Abstract

The wavefront quality of white-light supercontinuum is crucial for applications like waveform synthesis or imaging. It has been here generated by 1030 nm centered sub-picosecond pulses in YAG and characterized with a Shack-Hartmann wavefront sensor across different parts of the spectrum. It shows a good wavefront quality of λ/11 and little dependence on the wavelength of the supercontinuum. The wavefront deformations are transferred from the driver laser wavefront to the supercontinuum independently of the wavelength.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Phase unwrapping with a virtual Hartmann-Shack wavefront sensor

Vyas Akondi, Claas Falldorf, Susana Marcos, and Brian Vohnsen
Opt. Express 23(20) 25425-25439 (2015)

Adaptive optics with a magnetic deformable mirror: applications in the human eye

Enrique J. Fernández, Laurent Vabre, Boris Hermann, Angelika Unterhuber, Boris Považay, and Wolfgang Drexler
Opt. Express 14(20) 8900-8917 (2006)

Deformable mirror for wavefront shaping of infrared radiation

Michael Eichenberger, Flavio Giorgianni, Nick Sauerwein, Carlo Vicario, and Christoph P. Hauri
Opt. Lett. 43(9) 2062-2065 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. R. Alfano, The supercontinuum laser source: the ultimate white light (Springer, 2016), 3rd ed.
    [Crossref]
  2. N. Bloembergen, “The influence of electron plasma formation on superbroadening in light filaments,” Opt. Commun. 8, 285–288 (1973).
    [Crossref]
  3. A. M. Zheltikov, “Let there be white light: supercontinuum generation by ultrashort laser pulses,” Physics-Uspekhi 49, 605–628 (2006).
    [Crossref]
  4. R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
    [Crossref]
  5. R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24, 592–594 (1970).
    [Crossref]
  6. R. L. Fork, W. J. Tomlinson, C. V. Shank, C. Hirlimann, and R. Yen, “Femtosecond white-light continuum pulses,” Opt. Lett. 8, 1–3 (1983).
    [Crossref] [PubMed]
  7. D. Wildanger, E. Rittweger, L. Kastrup, and S. W. Hell, “STED microscopy with a supercontinuum laser source,” Opt. Express 16, 9614–9621 (2008).
    [Crossref] [PubMed]
  8. C. Manzoni, O. D. Mücke, G. Cirmi, S. Fang, J. Moses, S.-W. Huang, K.-H. Hong, G. Cerullo, and F. X. Kärtner, “Coherent pulse synthesis: towards sub-cycle optical waveforms,” Laser & Photonics Rev. 9, 129–171 (2015).
    [Crossref]
  9. H. Çankaya, A.-L. Calendron, C. Zhou, S.-H. Chia, O. D. Mücke, G. Cirmi, and F. X. Kärtner, “40-μJ passively CEP-stable seed source for ytterbium-based high-energy optical waveform synthesizers,” Opt. Express 24, 25169–25180 (2016).
    [Crossref]
  10. D. Li, C. Zhao, W. Wu, and S. Du, “Measurement of the wavefront distribution characteristics of a 400–1700nm supercontinuum light source,” Proc. SPIE 10457, 104571W (2017).
  11. J. Primot, “Theoretical description of Shack–Hartmann wave-front sensor,” Opt. Commun. 222, 81–92 (2003).
    [Crossref]
  12. J.-C. Chanteloup, “Multiple-wave lateral shearing interferometry for wave-front sensing,” Appl. Opt. 44, 1559–1571 (2005).
    [Crossref] [PubMed]
  13. B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17, S573–S577 (2001).
    [PubMed]
  14. A.-L. Calendron, H. Çankaya, and F. X. Kärtner, “High-energy kHz Yb:KYW dual-crystal regenerative amplifier,” Opt. Express 22, 24752–24762 (2014).
    [Crossref] [PubMed]
  15. A.-L. Calendron, H. Çankaya, G. Cirmi, and F. X. Kärtner, “White-light generation with sub-ps pulses,” Opt. Express 23, 13866–13879 (2015).
    [Crossref] [PubMed]
  16. F. Zernike and H. C. Brinkman, “Hypersphärische funktionen und die in sphärische bereichen orthogonalen polynome,” Proc. Akad. Wet. Amsterdam 38, 161–170 (1935).
  17. M. Bellini and T. W. Hänsch, “Phase-locked white-light continuum pulses: toward a universal optical frequency-comb synthesizer,” Opt. Lett. 25, 1049–1051 (2000).
    [Crossref]
  18. A. Maréchal, “étude des effets combinés de la diffraction et des aberrations géométriques sur l’image d’un point lumineux,” Revue d’optique, théorique et instrumentale 26, 257–277 (1947).
  19. F. Zernike, “Beugungstheorie des Scheidenverfahrens und seiner verbesserten Form, der Phasenkontrastmethode,” Phys. : Nederlandsch tijdschrift voor natuurkunde 1, 689–704 (1934). OCLC: 772363588.
  20. A. Brodeur and S. L. Chin, “Ultrafast white-light continuum generation and self-focusing in transparent condensed media,” J. Opt. Soc. Am. B 16, 637–650 (1999).
    [Crossref]
  21. V. Kandidov, O. Kosareva, I. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. Bowden, and S. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B: Lasers Opt. 77, 149–165 (2003).
    [Crossref]
  22. M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μj pump pulses,” Appl. Phys. B 97, 561–574 (2009).
    [Crossref]
  23. C. P. Hauri, J. Biegert, U. Keller, B. Schaefer, K. Mann, and G. Marowski, “Validity of wave-front reconstruction and propagation of ultrabroadband pulses measured with a Hartmann–Shack sensor,” Opt. Lett. 30, 1563–1565 (2005).
    [Crossref] [PubMed]

2017 (1)

D. Li, C. Zhao, W. Wu, and S. Du, “Measurement of the wavefront distribution characteristics of a 400–1700nm supercontinuum light source,” Proc. SPIE 10457, 104571W (2017).

2016 (1)

2015 (2)

A.-L. Calendron, H. Çankaya, G. Cirmi, and F. X. Kärtner, “White-light generation with sub-ps pulses,” Opt. Express 23, 13866–13879 (2015).
[Crossref] [PubMed]

C. Manzoni, O. D. Mücke, G. Cirmi, S. Fang, J. Moses, S.-W. Huang, K.-H. Hong, G. Cerullo, and F. X. Kärtner, “Coherent pulse synthesis: towards sub-cycle optical waveforms,” Laser & Photonics Rev. 9, 129–171 (2015).
[Crossref]

2014 (1)

2009 (1)

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μj pump pulses,” Appl. Phys. B 97, 561–574 (2009).
[Crossref]

2008 (1)

2006 (1)

A. M. Zheltikov, “Let there be white light: supercontinuum generation by ultrashort laser pulses,” Physics-Uspekhi 49, 605–628 (2006).
[Crossref]

2005 (2)

2003 (2)

V. Kandidov, O. Kosareva, I. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. Bowden, and S. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B: Lasers Opt. 77, 149–165 (2003).
[Crossref]

J. Primot, “Theoretical description of Shack–Hartmann wave-front sensor,” Opt. Commun. 222, 81–92 (2003).
[Crossref]

2001 (1)

B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17, S573–S577 (2001).
[PubMed]

2000 (1)

1999 (1)

1983 (1)

1973 (1)

N. Bloembergen, “The influence of electron plasma formation on superbroadening in light filaments,” Opt. Commun. 8, 285–288 (1973).
[Crossref]

1970 (2)

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[Crossref]

R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24, 592–594 (1970).
[Crossref]

1947 (1)

A. Maréchal, “étude des effets combinés de la diffraction et des aberrations géométriques sur l’image d’un point lumineux,” Revue d’optique, théorique et instrumentale 26, 257–277 (1947).

1935 (1)

F. Zernike and H. C. Brinkman, “Hypersphärische funktionen und die in sphärische bereichen orthogonalen polynome,” Proc. Akad. Wet. Amsterdam 38, 161–170 (1935).

1934 (1)

F. Zernike, “Beugungstheorie des Scheidenverfahrens und seiner verbesserten Form, der Phasenkontrastmethode,” Phys. : Nederlandsch tijdschrift voor natuurkunde 1, 689–704 (1934). OCLC: 772363588.

Akozbek, N.

V. Kandidov, O. Kosareva, I. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. Bowden, and S. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B: Lasers Opt. 77, 149–165 (2003).
[Crossref]

Alfano, R. R.

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[Crossref]

R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24, 592–594 (1970).
[Crossref]

R. R. Alfano, The supercontinuum laser source: the ultimate white light (Springer, 2016), 3rd ed.
[Crossref]

Baum, P.

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μj pump pulses,” Appl. Phys. B 97, 561–574 (2009).
[Crossref]

Becker, A.

V. Kandidov, O. Kosareva, I. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. Bowden, and S. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B: Lasers Opt. 77, 149–165 (2003).
[Crossref]

Bellini, M.

Biegert, J.

Bloembergen, N.

N. Bloembergen, “The influence of electron plasma formation on superbroadening in light filaments,” Opt. Commun. 8, 285–288 (1973).
[Crossref]

Bowden, C.

V. Kandidov, O. Kosareva, I. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. Bowden, and S. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B: Lasers Opt. 77, 149–165 (2003).
[Crossref]

Bradler, M.

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μj pump pulses,” Appl. Phys. B 97, 561–574 (2009).
[Crossref]

Brinkman, H. C.

F. Zernike and H. C. Brinkman, “Hypersphärische funktionen und die in sphärische bereichen orthogonalen polynome,” Proc. Akad. Wet. Amsterdam 38, 161–170 (1935).

Brodeur, A.

Calendron, A.-L.

Çankaya, H.

Cerullo, G.

C. Manzoni, O. D. Mücke, G. Cirmi, S. Fang, J. Moses, S.-W. Huang, K.-H. Hong, G. Cerullo, and F. X. Kärtner, “Coherent pulse synthesis: towards sub-cycle optical waveforms,” Laser & Photonics Rev. 9, 129–171 (2015).
[Crossref]

Chanteloup, J.-C.

Chia, S.-H.

Chin, S.

V. Kandidov, O. Kosareva, I. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. Bowden, and S. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B: Lasers Opt. 77, 149–165 (2003).
[Crossref]

Chin, S. L.

Cirmi, G.

Du, S.

D. Li, C. Zhao, W. Wu, and S. Du, “Measurement of the wavefront distribution characteristics of a 400–1700nm supercontinuum light source,” Proc. SPIE 10457, 104571W (2017).

Fang, S.

C. Manzoni, O. D. Mücke, G. Cirmi, S. Fang, J. Moses, S.-W. Huang, K.-H. Hong, G. Cerullo, and F. X. Kärtner, “Coherent pulse synthesis: towards sub-cycle optical waveforms,” Laser & Photonics Rev. 9, 129–171 (2015).
[Crossref]

Fork, R. L.

Golubtsov, I.

V. Kandidov, O. Kosareva, I. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. Bowden, and S. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B: Lasers Opt. 77, 149–165 (2003).
[Crossref]

Hänsch, T. W.

Hauri, C. P.

Hell, S. W.

Hirlimann, C.

Hong, K.-H.

C. Manzoni, O. D. Mücke, G. Cirmi, S. Fang, J. Moses, S.-W. Huang, K.-H. Hong, G. Cerullo, and F. X. Kärtner, “Coherent pulse synthesis: towards sub-cycle optical waveforms,” Laser & Photonics Rev. 9, 129–171 (2015).
[Crossref]

Huang, S.-W.

C. Manzoni, O. D. Mücke, G. Cirmi, S. Fang, J. Moses, S.-W. Huang, K.-H. Hong, G. Cerullo, and F. X. Kärtner, “Coherent pulse synthesis: towards sub-cycle optical waveforms,” Laser & Photonics Rev. 9, 129–171 (2015).
[Crossref]

Kandidov, V.

V. Kandidov, O. Kosareva, I. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. Bowden, and S. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B: Lasers Opt. 77, 149–165 (2003).
[Crossref]

Kärtner, F. X.

Kastrup, L.

Keller, U.

Kosareva, O.

V. Kandidov, O. Kosareva, I. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. Bowden, and S. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B: Lasers Opt. 77, 149–165 (2003).
[Crossref]

Li, D.

D. Li, C. Zhao, W. Wu, and S. Du, “Measurement of the wavefront distribution characteristics of a 400–1700nm supercontinuum light source,” Proc. SPIE 10457, 104571W (2017).

Liu, W.

V. Kandidov, O. Kosareva, I. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. Bowden, and S. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B: Lasers Opt. 77, 149–165 (2003).
[Crossref]

Mann, K.

Manzoni, C.

C. Manzoni, O. D. Mücke, G. Cirmi, S. Fang, J. Moses, S.-W. Huang, K.-H. Hong, G. Cerullo, and F. X. Kärtner, “Coherent pulse synthesis: towards sub-cycle optical waveforms,” Laser & Photonics Rev. 9, 129–171 (2015).
[Crossref]

Maréchal, A.

A. Maréchal, “étude des effets combinés de la diffraction et des aberrations géométriques sur l’image d’un point lumineux,” Revue d’optique, théorique et instrumentale 26, 257–277 (1947).

Marowski, G.

Moses, J.

C. Manzoni, O. D. Mücke, G. Cirmi, S. Fang, J. Moses, S.-W. Huang, K.-H. Hong, G. Cerullo, and F. X. Kärtner, “Coherent pulse synthesis: towards sub-cycle optical waveforms,” Laser & Photonics Rev. 9, 129–171 (2015).
[Crossref]

Mücke, O. D.

H. Çankaya, A.-L. Calendron, C. Zhou, S.-H. Chia, O. D. Mücke, G. Cirmi, and F. X. Kärtner, “40-μJ passively CEP-stable seed source for ytterbium-based high-energy optical waveform synthesizers,” Opt. Express 24, 25169–25180 (2016).
[Crossref]

C. Manzoni, O. D. Mücke, G. Cirmi, S. Fang, J. Moses, S.-W. Huang, K.-H. Hong, G. Cerullo, and F. X. Kärtner, “Coherent pulse synthesis: towards sub-cycle optical waveforms,” Laser & Photonics Rev. 9, 129–171 (2015).
[Crossref]

Platt, B. C.

B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17, S573–S577 (2001).
[PubMed]

Primot, J.

J. Primot, “Theoretical description of Shack–Hartmann wave-front sensor,” Opt. Commun. 222, 81–92 (2003).
[Crossref]

Riedle, E.

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μj pump pulses,” Appl. Phys. B 97, 561–574 (2009).
[Crossref]

Rittweger, E.

Schaefer, B.

Shack, R.

B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17, S573–S577 (2001).
[PubMed]

Shank, C. V.

Shapiro, S. L.

R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24, 592–594 (1970).
[Crossref]

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[Crossref]

Tomlinson, W. J.

Wildanger, D.

Wu, W.

D. Li, C. Zhao, W. Wu, and S. Du, “Measurement of the wavefront distribution characteristics of a 400–1700nm supercontinuum light source,” Proc. SPIE 10457, 104571W (2017).

Yen, R.

Zernike, F.

F. Zernike and H. C. Brinkman, “Hypersphärische funktionen und die in sphärische bereichen orthogonalen polynome,” Proc. Akad. Wet. Amsterdam 38, 161–170 (1935).

F. Zernike, “Beugungstheorie des Scheidenverfahrens und seiner verbesserten Form, der Phasenkontrastmethode,” Phys. : Nederlandsch tijdschrift voor natuurkunde 1, 689–704 (1934). OCLC: 772363588.

Zhao, C.

D. Li, C. Zhao, W. Wu, and S. Du, “Measurement of the wavefront distribution characteristics of a 400–1700nm supercontinuum light source,” Proc. SPIE 10457, 104571W (2017).

Zheltikov, A. M.

A. M. Zheltikov, “Let there be white light: supercontinuum generation by ultrashort laser pulses,” Physics-Uspekhi 49, 605–628 (2006).
[Crossref]

Zhou, C.

Appl. Opt. (1)

Appl. Phys. B (1)

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μj pump pulses,” Appl. Phys. B 97, 561–574 (2009).
[Crossref]

Appl. Phys. B: Lasers Opt. (1)

V. Kandidov, O. Kosareva, I. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. Bowden, and S. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B: Lasers Opt. 77, 149–165 (2003).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Refract. Surg. (1)

B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17, S573–S577 (2001).
[PubMed]

Laser & Photonics Rev. (1)

C. Manzoni, O. D. Mücke, G. Cirmi, S. Fang, J. Moses, S.-W. Huang, K.-H. Hong, G. Cerullo, and F. X. Kärtner, “Coherent pulse synthesis: towards sub-cycle optical waveforms,” Laser & Photonics Rev. 9, 129–171 (2015).
[Crossref]

Opt. Commun. (2)

J. Primot, “Theoretical description of Shack–Hartmann wave-front sensor,” Opt. Commun. 222, 81–92 (2003).
[Crossref]

N. Bloembergen, “The influence of electron plasma formation on superbroadening in light filaments,” Opt. Commun. 8, 285–288 (1973).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Phys. : Nederlandsch tijdschrift voor natuurkunde (1)

F. Zernike, “Beugungstheorie des Scheidenverfahrens und seiner verbesserten Form, der Phasenkontrastmethode,” Phys. : Nederlandsch tijdschrift voor natuurkunde 1, 689–704 (1934). OCLC: 772363588.

Phys. Rev. Lett. (2)

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[Crossref]

R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24, 592–594 (1970).
[Crossref]

Physics-Uspekhi (1)

A. M. Zheltikov, “Let there be white light: supercontinuum generation by ultrashort laser pulses,” Physics-Uspekhi 49, 605–628 (2006).
[Crossref]

Proc. Akad. Wet. Amsterdam (1)

F. Zernike and H. C. Brinkman, “Hypersphärische funktionen und die in sphärische bereichen orthogonalen polynome,” Proc. Akad. Wet. Amsterdam 38, 161–170 (1935).

Proc. SPIE (1)

D. Li, C. Zhao, W. Wu, and S. Du, “Measurement of the wavefront distribution characteristics of a 400–1700nm supercontinuum light source,” Proc. SPIE 10457, 104571W (2017).

Revue d’optique, théorique et instrumentale (1)

A. Maréchal, “étude des effets combinés de la diffraction et des aberrations géométriques sur l’image d’un point lumineux,” Revue d’optique, théorique et instrumentale 26, 257–277 (1947).

Other (1)

R. R. Alfano, The supercontinuum laser source: the ultimate white light (Springer, 2016), 3rd ed.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Setup of the experiment. Red: 1030 nm laser driver; blue: white-light. M: flip mirror; SM: spectrometer; WFS: wavefront sensor. (b) Average spectrum recorded for different variable filters.
Fig. 2
Fig. 2 Single-shot wavefronts of each bandwidth separately studied. The piston, tilt and defocus components of the wavefront are subtracted, leaving the wavefront aberrations centered around zero. Positive values correspond to a phase lag. The dashed circles indicate the part of the beam used in Section 4 for the decomposition into Zernike polynomials. The contours are separated by 100 nm.
Fig. 3
Fig. 3 Absolute value of the 4th to 45th Zernike coefficients with RMS normalization, in the order given by WaveView. The coefficients are averaged over 30 shots; the error bars represent the standard deviation. Inserts: representation of the 4th and 11th Zernike polynomials.
Fig. 4
Fig. 4 1/e2 diameters and divergence of the white-light and coefficient of the Zernike polynomial corresponding to the curvature of its wavefront, in all measured transmitted bandwidth.
Fig. 5
Fig. 5 Wavefront retrieved by interferometry of short-pass (SP), long-pass (LP) and neutral density (ND) filters as well as a reference wavefront with no filter. Some spots were coming from damages on the camera filters and have been occulted on all pictures before calculation of the RMS. The color scale is in nanometers. The contours are separated by 5 nm.
Fig. 6
Fig. 6 (a) Measured intensity profile and (b) wavefront of the infrared driver 66 mm before the crystal. (c) Intensity profile and (d) wavefront of the numerically propagated beam at the input surface of the crystal. Tilt and defocus components are subtracted from the wavefronts. The contours are separated by 75 nm (b) and 400 nm (d).

Metrics