspheric pump lens with focal length of 50 mm. HWP is a half-wave plate for matching pump polarization to the crystal b-axis. (CM1 is a curved dichroic mirror that will be used when converting to the ring laser.)
Fig. 2
Fig. 2 Laser output power against CW incident pump power for the compact linear diode-end-pumped Alexandrite laser with R = 98.8% Output Coupler. Line is linear fit to the power curve. Inset: Spatial mode profile of the output beam with M2 = 1.1 at 1.7 W output power.
Fig. 3
Fig. 3 Schematic of the diode-pumped unidirectional Alexandrite ring laser. CM1 and CM2 are curved mirrors. M3 is a HR mirror for laser. OC is an output coupler with R = 99.0% at the incident angle (θ1/2) of 14°. The laser wavelength of the unidirectional Alexandrite laser could be tuned using the birefringent filter (BiFi). The unidirectional operation of the ring cavity was achieved using a TGG Faraday rotator (FR) and a half-wave plate (HWP1). The unidirectional laser output P1, P2 could be switched by rotation of the HWP1. HWP2 is a second half-wave plate for additional polarization control.
Fig. 4
Fig. 4 The ‘displaced mode’ cavity design concept. The dashed line indicates the location of the laser mode waist in air. The aim of the design is for the expansion of the laser mode to match to the pump beam waist at the pumped end-face of the crystal.
Fig. 5
Fig. 5 (a) Laser output power (P2) against CW incident pump power for the diode-end-pumped unidirectional Alexandrite ring laser with R = 99.0% output coupler under single-frequency operation. Line is linear fit to the power curve. (b) M2 caustic fit for the single-frequency output of the unidirectional ring laser. Inset: Spatial mode profile of the single-frequency output with M2 < 1.2 at maximum output power (1.05 W).
Fig. 6
Fig. 6 Spectral ring patterns from a Fabry–Pérot etalon showing single-longitudinal mode operation at output power of 1.05 W and laser wavelength of 752 nm.
Fig. 7
Fig. 7 Wavelength tuning curves for the unidirectional Alexandrite ring laser, (a) using one half-wave plate (HWP1), and (b) using two half-wave plates (HWP1 and HWP2).

Metrics