Abstract

1-D cavity modes in 1-D resonators, such as strips, have been used to design multiband metamaterial perfect absorbers. As for 2-D resonators, such as squares and crosses, most studies still focus on exciting the 1-D cavity modes. In this paper, a symmetry-breaking idea is proposed for 2-D cavity mode excitation. An asymmetric sword-shaped notched square resonator is proposed to excite a new 2-D (1, 1) cavity mode, in addition to the 1-D (1, 0) and (3, 0) cavity modes. Thus, a triple-band MPA was successfully produced with average absorptivity of 98.8% in the infrared range. The 2-D cavity mode provides better performance as a biosensor than the 1-D cavity modes do. To obtain more absorption bands, a six-band metamaterial perfect absorber with average absorptivity of 97.2% was successfully produced by combining two sword-shaped notched square resonators with different sizes. A nine-band metamaterial perfect absorber was successfully produced with average absorptivity of 94.5% by combining three sword-shaped notched square resonators with different sizes.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Absorptivity enhancement of higher-order electric sextupole plasmonic modes by the outer-square inner-ring coupled resonators

Lei Zhao, Qinglin Niu, Zhihong He, and Shikui Dong
Opt. Mater. Express 8(11) 3359-3372 (2018)

Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures

Boyang Zhang, Joshua Hendrickson, and Junpeng Guo
J. Opt. Soc. Am. B 30(3) 656-662 (2013)

References

  • View by:
  • |
  • |
  • |

  1. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  2. T. Maier and H. Brückl, “Wavelength-tunable microbolometers with metamaterial absorbers,” Opt. Lett. 34(19), 3012–3014 (2009).
    [Crossref] [PubMed]
  3. T. Maier and H. Brueckl, “Multispectral microbolometers for the midinfrared,” Opt. Lett. 35(22), 3766–3768 (2010).
    [Crossref] [PubMed]
  4. S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100(2), 021111 (2012).
    [Crossref]
  5. S. Ogawa, K. Masuda, Y. Takagawa, and M. Kimata, “Polarization-selective uncooled infrared sensor with asymmetric two-dimensional plasmonic absorber,” Opt. Eng. 53(10), 107110 (2014).
    [Crossref]
  6. I. E. Carranza, J. P. Grant, J. Gough, and D. Cumming, “Terahertz metamaterial absorbers implemented in CMOS technology for imaging applications: Scaling to large format focal plane arrays,” IEEE J. Sel. Top. Quantum Electron. 23, 4700508 (2017).
  7. I. Escorcia, J. Grant, J. Gough, and D. R. S. Cumming, “Uncooled CMOS terahertz imager using a metamaterial absorber and pn diode,” Opt. Lett. 41, 3261–3264 (2016).
  8. J. Y. Suen, K. Fan, J. Montoya, C. Bingham, V. Stenger, S. Sriram, and W. J. Padilla, “Multifunctional metamaterial pyroelectric infrared detectors,” Optica 4(2), 276–279 (2017).
    [Crossref]
  9. S. Ogawa and M. Kimata, “Wavelength- or polarization-selective thermal infrared detectors for multi-color or polarimetric imaging using plasmonics and metamaterials,” Materials (Basel) 10(5), 493 (2017).
    [Crossref] [PubMed]
  10. R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared Plasmonic Refractive Index Sensor with Ultra-High Figure of Merit Based on the Optimized All-Metal Grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
    [Crossref] [PubMed]
  11. L. Meng, D. Zhao, Z. Ruan, Q. Li, Y. Yang, and M. Qiu, “Optimized grating as an ultra-narrow band absorber or plasmonic sensor,” Opt. Lett. 39(5), 1137–1140 (2014).
    [Crossref] [PubMed]
  12. A. Sakurai, B. Zhao, and Z. M. Zhang, “Resonant frequency and bandwidth of metamaterial emitters and absorbers predicted by an RLC circuit model,” J. Quant. Spectrosc. Radiat. Transf. 149, 33–40 (2014).
    [Crossref]
  13. A. Sakurai, B. Zhao, and Z. M. Zhang, “Effect of polarization on dual-band infrared metamaterial emitters or absorbers,” J. Quant. Spectrosc. Radiat. Transf. 158, 111–118 (2015).
    [Crossref]
  14. M. Miyata, H. Hatada, and J. Takahara, “Full-color subwavelength printing with gap-plasmonic optical antennas,” Nano Lett. 16(5), 3166–3172 (2016).
    [Crossref] [PubMed]
  15. L. Zhao, H. Liu, Z. He, and S. Dong, “Wide-angle polarization-controllable structure color based on metamaterial resonators with polarized multiband absorption peaks,” IEEE Photonics J. 10(3), 1 (2018).
    [Crossref]
  16. D. Lee, J. G. Hwang, D. Lim, T. Hara, and S. Lim, “Incident angle- and polarization-insensitive metamaterial absorber using circular sectors,” Sci. Rep. 6(1), 27155 (2016).
    [Crossref] [PubMed]
  17. T. T. Nguyen and S. Lim, “Wide incidence angle-insensitive metamaterial absorber for both te and tm polarization using eight-circular-sector,” Sci. Rep. 7(1), 3204 (2017).
    [Crossref] [PubMed]
  18. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
  19. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
    [Crossref]
  20. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  21. D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
    [Crossref]
  22. S. Kang, Z. Qian, V. Rajaram, A. Alu, and M. Rinaldi, “Ultra narrowband infrared absorbers for omni-directional and polarization insensitive multi-spectral sensing microsystems,” Transducers 2017, Kaohsiung, TAIWAN, June 18–22, 2017.
  23. J. Grant, M. Kenney, Y. D. Shah, I. Escorcia-Carranza, and D. R. S. Cumming, “CMOS compatible metamaterial absorbers for hyperspectral medium wave infrared imaging and sensing applications,” Opt. Express 26(8), 10408–10420 (2018).
    [Crossref] [PubMed]
  24. Y. Z. Cheng, M. L. Huang, H. R. Chen, Z. Z. Guo, X. S. Mao, and R. Z. Gong, “Ultrathin six-band polarization-insensitive perfect metamaterial absorber based on a cross-cave patch resonator for terahertz waves,” Materials (Basel) 10(6), 591 (2017).
    [Crossref] [PubMed]
  25. P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99(26), 264101 (2011).
    [Crossref]
  26. Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36(6), 945–947 (2011).
    [Crossref] [PubMed]
  27. J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
    [Crossref] [PubMed]
  28. X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
    [Crossref] [PubMed]
  29. J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau De Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100(11), 113305 (2012).
    [Crossref]
  30. B. Zhang, J. Hendrickson, and J. Guo, “Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures,” J. Opt. Soc. Am. B 30(3), 656–662 (2013).
    [Crossref]
  31. J. Xu, Z. Zhao, H. Yu, L. Yang, P. Gou, J. Cao, Y. Zou, J. Qian, T. Shi, Q. Ren, and Z. An, “Design of triple-band metamaterial absorbers with refractive index sensitivity at infrared frequencies,” Opt. Express 24(22), 25742–25751 (2016).
    [Crossref] [PubMed]
  32. J. W. Park, P. Van Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. P. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21(8), 9691–9702 (2013).
    [Crossref] [PubMed]
  33. W. Wang, M. Yan, Y. Pang, J. Wang, H. Ma, S. Qua, H. Chen, C. Xu, and M. Feng, “Ultra-thin quadri-band metamaterial absorber based on spiral structure,” Appl. Phys., A Mater. Sci. Process. 118(2), 443–447 (2015).
    [Crossref]
  34. B.-X. Wang, G.-Z. Wang, X. Zhai, and L.-L. Wang, “Polarization Tunable Terahertz Metamaterial Absorber,” IEEE Photonics J. 7(4), 1–7 (2015).
    [Crossref]
  35. W. Pan, X. Yu, J. Zhang, and W. Zeng, “A novel design of broadband terahertz metamaterial absorber based on nested circle rings,” IEEE Photonics Technol. Lett. 28(21), 2335–2338 (2016).
    [Crossref]
  36. P. V. Tuong, J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, “Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials,” Appl. Phys. Lett. 102(8), 081122 (2013).
    [Crossref]
  37. X.-Y. Peng, B. Wang, S. Lai, D. H. Zhang, and J.-H. Teng, “Ultrathin multi-band planar metamaterial absorber based on standing wave resonances,” Opt. Express 20(25), 27756–27765 (2012).
    [Crossref] [PubMed]
  38. B. X. Wang, G. Z. Wang, T. Sang, and L. L. Wang, “Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure,” Sci. Rep. 7(1), 41373 (2017).
    [Crossref] [PubMed]
  39. B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008).
    [Crossref] [PubMed]
  40. L. Wang and Z. M. Zhang, “Effect of magnetic polaritons on the radiative properties of double-layer nanoslit arrays,” J. Opt. Soc. Am. B 27(12), 2595–2604 (2010).
    [Crossref]
  41. A. Sellier, T. V. Teperik, and A. de Lustrac, “Resonant circuit model for efficient metamaterial absorber,” Opt. Express 21(S6Suppl 6), A997–A1006 (2013).
    [Crossref] [PubMed]
  42. J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 83(16), 165107 (2011).
    [Crossref]
  43. Y. J. Yoo, Y. J. Kim, P. Van Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, Y. H. Kim, H. Cheong, and Y. Lee, “Polarization-independent dual-band perfect absorber utilizing multiple magnetic resonances,” Opt. Express 21(26), 32484–32490 (2013).
    [Crossref] [PubMed]
  44. J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011).
    [Crossref]
  45. B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “A novel dual-band terahertz metamaterial absorber for a sensor application,” J. Appl. Phys. 117(1), 014504 (2015).
    [Crossref]
  46. C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6(1), 21431 (2016).
    [Crossref] [PubMed]
  47. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  48. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]

2018 (2)

L. Zhao, H. Liu, Z. He, and S. Dong, “Wide-angle polarization-controllable structure color based on metamaterial resonators with polarized multiband absorption peaks,” IEEE Photonics J. 10(3), 1 (2018).
[Crossref]

J. Grant, M. Kenney, Y. D. Shah, I. Escorcia-Carranza, and D. R. S. Cumming, “CMOS compatible metamaterial absorbers for hyperspectral medium wave infrared imaging and sensing applications,” Opt. Express 26(8), 10408–10420 (2018).
[Crossref] [PubMed]

2017 (8)

J. Y. Suen, K. Fan, J. Montoya, C. Bingham, V. Stenger, S. Sriram, and W. J. Padilla, “Multifunctional metamaterial pyroelectric infrared detectors,” Optica 4(2), 276–279 (2017).
[Crossref]

T. T. Nguyen and S. Lim, “Wide incidence angle-insensitive metamaterial absorber for both te and tm polarization using eight-circular-sector,” Sci. Rep. 7(1), 3204 (2017).
[Crossref] [PubMed]

Y. Z. Cheng, M. L. Huang, H. R. Chen, Z. Z. Guo, X. S. Mao, and R. Z. Gong, “Ultrathin six-band polarization-insensitive perfect metamaterial absorber based on a cross-cave patch resonator for terahertz waves,” Materials (Basel) 10(6), 591 (2017).
[Crossref] [PubMed]

J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref] [PubMed]

I. E. Carranza, J. P. Grant, J. Gough, and D. Cumming, “Terahertz metamaterial absorbers implemented in CMOS technology for imaging applications: Scaling to large format focal plane arrays,” IEEE J. Sel. Top. Quantum Electron. 23, 4700508 (2017).

S. Ogawa and M. Kimata, “Wavelength- or polarization-selective thermal infrared detectors for multi-color or polarimetric imaging using plasmonics and metamaterials,” Materials (Basel) 10(5), 493 (2017).
[Crossref] [PubMed]

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared Plasmonic Refractive Index Sensor with Ultra-High Figure of Merit Based on the Optimized All-Metal Grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
[Crossref] [PubMed]

B. X. Wang, G. Z. Wang, T. Sang, and L. L. Wang, “Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure,” Sci. Rep. 7(1), 41373 (2017).
[Crossref] [PubMed]

2016 (6)

W. Pan, X. Yu, J. Zhang, and W. Zeng, “A novel design of broadband terahertz metamaterial absorber based on nested circle rings,” IEEE Photonics Technol. Lett. 28(21), 2335–2338 (2016).
[Crossref]

C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6(1), 21431 (2016).
[Crossref] [PubMed]

M. Miyata, H. Hatada, and J. Takahara, “Full-color subwavelength printing with gap-plasmonic optical antennas,” Nano Lett. 16(5), 3166–3172 (2016).
[Crossref] [PubMed]

D. Lee, J. G. Hwang, D. Lim, T. Hara, and S. Lim, “Incident angle- and polarization-insensitive metamaterial absorber using circular sectors,” Sci. Rep. 6(1), 27155 (2016).
[Crossref] [PubMed]

I. Escorcia, J. Grant, J. Gough, and D. R. S. Cumming, “Uncooled CMOS terahertz imager using a metamaterial absorber and pn diode,” Opt. Lett. 41, 3261–3264 (2016).

J. Xu, Z. Zhao, H. Yu, L. Yang, P. Gou, J. Cao, Y. Zou, J. Qian, T. Shi, Q. Ren, and Z. An, “Design of triple-band metamaterial absorbers with refractive index sensitivity at infrared frequencies,” Opt. Express 24(22), 25742–25751 (2016).
[Crossref] [PubMed]

2015 (4)

W. Wang, M. Yan, Y. Pang, J. Wang, H. Ma, S. Qua, H. Chen, C. Xu, and M. Feng, “Ultra-thin quadri-band metamaterial absorber based on spiral structure,” Appl. Phys., A Mater. Sci. Process. 118(2), 443–447 (2015).
[Crossref]

B.-X. Wang, G.-Z. Wang, X. Zhai, and L.-L. Wang, “Polarization Tunable Terahertz Metamaterial Absorber,” IEEE Photonics J. 7(4), 1–7 (2015).
[Crossref]

A. Sakurai, B. Zhao, and Z. M. Zhang, “Effect of polarization on dual-band infrared metamaterial emitters or absorbers,” J. Quant. Spectrosc. Radiat. Transf. 158, 111–118 (2015).
[Crossref]

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “A novel dual-band terahertz metamaterial absorber for a sensor application,” J. Appl. Phys. 117(1), 014504 (2015).
[Crossref]

2014 (4)

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
[Crossref]

A. Sakurai, B. Zhao, and Z. M. Zhang, “Resonant frequency and bandwidth of metamaterial emitters and absorbers predicted by an RLC circuit model,” J. Quant. Spectrosc. Radiat. Transf. 149, 33–40 (2014).
[Crossref]

S. Ogawa, K. Masuda, Y. Takagawa, and M. Kimata, “Polarization-selective uncooled infrared sensor with asymmetric two-dimensional plasmonic absorber,” Opt. Eng. 53(10), 107110 (2014).
[Crossref]

L. Meng, D. Zhao, Z. Ruan, Q. Li, Y. Yang, and M. Qiu, “Optimized grating as an ultra-narrow band absorber or plasmonic sensor,” Opt. Lett. 39(5), 1137–1140 (2014).
[Crossref] [PubMed]

2013 (5)

2012 (3)

J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau De Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100(11), 113305 (2012).
[Crossref]

S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100(2), 021111 (2012).
[Crossref]

X.-Y. Peng, B. Wang, S. Lai, D. H. Zhang, and J.-H. Teng, “Ultrathin multi-band planar metamaterial absorber based on standing wave resonances,” Opt. Express 20(25), 27756–27765 (2012).
[Crossref] [PubMed]

2011 (5)

P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99(26), 264101 (2011).
[Crossref]

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 83(16), 165107 (2011).
[Crossref]

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011).
[Crossref]

Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36(6), 945–947 (2011).
[Crossref] [PubMed]

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
[Crossref] [PubMed]

2010 (5)

T. Maier and H. Brueckl, “Multispectral microbolometers for the midinfrared,” Opt. Lett. 35(22), 3766–3768 (2010).
[Crossref] [PubMed]

L. Wang and Z. M. Zhang, “Effect of magnetic polaritons on the radiative properties of double-layer nanoslit arrays,” J. Opt. Soc. Am. B 27(12), 2595–2604 (2010).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (3)

Afsar, M. N.

P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99(26), 264101 (2011).
[Crossref]

An, Z.

Averitt, R. D.

Bingham, C.

Bingham, C. M.

Brückl, H.

Brueckl, H.

Cao, J.

Carranza, I. E.

I. E. Carranza, J. P. Grant, J. Gough, and D. Cumming, “Terahertz metamaterial absorbers implemented in CMOS technology for imaging applications: Scaling to large format focal plane arrays,” IEEE J. Sel. Top. Quantum Electron. 23, 4700508 (2017).

Chen, H.

W. Wang, M. Yan, Y. Pang, J. Wang, H. Ma, S. Qua, H. Chen, C. Xu, and M. Feng, “Ultra-thin quadri-band metamaterial absorber based on spiral structure,” Appl. Phys., A Mater. Sci. Process. 118(2), 443–447 (2015).
[Crossref]

Chen, H. R.

Y. Z. Cheng, M. L. Huang, H. R. Chen, Z. Z. Guo, X. S. Mao, and R. Z. Gong, “Ultrathin six-band polarization-insensitive perfect metamaterial absorber based on a cross-cave patch resonator for terahertz waves,” Materials (Basel) 10(6), 591 (2017).
[Crossref] [PubMed]

Chen, L. Y.

Chen, Q.

Chen, X.

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
[Crossref]

Chen, Y.

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
[Crossref]

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011).
[Crossref]

Cheng, Y. Z.

Y. Z. Cheng, M. L. Huang, H. R. Chen, Z. Z. Guo, X. S. Mao, and R. Z. Gong, “Ultrathin six-band polarization-insensitive perfect metamaterial absorber based on a cross-cave patch resonator for terahertz waves,” Materials (Basel) 10(6), 591 (2017).
[Crossref] [PubMed]

Cheong, H.

P. V. Tuong, J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, “Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials,” Appl. Phys. Lett. 102(8), 081122 (2013).
[Crossref]

Y. J. Yoo, Y. J. Kim, P. Van Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, Y. H. Kim, H. Cheong, and Y. Lee, “Polarization-independent dual-band perfect absorber utilizing multiple magnetic resonances,” Opt. Express 21(26), 32484–32490 (2013).
[Crossref] [PubMed]

Choi, E. H.

Cui, T. J.

Cumming, D.

I. E. Carranza, J. P. Grant, J. Gough, and D. Cumming, “Terahertz metamaterial absorbers implemented in CMOS technology for imaging applications: Scaling to large format focal plane arrays,” IEEE J. Sel. Top. Quantum Electron. 23, 4700508 (2017).

Cumming, D. R. S.

de Lustrac, A.

Desieres, Y.

J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau De Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100(11), 113305 (2012).
[Crossref]

Dong, S.

L. Zhao, H. Liu, Z. He, and S. Dong, “Wide-angle polarization-controllable structure color based on metamaterial resonators with polarized multiband absorption peaks,” IEEE Photonics J. 10(3), 1 (2018).
[Crossref]

Escorcia, I.

Escorcia-Carranza, I.

Espiau De Lamaestre, R.

J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau De Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100(11), 113305 (2012).
[Crossref]

Fan, K.

Feng, M.

W. Wang, M. Yan, Y. Pang, J. Wang, H. Ma, S. Qua, H. Chen, C. Xu, and M. Feng, “Ultra-thin quadri-band metamaterial absorber based on spiral structure,” Appl. Phys., A Mater. Sci. Process. 118(2), 443–447 (2015).
[Crossref]

Fukushima, N.

S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100(2), 021111 (2012).
[Crossref]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Gong, H.

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
[Crossref]

Gong, R. Z.

Y. Z. Cheng, M. L. Huang, H. R. Chen, Z. Z. Guo, X. S. Mao, and R. Z. Gong, “Ultrathin six-band polarization-insensitive perfect metamaterial absorber based on a cross-cave patch resonator for terahertz waves,” Materials (Basel) 10(6), 591 (2017).
[Crossref] [PubMed]

Gou, P.

Gough, J.

I. E. Carranza, J. P. Grant, J. Gough, and D. Cumming, “Terahertz metamaterial absorbers implemented in CMOS technology for imaging applications: Scaling to large format focal plane arrays,” IEEE J. Sel. Top. Quantum Electron. 23, 4700508 (2017).

I. Escorcia, J. Grant, J. Gough, and D. R. S. Cumming, “Uncooled CMOS terahertz imager using a metamaterial absorber and pn diode,” Opt. Lett. 41, 3261–3264 (2016).

Grant, J.

Grant, J. P.

I. E. Carranza, J. P. Grant, J. Gough, and D. Cumming, “Terahertz metamaterial absorbers implemented in CMOS technology for imaging applications: Scaling to large format focal plane arrays,” IEEE J. Sel. Top. Quantum Electron. 23, 4700508 (2017).

Guan, J.

C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6(1), 21431 (2016).
[Crossref] [PubMed]

Guo, J.

Guo, Z. Z.

Y. Z. Cheng, M. L. Huang, H. R. Chen, Z. Z. Guo, X. S. Mao, and R. Z. Gong, “Ultrathin six-band polarization-insensitive perfect metamaterial absorber based on a cross-cave patch resonator for terahertz waves,” Materials (Basel) 10(6), 591 (2017).
[Crossref] [PubMed]

Hahn, J. W.

J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref] [PubMed]

Han, K.

J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref] [PubMed]

Hao, J.

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011).
[Crossref]

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 83(16), 165107 (2011).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Hara, T.

D. Lee, J. G. Hwang, D. Lim, T. Hara, and S. Lim, “Incident angle- and polarization-insensitive metamaterial absorber using circular sectors,” Sci. Rep. 6(1), 27155 (2016).
[Crossref] [PubMed]

Hatada, H.

M. Miyata, H. Hatada, and J. Takahara, “Full-color subwavelength printing with gap-plasmonic optical antennas,” Nano Lett. 16(5), 3166–3172 (2016).
[Crossref] [PubMed]

He, Z.

L. Zhao, H. Liu, Z. He, and S. Dong, “Wide-angle polarization-controllable structure color based on metamaterial resonators with polarized multiband absorption peaks,” IEEE Photonics J. 10(3), 1 (2018).
[Crossref]

Hendrickson, J.

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Huang, M. L.

Y. Z. Cheng, M. L. Huang, H. R. Chen, Z. Z. Guo, X. S. Mao, and R. Z. Gong, “Ultrathin six-band polarization-insensitive perfect metamaterial absorber based on a cross-cave patch resonator for terahertz waves,” Materials (Basel) 10(6), 591 (2017).
[Crossref] [PubMed]

Huang, W. Q.

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “A novel dual-band terahertz metamaterial absorber for a sensor application,” J. Appl. Phys. 117(1), 014504 (2015).
[Crossref]

Hwang, J. G.

D. Lee, J. G. Hwang, D. Lim, T. Hara, and S. Lim, “Incident angle- and polarization-insensitive metamaterial absorber using circular sectors,” Sci. Rep. 6(1), 27155 (2016).
[Crossref] [PubMed]

Jang, W. H.

Jiang, W. X.

Kenney, M.

Khalid, A.

Kim, J.

J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref] [PubMed]

Kim, K. W.

Kim, Y. H.

Kim, Y. J.

Kimata, M.

S. Ogawa and M. Kimata, “Wavelength- or polarization-selective thermal infrared detectors for multi-color or polarimetric imaging using plasmonics and metamaterials,” Materials (Basel) 10(5), 493 (2017).
[Crossref] [PubMed]

S. Ogawa, K. Masuda, Y. Takagawa, and M. Kimata, “Polarization-selective uncooled infrared sensor with asymmetric two-dimensional plasmonic absorber,” Opt. Eng. 53(10), 107110 (2014).
[Crossref]

S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100(2), 021111 (2012).
[Crossref]

Korolev, K. A.

P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99(26), 264101 (2011).
[Crossref]

Lai, S.

Landy, N. I.

Le Perchec, J.

J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau De Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100(11), 113305 (2012).
[Crossref]

Lee, B. J.

Lee, D.

D. Lee, J. G. Hwang, D. Lim, T. Hara, and S. Lim, “Incident angle- and polarization-insensitive metamaterial absorber using circular sectors,” Sci. Rep. 6(1), 27155 (2016).
[Crossref] [PubMed]

Lee, Y.

Lee, Y. P.

J. W. Park, P. Van Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. P. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21(8), 9691–9702 (2013).
[Crossref] [PubMed]

P. V. Tuong, J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, “Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials,” Appl. Phys. Lett. 102(8), 081122 (2013).
[Crossref]

Li, H.

Li, Q.

L. Meng, D. Zhao, Z. Ruan, Q. Li, Y. Yang, and M. Qiu, “Optimized grating as an ultra-narrow band absorber or plasmonic sensor,” Opt. Lett. 39(5), 1137–1140 (2014).
[Crossref] [PubMed]

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
[Crossref]

Li, R.

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared Plasmonic Refractive Index Sensor with Ultra-High Figure of Merit Based on the Optimized All-Metal Grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
[Crossref] [PubMed]

Li, W.

C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6(1), 21431 (2016).
[Crossref] [PubMed]

Lim, D.

D. Lee, J. G. Hwang, D. Lim, T. Hara, and S. Lim, “Incident angle- and polarization-insensitive metamaterial absorber using circular sectors,” Sci. Rep. 6(1), 27155 (2016).
[Crossref] [PubMed]

Lim, S.

T. T. Nguyen and S. Lim, “Wide incidence angle-insensitive metamaterial absorber for both te and tm polarization using eight-circular-sector,” Sci. Rep. 7(1), 3204 (2017).
[Crossref] [PubMed]

D. Lee, J. G. Hwang, D. Lim, T. Hara, and S. Lim, “Incident angle- and polarization-insensitive metamaterial absorber using circular sectors,” Sci. Rep. 6(1), 27155 (2016).
[Crossref] [PubMed]

Liu, H.

L. Zhao, H. Liu, Z. He, and S. Dong, “Wide-angle polarization-controllable structure color based on metamaterial resonators with polarized multiband absorption peaks,” IEEE Photonics J. 10(3), 1 (2018).
[Crossref]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Liu, X.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Liu, Y.

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared Plasmonic Refractive Index Sensor with Ultra-High Figure of Merit Based on the Optimized All-Metal Grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
[Crossref] [PubMed]

Long, C.

C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6(1), 21431 (2016).
[Crossref] [PubMed]

Ma, H.

W. Wang, M. Yan, Y. Pang, J. Wang, H. Ma, S. Qua, H. Chen, C. Xu, and M. Feng, “Ultra-thin quadri-band metamaterial absorber based on spiral structure,” Appl. Phys., A Mater. Sci. Process. 118(2), 443–447 (2015).
[Crossref]

Ma, H. F.

Ma, Y.

Maier, T.

Mao, X. S.

Y. Z. Cheng, M. L. Huang, H. R. Chen, Z. Z. Guo, X. S. Mao, and R. Z. Gong, “Ultrathin six-band polarization-insensitive perfect metamaterial absorber based on a cross-cave patch resonator for terahertz waves,” Materials (Basel) 10(6), 591 (2017).
[Crossref] [PubMed]

Masuda, K.

S. Ogawa, K. Masuda, Y. Takagawa, and M. Kimata, “Polarization-selective uncooled infrared sensor with asymmetric two-dimensional plasmonic absorber,” Opt. Eng. 53(10), 107110 (2014).
[Crossref]

Meng, L.

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
[Crossref]

L. Meng, D. Zhao, Z. Ruan, Q. Li, Y. Yang, and M. Qiu, “Optimized grating as an ultra-narrow band absorber or plasmonic sensor,” Opt. Lett. 39(5), 1137–1140 (2014).
[Crossref] [PubMed]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Miyata, M.

M. Miyata, H. Hatada, and J. Takahara, “Full-color subwavelength printing with gap-plasmonic optical antennas,” Nano Lett. 16(5), 3166–3172 (2016).
[Crossref] [PubMed]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Montoya, J.

Nguyen, T. T.

T. T. Nguyen and S. Lim, “Wide incidence angle-insensitive metamaterial absorber for both te and tm polarization using eight-circular-sector,” Sci. Rep. 7(1), 3204 (2017).
[Crossref] [PubMed]

Ogawa, S.

S. Ogawa and M. Kimata, “Wavelength- or polarization-selective thermal infrared detectors for multi-color or polarimetric imaging using plasmonics and metamaterials,” Materials (Basel) 10(5), 493 (2017).
[Crossref] [PubMed]

S. Ogawa, K. Masuda, Y. Takagawa, and M. Kimata, “Polarization-selective uncooled infrared sensor with asymmetric two-dimensional plasmonic absorber,” Opt. Eng. 53(10), 107110 (2014).
[Crossref]

S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100(2), 021111 (2012).
[Crossref]

Okada, K.

S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100(2), 021111 (2012).
[Crossref]

Padilla, W. J.

J. Y. Suen, K. Fan, J. Montoya, C. Bingham, V. Stenger, S. Sriram, and W. J. Padilla, “Multifunctional metamaterial pyroelectric infrared detectors,” Optica 4(2), 276–279 (2017).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).

Pan, W.

W. Pan, X. Yu, J. Zhang, and W. Zeng, “A novel design of broadband terahertz metamaterial absorber based on nested circle rings,” IEEE Photonics Technol. Lett. 28(21), 2335–2338 (2016).
[Crossref]

Pang, Y.

W. Wang, M. Yan, Y. Pang, J. Wang, H. Ma, S. Qua, H. Chen, C. Xu, and M. Feng, “Ultra-thin quadri-band metamaterial absorber based on spiral structure,” Appl. Phys., A Mater. Sci. Process. 118(2), 443–447 (2015).
[Crossref]

Park, J. W.

P. V. Tuong, J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, “Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials,” Appl. Phys. Lett. 102(8), 081122 (2013).
[Crossref]

J. W. Park, P. Van Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. P. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21(8), 9691–9702 (2013).
[Crossref] [PubMed]

Peng, X.-Y.

Qian, J.

Qiu, M.

L. Meng, D. Zhao, Z. Ruan, Q. Li, Y. Yang, and M. Qiu, “Optimized grating as an ultra-narrow band absorber or plasmonic sensor,” Opt. Lett. 39(5), 1137–1140 (2014).
[Crossref] [PubMed]

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
[Crossref]

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 83(16), 165107 (2011).
[Crossref]

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Qua, S.

W. Wang, M. Yan, Y. Pang, J. Wang, H. Ma, S. Qua, H. Chen, C. Xu, and M. Feng, “Ultra-thin quadri-band metamaterial absorber based on spiral structure,” Appl. Phys., A Mater. Sci. Process. 118(2), 443–447 (2015).
[Crossref]

Ren, Q.

Rhee, J. Y.

Rochat, N.

J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau De Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100(11), 113305 (2012).
[Crossref]

Ruan, Z.

Saha, S. C.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Sakurai, A.

A. Sakurai, B. Zhao, and Z. M. Zhang, “Effect of polarization on dual-band infrared metamaterial emitters or absorbers,” J. Quant. Spectrosc. Radiat. Transf. 158, 111–118 (2015).
[Crossref]

A. Sakurai, B. Zhao, and Z. M. Zhang, “Resonant frequency and bandwidth of metamaterial emitters and absorbers predicted by an RLC circuit model,” J. Quant. Spectrosc. Radiat. Transf. 149, 33–40 (2014).
[Crossref]

Sang, T.

B. X. Wang, G. Z. Wang, T. Sang, and L. L. Wang, “Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure,” Sci. Rep. 7(1), 41373 (2017).
[Crossref] [PubMed]

Sellier, A.

Shah, Y. D.

Shen, X.

Shi, T.

Singh, P. K.

P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99(26), 264101 (2011).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Sonkusale, S.

P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99(26), 264101 (2011).
[Crossref]

Sriram, S.

Stenger, V.

Suen, J. Y.

Takagawa, Y.

S. Ogawa, K. Masuda, Y. Takagawa, and M. Kimata, “Polarization-selective uncooled infrared sensor with asymmetric two-dimensional plasmonic absorber,” Opt. Eng. 53(10), 107110 (2014).
[Crossref]

Takahara, J.

M. Miyata, H. Hatada, and J. Takahara, “Full-color subwavelength printing with gap-plasmonic optical antennas,” Nano Lett. 16(5), 3166–3172 (2016).
[Crossref] [PubMed]

Tao, H.

Teng, J.-H.

Teperik, T. V.

Tuong, P. V.

P. V. Tuong, J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, “Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials,” Appl. Phys. Lett. 102(8), 081122 (2013).
[Crossref]

Van Tuong, P.

Wang, B.

Wang, B. X.

B. X. Wang, G. Z. Wang, T. Sang, and L. L. Wang, “Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure,” Sci. Rep. 7(1), 41373 (2017).
[Crossref] [PubMed]

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “A novel dual-band terahertz metamaterial absorber for a sensor application,” J. Appl. Phys. 117(1), 014504 (2015).
[Crossref]

Wang, B.-X.

B.-X. Wang, G.-Z. Wang, X. Zhai, and L.-L. Wang, “Polarization Tunable Terahertz Metamaterial Absorber,” IEEE Photonics J. 7(4), 1–7 (2015).
[Crossref]

Wang, G. Z.

B. X. Wang, G. Z. Wang, T. Sang, and L. L. Wang, “Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure,” Sci. Rep. 7(1), 41373 (2017).
[Crossref] [PubMed]

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “A novel dual-band terahertz metamaterial absorber for a sensor application,” J. Appl. Phys. 117(1), 014504 (2015).
[Crossref]

Wang, G.-Z.

B.-X. Wang, G.-Z. Wang, X. Zhai, and L.-L. Wang, “Polarization Tunable Terahertz Metamaterial Absorber,” IEEE Photonics J. 7(4), 1–7 (2015).
[Crossref]

Wang, J.

W. Wang, M. Yan, Y. Pang, J. Wang, H. Ma, S. Qua, H. Chen, C. Xu, and M. Feng, “Ultra-thin quadri-band metamaterial absorber based on spiral structure,” Appl. Phys., A Mater. Sci. Process. 118(2), 443–447 (2015).
[Crossref]

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Wang, L.

Wang, L. L.

B. X. Wang, G. Z. Wang, T. Sang, and L. L. Wang, “Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure,” Sci. Rep. 7(1), 41373 (2017).
[Crossref] [PubMed]

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “A novel dual-band terahertz metamaterial absorber for a sensor application,” J. Appl. Phys. 117(1), 014504 (2015).
[Crossref]

Wang, L. P.

Wang, L.-L.

B.-X. Wang, G.-Z. Wang, X. Zhai, and L.-L. Wang, “Polarization Tunable Terahertz Metamaterial Absorber,” IEEE Photonics J. 7(4), 1–7 (2015).
[Crossref]

Wang, W.

C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6(1), 21431 (2016).
[Crossref] [PubMed]

W. Wang, M. Yan, Y. Pang, J. Wang, H. Ma, S. Qua, H. Chen, C. Xu, and M. Feng, “Ultra-thin quadri-band metamaterial absorber based on spiral structure,” Appl. Phys., A Mater. Sci. Process. 118(2), 443–447 (2015).
[Crossref]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Wu, D.

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared Plasmonic Refractive Index Sensor with Ultra-High Figure of Merit Based on the Optimized All-Metal Grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
[Crossref] [PubMed]

Xu, C.

W. Wang, M. Yan, Y. Pang, J. Wang, H. Ma, S. Qua, H. Chen, C. Xu, and M. Feng, “Ultra-thin quadri-band metamaterial absorber based on spiral structure,” Appl. Phys., A Mater. Sci. Process. 118(2), 443–447 (2015).
[Crossref]

Xu, J.

Yan, M.

W. Wang, M. Yan, Y. Pang, J. Wang, H. Ma, S. Qua, H. Chen, C. Xu, and M. Feng, “Ultra-thin quadri-band metamaterial absorber based on spiral structure,” Appl. Phys., A Mater. Sci. Process. 118(2), 443–447 (2015).
[Crossref]

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
[Crossref]

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011).
[Crossref]

Yang, L.

Yang, Y.

Ye, H.

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared Plasmonic Refractive Index Sensor with Ultra-High Figure of Merit Based on the Optimized All-Metal Grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
[Crossref] [PubMed]

Yin, S.

C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6(1), 21431 (2016).
[Crossref] [PubMed]

Yoo, Y. J.

Yu, H.

Yu, L.

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared Plasmonic Refractive Index Sensor with Ultra-High Figure of Merit Based on the Optimized All-Metal Grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
[Crossref] [PubMed]

Yu, X.

W. Pan, X. Yu, J. Zhang, and W. Zeng, “A novel design of broadband terahertz metamaterial absorber based on nested circle rings,” IEEE Photonics Technol. Lett. 28(21), 2335–2338 (2016).
[Crossref]

Yu, Z.

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared Plasmonic Refractive Index Sensor with Ultra-High Figure of Merit Based on the Optimized All-Metal Grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
[Crossref] [PubMed]

Zeng, W.

W. Pan, X. Yu, J. Zhang, and W. Zeng, “A novel design of broadband terahertz metamaterial absorber based on nested circle rings,” IEEE Photonics Technol. Lett. 28(21), 2335–2338 (2016).
[Crossref]

Zhai, X.

B.-X. Wang, G.-Z. Wang, X. Zhai, and L.-L. Wang, “Polarization Tunable Terahertz Metamaterial Absorber,” IEEE Photonics J. 7(4), 1–7 (2015).
[Crossref]

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “A novel dual-band terahertz metamaterial absorber for a sensor application,” J. Appl. Phys. 117(1), 014504 (2015).
[Crossref]

Zhang, B.

Zhang, D. H.

Zhang, J.

W. Pan, X. Yu, J. Zhang, and W. Zeng, “A novel design of broadband terahertz metamaterial absorber based on nested circle rings,” IEEE Photonics Technol. Lett. 28(21), 2335–2338 (2016).
[Crossref]

Zhang, X.

Zhang, Z. M.

A. Sakurai, B. Zhao, and Z. M. Zhang, “Effect of polarization on dual-band infrared metamaterial emitters or absorbers,” J. Quant. Spectrosc. Radiat. Transf. 158, 111–118 (2015).
[Crossref]

A. Sakurai, B. Zhao, and Z. M. Zhang, “Resonant frequency and bandwidth of metamaterial emitters and absorbers predicted by an RLC circuit model,” J. Quant. Spectrosc. Radiat. Transf. 149, 33–40 (2014).
[Crossref]

L. Wang and Z. M. Zhang, “Effect of magnetic polaritons on the radiative properties of double-layer nanoslit arrays,” J. Opt. Soc. Am. B 27(12), 2595–2604 (2010).
[Crossref]

B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008).
[Crossref] [PubMed]

Zhao, B.

A. Sakurai, B. Zhao, and Z. M. Zhang, “Effect of polarization on dual-band infrared metamaterial emitters or absorbers,” J. Quant. Spectrosc. Radiat. Transf. 158, 111–118 (2015).
[Crossref]

A. Sakurai, B. Zhao, and Z. M. Zhang, “Resonant frequency and bandwidth of metamaterial emitters and absorbers predicted by an RLC circuit model,” J. Quant. Spectrosc. Radiat. Transf. 149, 33–40 (2014).
[Crossref]

Zhao, D.

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
[Crossref]

L. Meng, D. Zhao, Z. Ruan, Q. Li, Y. Yang, and M. Qiu, “Optimized grating as an ultra-narrow band absorber or plasmonic sensor,” Opt. Lett. 39(5), 1137–1140 (2014).
[Crossref] [PubMed]

Zhao, J.

Zhao, L.

L. Zhao, H. Liu, Z. He, and S. Dong, “Wide-angle polarization-controllable structure color based on metamaterial resonators with polarized multiband absorption peaks,” IEEE Photonics J. 10(3), 1 (2018).
[Crossref]

Zhao, Z.

Zhou, L.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 83(16), 165107 (2011).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Zhu, J.

C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6(1), 21431 (2016).
[Crossref] [PubMed]

Zou, Y.

Appl. Phys. Lett. (6)

S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100(2), 021111 (2012).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
[Crossref]

P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99(26), 264101 (2011).
[Crossref]

P. V. Tuong, J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, “Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials,” Appl. Phys. Lett. 102(8), 081122 (2013).
[Crossref]

J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau De Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100(11), 113305 (2012).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

W. Wang, M. Yan, Y. Pang, J. Wang, H. Ma, S. Qua, H. Chen, C. Xu, and M. Feng, “Ultra-thin quadri-band metamaterial absorber based on spiral structure,” Appl. Phys., A Mater. Sci. Process. 118(2), 443–447 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

I. E. Carranza, J. P. Grant, J. Gough, and D. Cumming, “Terahertz metamaterial absorbers implemented in CMOS technology for imaging applications: Scaling to large format focal plane arrays,” IEEE J. Sel. Top. Quantum Electron. 23, 4700508 (2017).

IEEE Photonics J. (2)

L. Zhao, H. Liu, Z. He, and S. Dong, “Wide-angle polarization-controllable structure color based on metamaterial resonators with polarized multiband absorption peaks,” IEEE Photonics J. 10(3), 1 (2018).
[Crossref]

B.-X. Wang, G.-Z. Wang, X. Zhai, and L.-L. Wang, “Polarization Tunable Terahertz Metamaterial Absorber,” IEEE Photonics J. 7(4), 1–7 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (1)

W. Pan, X. Yu, J. Zhang, and W. Zeng, “A novel design of broadband terahertz metamaterial absorber based on nested circle rings,” IEEE Photonics Technol. Lett. 28(21), 2335–2338 (2016).
[Crossref]

J. Appl. Phys. (2)

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011).
[Crossref]

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “A novel dual-band terahertz metamaterial absorber for a sensor application,” J. Appl. Phys. 117(1), 014504 (2015).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Quant. Spectrosc. Radiat. Transf. (2)

A. Sakurai, B. Zhao, and Z. M. Zhang, “Resonant frequency and bandwidth of metamaterial emitters and absorbers predicted by an RLC circuit model,” J. Quant. Spectrosc. Radiat. Transf. 149, 33–40 (2014).
[Crossref]

A. Sakurai, B. Zhao, and Z. M. Zhang, “Effect of polarization on dual-band infrared metamaterial emitters or absorbers,” J. Quant. Spectrosc. Radiat. Transf. 158, 111–118 (2015).
[Crossref]

Materials (Basel) (2)

S. Ogawa and M. Kimata, “Wavelength- or polarization-selective thermal infrared detectors for multi-color or polarimetric imaging using plasmonics and metamaterials,” Materials (Basel) 10(5), 493 (2017).
[Crossref] [PubMed]

Y. Z. Cheng, M. L. Huang, H. R. Chen, Z. Z. Guo, X. S. Mao, and R. Z. Gong, “Ultrathin six-band polarization-insensitive perfect metamaterial absorber based on a cross-cave patch resonator for terahertz waves,” Materials (Basel) 10(6), 591 (2017).
[Crossref] [PubMed]

Nano Lett. (3)

M. Miyata, H. Hatada, and J. Takahara, “Full-color subwavelength printing with gap-plasmonic optical antennas,” Nano Lett. 16(5), 3166–3172 (2016).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared Plasmonic Refractive Index Sensor with Ultra-High Figure of Merit Based on the Optimized All-Metal Grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
[Crossref] [PubMed]

Opt. Eng. (1)

S. Ogawa, K. Masuda, Y. Takagawa, and M. Kimata, “Polarization-selective uncooled infrared sensor with asymmetric two-dimensional plasmonic absorber,” Opt. Eng. 53(10), 107110 (2014).
[Crossref]

Opt. Express (9)

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).

B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008).
[Crossref] [PubMed]

J. Grant, M. Kenney, Y. D. Shah, I. Escorcia-Carranza, and D. R. S. Cumming, “CMOS compatible metamaterial absorbers for hyperspectral medium wave infrared imaging and sensing applications,” Opt. Express 26(8), 10408–10420 (2018).
[Crossref] [PubMed]

J. W. Park, P. Van Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. P. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21(8), 9691–9702 (2013).
[Crossref] [PubMed]

A. Sellier, T. V. Teperik, and A. de Lustrac, “Resonant circuit model for efficient metamaterial absorber,” Opt. Express 21(S6Suppl 6), A997–A1006 (2013).
[Crossref] [PubMed]

Y. J. Yoo, Y. J. Kim, P. Van Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, Y. H. Kim, H. Cheong, and Y. Lee, “Polarization-independent dual-band perfect absorber utilizing multiple magnetic resonances,” Opt. Express 21(26), 32484–32490 (2013).
[Crossref] [PubMed]

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
[Crossref] [PubMed]

X.-Y. Peng, B. Wang, S. Lai, D. H. Zhang, and J.-H. Teng, “Ultrathin multi-band planar metamaterial absorber based on standing wave resonances,” Opt. Express 20(25), 27756–27765 (2012).
[Crossref] [PubMed]

J. Xu, Z. Zhao, H. Yu, L. Yang, P. Gou, J. Cao, Y. Zou, J. Qian, T. Shi, Q. Ren, and Z. An, “Design of triple-band metamaterial absorbers with refractive index sensitivity at infrared frequencies,” Opt. Express 24(22), 25742–25751 (2016).
[Crossref] [PubMed]

Opt. Lett. (5)

Optica (1)

Phys. Rev. B Condens. Matter Mater. Phys. (1)

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 83(16), 165107 (2011).
[Crossref]

Phys. Rev. Lett. (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Sci. Rep. (5)

D. Lee, J. G. Hwang, D. Lim, T. Hara, and S. Lim, “Incident angle- and polarization-insensitive metamaterial absorber using circular sectors,” Sci. Rep. 6(1), 27155 (2016).
[Crossref] [PubMed]

T. T. Nguyen and S. Lim, “Wide incidence angle-insensitive metamaterial absorber for both te and tm polarization using eight-circular-sector,” Sci. Rep. 7(1), 3204 (2017).
[Crossref] [PubMed]

J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref] [PubMed]

C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6(1), 21431 (2016).
[Crossref] [PubMed]

B. X. Wang, G. Z. Wang, T. Sang, and L. L. Wang, “Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure,” Sci. Rep. 7(1), 41373 (2017).
[Crossref] [PubMed]

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

S. Kang, Z. Qian, V. Rajaram, A. Alu, and M. Rinaldi, “Ultra narrowband infrared absorbers for omni-directional and polarization insensitive multi-spectral sensing microsystems,” Transducers 2017, Kaohsiung, TAIWAN, June 18–22, 2017.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic of our proposed metamaterial perfect absorber. We break the symmetry of the square resonators by including a sword-shaped notch. Arrays of sword-shaped notched square aluminum (Al) resonators are separated from the bottom aluminum film by a silicon layer.
Fig. 2
Fig. 2 Spectral absorptivity of our proposed metamaterial perfect absorber with a top layer of square resonators (dash line) and sword-shaped notched square resonators (solid line).
Fig. 3
Fig. 3 Distribution of the z-component of the electric field (Ez) in the xy plane at (a) f1 = 22.6 THz, (b) f2 = 57.6 THz, and (c) f3 = 83.7 THz.
Fig. 4
Fig. 4 (a) Spectral absorptivity and (b) absorption peaks as functions of the side length of a square D. (c) Spectral absorptivity and absorption peaks of (d) the (1, 0) cavity mode, (e) (1, 1) cavity mode, and (f) (3, 0) cavity mode as functions of the environmental refractive index. Spectral absorptivity as a function of the incident angle for (g) TM-polarized and (h) TE-polarized waves.
Fig. 5
Fig. 5 Spectral absorptivity of our proposed absorber based on sword-shaped notched square resonators when Al is replaced with (a) Au and (b) W.
Fig. 6
Fig. 6 (a) Schematic and (b) spectral absorptivity of our designed six-band metamaterial perfect absorber based on super resonators consisting of two sword-shaped notched square resonators A and B with different sizes.
Fig. 7
Fig. 7 Distribution of the z-component of the electric field (Ez) in the xy plane at (a) f1 = 27.4 THz, (b) f2 = 37.4 THz, (c) f3 = 58.6 THz, (d) f4 = 67.8 THz, (e) f5 = 90.7 THz, and (f) f6 = 105.2 THz.
Fig. 8
Fig. 8 (a) Schematic and (b) spectral absorptivity of our designed nine-band metamaterial perfect absorber based on super-resonators consisting of three different sized sword-shaped notched square resonators C, D, and E.
Fig. 9
Fig. 9 Distribution of the z-component of the electric field (Ez) in the xy plane at (a) f1 = 25.3 THz, (b) f2 = 34.4 THz, (c) f3 = 45.9 THz, (d) f4 = 62.3 THz, (e) f5 = 68.4 THz, (f) f6 = 77.1 THz, (g) f7 = 85.3 THz, (h) f8 = 91.9 THz, and (i) f9 = 105.4 THz.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

f mn c 2nD m 2 + n 2
FOM= S FWHM
S= Δf Δn

Metrics