Abstract

Under excitation of high-energy and low-flux density of X-ray beam, a 1-μm system spatial resolution was initially achieved by using an 18-μm thickness ZnO nanorod array as the scintillator layer in X-ray imaging beamline at Shanghai Synchrotron Radiation Facility. The decay time measurements indicated the ultraviolet and visible emissions of the arrays were subnanosecond and nanosecond, respectively. Through hydrogen annealing treatment, the ultraviolet luminescence was intensively enhanced and the visible luminescence was remarkably suppressed simultaneously. In conclusion, it can be determined that the ZnO-based nanorod arrays are the decent candidates for applications in ultrafast and high-spatial-resolution X-ray imaging systems.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Influence of silicon wall thickness on the performance of structured CsI(Tl) scintillation screen based on oxidized silicon micropore array template in X-ray imaging

Hui Chen, Mu Gu, Zhixiang Sun, Xiaolin Liu, Bo Liu, Juannan Zhang, Shiming Huang, and Chen Ni
Opt. Express 27(10) 14871-14880 (2019)

X-ray imaging with submicrometer resolution employing transparent luminescent screens

Andreas Koch, Carsten Raven, Per Spanne, and Anatoly Snigirev
J. Opt. Soc. Am. A 15(7) 1940-1951 (1998)

Stimulated scintillation emission depletion X-ray imaging

M. S. Alekhin, G. Patton, C. Dujardin, P. -A. Douissard, M. Lebugle, L. Novotny, and M. Stampanoni
Opt. Express 25(2) 654-669 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Åslund, E. Fredenberg, M. Telman, and M. Danielsson, “Detectors for the future of X-ray imaging,” Radiat. Prot. Dosimetry 139(1-3), 327–333 (2010).
    [Crossref] [PubMed]
  2. C. L. Melcher, “Perspectives on the future development of new scintillators,” Nucl. Instrum. Methods Phys. Res. A 537(1-2), 6–14 (2005).
    [Crossref]
  3. F. Riva, T. Martin, P. A. Douissard, and C. Dujardin, “Single crystal lutetium oxide thin film scintillators for X-ray imaging,” J. Instrum. 11(10), C10010 (2016).
    [Crossref]
  4. V. V. Nagarkar, T. K. Gupta, S. R. Miller, Y. Klugerman, M. R. Squillante, and G. Entine, “Structured CsI(Tl) scintillators for X-ray imaging applications,” IEEE Trans. Nucl. Sci. 45(3), 492–496 (1998).
    [Crossref]
  5. Y. Hormozan, I. Sychugov, and J. Linnros, “High-resolution X-ray imaging using a structured scintillator,” Med. Phys. 43(2), 696–701 (2016).
    [Crossref] [PubMed]
  6. A. Taheri, S. Saramad, and S. Setayeshi, “ZnO nanowires in polycarbonate membrane as a high resolution X-ray detector (a Geant4 simulation),” Nucl. Instrum. Methods Phys. Res. A 716, 15–22 (2013).
    [Crossref]
  7. Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
    [Crossref]
  8. S. Xu and Z. Wang, “One-dimensional ZnO nanostructures solution growth and functional properties,” Nano Res. 4(11), 1013–1098 (2011).
    [Crossref]
  9. Z. L. Wang, “Zinc oxide nanostructures: growth, properties and applications,” J. Phys. Condens. Matter 16(25), R829–R858 (2004).
    [Crossref]
  10. Y. Furuya, T. Yanagida, Y. Fujimoto, Y. Yokota, K. Kamada, N. Kawaguchi, S. Ishizu, K. Uchiyama, K. Mori, K. Kitano, M. Nikl, and A. Yoshikawa, “Time- and wavelength-resolved luminescence evaluation of several types of scintillators using streak camera system equipped with pulsed X-ray source,” Nucl. Instrum. Methods Phys. Res. A 634(1), 59–63 (2011).
    [Crossref]
  11. M. Kobayashi, J. Komori, K. Shimidzu, M. Izaki, K. Uesugi, A. Takeuchi, and Y. Suzuki, “Development of vertically aligned ZnO-nanowires scintillators for high spatial resolution X-ray imaging,” Appl. Phys. Lett. 106(8), 081909 (2015).
    [Crossref]
  12. S. W. Kang, S. K. Mohanta, Y. Y. Kim, and H. K. Cho, “Realization of vertically well-aligned ZnO:Ga nanorods by magnetron sputtering and their field emission behavior,” Cryst. Growth Des. 8(5), 1458–1460 (2008).
    [Crossref]
  13. Y. Sun, G. M. Fuge, and M. N. R. Ashfold, “Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods,” Chem. Phys. Lett. 396(1), 21–26 (2004).
    [Crossref]
  14. C. H. Ahn, W. S. Han, B. H. Kong, and H. K. Cho, “Ga-doped ZnO nanorod arrays grown by thermal evaporation and their electrical behavior,” Nanotechnology 20(1), 015601 (2009).
    [Crossref] [PubMed]
  15. W. I. Park, G. C. Yi, J. W. Kim, and S. M. Park, “Schottky nanocontacts on ZnO nanorod arrays,” Appl. Phys. Lett. 82(24), 4358–4360 (2003).
    [Crossref]
  16. B. Weintraub, Z. Zhou, Y. Li, and Y. Deng, “Solution synthesis of one-dimensional ZnO nanomaterials and their applications,” Nanoscale 2(9), 1573–1587 (2010).
    [Crossref] [PubMed]
  17. Q. Li, X. Liu, M. Gu, F. Li, J. Zhang, Q. Wu, S. Huang, and S. Liu, “Large enhancement of X-ray excited luminescence in Ga-doped ZnO nanorod arrays by hydrogen annealing,” Appl. Surf. Sci. 433, 815–820 (2018).
    [Crossref]
  18. Q. Li, X. Liu, M. Gu, S. Huang, J. Zhang, C. Ni, B. Liu, Y. Hu, Q. Wu, and S. Zhao, “X-ray excited luminescence of Ga- and In-doped ZnO microrods by annealing treatment,” Superlattices Microstruct. 98, 351–358 (2016).
    [Crossref]
  19. F. Li, M. Gu, H. He, L. Chang, W. Wen, Z. Li, L. Chen, J. Liu, X. Ouyang, X. Liu, B. Liu, S. Huang, and C. Ni, “Fluorescent decay time and energy response of γ-CuI crystal,” J. Inorg. Mater. 32(2), 163–168 (2017).
    [Crossref]
  20. A. N. Giakoumaki, G. Kenanakis, A. Klini, M. Androulidaki, Z. Viskadourakis, M. Farsari, and A. Selimis, “3D micro-structured arrays of ZnΟ nanorods,” Sci. Rep. 7(1), 2100 (2017).
    [Crossref] [PubMed]
  21. Q. Li, X. Liu, M. Gu, S. Huang, C. Ni, B. Liu, Y. Hu, S. Sun, and Z. Zhang, “Fabrication and X-ray excited luminescence of Ga- and In-doped ZnO nanorods,” IEEE Trans. Nucl. Sci. 63(2), 471–474 (2016).
    [Crossref]
  22. C. Lin, H. Chen, H. Liao, and S. Chen, “Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates,” Appl. Phys. Lett. 86(18), 183103 (2005).
    [Crossref]
  23. M. H. Du and K. Biswas, “Anionic and hidden hydrogen in ZnO,” Phys. Rev. Lett. 106(11), 115502 (2011).
    [Crossref] [PubMed]
  24. A. Escobedo-Morales and U. Pal, “Defect annihilation and morphological improvement of hydrothermally grown ZnO nanorods by Ga doping,” Appl. Phys. Lett. 93(19), 193120 (2008).
    [Crossref]
  25. Y. Duan, M. Gu, L. Liang, X. Ma, and M. Chen, “The development of an ultrashort pulsed X-ray facility for fluorescent lifetime measurement,” Nucl. Electron. Detect. Technol. 23(1), 42–45 (2003).
  26. Y. Fujimoto, T. Yanagida, H. Sekiwa, Y. Yokota, V. Chani, and A. Yoshikawa, “Scintillation characteristic of In,Ga-doped ZnO thin films with different dopant concentrations,” Jpn. J. Appl. Phys. 50(1S2), 01BG04 (2011).
    [Crossref]
  27. H. Xie, B. Deng, G. Du, Y. Fu, R. Chen, G. Zhou, Y. Ren, Y. Wang, Y. Xue, G. Peng, Y. He, H. Guo, and T. Xiao, “Latest advances of X-ray imaging and biomedical applications beamline at SSRF,” Nucl. Sci. Tech. 26(2), 020102 (2015).
  28. J. H. Tutt, D. J. Hall, M. R. Soman, A. D. Holland, A. J. Warren, T. Connolley, and A. M. Evagora, “Comparison of EM-CCD and scientific CMOS based camera systems for high resolution X-ray imaging and tomography applications,” J. Instrum. 9(06), P06017 (2014).
    [Crossref]
  29. K. Sato, Y. Hasegawa, K. Kondo, K. Miyazaki, T. Matsushita, and Y. Amemiya, “Development of a high-resolution X-ray imaging system with a charge-coupled-device detector coupled with crystal X-ray magnifiers,” Rev. Sci. Instrum. 71(12), 4449–4456 (2000).
    [Crossref]
  30. H. Fujita, D. Y. Tsai, T. Itoh, K. Doi, J. Morishita, K. Ueda, and A. Ohtsuka, “A simple method for determining the modulation transfer function in digital radiography,” IEEE Trans. Med. Imaging 11(1), 34–39 (1992).
    [Crossref] [PubMed]
  31. E. Samei, M. J. Flynn, and D. A. Reimann, “A method for measuring the presampled MTF of digital radiographic systems using an edge test device,” Med. Phys. 25(1), 102–113 (1998).
    [Crossref] [PubMed]
  32. S. Liu, M. Gu, H. Chen, Z. Sun, X. Liu, B. Liu, S. Huang, and J. Zhang, “Performance of pixelated CsI scintillation screen with hexagonal array arrangement prepared by vacuum melting injection method,” Nucl. Instrum. Methods Phys. Res. A 903, 18–24 (2018).
    [Crossref]
  33. S. Son, B. Choe, J. Lee, J. Kim, H.-W. Jeong, H.-G. Kim, W.-S. Kim, K.-Y. Lyu, J.-W. Min, and K.-W. Kim, “Evaluation of an edge method for computed radiography and an electronic portal imaging device in radiotherapy: image quality measurements,” J. Korean Phys. Soc. 65(11), 1976–1984 (2015).
    [Crossref]
  34. C. Michail, I. Valais, N. Martini, V. Koukou, N. Kalyvas, A. Bakas, I. Kandarakis, and G. Fountos, “Determination of the detective quantum efficiency (DQE) of CMOS/CsI imaging detectors following the novel IEC 62220-1-1:2015 International Standard,” Radiat. Meas. 94, 8–17 (2016).
    [Crossref]

2018 (2)

Q. Li, X. Liu, M. Gu, F. Li, J. Zhang, Q. Wu, S. Huang, and S. Liu, “Large enhancement of X-ray excited luminescence in Ga-doped ZnO nanorod arrays by hydrogen annealing,” Appl. Surf. Sci. 433, 815–820 (2018).
[Crossref]

S. Liu, M. Gu, H. Chen, Z. Sun, X. Liu, B. Liu, S. Huang, and J. Zhang, “Performance of pixelated CsI scintillation screen with hexagonal array arrangement prepared by vacuum melting injection method,” Nucl. Instrum. Methods Phys. Res. A 903, 18–24 (2018).
[Crossref]

2017 (2)

F. Li, M. Gu, H. He, L. Chang, W. Wen, Z. Li, L. Chen, J. Liu, X. Ouyang, X. Liu, B. Liu, S. Huang, and C. Ni, “Fluorescent decay time and energy response of γ-CuI crystal,” J. Inorg. Mater. 32(2), 163–168 (2017).
[Crossref]

A. N. Giakoumaki, G. Kenanakis, A. Klini, M. Androulidaki, Z. Viskadourakis, M. Farsari, and A. Selimis, “3D micro-structured arrays of ZnΟ nanorods,” Sci. Rep. 7(1), 2100 (2017).
[Crossref] [PubMed]

2016 (5)

Q. Li, X. Liu, M. Gu, S. Huang, C. Ni, B. Liu, Y. Hu, S. Sun, and Z. Zhang, “Fabrication and X-ray excited luminescence of Ga- and In-doped ZnO nanorods,” IEEE Trans. Nucl. Sci. 63(2), 471–474 (2016).
[Crossref]

C. Michail, I. Valais, N. Martini, V. Koukou, N. Kalyvas, A. Bakas, I. Kandarakis, and G. Fountos, “Determination of the detective quantum efficiency (DQE) of CMOS/CsI imaging detectors following the novel IEC 62220-1-1:2015 International Standard,” Radiat. Meas. 94, 8–17 (2016).
[Crossref]

Q. Li, X. Liu, M. Gu, S. Huang, J. Zhang, C. Ni, B. Liu, Y. Hu, Q. Wu, and S. Zhao, “X-ray excited luminescence of Ga- and In-doped ZnO microrods by annealing treatment,” Superlattices Microstruct. 98, 351–358 (2016).
[Crossref]

F. Riva, T. Martin, P. A. Douissard, and C. Dujardin, “Single crystal lutetium oxide thin film scintillators for X-ray imaging,” J. Instrum. 11(10), C10010 (2016).
[Crossref]

Y. Hormozan, I. Sychugov, and J. Linnros, “High-resolution X-ray imaging using a structured scintillator,” Med. Phys. 43(2), 696–701 (2016).
[Crossref] [PubMed]

2015 (3)

M. Kobayashi, J. Komori, K. Shimidzu, M. Izaki, K. Uesugi, A. Takeuchi, and Y. Suzuki, “Development of vertically aligned ZnO-nanowires scintillators for high spatial resolution X-ray imaging,” Appl. Phys. Lett. 106(8), 081909 (2015).
[Crossref]

S. Son, B. Choe, J. Lee, J. Kim, H.-W. Jeong, H.-G. Kim, W.-S. Kim, K.-Y. Lyu, J.-W. Min, and K.-W. Kim, “Evaluation of an edge method for computed radiography and an electronic portal imaging device in radiotherapy: image quality measurements,” J. Korean Phys. Soc. 65(11), 1976–1984 (2015).
[Crossref]

H. Xie, B. Deng, G. Du, Y. Fu, R. Chen, G. Zhou, Y. Ren, Y. Wang, Y. Xue, G. Peng, Y. He, H. Guo, and T. Xiao, “Latest advances of X-ray imaging and biomedical applications beamline at SSRF,” Nucl. Sci. Tech. 26(2), 020102 (2015).

2014 (1)

J. H. Tutt, D. J. Hall, M. R. Soman, A. D. Holland, A. J. Warren, T. Connolley, and A. M. Evagora, “Comparison of EM-CCD and scientific CMOS based camera systems for high resolution X-ray imaging and tomography applications,” J. Instrum. 9(06), P06017 (2014).
[Crossref]

2013 (1)

A. Taheri, S. Saramad, and S. Setayeshi, “ZnO nanowires in polycarbonate membrane as a high resolution X-ray detector (a Geant4 simulation),” Nucl. Instrum. Methods Phys. Res. A 716, 15–22 (2013).
[Crossref]

2011 (4)

S. Xu and Z. Wang, “One-dimensional ZnO nanostructures solution growth and functional properties,” Nano Res. 4(11), 1013–1098 (2011).
[Crossref]

Y. Furuya, T. Yanagida, Y. Fujimoto, Y. Yokota, K. Kamada, N. Kawaguchi, S. Ishizu, K. Uchiyama, K. Mori, K. Kitano, M. Nikl, and A. Yoshikawa, “Time- and wavelength-resolved luminescence evaluation of several types of scintillators using streak camera system equipped with pulsed X-ray source,” Nucl. Instrum. Methods Phys. Res. A 634(1), 59–63 (2011).
[Crossref]

M. H. Du and K. Biswas, “Anionic and hidden hydrogen in ZnO,” Phys. Rev. Lett. 106(11), 115502 (2011).
[Crossref] [PubMed]

Y. Fujimoto, T. Yanagida, H. Sekiwa, Y. Yokota, V. Chani, and A. Yoshikawa, “Scintillation characteristic of In,Ga-doped ZnO thin films with different dopant concentrations,” Jpn. J. Appl. Phys. 50(1S2), 01BG04 (2011).
[Crossref]

2010 (2)

B. Weintraub, Z. Zhou, Y. Li, and Y. Deng, “Solution synthesis of one-dimensional ZnO nanomaterials and their applications,” Nanoscale 2(9), 1573–1587 (2010).
[Crossref] [PubMed]

M. Åslund, E. Fredenberg, M. Telman, and M. Danielsson, “Detectors for the future of X-ray imaging,” Radiat. Prot. Dosimetry 139(1-3), 327–333 (2010).
[Crossref] [PubMed]

2009 (1)

C. H. Ahn, W. S. Han, B. H. Kong, and H. K. Cho, “Ga-doped ZnO nanorod arrays grown by thermal evaporation and their electrical behavior,” Nanotechnology 20(1), 015601 (2009).
[Crossref] [PubMed]

2008 (2)

S. W. Kang, S. K. Mohanta, Y. Y. Kim, and H. K. Cho, “Realization of vertically well-aligned ZnO:Ga nanorods by magnetron sputtering and their field emission behavior,” Cryst. Growth Des. 8(5), 1458–1460 (2008).
[Crossref]

A. Escobedo-Morales and U. Pal, “Defect annihilation and morphological improvement of hydrothermally grown ZnO nanorods by Ga doping,” Appl. Phys. Lett. 93(19), 193120 (2008).
[Crossref]

2005 (3)

C. Lin, H. Chen, H. Liao, and S. Chen, “Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates,” Appl. Phys. Lett. 86(18), 183103 (2005).
[Crossref]

C. L. Melcher, “Perspectives on the future development of new scintillators,” Nucl. Instrum. Methods Phys. Res. A 537(1-2), 6–14 (2005).
[Crossref]

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

2004 (2)

Z. L. Wang, “Zinc oxide nanostructures: growth, properties and applications,” J. Phys. Condens. Matter 16(25), R829–R858 (2004).
[Crossref]

Y. Sun, G. M. Fuge, and M. N. R. Ashfold, “Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods,” Chem. Phys. Lett. 396(1), 21–26 (2004).
[Crossref]

2003 (2)

W. I. Park, G. C. Yi, J. W. Kim, and S. M. Park, “Schottky nanocontacts on ZnO nanorod arrays,” Appl. Phys. Lett. 82(24), 4358–4360 (2003).
[Crossref]

Y. Duan, M. Gu, L. Liang, X. Ma, and M. Chen, “The development of an ultrashort pulsed X-ray facility for fluorescent lifetime measurement,” Nucl. Electron. Detect. Technol. 23(1), 42–45 (2003).

2000 (1)

K. Sato, Y. Hasegawa, K. Kondo, K. Miyazaki, T. Matsushita, and Y. Amemiya, “Development of a high-resolution X-ray imaging system with a charge-coupled-device detector coupled with crystal X-ray magnifiers,” Rev. Sci. Instrum. 71(12), 4449–4456 (2000).
[Crossref]

1998 (2)

E. Samei, M. J. Flynn, and D. A. Reimann, “A method for measuring the presampled MTF of digital radiographic systems using an edge test device,” Med. Phys. 25(1), 102–113 (1998).
[Crossref] [PubMed]

V. V. Nagarkar, T. K. Gupta, S. R. Miller, Y. Klugerman, M. R. Squillante, and G. Entine, “Structured CsI(Tl) scintillators for X-ray imaging applications,” IEEE Trans. Nucl. Sci. 45(3), 492–496 (1998).
[Crossref]

1992 (1)

H. Fujita, D. Y. Tsai, T. Itoh, K. Doi, J. Morishita, K. Ueda, and A. Ohtsuka, “A simple method for determining the modulation transfer function in digital radiography,” IEEE Trans. Med. Imaging 11(1), 34–39 (1992).
[Crossref] [PubMed]

Ahn, C. H.

C. H. Ahn, W. S. Han, B. H. Kong, and H. K. Cho, “Ga-doped ZnO nanorod arrays grown by thermal evaporation and their electrical behavior,” Nanotechnology 20(1), 015601 (2009).
[Crossref] [PubMed]

Alivov, Ya. I.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Amemiya, Y.

K. Sato, Y. Hasegawa, K. Kondo, K. Miyazaki, T. Matsushita, and Y. Amemiya, “Development of a high-resolution X-ray imaging system with a charge-coupled-device detector coupled with crystal X-ray magnifiers,” Rev. Sci. Instrum. 71(12), 4449–4456 (2000).
[Crossref]

Androulidaki, M.

A. N. Giakoumaki, G. Kenanakis, A. Klini, M. Androulidaki, Z. Viskadourakis, M. Farsari, and A. Selimis, “3D micro-structured arrays of ZnΟ nanorods,” Sci. Rep. 7(1), 2100 (2017).
[Crossref] [PubMed]

Ashfold, M. N. R.

Y. Sun, G. M. Fuge, and M. N. R. Ashfold, “Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods,” Chem. Phys. Lett. 396(1), 21–26 (2004).
[Crossref]

Åslund, M.

M. Åslund, E. Fredenberg, M. Telman, and M. Danielsson, “Detectors for the future of X-ray imaging,” Radiat. Prot. Dosimetry 139(1-3), 327–333 (2010).
[Crossref] [PubMed]

Avrutin, V.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Bakas, A.

C. Michail, I. Valais, N. Martini, V. Koukou, N. Kalyvas, A. Bakas, I. Kandarakis, and G. Fountos, “Determination of the detective quantum efficiency (DQE) of CMOS/CsI imaging detectors following the novel IEC 62220-1-1:2015 International Standard,” Radiat. Meas. 94, 8–17 (2016).
[Crossref]

Biswas, K.

M. H. Du and K. Biswas, “Anionic and hidden hydrogen in ZnO,” Phys. Rev. Lett. 106(11), 115502 (2011).
[Crossref] [PubMed]

Chang, L.

F. Li, M. Gu, H. He, L. Chang, W. Wen, Z. Li, L. Chen, J. Liu, X. Ouyang, X. Liu, B. Liu, S. Huang, and C. Ni, “Fluorescent decay time and energy response of γ-CuI crystal,” J. Inorg. Mater. 32(2), 163–168 (2017).
[Crossref]

Chani, V.

Y. Fujimoto, T. Yanagida, H. Sekiwa, Y. Yokota, V. Chani, and A. Yoshikawa, “Scintillation characteristic of In,Ga-doped ZnO thin films with different dopant concentrations,” Jpn. J. Appl. Phys. 50(1S2), 01BG04 (2011).
[Crossref]

Chen, H.

S. Liu, M. Gu, H. Chen, Z. Sun, X. Liu, B. Liu, S. Huang, and J. Zhang, “Performance of pixelated CsI scintillation screen with hexagonal array arrangement prepared by vacuum melting injection method,” Nucl. Instrum. Methods Phys. Res. A 903, 18–24 (2018).
[Crossref]

C. Lin, H. Chen, H. Liao, and S. Chen, “Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates,” Appl. Phys. Lett. 86(18), 183103 (2005).
[Crossref]

Chen, L.

F. Li, M. Gu, H. He, L. Chang, W. Wen, Z. Li, L. Chen, J. Liu, X. Ouyang, X. Liu, B. Liu, S. Huang, and C. Ni, “Fluorescent decay time and energy response of γ-CuI crystal,” J. Inorg. Mater. 32(2), 163–168 (2017).
[Crossref]

Chen, M.

Y. Duan, M. Gu, L. Liang, X. Ma, and M. Chen, “The development of an ultrashort pulsed X-ray facility for fluorescent lifetime measurement,” Nucl. Electron. Detect. Technol. 23(1), 42–45 (2003).

Chen, R.

H. Xie, B. Deng, G. Du, Y. Fu, R. Chen, G. Zhou, Y. Ren, Y. Wang, Y. Xue, G. Peng, Y. He, H. Guo, and T. Xiao, “Latest advances of X-ray imaging and biomedical applications beamline at SSRF,” Nucl. Sci. Tech. 26(2), 020102 (2015).

Chen, S.

C. Lin, H. Chen, H. Liao, and S. Chen, “Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates,” Appl. Phys. Lett. 86(18), 183103 (2005).
[Crossref]

Cho, H. K.

C. H. Ahn, W. S. Han, B. H. Kong, and H. K. Cho, “Ga-doped ZnO nanorod arrays grown by thermal evaporation and their electrical behavior,” Nanotechnology 20(1), 015601 (2009).
[Crossref] [PubMed]

S. W. Kang, S. K. Mohanta, Y. Y. Kim, and H. K. Cho, “Realization of vertically well-aligned ZnO:Ga nanorods by magnetron sputtering and their field emission behavior,” Cryst. Growth Des. 8(5), 1458–1460 (2008).
[Crossref]

Cho, S. J.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Choe, B.

S. Son, B. Choe, J. Lee, J. Kim, H.-W. Jeong, H.-G. Kim, W.-S. Kim, K.-Y. Lyu, J.-W. Min, and K.-W. Kim, “Evaluation of an edge method for computed radiography and an electronic portal imaging device in radiotherapy: image quality measurements,” J. Korean Phys. Soc. 65(11), 1976–1984 (2015).
[Crossref]

Connolley, T.

J. H. Tutt, D. J. Hall, M. R. Soman, A. D. Holland, A. J. Warren, T. Connolley, and A. M. Evagora, “Comparison of EM-CCD and scientific CMOS based camera systems for high resolution X-ray imaging and tomography applications,” J. Instrum. 9(06), P06017 (2014).
[Crossref]

Danielsson, M.

M. Åslund, E. Fredenberg, M. Telman, and M. Danielsson, “Detectors for the future of X-ray imaging,” Radiat. Prot. Dosimetry 139(1-3), 327–333 (2010).
[Crossref] [PubMed]

Deng, B.

H. Xie, B. Deng, G. Du, Y. Fu, R. Chen, G. Zhou, Y. Ren, Y. Wang, Y. Xue, G. Peng, Y. He, H. Guo, and T. Xiao, “Latest advances of X-ray imaging and biomedical applications beamline at SSRF,” Nucl. Sci. Tech. 26(2), 020102 (2015).

Deng, Y.

B. Weintraub, Z. Zhou, Y. Li, and Y. Deng, “Solution synthesis of one-dimensional ZnO nanomaterials and their applications,” Nanoscale 2(9), 1573–1587 (2010).
[Crossref] [PubMed]

Dogan, S.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Doi, K.

H. Fujita, D. Y. Tsai, T. Itoh, K. Doi, J. Morishita, K. Ueda, and A. Ohtsuka, “A simple method for determining the modulation transfer function in digital radiography,” IEEE Trans. Med. Imaging 11(1), 34–39 (1992).
[Crossref] [PubMed]

Douissard, P. A.

F. Riva, T. Martin, P. A. Douissard, and C. Dujardin, “Single crystal lutetium oxide thin film scintillators for X-ray imaging,” J. Instrum. 11(10), C10010 (2016).
[Crossref]

Du, G.

H. Xie, B. Deng, G. Du, Y. Fu, R. Chen, G. Zhou, Y. Ren, Y. Wang, Y. Xue, G. Peng, Y. He, H. Guo, and T. Xiao, “Latest advances of X-ray imaging and biomedical applications beamline at SSRF,” Nucl. Sci. Tech. 26(2), 020102 (2015).

Du, M. H.

M. H. Du and K. Biswas, “Anionic and hidden hydrogen in ZnO,” Phys. Rev. Lett. 106(11), 115502 (2011).
[Crossref] [PubMed]

Duan, Y.

Y. Duan, M. Gu, L. Liang, X. Ma, and M. Chen, “The development of an ultrashort pulsed X-ray facility for fluorescent lifetime measurement,” Nucl. Electron. Detect. Technol. 23(1), 42–45 (2003).

Dujardin, C.

F. Riva, T. Martin, P. A. Douissard, and C. Dujardin, “Single crystal lutetium oxide thin film scintillators for X-ray imaging,” J. Instrum. 11(10), C10010 (2016).
[Crossref]

Entine, G.

V. V. Nagarkar, T. K. Gupta, S. R. Miller, Y. Klugerman, M. R. Squillante, and G. Entine, “Structured CsI(Tl) scintillators for X-ray imaging applications,” IEEE Trans. Nucl. Sci. 45(3), 492–496 (1998).
[Crossref]

Escobedo-Morales, A.

A. Escobedo-Morales and U. Pal, “Defect annihilation and morphological improvement of hydrothermally grown ZnO nanorods by Ga doping,” Appl. Phys. Lett. 93(19), 193120 (2008).
[Crossref]

Evagora, A. M.

J. H. Tutt, D. J. Hall, M. R. Soman, A. D. Holland, A. J. Warren, T. Connolley, and A. M. Evagora, “Comparison of EM-CCD and scientific CMOS based camera systems for high resolution X-ray imaging and tomography applications,” J. Instrum. 9(06), P06017 (2014).
[Crossref]

Farsari, M.

A. N. Giakoumaki, G. Kenanakis, A. Klini, M. Androulidaki, Z. Viskadourakis, M. Farsari, and A. Selimis, “3D micro-structured arrays of ZnΟ nanorods,” Sci. Rep. 7(1), 2100 (2017).
[Crossref] [PubMed]

Flynn, M. J.

E. Samei, M. J. Flynn, and D. A. Reimann, “A method for measuring the presampled MTF of digital radiographic systems using an edge test device,” Med. Phys. 25(1), 102–113 (1998).
[Crossref] [PubMed]

Fountos, G.

C. Michail, I. Valais, N. Martini, V. Koukou, N. Kalyvas, A. Bakas, I. Kandarakis, and G. Fountos, “Determination of the detective quantum efficiency (DQE) of CMOS/CsI imaging detectors following the novel IEC 62220-1-1:2015 International Standard,” Radiat. Meas. 94, 8–17 (2016).
[Crossref]

Fredenberg, E.

M. Åslund, E. Fredenberg, M. Telman, and M. Danielsson, “Detectors for the future of X-ray imaging,” Radiat. Prot. Dosimetry 139(1-3), 327–333 (2010).
[Crossref] [PubMed]

Fu, Y.

H. Xie, B. Deng, G. Du, Y. Fu, R. Chen, G. Zhou, Y. Ren, Y. Wang, Y. Xue, G. Peng, Y. He, H. Guo, and T. Xiao, “Latest advances of X-ray imaging and biomedical applications beamline at SSRF,” Nucl. Sci. Tech. 26(2), 020102 (2015).

Fuge, G. M.

Y. Sun, G. M. Fuge, and M. N. R. Ashfold, “Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods,” Chem. Phys. Lett. 396(1), 21–26 (2004).
[Crossref]

Fujimoto, Y.

Y. Furuya, T. Yanagida, Y. Fujimoto, Y. Yokota, K. Kamada, N. Kawaguchi, S. Ishizu, K. Uchiyama, K. Mori, K. Kitano, M. Nikl, and A. Yoshikawa, “Time- and wavelength-resolved luminescence evaluation of several types of scintillators using streak camera system equipped with pulsed X-ray source,” Nucl. Instrum. Methods Phys. Res. A 634(1), 59–63 (2011).
[Crossref]

Y. Fujimoto, T. Yanagida, H. Sekiwa, Y. Yokota, V. Chani, and A. Yoshikawa, “Scintillation characteristic of In,Ga-doped ZnO thin films with different dopant concentrations,” Jpn. J. Appl. Phys. 50(1S2), 01BG04 (2011).
[Crossref]

Fujita, H.

H. Fujita, D. Y. Tsai, T. Itoh, K. Doi, J. Morishita, K. Ueda, and A. Ohtsuka, “A simple method for determining the modulation transfer function in digital radiography,” IEEE Trans. Med. Imaging 11(1), 34–39 (1992).
[Crossref] [PubMed]

Furuya, Y.

Y. Furuya, T. Yanagida, Y. Fujimoto, Y. Yokota, K. Kamada, N. Kawaguchi, S. Ishizu, K. Uchiyama, K. Mori, K. Kitano, M. Nikl, and A. Yoshikawa, “Time- and wavelength-resolved luminescence evaluation of several types of scintillators using streak camera system equipped with pulsed X-ray source,” Nucl. Instrum. Methods Phys. Res. A 634(1), 59–63 (2011).
[Crossref]

Giakoumaki, A. N.

A. N. Giakoumaki, G. Kenanakis, A. Klini, M. Androulidaki, Z. Viskadourakis, M. Farsari, and A. Selimis, “3D micro-structured arrays of ZnΟ nanorods,” Sci. Rep. 7(1), 2100 (2017).
[Crossref] [PubMed]

Gu, M.

Q. Li, X. Liu, M. Gu, F. Li, J. Zhang, Q. Wu, S. Huang, and S. Liu, “Large enhancement of X-ray excited luminescence in Ga-doped ZnO nanorod arrays by hydrogen annealing,” Appl. Surf. Sci. 433, 815–820 (2018).
[Crossref]

S. Liu, M. Gu, H. Chen, Z. Sun, X. Liu, B. Liu, S. Huang, and J. Zhang, “Performance of pixelated CsI scintillation screen with hexagonal array arrangement prepared by vacuum melting injection method,” Nucl. Instrum. Methods Phys. Res. A 903, 18–24 (2018).
[Crossref]

F. Li, M. Gu, H. He, L. Chang, W. Wen, Z. Li, L. Chen, J. Liu, X. Ouyang, X. Liu, B. Liu, S. Huang, and C. Ni, “Fluorescent decay time and energy response of γ-CuI crystal,” J. Inorg. Mater. 32(2), 163–168 (2017).
[Crossref]

Q. Li, X. Liu, M. Gu, S. Huang, J. Zhang, C. Ni, B. Liu, Y. Hu, Q. Wu, and S. Zhao, “X-ray excited luminescence of Ga- and In-doped ZnO microrods by annealing treatment,” Superlattices Microstruct. 98, 351–358 (2016).
[Crossref]

Q. Li, X. Liu, M. Gu, S. Huang, C. Ni, B. Liu, Y. Hu, S. Sun, and Z. Zhang, “Fabrication and X-ray excited luminescence of Ga- and In-doped ZnO nanorods,” IEEE Trans. Nucl. Sci. 63(2), 471–474 (2016).
[Crossref]

Y. Duan, M. Gu, L. Liang, X. Ma, and M. Chen, “The development of an ultrashort pulsed X-ray facility for fluorescent lifetime measurement,” Nucl. Electron. Detect. Technol. 23(1), 42–45 (2003).

Guo, H.

H. Xie, B. Deng, G. Du, Y. Fu, R. Chen, G. Zhou, Y. Ren, Y. Wang, Y. Xue, G. Peng, Y. He, H. Guo, and T. Xiao, “Latest advances of X-ray imaging and biomedical applications beamline at SSRF,” Nucl. Sci. Tech. 26(2), 020102 (2015).

Gupta, T. K.

V. V. Nagarkar, T. K. Gupta, S. R. Miller, Y. Klugerman, M. R. Squillante, and G. Entine, “Structured CsI(Tl) scintillators for X-ray imaging applications,” IEEE Trans. Nucl. Sci. 45(3), 492–496 (1998).
[Crossref]

Hall, D. J.

J. H. Tutt, D. J. Hall, M. R. Soman, A. D. Holland, A. J. Warren, T. Connolley, and A. M. Evagora, “Comparison of EM-CCD and scientific CMOS based camera systems for high resolution X-ray imaging and tomography applications,” J. Instrum. 9(06), P06017 (2014).
[Crossref]

Han, W. S.

C. H. Ahn, W. S. Han, B. H. Kong, and H. K. Cho, “Ga-doped ZnO nanorod arrays grown by thermal evaporation and their electrical behavior,” Nanotechnology 20(1), 015601 (2009).
[Crossref] [PubMed]

Hasegawa, Y.

K. Sato, Y. Hasegawa, K. Kondo, K. Miyazaki, T. Matsushita, and Y. Amemiya, “Development of a high-resolution X-ray imaging system with a charge-coupled-device detector coupled with crystal X-ray magnifiers,” Rev. Sci. Instrum. 71(12), 4449–4456 (2000).
[Crossref]

He, H.

F. Li, M. Gu, H. He, L. Chang, W. Wen, Z. Li, L. Chen, J. Liu, X. Ouyang, X. Liu, B. Liu, S. Huang, and C. Ni, “Fluorescent decay time and energy response of γ-CuI crystal,” J. Inorg. Mater. 32(2), 163–168 (2017).
[Crossref]

He, Y.

H. Xie, B. Deng, G. Du, Y. Fu, R. Chen, G. Zhou, Y. Ren, Y. Wang, Y. Xue, G. Peng, Y. He, H. Guo, and T. Xiao, “Latest advances of X-ray imaging and biomedical applications beamline at SSRF,” Nucl. Sci. Tech. 26(2), 020102 (2015).

Holland, A. D.

J. H. Tutt, D. J. Hall, M. R. Soman, A. D. Holland, A. J. Warren, T. Connolley, and A. M. Evagora, “Comparison of EM-CCD and scientific CMOS based camera systems for high resolution X-ray imaging and tomography applications,” J. Instrum. 9(06), P06017 (2014).
[Crossref]

Hormozan, Y.

Y. Hormozan, I. Sychugov, and J. Linnros, “High-resolution X-ray imaging using a structured scintillator,” Med. Phys. 43(2), 696–701 (2016).
[Crossref] [PubMed]

Hu, Y.

Q. Li, X. Liu, M. Gu, S. Huang, J. Zhang, C. Ni, B. Liu, Y. Hu, Q. Wu, and S. Zhao, “X-ray excited luminescence of Ga- and In-doped ZnO microrods by annealing treatment,” Superlattices Microstruct. 98, 351–358 (2016).
[Crossref]

Q. Li, X. Liu, M. Gu, S. Huang, C. Ni, B. Liu, Y. Hu, S. Sun, and Z. Zhang, “Fabrication and X-ray excited luminescence of Ga- and In-doped ZnO nanorods,” IEEE Trans. Nucl. Sci. 63(2), 471–474 (2016).
[Crossref]

Huang, S.

Q. Li, X. Liu, M. Gu, F. Li, J. Zhang, Q. Wu, S. Huang, and S. Liu, “Large enhancement of X-ray excited luminescence in Ga-doped ZnO nanorod arrays by hydrogen annealing,” Appl. Surf. Sci. 433, 815–820 (2018).
[Crossref]

S. Liu, M. Gu, H. Chen, Z. Sun, X. Liu, B. Liu, S. Huang, and J. Zhang, “Performance of pixelated CsI scintillation screen with hexagonal array arrangement prepared by vacuum melting injection method,” Nucl. Instrum. Methods Phys. Res. A 903, 18–24 (2018).
[Crossref]

F. Li, M. Gu, H. He, L. Chang, W. Wen, Z. Li, L. Chen, J. Liu, X. Ouyang, X. Liu, B. Liu, S. Huang, and C. Ni, “Fluorescent decay time and energy response of γ-CuI crystal,” J. Inorg. Mater. 32(2), 163–168 (2017).
[Crossref]

Q. Li, X. Liu, M. Gu, S. Huang, J. Zhang, C. Ni, B. Liu, Y. Hu, Q. Wu, and S. Zhao, “X-ray excited luminescence of Ga- and In-doped ZnO microrods by annealing treatment,” Superlattices Microstruct. 98, 351–358 (2016).
[Crossref]

Q. Li, X. Liu, M. Gu, S. Huang, C. Ni, B. Liu, Y. Hu, S. Sun, and Z. Zhang, “Fabrication and X-ray excited luminescence of Ga- and In-doped ZnO nanorods,” IEEE Trans. Nucl. Sci. 63(2), 471–474 (2016).
[Crossref]

Ishizu, S.

Y. Furuya, T. Yanagida, Y. Fujimoto, Y. Yokota, K. Kamada, N. Kawaguchi, S. Ishizu, K. Uchiyama, K. Mori, K. Kitano, M. Nikl, and A. Yoshikawa, “Time- and wavelength-resolved luminescence evaluation of several types of scintillators using streak camera system equipped with pulsed X-ray source,” Nucl. Instrum. Methods Phys. Res. A 634(1), 59–63 (2011).
[Crossref]

Itoh, T.

H. Fujita, D. Y. Tsai, T. Itoh, K. Doi, J. Morishita, K. Ueda, and A. Ohtsuka, “A simple method for determining the modulation transfer function in digital radiography,” IEEE Trans. Med. Imaging 11(1), 34–39 (1992).
[Crossref] [PubMed]

Izaki, M.

M. Kobayashi, J. Komori, K. Shimidzu, M. Izaki, K. Uesugi, A. Takeuchi, and Y. Suzuki, “Development of vertically aligned ZnO-nanowires scintillators for high spatial resolution X-ray imaging,” Appl. Phys. Lett. 106(8), 081909 (2015).
[Crossref]

Jeong, H.-W.

S. Son, B. Choe, J. Lee, J. Kim, H.-W. Jeong, H.-G. Kim, W.-S. Kim, K.-Y. Lyu, J.-W. Min, and K.-W. Kim, “Evaluation of an edge method for computed radiography and an electronic portal imaging device in radiotherapy: image quality measurements,” J. Korean Phys. Soc. 65(11), 1976–1984 (2015).
[Crossref]

Kalyvas, N.

C. Michail, I. Valais, N. Martini, V. Koukou, N. Kalyvas, A. Bakas, I. Kandarakis, and G. Fountos, “Determination of the detective quantum efficiency (DQE) of CMOS/CsI imaging detectors following the novel IEC 62220-1-1:2015 International Standard,” Radiat. Meas. 94, 8–17 (2016).
[Crossref]

Kamada, K.

Y. Furuya, T. Yanagida, Y. Fujimoto, Y. Yokota, K. Kamada, N. Kawaguchi, S. Ishizu, K. Uchiyama, K. Mori, K. Kitano, M. Nikl, and A. Yoshikawa, “Time- and wavelength-resolved luminescence evaluation of several types of scintillators using streak camera system equipped with pulsed X-ray source,” Nucl. Instrum. Methods Phys. Res. A 634(1), 59–63 (2011).
[Crossref]

Kandarakis, I.

C. Michail, I. Valais, N. Martini, V. Koukou, N. Kalyvas, A. Bakas, I. Kandarakis, and G. Fountos, “Determination of the detective quantum efficiency (DQE) of CMOS/CsI imaging detectors following the novel IEC 62220-1-1:2015 International Standard,” Radiat. Meas. 94, 8–17 (2016).
[Crossref]

Kang, S. W.

S. W. Kang, S. K. Mohanta, Y. Y. Kim, and H. K. Cho, “Realization of vertically well-aligned ZnO:Ga nanorods by magnetron sputtering and their field emission behavior,” Cryst. Growth Des. 8(5), 1458–1460 (2008).
[Crossref]

Kawaguchi, N.

Y. Furuya, T. Yanagida, Y. Fujimoto, Y. Yokota, K. Kamada, N. Kawaguchi, S. Ishizu, K. Uchiyama, K. Mori, K. Kitano, M. Nikl, and A. Yoshikawa, “Time- and wavelength-resolved luminescence evaluation of several types of scintillators using streak camera system equipped with pulsed X-ray source,” Nucl. Instrum. Methods Phys. Res. A 634(1), 59–63 (2011).
[Crossref]

Kenanakis, G.

A. N. Giakoumaki, G. Kenanakis, A. Klini, M. Androulidaki, Z. Viskadourakis, M. Farsari, and A. Selimis, “3D micro-structured arrays of ZnΟ nanorods,” Sci. Rep. 7(1), 2100 (2017).
[Crossref] [PubMed]

Kim, H.-G.

S. Son, B. Choe, J. Lee, J. Kim, H.-W. Jeong, H.-G. Kim, W.-S. Kim, K.-Y. Lyu, J.-W. Min, and K.-W. Kim, “Evaluation of an edge method for computed radiography and an electronic portal imaging device in radiotherapy: image quality measurements,” J. Korean Phys. Soc. 65(11), 1976–1984 (2015).
[Crossref]

Kim, J.

S. Son, B. Choe, J. Lee, J. Kim, H.-W. Jeong, H.-G. Kim, W.-S. Kim, K.-Y. Lyu, J.-W. Min, and K.-W. Kim, “Evaluation of an edge method for computed radiography and an electronic portal imaging device in radiotherapy: image quality measurements,” J. Korean Phys. Soc. 65(11), 1976–1984 (2015).
[Crossref]

Kim, J. W.

W. I. Park, G. C. Yi, J. W. Kim, and S. M. Park, “Schottky nanocontacts on ZnO nanorod arrays,” Appl. Phys. Lett. 82(24), 4358–4360 (2003).
[Crossref]

Kim, K.-W.

S. Son, B. Choe, J. Lee, J. Kim, H.-W. Jeong, H.-G. Kim, W.-S. Kim, K.-Y. Lyu, J.-W. Min, and K.-W. Kim, “Evaluation of an edge method for computed radiography and an electronic portal imaging device in radiotherapy: image quality measurements,” J. Korean Phys. Soc. 65(11), 1976–1984 (2015).
[Crossref]

Kim, W.-S.

S. Son, B. Choe, J. Lee, J. Kim, H.-W. Jeong, H.-G. Kim, W.-S. Kim, K.-Y. Lyu, J.-W. Min, and K.-W. Kim, “Evaluation of an edge method for computed radiography and an electronic portal imaging device in radiotherapy: image quality measurements,” J. Korean Phys. Soc. 65(11), 1976–1984 (2015).
[Crossref]

Kim, Y. Y.

S. W. Kang, S. K. Mohanta, Y. Y. Kim, and H. K. Cho, “Realization of vertically well-aligned ZnO:Ga nanorods by magnetron sputtering and their field emission behavior,” Cryst. Growth Des. 8(5), 1458–1460 (2008).
[Crossref]

Kitano, K.

Y. Furuya, T. Yanagida, Y. Fujimoto, Y. Yokota, K. Kamada, N. Kawaguchi, S. Ishizu, K. Uchiyama, K. Mori, K. Kitano, M. Nikl, and A. Yoshikawa, “Time- and wavelength-resolved luminescence evaluation of several types of scintillators using streak camera system equipped with pulsed X-ray source,” Nucl. Instrum. Methods Phys. Res. A 634(1), 59–63 (2011).
[Crossref]

Klini, A.

A. N. Giakoumaki, G. Kenanakis, A. Klini, M. Androulidaki, Z. Viskadourakis, M. Farsari, and A. Selimis, “3D micro-structured arrays of ZnΟ nanorods,” Sci. Rep. 7(1), 2100 (2017).
[Crossref] [PubMed]

Klugerman, Y.

V. V. Nagarkar, T. K. Gupta, S. R. Miller, Y. Klugerman, M. R. Squillante, and G. Entine, “Structured CsI(Tl) scintillators for X-ray imaging applications,” IEEE Trans. Nucl. Sci. 45(3), 492–496 (1998).
[Crossref]

Kobayashi, M.

M. Kobayashi, J. Komori, K. Shimidzu, M. Izaki, K. Uesugi, A. Takeuchi, and Y. Suzuki, “Development of vertically aligned ZnO-nanowires scintillators for high spatial resolution X-ray imaging,” Appl. Phys. Lett. 106(8), 081909 (2015).
[Crossref]

Komori, J.

M. Kobayashi, J. Komori, K. Shimidzu, M. Izaki, K. Uesugi, A. Takeuchi, and Y. Suzuki, “Development of vertically aligned ZnO-nanowires scintillators for high spatial resolution X-ray imaging,” Appl. Phys. Lett. 106(8), 081909 (2015).
[Crossref]

Kondo, K.

K. Sato, Y. Hasegawa, K. Kondo, K. Miyazaki, T. Matsushita, and Y. Amemiya, “Development of a high-resolution X-ray imaging system with a charge-coupled-device detector coupled with crystal X-ray magnifiers,” Rev. Sci. Instrum. 71(12), 4449–4456 (2000).
[Crossref]

Kong, B. H.

C. H. Ahn, W. S. Han, B. H. Kong, and H. K. Cho, “Ga-doped ZnO nanorod arrays grown by thermal evaporation and their electrical behavior,” Nanotechnology 20(1), 015601 (2009).
[Crossref] [PubMed]

Koukou, V.

C. Michail, I. Valais, N. Martini, V. Koukou, N. Kalyvas, A. Bakas, I. Kandarakis, and G. Fountos, “Determination of the detective quantum efficiency (DQE) of CMOS/CsI imaging detectors following the novel IEC 62220-1-1:2015 International Standard,” Radiat. Meas. 94, 8–17 (2016).
[Crossref]

Lee, J.

S. Son, B. Choe, J. Lee, J. Kim, H.-W. Jeong, H.-G. Kim, W.-S. Kim, K.-Y. Lyu, J.-W. Min, and K.-W. Kim, “Evaluation of an edge method for computed radiography and an electronic portal imaging device in radiotherapy: image quality measurements,” J. Korean Phys. Soc. 65(11), 1976–1984 (2015).
[Crossref]

Li, F.

Q. Li, X. Liu, M. Gu, F. Li, J. Zhang, Q. Wu, S. Huang, and S. Liu, “Large enhancement of X-ray excited luminescence in Ga-doped ZnO nanorod arrays by hydrogen annealing,” Appl. Surf. Sci. 433, 815–820 (2018).
[Crossref]

F. Li, M. Gu, H. He, L. Chang, W. Wen, Z. Li, L. Chen, J. Liu, X. Ouyang, X. Liu, B. Liu, S. Huang, and C. Ni, “Fluorescent decay time and energy response of γ-CuI crystal,” J. Inorg. Mater. 32(2), 163–168 (2017).
[Crossref]

Li, Q.

Q. Li, X. Liu, M. Gu, F. Li, J. Zhang, Q. Wu, S. Huang, and S. Liu, “Large enhancement of X-ray excited luminescence in Ga-doped ZnO nanorod arrays by hydrogen annealing,” Appl. Surf. Sci. 433, 815–820 (2018).
[Crossref]

Q. Li, X. Liu, M. Gu, S. Huang, C. Ni, B. Liu, Y. Hu, S. Sun, and Z. Zhang, “Fabrication and X-ray excited luminescence of Ga- and In-doped ZnO nanorods,” IEEE Trans. Nucl. Sci. 63(2), 471–474 (2016).
[Crossref]

Q. Li, X. Liu, M. Gu, S. Huang, J. Zhang, C. Ni, B. Liu, Y. Hu, Q. Wu, and S. Zhao, “X-ray excited luminescence of Ga- and In-doped ZnO microrods by annealing treatment,” Superlattices Microstruct. 98, 351–358 (2016).
[Crossref]

Li, Y.

B. Weintraub, Z. Zhou, Y. Li, and Y. Deng, “Solution synthesis of one-dimensional ZnO nanomaterials and their applications,” Nanoscale 2(9), 1573–1587 (2010).
[Crossref] [PubMed]

Li, Z.

F. Li, M. Gu, H. He, L. Chang, W. Wen, Z. Li, L. Chen, J. Liu, X. Ouyang, X. Liu, B. Liu, S. Huang, and C. Ni, “Fluorescent decay time and energy response of γ-CuI crystal,” J. Inorg. Mater. 32(2), 163–168 (2017).
[Crossref]

Liang, L.

Y. Duan, M. Gu, L. Liang, X. Ma, and M. Chen, “The development of an ultrashort pulsed X-ray facility for fluorescent lifetime measurement,” Nucl. Electron. Detect. Technol. 23(1), 42–45 (2003).

Liao, H.

C. Lin, H. Chen, H. Liao, and S. Chen, “Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates,” Appl. Phys. Lett. 86(18), 183103 (2005).
[Crossref]

Lin, C.

C. Lin, H. Chen, H. Liao, and S. Chen, “Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates,” Appl. Phys. Lett. 86(18), 183103 (2005).
[Crossref]

Linnros, J.

Y. Hormozan, I. Sychugov, and J. Linnros, “High-resolution X-ray imaging using a structured scintillator,” Med. Phys. 43(2), 696–701 (2016).
[Crossref] [PubMed]

Liu, B.

S. Liu, M. Gu, H. Chen, Z. Sun, X. Liu, B. Liu, S. Huang, and J. Zhang, “Performance of pixelated CsI scintillation screen with hexagonal array arrangement prepared by vacuum melting injection method,” Nucl. Instrum. Methods Phys. Res. A 903, 18–24 (2018).
[Crossref]

F. Li, M. Gu, H. He, L. Chang, W. Wen, Z. Li, L. Chen, J. Liu, X. Ouyang, X. Liu, B. Liu, S. Huang, and C. Ni, “Fluorescent decay time and energy response of γ-CuI crystal,” J. Inorg. Mater. 32(2), 163–168 (2017).
[Crossref]

Q. Li, X. Liu, M. Gu, S. Huang, J. Zhang, C. Ni, B. Liu, Y. Hu, Q. Wu, and S. Zhao, “X-ray excited luminescence of Ga- and In-doped ZnO microrods by annealing treatment,” Superlattices Microstruct. 98, 351–358 (2016).
[Crossref]

Q. Li, X. Liu, M. Gu, S. Huang, C. Ni, B. Liu, Y. Hu, S. Sun, and Z. Zhang, “Fabrication and X-ray excited luminescence of Ga- and In-doped ZnO nanorods,” IEEE Trans. Nucl. Sci. 63(2), 471–474 (2016).
[Crossref]

Liu, C.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Liu, J.

F. Li, M. Gu, H. He, L. Chang, W. Wen, Z. Li, L. Chen, J. Liu, X. Ouyang, X. Liu, B. Liu, S. Huang, and C. Ni, “Fluorescent decay time and energy response of γ-CuI crystal,” J. Inorg. Mater. 32(2), 163–168 (2017).
[Crossref]

Liu, S.

Q. Li, X. Liu, M. Gu, F. Li, J. Zhang, Q. Wu, S. Huang, and S. Liu, “Large enhancement of X-ray excited luminescence in Ga-doped ZnO nanorod arrays by hydrogen annealing,” Appl. Surf. Sci. 433, 815–820 (2018).
[Crossref]

S. Liu, M. Gu, H. Chen, Z. Sun, X. Liu, B. Liu, S. Huang, and J. Zhang, “Performance of pixelated CsI scintillation screen with hexagonal array arrangement prepared by vacuum melting injection method,” Nucl. Instrum. Methods Phys. Res. A 903, 18–24 (2018).
[Crossref]

Liu, X.

S. Liu, M. Gu, H. Chen, Z. Sun, X. Liu, B. Liu, S. Huang, and J. Zhang, “Performance of pixelated CsI scintillation screen with hexagonal array arrangement prepared by vacuum melting injection method,” Nucl. Instrum. Methods Phys. Res. A 903, 18–24 (2018).
[Crossref]

Q. Li, X. Liu, M. Gu, F. Li, J. Zhang, Q. Wu, S. Huang, and S. Liu, “Large enhancement of X-ray excited luminescence in Ga-doped ZnO nanorod arrays by hydrogen annealing,” Appl. Surf. Sci. 433, 815–820 (2018).
[Crossref]

F. Li, M. Gu, H. He, L. Chang, W. Wen, Z. Li, L. Chen, J. Liu, X. Ouyang, X. Liu, B. Liu, S. Huang, and C. Ni, “Fluorescent decay time and energy response of γ-CuI crystal,” J. Inorg. Mater. 32(2), 163–168 (2017).
[Crossref]

Q. Li, X. Liu, M. Gu, S. Huang, C. Ni, B. Liu, Y. Hu, S. Sun, and Z. Zhang, “Fabrication and X-ray excited luminescence of Ga- and In-doped ZnO nanorods,” IEEE Trans. Nucl. Sci. 63(2), 471–474 (2016).
[Crossref]

Q. Li, X. Liu, M. Gu, S. Huang, J. Zhang, C. Ni, B. Liu, Y. Hu, Q. Wu, and S. Zhao, “X-ray excited luminescence of Ga- and In-doped ZnO microrods by annealing treatment,” Superlattices Microstruct. 98, 351–358 (2016).
[Crossref]

Lyu, K.-Y.

S. Son, B. Choe, J. Lee, J. Kim, H.-W. Jeong, H.-G. Kim, W.-S. Kim, K.-Y. Lyu, J.-W. Min, and K.-W. Kim, “Evaluation of an edge method for computed radiography and an electronic portal imaging device in radiotherapy: image quality measurements,” J. Korean Phys. Soc. 65(11), 1976–1984 (2015).
[Crossref]

Ma, X.

Y. Duan, M. Gu, L. Liang, X. Ma, and M. Chen, “The development of an ultrashort pulsed X-ray facility for fluorescent lifetime measurement,” Nucl. Electron. Detect. Technol. 23(1), 42–45 (2003).

Martin, T.

F. Riva, T. Martin, P. A. Douissard, and C. Dujardin, “Single crystal lutetium oxide thin film scintillators for X-ray imaging,” J. Instrum. 11(10), C10010 (2016).
[Crossref]

Martini, N.

C. Michail, I. Valais, N. Martini, V. Koukou, N. Kalyvas, A. Bakas, I. Kandarakis, and G. Fountos, “Determination of the detective quantum efficiency (DQE) of CMOS/CsI imaging detectors following the novel IEC 62220-1-1:2015 International Standard,” Radiat. Meas. 94, 8–17 (2016).
[Crossref]

Matsushita, T.

K. Sato, Y. Hasegawa, K. Kondo, K. Miyazaki, T. Matsushita, and Y. Amemiya, “Development of a high-resolution X-ray imaging system with a charge-coupled-device detector coupled with crystal X-ray magnifiers,” Rev. Sci. Instrum. 71(12), 4449–4456 (2000).
[Crossref]

Melcher, C. L.

C. L. Melcher, “Perspectives on the future development of new scintillators,” Nucl. Instrum. Methods Phys. Res. A 537(1-2), 6–14 (2005).
[Crossref]

Michail, C.

C. Michail, I. Valais, N. Martini, V. Koukou, N. Kalyvas, A. Bakas, I. Kandarakis, and G. Fountos, “Determination of the detective quantum efficiency (DQE) of CMOS/CsI imaging detectors following the novel IEC 62220-1-1:2015 International Standard,” Radiat. Meas. 94, 8–17 (2016).
[Crossref]

Miller, S. R.

V. V. Nagarkar, T. K. Gupta, S. R. Miller, Y. Klugerman, M. R. Squillante, and G. Entine, “Structured CsI(Tl) scintillators for X-ray imaging applications,” IEEE Trans. Nucl. Sci. 45(3), 492–496 (1998).
[Crossref]

Min, J.-W.

S. Son, B. Choe, J. Lee, J. Kim, H.-W. Jeong, H.-G. Kim, W.-S. Kim, K.-Y. Lyu, J.-W. Min, and K.-W. Kim, “Evaluation of an edge method for computed radiography and an electronic portal imaging device in radiotherapy: image quality measurements,” J. Korean Phys. Soc. 65(11), 1976–1984 (2015).
[Crossref]

Miyazaki, K.

K. Sato, Y. Hasegawa, K. Kondo, K. Miyazaki, T. Matsushita, and Y. Amemiya, “Development of a high-resolution X-ray imaging system with a charge-coupled-device detector coupled with crystal X-ray magnifiers,” Rev. Sci. Instrum. 71(12), 4449–4456 (2000).
[Crossref]

Mohanta, S. K.

S. W. Kang, S. K. Mohanta, Y. Y. Kim, and H. K. Cho, “Realization of vertically well-aligned ZnO:Ga nanorods by magnetron sputtering and their field emission behavior,” Cryst. Growth Des. 8(5), 1458–1460 (2008).
[Crossref]

Mori, K.

Y. Furuya, T. Yanagida, Y. Fujimoto, Y. Yokota, K. Kamada, N. Kawaguchi, S. Ishizu, K. Uchiyama, K. Mori, K. Kitano, M. Nikl, and A. Yoshikawa, “Time- and wavelength-resolved luminescence evaluation of several types of scintillators using streak camera system equipped with pulsed X-ray source,” Nucl. Instrum. Methods Phys. Res. A 634(1), 59–63 (2011).
[Crossref]

Morishita, J.

H. Fujita, D. Y. Tsai, T. Itoh, K. Doi, J. Morishita, K. Ueda, and A. Ohtsuka, “A simple method for determining the modulation transfer function in digital radiography,” IEEE Trans. Med. Imaging 11(1), 34–39 (1992).
[Crossref] [PubMed]

Morkoç, H.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Nagarkar, V. V.

V. V. Nagarkar, T. K. Gupta, S. R. Miller, Y. Klugerman, M. R. Squillante, and G. Entine, “Structured CsI(Tl) scintillators for X-ray imaging applications,” IEEE Trans. Nucl. Sci. 45(3), 492–496 (1998).
[Crossref]

Ni, C.

F. Li, M. Gu, H. He, L. Chang, W. Wen, Z. Li, L. Chen, J. Liu, X. Ouyang, X. Liu, B. Liu, S. Huang, and C. Ni, “Fluorescent decay time and energy response of γ-CuI crystal,” J. Inorg. Mater. 32(2), 163–168 (2017).
[Crossref]

Q. Li, X. Liu, M. Gu, S. Huang, J. Zhang, C. Ni, B. Liu, Y. Hu, Q. Wu, and S. Zhao, “X-ray excited luminescence of Ga- and In-doped ZnO microrods by annealing treatment,” Superlattices Microstruct. 98, 351–358 (2016).
[Crossref]

Q. Li, X. Liu, M. Gu, S. Huang, C. Ni, B. Liu, Y. Hu, S. Sun, and Z. Zhang, “Fabrication and X-ray excited luminescence of Ga- and In-doped ZnO nanorods,” IEEE Trans. Nucl. Sci. 63(2), 471–474 (2016).
[Crossref]

Nikl, M.

Y. Furuya, T. Yanagida, Y. Fujimoto, Y. Yokota, K. Kamada, N. Kawaguchi, S. Ishizu, K. Uchiyama, K. Mori, K. Kitano, M. Nikl, and A. Yoshikawa, “Time- and wavelength-resolved luminescence evaluation of several types of scintillators using streak camera system equipped with pulsed X-ray source,” Nucl. Instrum. Methods Phys. Res. A 634(1), 59–63 (2011).
[Crossref]

Ohtsuka, A.

H. Fujita, D. Y. Tsai, T. Itoh, K. Doi, J. Morishita, K. Ueda, and A. Ohtsuka, “A simple method for determining the modulation transfer function in digital radiography,” IEEE Trans. Med. Imaging 11(1), 34–39 (1992).
[Crossref] [PubMed]

Ouyang, X.

F. Li, M. Gu, H. He, L. Chang, W. Wen, Z. Li, L. Chen, J. Liu, X. Ouyang, X. Liu, B. Liu, S. Huang, and C. Ni, “Fluorescent decay time and energy response of γ-CuI crystal,” J. Inorg. Mater. 32(2), 163–168 (2017).
[Crossref]

Özgür, Ü.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Pal, U.

A. Escobedo-Morales and U. Pal, “Defect annihilation and morphological improvement of hydrothermally grown ZnO nanorods by Ga doping,” Appl. Phys. Lett. 93(19), 193120 (2008).
[Crossref]

Park, S. M.

W. I. Park, G. C. Yi, J. W. Kim, and S. M. Park, “Schottky nanocontacts on ZnO nanorod arrays,” Appl. Phys. Lett. 82(24), 4358–4360 (2003).
[Crossref]

Park, W. I.

W. I. Park, G. C. Yi, J. W. Kim, and S. M. Park, “Schottky nanocontacts on ZnO nanorod arrays,” Appl. Phys. Lett. 82(24), 4358–4360 (2003).
[Crossref]

Peng, G.

H. Xie, B. Deng, G. Du, Y. Fu, R. Chen, G. Zhou, Y. Ren, Y. Wang, Y. Xue, G. Peng, Y. He, H. Guo, and T. Xiao, “Latest advances of X-ray imaging and biomedical applications beamline at SSRF,” Nucl. Sci. Tech. 26(2), 020102 (2015).

Reimann, D. A.

E. Samei, M. J. Flynn, and D. A. Reimann, “A method for measuring the presampled MTF of digital radiographic systems using an edge test device,” Med. Phys. 25(1), 102–113 (1998).
[Crossref] [PubMed]

Ren, Y.

H. Xie, B. Deng, G. Du, Y. Fu, R. Chen, G. Zhou, Y. Ren, Y. Wang, Y. Xue, G. Peng, Y. He, H. Guo, and T. Xiao, “Latest advances of X-ray imaging and biomedical applications beamline at SSRF,” Nucl. Sci. Tech. 26(2), 020102 (2015).

Reshchikov, M. A.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Riva, F.

F. Riva, T. Martin, P. A. Douissard, and C. Dujardin, “Single crystal lutetium oxide thin film scintillators for X-ray imaging,” J. Instrum. 11(10), C10010 (2016).
[Crossref]

Samei, E.

E. Samei, M. J. Flynn, and D. A. Reimann, “A method for measuring the presampled MTF of digital radiographic systems using an edge test device,” Med. Phys. 25(1), 102–113 (1998).
[Crossref] [PubMed]

Saramad, S.

A. Taheri, S. Saramad, and S. Setayeshi, “ZnO nanowires in polycarbonate membrane as a high resolution X-ray detector (a Geant4 simulation),” Nucl. Instrum. Methods Phys. Res. A 716, 15–22 (2013).
[Crossref]

Sato, K.

K. Sato, Y. Hasegawa, K. Kondo, K. Miyazaki, T. Matsushita, and Y. Amemiya, “Development of a high-resolution X-ray imaging system with a charge-coupled-device detector coupled with crystal X-ray magnifiers,” Rev. Sci. Instrum. 71(12), 4449–4456 (2000).
[Crossref]

Sekiwa, H.

Y. Fujimoto, T. Yanagida, H. Sekiwa, Y. Yokota, V. Chani, and A. Yoshikawa, “Scintillation characteristic of In,Ga-doped ZnO thin films with different dopant concentrations,” Jpn. J. Appl. Phys. 50(1S2), 01BG04 (2011).
[Crossref]

Selimis, A.

A. N. Giakoumaki, G. Kenanakis, A. Klini, M. Androulidaki, Z. Viskadourakis, M. Farsari, and A. Selimis, “3D micro-structured arrays of ZnΟ nanorods,” Sci. Rep. 7(1), 2100 (2017).
[Crossref] [PubMed]

Setayeshi, S.

A. Taheri, S. Saramad, and S. Setayeshi, “ZnO nanowires in polycarbonate membrane as a high resolution X-ray detector (a Geant4 simulation),” Nucl. Instrum. Methods Phys. Res. A 716, 15–22 (2013).
[Crossref]

Shimidzu, K.

M. Kobayashi, J. Komori, K. Shimidzu, M. Izaki, K. Uesugi, A. Takeuchi, and Y. Suzuki, “Development of vertically aligned ZnO-nanowires scintillators for high spatial resolution X-ray imaging,” Appl. Phys. Lett. 106(8), 081909 (2015).
[Crossref]

Soman, M. R.

J. H. Tutt, D. J. Hall, M. R. Soman, A. D. Holland, A. J. Warren, T. Connolley, and A. M. Evagora, “Comparison of EM-CCD and scientific CMOS based camera systems for high resolution X-ray imaging and tomography applications,” J. Instrum. 9(06), P06017 (2014).
[Crossref]

Son, S.

S. Son, B. Choe, J. Lee, J. Kim, H.-W. Jeong, H.-G. Kim, W.-S. Kim, K.-Y. Lyu, J.-W. Min, and K.-W. Kim, “Evaluation of an edge method for computed radiography and an electronic portal imaging device in radiotherapy: image quality measurements,” J. Korean Phys. Soc. 65(11), 1976–1984 (2015).
[Crossref]

Squillante, M. R.

V. V. Nagarkar, T. K. Gupta, S. R. Miller, Y. Klugerman, M. R. Squillante, and G. Entine, “Structured CsI(Tl) scintillators for X-ray imaging applications,” IEEE Trans. Nucl. Sci. 45(3), 492–496 (1998).
[Crossref]

Sun, S.

Q. Li, X. Liu, M. Gu, S. Huang, C. Ni, B. Liu, Y. Hu, S. Sun, and Z. Zhang, “Fabrication and X-ray excited luminescence of Ga- and In-doped ZnO nanorods,” IEEE Trans. Nucl. Sci. 63(2), 471–474 (2016).
[Crossref]

Sun, Y.

Y. Sun, G. M. Fuge, and M. N. R. Ashfold, “Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods,” Chem. Phys. Lett. 396(1), 21–26 (2004).
[Crossref]

Sun, Z.

S. Liu, M. Gu, H. Chen, Z. Sun, X. Liu, B. Liu, S. Huang, and J. Zhang, “Performance of pixelated CsI scintillation screen with hexagonal array arrangement prepared by vacuum melting injection method,” Nucl. Instrum. Methods Phys. Res. A 903, 18–24 (2018).
[Crossref]

Suzuki, Y.

M. Kobayashi, J. Komori, K. Shimidzu, M. Izaki, K. Uesugi, A. Takeuchi, and Y. Suzuki, “Development of vertically aligned ZnO-nanowires scintillators for high spatial resolution X-ray imaging,” Appl. Phys. Lett. 106(8), 081909 (2015).
[Crossref]

Sychugov, I.

Y. Hormozan, I. Sychugov, and J. Linnros, “High-resolution X-ray imaging using a structured scintillator,” Med. Phys. 43(2), 696–701 (2016).
[Crossref] [PubMed]

Taheri, A.

A. Taheri, S. Saramad, and S. Setayeshi, “ZnO nanowires in polycarbonate membrane as a high resolution X-ray detector (a Geant4 simulation),” Nucl. Instrum. Methods Phys. Res. A 716, 15–22 (2013).
[Crossref]

Takeuchi, A.

M. Kobayashi, J. Komori, K. Shimidzu, M. Izaki, K. Uesugi, A. Takeuchi, and Y. Suzuki, “Development of vertically aligned ZnO-nanowires scintillators for high spatial resolution X-ray imaging,” Appl. Phys. Lett. 106(8), 081909 (2015).
[Crossref]

Teke, A.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Telman, M.

M. Åslund, E. Fredenberg, M. Telman, and M. Danielsson, “Detectors for the future of X-ray imaging,” Radiat. Prot. Dosimetry 139(1-3), 327–333 (2010).
[Crossref] [PubMed]

Tsai, D. Y.

H. Fujita, D. Y. Tsai, T. Itoh, K. Doi, J. Morishita, K. Ueda, and A. Ohtsuka, “A simple method for determining the modulation transfer function in digital radiography,” IEEE Trans. Med. Imaging 11(1), 34–39 (1992).
[Crossref] [PubMed]

Tutt, J. H.

J. H. Tutt, D. J. Hall, M. R. Soman, A. D. Holland, A. J. Warren, T. Connolley, and A. M. Evagora, “Comparison of EM-CCD and scientific CMOS based camera systems for high resolution X-ray imaging and tomography applications,” J. Instrum. 9(06), P06017 (2014).
[Crossref]

Uchiyama, K.

Y. Furuya, T. Yanagida, Y. Fujimoto, Y. Yokota, K. Kamada, N. Kawaguchi, S. Ishizu, K. Uchiyama, K. Mori, K. Kitano, M. Nikl, and A. Yoshikawa, “Time- and wavelength-resolved luminescence evaluation of several types of scintillators using streak camera system equipped with pulsed X-ray source,” Nucl. Instrum. Methods Phys. Res. A 634(1), 59–63 (2011).
[Crossref]

Ueda, K.

H. Fujita, D. Y. Tsai, T. Itoh, K. Doi, J. Morishita, K. Ueda, and A. Ohtsuka, “A simple method for determining the modulation transfer function in digital radiography,” IEEE Trans. Med. Imaging 11(1), 34–39 (1992).
[Crossref] [PubMed]

Uesugi, K.

M. Kobayashi, J. Komori, K. Shimidzu, M. Izaki, K. Uesugi, A. Takeuchi, and Y. Suzuki, “Development of vertically aligned ZnO-nanowires scintillators for high spatial resolution X-ray imaging,” Appl. Phys. Lett. 106(8), 081909 (2015).
[Crossref]

Valais, I.

C. Michail, I. Valais, N. Martini, V. Koukou, N. Kalyvas, A. Bakas, I. Kandarakis, and G. Fountos, “Determination of the detective quantum efficiency (DQE) of CMOS/CsI imaging detectors following the novel IEC 62220-1-1:2015 International Standard,” Radiat. Meas. 94, 8–17 (2016).
[Crossref]

Viskadourakis, Z.

A. N. Giakoumaki, G. Kenanakis, A. Klini, M. Androulidaki, Z. Viskadourakis, M. Farsari, and A. Selimis, “3D micro-structured arrays of ZnΟ nanorods,” Sci. Rep. 7(1), 2100 (2017).
[Crossref] [PubMed]

Wang, Y.

H. Xie, B. Deng, G. Du, Y. Fu, R. Chen, G. Zhou, Y. Ren, Y. Wang, Y. Xue, G. Peng, Y. He, H. Guo, and T. Xiao, “Latest advances of X-ray imaging and biomedical applications beamline at SSRF,” Nucl. Sci. Tech. 26(2), 020102 (2015).

Wang, Z.

S. Xu and Z. Wang, “One-dimensional ZnO nanostructures solution growth and functional properties,” Nano Res. 4(11), 1013–1098 (2011).
[Crossref]

Wang, Z. L.

Z. L. Wang, “Zinc oxide nanostructures: growth, properties and applications,” J. Phys. Condens. Matter 16(25), R829–R858 (2004).
[Crossref]

Warren, A. J.

J. H. Tutt, D. J. Hall, M. R. Soman, A. D. Holland, A. J. Warren, T. Connolley, and A. M. Evagora, “Comparison of EM-CCD and scientific CMOS based camera systems for high resolution X-ray imaging and tomography applications,” J. Instrum. 9(06), P06017 (2014).
[Crossref]

Weintraub, B.

B. Weintraub, Z. Zhou, Y. Li, and Y. Deng, “Solution synthesis of one-dimensional ZnO nanomaterials and their applications,” Nanoscale 2(9), 1573–1587 (2010).
[Crossref] [PubMed]

Wen, W.

F. Li, M. Gu, H. He, L. Chang, W. Wen, Z. Li, L. Chen, J. Liu, X. Ouyang, X. Liu, B. Liu, S. Huang, and C. Ni, “Fluorescent decay time and energy response of γ-CuI crystal,” J. Inorg. Mater. 32(2), 163–168 (2017).
[Crossref]

Wu, Q.

Q. Li, X. Liu, M. Gu, F. Li, J. Zhang, Q. Wu, S. Huang, and S. Liu, “Large enhancement of X-ray excited luminescence in Ga-doped ZnO nanorod arrays by hydrogen annealing,” Appl. Surf. Sci. 433, 815–820 (2018).
[Crossref]

Q. Li, X. Liu, M. Gu, S. Huang, J. Zhang, C. Ni, B. Liu, Y. Hu, Q. Wu, and S. Zhao, “X-ray excited luminescence of Ga- and In-doped ZnO microrods by annealing treatment,” Superlattices Microstruct. 98, 351–358 (2016).
[Crossref]

Xiao, T.

H. Xie, B. Deng, G. Du, Y. Fu, R. Chen, G. Zhou, Y. Ren, Y. Wang, Y. Xue, G. Peng, Y. He, H. Guo, and T. Xiao, “Latest advances of X-ray imaging and biomedical applications beamline at SSRF,” Nucl. Sci. Tech. 26(2), 020102 (2015).

Xie, H.

H. Xie, B. Deng, G. Du, Y. Fu, R. Chen, G. Zhou, Y. Ren, Y. Wang, Y. Xue, G. Peng, Y. He, H. Guo, and T. Xiao, “Latest advances of X-ray imaging and biomedical applications beamline at SSRF,” Nucl. Sci. Tech. 26(2), 020102 (2015).

Xu, S.

S. Xu and Z. Wang, “One-dimensional ZnO nanostructures solution growth and functional properties,” Nano Res. 4(11), 1013–1098 (2011).
[Crossref]

Xue, Y.

H. Xie, B. Deng, G. Du, Y. Fu, R. Chen, G. Zhou, Y. Ren, Y. Wang, Y. Xue, G. Peng, Y. He, H. Guo, and T. Xiao, “Latest advances of X-ray imaging and biomedical applications beamline at SSRF,” Nucl. Sci. Tech. 26(2), 020102 (2015).

Yanagida, T.

Y. Fujimoto, T. Yanagida, H. Sekiwa, Y. Yokota, V. Chani, and A. Yoshikawa, “Scintillation characteristic of In,Ga-doped ZnO thin films with different dopant concentrations,” Jpn. J. Appl. Phys. 50(1S2), 01BG04 (2011).
[Crossref]

Y. Furuya, T. Yanagida, Y. Fujimoto, Y. Yokota, K. Kamada, N. Kawaguchi, S. Ishizu, K. Uchiyama, K. Mori, K. Kitano, M. Nikl, and A. Yoshikawa, “Time- and wavelength-resolved luminescence evaluation of several types of scintillators using streak camera system equipped with pulsed X-ray source,” Nucl. Instrum. Methods Phys. Res. A 634(1), 59–63 (2011).
[Crossref]

Yi, G. C.

W. I. Park, G. C. Yi, J. W. Kim, and S. M. Park, “Schottky nanocontacts on ZnO nanorod arrays,” Appl. Phys. Lett. 82(24), 4358–4360 (2003).
[Crossref]

Yokota, Y.

Y. Furuya, T. Yanagida, Y. Fujimoto, Y. Yokota, K. Kamada, N. Kawaguchi, S. Ishizu, K. Uchiyama, K. Mori, K. Kitano, M. Nikl, and A. Yoshikawa, “Time- and wavelength-resolved luminescence evaluation of several types of scintillators using streak camera system equipped with pulsed X-ray source,” Nucl. Instrum. Methods Phys. Res. A 634(1), 59–63 (2011).
[Crossref]

Y. Fujimoto, T. Yanagida, H. Sekiwa, Y. Yokota, V. Chani, and A. Yoshikawa, “Scintillation characteristic of In,Ga-doped ZnO thin films with different dopant concentrations,” Jpn. J. Appl. Phys. 50(1S2), 01BG04 (2011).
[Crossref]

Yoshikawa, A.

Y. Fujimoto, T. Yanagida, H. Sekiwa, Y. Yokota, V. Chani, and A. Yoshikawa, “Scintillation characteristic of In,Ga-doped ZnO thin films with different dopant concentrations,” Jpn. J. Appl. Phys. 50(1S2), 01BG04 (2011).
[Crossref]

Y. Furuya, T. Yanagida, Y. Fujimoto, Y. Yokota, K. Kamada, N. Kawaguchi, S. Ishizu, K. Uchiyama, K. Mori, K. Kitano, M. Nikl, and A. Yoshikawa, “Time- and wavelength-resolved luminescence evaluation of several types of scintillators using streak camera system equipped with pulsed X-ray source,” Nucl. Instrum. Methods Phys. Res. A 634(1), 59–63 (2011).
[Crossref]

Zhang, J.

Q. Li, X. Liu, M. Gu, F. Li, J. Zhang, Q. Wu, S. Huang, and S. Liu, “Large enhancement of X-ray excited luminescence in Ga-doped ZnO nanorod arrays by hydrogen annealing,” Appl. Surf. Sci. 433, 815–820 (2018).
[Crossref]

S. Liu, M. Gu, H. Chen, Z. Sun, X. Liu, B. Liu, S. Huang, and J. Zhang, “Performance of pixelated CsI scintillation screen with hexagonal array arrangement prepared by vacuum melting injection method,” Nucl. Instrum. Methods Phys. Res. A 903, 18–24 (2018).
[Crossref]

Q. Li, X. Liu, M. Gu, S. Huang, J. Zhang, C. Ni, B. Liu, Y. Hu, Q. Wu, and S. Zhao, “X-ray excited luminescence of Ga- and In-doped ZnO microrods by annealing treatment,” Superlattices Microstruct. 98, 351–358 (2016).
[Crossref]

Zhang, Z.

Q. Li, X. Liu, M. Gu, S. Huang, C. Ni, B. Liu, Y. Hu, S. Sun, and Z. Zhang, “Fabrication and X-ray excited luminescence of Ga- and In-doped ZnO nanorods,” IEEE Trans. Nucl. Sci. 63(2), 471–474 (2016).
[Crossref]

Zhao, S.

Q. Li, X. Liu, M. Gu, S. Huang, J. Zhang, C. Ni, B. Liu, Y. Hu, Q. Wu, and S. Zhao, “X-ray excited luminescence of Ga- and In-doped ZnO microrods by annealing treatment,” Superlattices Microstruct. 98, 351–358 (2016).
[Crossref]

Zhou, G.

H. Xie, B. Deng, G. Du, Y. Fu, R. Chen, G. Zhou, Y. Ren, Y. Wang, Y. Xue, G. Peng, Y. He, H. Guo, and T. Xiao, “Latest advances of X-ray imaging and biomedical applications beamline at SSRF,” Nucl. Sci. Tech. 26(2), 020102 (2015).

Zhou, Z.

B. Weintraub, Z. Zhou, Y. Li, and Y. Deng, “Solution synthesis of one-dimensional ZnO nanomaterials and their applications,” Nanoscale 2(9), 1573–1587 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

M. Kobayashi, J. Komori, K. Shimidzu, M. Izaki, K. Uesugi, A. Takeuchi, and Y. Suzuki, “Development of vertically aligned ZnO-nanowires scintillators for high spatial resolution X-ray imaging,” Appl. Phys. Lett. 106(8), 081909 (2015).
[Crossref]

W. I. Park, G. C. Yi, J. W. Kim, and S. M. Park, “Schottky nanocontacts on ZnO nanorod arrays,” Appl. Phys. Lett. 82(24), 4358–4360 (2003).
[Crossref]

C. Lin, H. Chen, H. Liao, and S. Chen, “Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates,” Appl. Phys. Lett. 86(18), 183103 (2005).
[Crossref]

A. Escobedo-Morales and U. Pal, “Defect annihilation and morphological improvement of hydrothermally grown ZnO nanorods by Ga doping,” Appl. Phys. Lett. 93(19), 193120 (2008).
[Crossref]

Appl. Surf. Sci. (1)

Q. Li, X. Liu, M. Gu, F. Li, J. Zhang, Q. Wu, S. Huang, and S. Liu, “Large enhancement of X-ray excited luminescence in Ga-doped ZnO nanorod arrays by hydrogen annealing,” Appl. Surf. Sci. 433, 815–820 (2018).
[Crossref]

Chem. Phys. Lett. (1)

Y. Sun, G. M. Fuge, and M. N. R. Ashfold, “Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods,” Chem. Phys. Lett. 396(1), 21–26 (2004).
[Crossref]

Cryst. Growth Des. (1)

S. W. Kang, S. K. Mohanta, Y. Y. Kim, and H. K. Cho, “Realization of vertically well-aligned ZnO:Ga nanorods by magnetron sputtering and their field emission behavior,” Cryst. Growth Des. 8(5), 1458–1460 (2008).
[Crossref]

IEEE Trans. Med. Imaging (1)

H. Fujita, D. Y. Tsai, T. Itoh, K. Doi, J. Morishita, K. Ueda, and A. Ohtsuka, “A simple method for determining the modulation transfer function in digital radiography,” IEEE Trans. Med. Imaging 11(1), 34–39 (1992).
[Crossref] [PubMed]

IEEE Trans. Nucl. Sci. (2)

Q. Li, X. Liu, M. Gu, S. Huang, C. Ni, B. Liu, Y. Hu, S. Sun, and Z. Zhang, “Fabrication and X-ray excited luminescence of Ga- and In-doped ZnO nanorods,” IEEE Trans. Nucl. Sci. 63(2), 471–474 (2016).
[Crossref]

V. V. Nagarkar, T. K. Gupta, S. R. Miller, Y. Klugerman, M. R. Squillante, and G. Entine, “Structured CsI(Tl) scintillators for X-ray imaging applications,” IEEE Trans. Nucl. Sci. 45(3), 492–496 (1998).
[Crossref]

J. Appl. Phys. (1)

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

J. Inorg. Mater. (1)

F. Li, M. Gu, H. He, L. Chang, W. Wen, Z. Li, L. Chen, J. Liu, X. Ouyang, X. Liu, B. Liu, S. Huang, and C. Ni, “Fluorescent decay time and energy response of γ-CuI crystal,” J. Inorg. Mater. 32(2), 163–168 (2017).
[Crossref]

J. Instrum. (2)

F. Riva, T. Martin, P. A. Douissard, and C. Dujardin, “Single crystal lutetium oxide thin film scintillators for X-ray imaging,” J. Instrum. 11(10), C10010 (2016).
[Crossref]

J. H. Tutt, D. J. Hall, M. R. Soman, A. D. Holland, A. J. Warren, T. Connolley, and A. M. Evagora, “Comparison of EM-CCD and scientific CMOS based camera systems for high resolution X-ray imaging and tomography applications,” J. Instrum. 9(06), P06017 (2014).
[Crossref]

J. Korean Phys. Soc. (1)

S. Son, B. Choe, J. Lee, J. Kim, H.-W. Jeong, H.-G. Kim, W.-S. Kim, K.-Y. Lyu, J.-W. Min, and K.-W. Kim, “Evaluation of an edge method for computed radiography and an electronic portal imaging device in radiotherapy: image quality measurements,” J. Korean Phys. Soc. 65(11), 1976–1984 (2015).
[Crossref]

J. Phys. Condens. Matter (1)

Z. L. Wang, “Zinc oxide nanostructures: growth, properties and applications,” J. Phys. Condens. Matter 16(25), R829–R858 (2004).
[Crossref]

Jpn. J. Appl. Phys. (1)

Y. Fujimoto, T. Yanagida, H. Sekiwa, Y. Yokota, V. Chani, and A. Yoshikawa, “Scintillation characteristic of In,Ga-doped ZnO thin films with different dopant concentrations,” Jpn. J. Appl. Phys. 50(1S2), 01BG04 (2011).
[Crossref]

Med. Phys. (2)

E. Samei, M. J. Flynn, and D. A. Reimann, “A method for measuring the presampled MTF of digital radiographic systems using an edge test device,” Med. Phys. 25(1), 102–113 (1998).
[Crossref] [PubMed]

Y. Hormozan, I. Sychugov, and J. Linnros, “High-resolution X-ray imaging using a structured scintillator,” Med. Phys. 43(2), 696–701 (2016).
[Crossref] [PubMed]

Nano Res. (1)

S. Xu and Z. Wang, “One-dimensional ZnO nanostructures solution growth and functional properties,” Nano Res. 4(11), 1013–1098 (2011).
[Crossref]

Nanoscale (1)

B. Weintraub, Z. Zhou, Y. Li, and Y. Deng, “Solution synthesis of one-dimensional ZnO nanomaterials and their applications,” Nanoscale 2(9), 1573–1587 (2010).
[Crossref] [PubMed]

Nanotechnology (1)

C. H. Ahn, W. S. Han, B. H. Kong, and H. K. Cho, “Ga-doped ZnO nanorod arrays grown by thermal evaporation and their electrical behavior,” Nanotechnology 20(1), 015601 (2009).
[Crossref] [PubMed]

Nucl. Electron. Detect. Technol. (1)

Y. Duan, M. Gu, L. Liang, X. Ma, and M. Chen, “The development of an ultrashort pulsed X-ray facility for fluorescent lifetime measurement,” Nucl. Electron. Detect. Technol. 23(1), 42–45 (2003).

Nucl. Instrum. Methods Phys. Res. A (4)

S. Liu, M. Gu, H. Chen, Z. Sun, X. Liu, B. Liu, S. Huang, and J. Zhang, “Performance of pixelated CsI scintillation screen with hexagonal array arrangement prepared by vacuum melting injection method,” Nucl. Instrum. Methods Phys. Res. A 903, 18–24 (2018).
[Crossref]

Y. Furuya, T. Yanagida, Y. Fujimoto, Y. Yokota, K. Kamada, N. Kawaguchi, S. Ishizu, K. Uchiyama, K. Mori, K. Kitano, M. Nikl, and A. Yoshikawa, “Time- and wavelength-resolved luminescence evaluation of several types of scintillators using streak camera system equipped with pulsed X-ray source,” Nucl. Instrum. Methods Phys. Res. A 634(1), 59–63 (2011).
[Crossref]

A. Taheri, S. Saramad, and S. Setayeshi, “ZnO nanowires in polycarbonate membrane as a high resolution X-ray detector (a Geant4 simulation),” Nucl. Instrum. Methods Phys. Res. A 716, 15–22 (2013).
[Crossref]

C. L. Melcher, “Perspectives on the future development of new scintillators,” Nucl. Instrum. Methods Phys. Res. A 537(1-2), 6–14 (2005).
[Crossref]

Nucl. Sci. Tech. (1)

H. Xie, B. Deng, G. Du, Y. Fu, R. Chen, G. Zhou, Y. Ren, Y. Wang, Y. Xue, G. Peng, Y. He, H. Guo, and T. Xiao, “Latest advances of X-ray imaging and biomedical applications beamline at SSRF,” Nucl. Sci. Tech. 26(2), 020102 (2015).

Phys. Rev. Lett. (1)

M. H. Du and K. Biswas, “Anionic and hidden hydrogen in ZnO,” Phys. Rev. Lett. 106(11), 115502 (2011).
[Crossref] [PubMed]

Radiat. Meas. (1)

C. Michail, I. Valais, N. Martini, V. Koukou, N. Kalyvas, A. Bakas, I. Kandarakis, and G. Fountos, “Determination of the detective quantum efficiency (DQE) of CMOS/CsI imaging detectors following the novel IEC 62220-1-1:2015 International Standard,” Radiat. Meas. 94, 8–17 (2016).
[Crossref]

Radiat. Prot. Dosimetry (1)

M. Åslund, E. Fredenberg, M. Telman, and M. Danielsson, “Detectors for the future of X-ray imaging,” Radiat. Prot. Dosimetry 139(1-3), 327–333 (2010).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

K. Sato, Y. Hasegawa, K. Kondo, K. Miyazaki, T. Matsushita, and Y. Amemiya, “Development of a high-resolution X-ray imaging system with a charge-coupled-device detector coupled with crystal X-ray magnifiers,” Rev. Sci. Instrum. 71(12), 4449–4456 (2000).
[Crossref]

Sci. Rep. (1)

A. N. Giakoumaki, G. Kenanakis, A. Klini, M. Androulidaki, Z. Viskadourakis, M. Farsari, and A. Selimis, “3D micro-structured arrays of ZnΟ nanorods,” Sci. Rep. 7(1), 2100 (2017).
[Crossref] [PubMed]

Superlattices Microstruct. (1)

Q. Li, X. Liu, M. Gu, S. Huang, J. Zhang, C. Ni, B. Liu, Y. Hu, Q. Wu, and S. Zhao, “X-ray excited luminescence of Ga- and In-doped ZnO microrods by annealing treatment,” Superlattices Microstruct. 98, 351–358 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The schematic illustration of the fabrication process of ZnO-based nanorod arrays.
Fig. 2
Fig. 2 FE-SEM images of (a) surface and (b) cross-sectional views for the ZnO nanorod array, and (c) surface and (d) cross-sectional views for the ZnO:Ga nanorod array.
Fig. 3
Fig. 3 XRD patterns of the ZnO and ZnO:Ga nanorod arrays.
Fig. 4
Fig. 4 Typical XEL spectra of the (a) ZnO and (b) ZnO:Ga nanorod arrays unannealed and annealed at 550°C for 60 mins with 20% hydrogen.
Fig. 5
Fig. 5 The fluorescence decay curves of (a) ultraviolet and (b) visible emissions for the ZnO nanorod arrays, and (c) ultraviolet and (d) visible emissions for the ZnO:Ga nanorod arrays (λex = 351 nm).
Fig. 6
Fig. 6 (a) Schematic diagram of the synchrotron radiation X-ray imaging measurement setup at BL13W1, SSRF. Captured X-ray image of the micro resolution chart, and recorded using a PCO2000 camera coupled with a (b) 10 × and (c) 20 × microscope objectives.
Fig. 7
Fig. 7 (a) MTF curve of the X-ray imaging system with ZnO nanorod arrays, and the inset is a lead slit and its X-ray image with exposure time 300 s at the 20 × magnification. (b) DQE curve of the X-ray imaging system with ZnO nanorod arrays, and NPS curve is given in the inset.

Metrics