Abstract

We numerically demonstrate a tunable broadband terahertz absorber with near-unity absorption by using multilayer graphene ribbons sandwiched in a plasmonic integrated structure. By stacking slightly different widths of graphene ribbons in a sandwiched configuration, the absorption bandwidth can be increased because of the different resonant modes closely positioned together. The absorption spectrum’s center frequency can be manipulated by varying the graphene’s chemical potential, which provides a flexible way to design and optimize absorption property after fabrication. Furthermore, the structure can tolerate a wide range of incident angles, while the improved structure with graphene nanoparticles also shows polarization-independent feature. In this routine, stacking more graphene ribbons or particles with well-designed dimensions can further increase the bandwidth, as long as the metamaterial dimension satisfies the sub-wavelength condition. Therefore, our research provides an important theoretical guide for designing various graphene-based tunable broadband absorbers at terahertz, infrared, and microwave frequencies. This may have promising applications in imaging, sensing, and novel optoelectronic devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broadband, wide-angle and tunable terahertz absorber based on cross-shaped graphene arrays

Binggang Xiao, Mingyue Gu, and Sanshui Xiao
Appl. Opt. 56(19) 5458-5462 (2017)

Anisotropic infrared plasmonic broadband absorber based on graphene-black phosphorus multilayers

Yijun Cai, Kai-Da Xu, Naixing Feng, Rongrong Guo, Haijun Lin, and Jinfeng Zhu
Opt. Express 27(3) 3101-3112 (2019)

Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range

Longfang Ye, Yao Chen, Guoxiong Cai, Na Liu, Jinfeng Zhu, Zhengyong Song, and Qing Huo Liu
Opt. Express 25(10) 11223-11232 (2017)

References

  • View by:
  • |
  • |
  • |

  1. F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
    [Crossref]
  2. Y. Shi, Y. Li, T. Hao, L. Li, and C. Liang, “A design of ultra-broadband metamaterial absorber,” Wave. Random Complex. 27(2), 381–391 (2017).
    [Crossref]
  3. L. Li, Y. Yang, and C. Liang, “A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes,” J. Appl. Phys. 110(6), 063702 (2011).
    [Crossref]
  4. Y. Shi, J. Yang, H. Shen, Z. Meng, and T. Hao, “Design of broadband metamaterial-based ferromagnetic absorber,” Mater. Sci. 2(2), 1–7 (2018).
  5. M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
    [Crossref] [PubMed]
  6. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  7. J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
    [Crossref]
  8. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  9. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), 98–181 (2012).
    [PubMed]
  10. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
    [Crossref] [PubMed]
  11. F. Niesler, J. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 203508 (2012).
    [Crossref]
  12. F. Alves, B. Kearney, D. Grbovic, and G. Karunasiri, “Narrowband terahertz emitters using metamaterial films,” Opt. Express 20(19), 21025–21032 (2012).
    [Crossref] [PubMed]
  13. N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging,” Phys. Rev. B Condens. Matter Mater. Phys. 79(12), 125104 (2009).
    [Crossref]
  14. H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
    [Crossref] [PubMed]
  15. X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
    [Crossref] [PubMed]
  16. W. Pan, X. Yu, J. Zhang, and W. Zeng, “A broadband terahertz metamaterial absorber based on two circular split rings,” IEEE J. Quantum Electron. 53(1), 1 (2017).
    [Crossref]
  17. K. Fan, J. Y. Suen, X. Liu, and W. J. Padilla, “All-dielectric metasurface absorbers for uncooled terahertz imaging,” Optica 4(6), 601–604 (2017).
    [Crossref]
  18. B. Z. Xu, C. Q. Gu, Z. Li, and Z. Y. Niu, “A novel structure for tunable terahertz absorber based on graphene,” Opt. Express 21(20), 23803–23811 (2013).
    [Crossref] [PubMed]
  19. J. Wang and Y. Jiang, “Infrared absorber based on sandwiched two-dimensional black phosphorus metamaterials,” Opt. Express 25(5), 5206–5216 (2017).
    [Crossref] [PubMed]
  20. Y. Jiang, W. Chen, and J. Wang, “Broadband MoS2-based absorber investigated by a generalized interference theory,” Opt. Express 26(19), 24403–24412 (2018).
    [Crossref]
  21. J. Yan, Y. Zhang, P. Kim, and A. Pinczuk, “Electric field effect tuning of electron-phonon coupling in graphene,” Phys. Rev. Lett. 98(16), 166802 (2007).
    [Crossref] [PubMed]
  22. Y. Jiang, H. Zhang, J. Wang, C. N. Gao, J. Wang, and W. P. Cao, “Design and performance of a terahertz absorber based on patterned graphene,” Opt. Lett. 43(17), 4296–4299 (2018).
    [Crossref] [PubMed]
  23. S. X. Xia, X. Zhai, Y. Huang, J. Q. Liu, L. L. Wang, and S. C. Wen, “Multi-band perfect plasmonic absorptions using rectangular graphene gratings,” Opt. Lett. 42(15), 3052–3055 (2017).
    [Crossref] [PubMed]
  24. R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
    [Crossref] [PubMed]
  25. A. Khavasi and B. Rejaei, “Analytical modeling of graphene ribbons as optical circuit elements,” Opt. Express 20(27), 28017–28023 (2014).
  26. M. Rahmanzadeh, A. Abdolali, A. Khavasi, and H. Rajabalipanah, “Adopting image theorem for rigorous analysis of a perfect electric conductor-backed array of graphene ribbons,” J. Opt. Soc. Am. B 35(8), 1836–1844 (2018).
    [Crossref]
  27. Y. T. Zhao, B. Wu, B. J. Huang, and Q. Cheng, “Switchable broadband terahertz absorber/reflector enabled by hybrid graphene-gold metasurface,” Opt. Express 25(7), 7161–7169 (2017).
    [Crossref] [PubMed]
  28. H. Xiong, Y. B. Wu, J. Dong, M. C. Tang, Y. N. Jiang, and X. P. Zeng, “Ultra-thin and broadband tunable metamaterial graphene absorber,” Opt. Express 26(2), 1681–1688 (2018).
    [Crossref] [PubMed]
  29. L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Opt. Express 25(10), 11223–11232 (2017).
    [Crossref] [PubMed]
  30. Y. Zhang, Y. Shi, and C. Liang, “Broadband tunable graphene-based metamaterial absorber,” Opt. Mater. Express 6(9), 3036–3044 (2016).
    [Crossref]
  31. A. Khavasi, “Design of ultra-broadband graphene absorber using circuit theory,” J. Opt. Soc. Am. B 32(9), 1941–1946 (2015).
    [Crossref]
  32. N. Mou, S. Sun, H. Dong, S. Dong, Q. He, L. Zhou, and L. Zhang, “Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces,” Opt. Express 26(9), 11728–11736 (2018).
    [Crossref] [PubMed]
  33. A. Fardoost, F. Vanani, and R. Safian, “Design of a multilayer graphene-based ultrawideband terahertz absorber,” IEEE Trans. NanoTechnol. 16(1), 68–74 (2017).
  34. M. Rahmanzadeh, H. Rajabalipanah, and A. Abdolali, “Multilayer graphene-based metasurfaces: robust design method for extremely broadband, wide-angle, and polarization-insensitive terahertz absorbers,” Appl. Opt. 57(4), 959–968 (2018).
    [Crossref] [PubMed]
  35. M. Amin, M. Farhat, and H. Bağcı, “An ultra-broadband multilayered graphene absorber,” Opt. Express 21(24), 29938–29948 (2013).
    [Crossref] [PubMed]
  36. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
  37. Y. Cai, J. Zhu, and Q. H. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers,” Appl. Phys. Lett. 106(4), 043105 (2015).
    [Crossref]
  38. Y. Cai, Z. Wang, S. Yan, L. Ye, and J. Zhu, “Ultraviolet absorption band engineering of graphene by integrated plasmonic structures,” Opt. Mater. Express 8(11), 3295–3306 (2018).
    [Crossref]
  39. Y. Zhao, X. Li, Y. Du, G. Chen, Y. Qu, J. Jiang, and Y. Zhu, “Strong light-matter interactions in sub-nanometer gaps defined by monolayer graphene: toward highly sensitive SERS substrates,” Nanoscale 6(19), 11112–11120 (2014).
    [Crossref] [PubMed]
  40. G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
    [Crossref]
  41. Y. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498–504 (2010).
    [Crossref]
  42. Y. Cai, J. Zhu, Q. H. Liu, T. Lin, J. Zhou, L. Ye, and Z. Cai, “Enhanced spatial near-infrared modulation of graphene-loaded perfect absorbers using plasmonic nanoslits,” Opt. Express 23(25), 32318–32328 (2015).
    [Crossref] [PubMed]
  43. Q. Zhang, X. Li, M. M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M. D. Turner, S. Fan, Q. Bao, and M. Gu, “Graphene surface plasmons at the near-infrared optical regime,” Sci. Rep. 4(1), 6559 (2015).
    [Crossref] [PubMed]
  44. W. Xu, Z. H. Zhu, K. Liu, J. F. Zhang, X. D. Yuan, Q. S. Lu, and S. Q. Qin, “Toward integrated electrically controllable directional coupling based on dielectric loaded graphene plasmonic waveguide,” Opt. Lett. 40(7), 1603–1606 (2015).
    [Crossref] [PubMed]
  45. N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic building blocks for magnetic molecules in three- dimensional optical metamaterials,” Adv. Mater. 20(20), 3859–3865 (2008).
    [Crossref]
  46. J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B Condens. Matter Mater. Phys. 73(4), 041101 (2006).
    [Crossref]

2018 (8)

Y. Shi, J. Yang, H. Shen, Z. Meng, and T. Hao, “Design of broadband metamaterial-based ferromagnetic absorber,” Mater. Sci. 2(2), 1–7 (2018).

Y. Jiang, W. Chen, and J. Wang, “Broadband MoS2-based absorber investigated by a generalized interference theory,” Opt. Express 26(19), 24403–24412 (2018).
[Crossref]

Y. Jiang, H. Zhang, J. Wang, C. N. Gao, J. Wang, and W. P. Cao, “Design and performance of a terahertz absorber based on patterned graphene,” Opt. Lett. 43(17), 4296–4299 (2018).
[Crossref] [PubMed]

H. Xiong, Y. B. Wu, J. Dong, M. C. Tang, Y. N. Jiang, and X. P. Zeng, “Ultra-thin and broadband tunable metamaterial graphene absorber,” Opt. Express 26(2), 1681–1688 (2018).
[Crossref] [PubMed]

M. Rahmanzadeh, A. Abdolali, A. Khavasi, and H. Rajabalipanah, “Adopting image theorem for rigorous analysis of a perfect electric conductor-backed array of graphene ribbons,” J. Opt. Soc. Am. B 35(8), 1836–1844 (2018).
[Crossref]

N. Mou, S. Sun, H. Dong, S. Dong, Q. He, L. Zhou, and L. Zhang, “Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces,” Opt. Express 26(9), 11728–11736 (2018).
[Crossref] [PubMed]

M. Rahmanzadeh, H. Rajabalipanah, and A. Abdolali, “Multilayer graphene-based metasurfaces: robust design method for extremely broadband, wide-angle, and polarization-insensitive terahertz absorbers,” Appl. Opt. 57(4), 959–968 (2018).
[Crossref] [PubMed]

Y. Cai, Z. Wang, S. Yan, L. Ye, and J. Zhu, “Ultraviolet absorption band engineering of graphene by integrated plasmonic structures,” Opt. Mater. Express 8(11), 3295–3306 (2018).
[Crossref]

2017 (8)

2016 (1)

2015 (5)

2014 (3)

Y. Zhao, X. Li, Y. Du, G. Chen, Y. Qu, J. Jiang, and Y. Zhu, “Strong light-matter interactions in sub-nanometer gaps defined by monolayer graphene: toward highly sensitive SERS substrates,” Nanoscale 6(19), 11112–11120 (2014).
[Crossref] [PubMed]

A. Khavasi and B. Rejaei, “Analytical modeling of graphene ribbons as optical circuit elements,” Opt. Express 20(27), 28017–28023 (2014).

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

2013 (2)

2012 (6)

R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
[Crossref] [PubMed]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

F. Niesler, J. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 203508 (2012).
[Crossref]

F. Alves, B. Kearney, D. Grbovic, and G. Karunasiri, “Narrowband terahertz emitters using metamaterial films,” Opt. Express 20(19), 21025–21032 (2012).
[Crossref] [PubMed]

H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
[Crossref] [PubMed]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), 98–181 (2012).
[PubMed]

2011 (3)

L. Li, Y. Yang, and C. Liang, “A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes,” J. Appl. Phys. 110(6), 063702 (2011).
[Crossref]

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
[Crossref] [PubMed]

2010 (2)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Y. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498–504 (2010).
[Crossref]

2009 (1)

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging,” Phys. Rev. B Condens. Matter Mater. Phys. 79(12), 125104 (2009).
[Crossref]

2008 (4)

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic building blocks for magnetic molecules in three- dimensional optical metamaterials,” Adv. Mater. 20(20), 3859–3865 (2008).
[Crossref]

2007 (1)

J. Yan, Y. Zhang, P. Kim, and A. Pinczuk, “Electric field effect tuning of electron-phonon coupling in graphene,” Phys. Rev. Lett. 98(16), 166802 (2007).
[Crossref] [PubMed]

2006 (1)

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B Condens. Matter Mater. Phys. 73(4), 041101 (2006).
[Crossref]

Abdelaziz, R.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Abdolali, A.

Alaee, R.

Alves, F.

Amin, M.

Averitt, R. D.

Bagci, H.

Bao, Q.

Q. Zhang, X. Li, M. M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M. D. Turner, S. Fan, Q. Bao, and M. Gu, “Graphene surface plasmons at the near-infrared optical regime,” Sci. Rep. 4(1), 6559 (2015).
[Crossref] [PubMed]

Bingham, C. M.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging,” Phys. Rev. B Condens. Matter Mater. Phys. 79(12), 125104 (2009).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

Cai, G.

Cai, Y.

Cai, Z.

Cao, W. P.

Chakravadhanula, V. S.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Chen, G.

Y. Zhao, X. Li, Y. Du, G. Chen, Y. Qu, J. Jiang, and Y. Zhu, “Strong light-matter interactions in sub-nanometer gaps defined by monolayer graphene: toward highly sensitive SERS substrates,” Nanoscale 6(19), 11112–11120 (2014).
[Crossref] [PubMed]

Chen, H. T.

Chen, W.

Chen, Y.

Cheng, Q.

Cui, T. J.

Cui, Y.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Ding, F.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Dong, H.

Dong, J.

Dong, S.

Du, Y.

Y. Zhao, X. Li, Y. Du, G. Chen, Y. Qu, J. Jiang, and Y. Zhu, “Strong light-matter interactions in sub-nanometer gaps defined by monolayer graphene: toward highly sensitive SERS substrates,” Nanoscale 6(19), 11112–11120 (2014).
[Crossref] [PubMed]

Elbahri, M.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Fan, K.

Fan, S.

Q. Zhang, X. Li, M. M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M. D. Turner, S. Fan, Q. Bao, and M. Gu, “Graphene surface plasmons at the near-infrared optical regime,” Sci. Rep. 4(1), 6559 (2015).
[Crossref] [PubMed]

Fardoost, A.

A. Fardoost, F. Vanani, and R. Safian, “Design of a multilayer graphene-based ultrawideband terahertz absorber,” IEEE Trans. NanoTechnol. 16(1), 68–74 (2017).

Farhat, M.

Faupel, F.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Fischbach, S.

F. Niesler, J. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 203508 (2012).
[Crossref]

Fu, L.

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic building blocks for magnetic molecules in three- dimensional optical metamaterials,” Adv. Mater. 20(20), 3859–3865 (2008).
[Crossref]

Gansel, J.

F. Niesler, J. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 203508 (2012).
[Crossref]

Gao, C. N.

Ge, X.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic building blocks for magnetic molecules in three- dimensional optical metamaterials,” Adv. Mater. 20(20), 3859–3865 (2008).
[Crossref]

Grbovic, D.

Gu, C. Q.

Gu, M.

Q. Zhang, X. Li, M. M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M. D. Turner, S. Fan, Q. Bao, and M. Gu, “Graphene surface plasmons at the near-infrared optical regime,” Sci. Rep. 4(1), 6559 (2015).
[Crossref] [PubMed]

Hanson, G. W.

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

Hao, T.

Y. Shi, J. Yang, H. Shen, Z. Meng, and T. Hao, “Design of broadband metamaterial-based ferromagnetic absorber,” Mater. Sci. 2(2), 1–7 (2018).

Y. Shi, Y. Li, T. Hao, L. Li, and C. Liang, “A design of ultra-broadband metamaterial absorber,” Wave. Random Complex. 27(2), 381–391 (2017).
[Crossref]

He, Q.

N. Mou, S. Sun, H. Dong, S. Dong, Q. He, L. Zhou, and L. Zhang, “Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces,” Opt. Express 26(9), 11728–11736 (2018).
[Crossref] [PubMed]

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

He, S.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Y. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498–504 (2010).
[Crossref]

Hedayati, M. K.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Hossain, M. M.

Q. Zhang, X. Li, M. M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M. D. Turner, S. Fan, Q. Bao, and M. Gu, “Graphene surface plasmons at the near-infrared optical regime,” Sci. Rep. 4(1), 6559 (2015).
[Crossref] [PubMed]

Huang, B. J.

Huang, Y.

Javaherirahim, M.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Jiang, J.

Y. Zhao, X. Li, Y. Du, G. Chen, Y. Qu, J. Jiang, and Y. Zhu, “Strong light-matter interactions in sub-nanometer gaps defined by monolayer graphene: toward highly sensitive SERS substrates,” Nanoscale 6(19), 11112–11120 (2014).
[Crossref] [PubMed]

Jiang, W. X.

Jiang, Y.

Jiang, Y. N.

Jin, Y.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Y. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498–504 (2010).
[Crossref]

Jokerst, N.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging,” Phys. Rev. B Condens. Matter Mater. Phys. 79(12), 125104 (2009).
[Crossref]

Kaiser, S.

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic building blocks for magnetic molecules in three- dimensional optical metamaterials,” Adv. Mater. 20(20), 3859–3865 (2008).
[Crossref]

Karunasiri, G.

Kearney, B.

Khavasi, A.

Kim, P.

J. Yan, Y. Zhang, P. Kim, and A. Pinczuk, “Electric field effect tuning of electron-phonon coupling in graphene,” Phys. Rev. Lett. 98(16), 166802 (2007).
[Crossref] [PubMed]

Koschny, T.

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B Condens. Matter Mater. Phys. 73(4), 041101 (2006).
[Crossref]

Landy, N. I.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging,” Phys. Rev. B Condens. Matter Mater. Phys. 79(12), 125104 (2009).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

Lederer, F.

Li, H.

Li, L.

Y. Shi, Y. Li, T. Hao, L. Li, and C. Liang, “A design of ultra-broadband metamaterial absorber,” Wave. Random Complex. 27(2), 381–391 (2017).
[Crossref]

L. Li, Y. Yang, and C. Liang, “A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes,” J. Appl. Phys. 110(6), 063702 (2011).
[Crossref]

Li, X.

Q. Zhang, X. Li, M. M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M. D. Turner, S. Fan, Q. Bao, and M. Gu, “Graphene surface plasmons at the near-infrared optical regime,” Sci. Rep. 4(1), 6559 (2015).
[Crossref] [PubMed]

Y. Zhao, X. Li, Y. Du, G. Chen, Y. Qu, J. Jiang, and Y. Zhu, “Strong light-matter interactions in sub-nanometer gaps defined by monolayer graphene: toward highly sensitive SERS substrates,” Nanoscale 6(19), 11112–11120 (2014).
[Crossref] [PubMed]

Li, Y.

Y. Shi, Y. Li, T. Hao, L. Li, and C. Liang, “A design of ultra-broadband metamaterial absorber,” Wave. Random Complex. 27(2), 381–391 (2017).
[Crossref]

Li, Z.

Liang, C.

Y. Shi, Y. Li, T. Hao, L. Li, and C. Liang, “A design of ultra-broadband metamaterial absorber,” Wave. Random Complex. 27(2), 381–391 (2017).
[Crossref]

Y. Zhang, Y. Shi, and C. Liang, “Broadband tunable graphene-based metamaterial absorber,” Opt. Mater. Express 6(9), 3036–3044 (2016).
[Crossref]

L. Li, Y. Yang, and C. Liang, “A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes,” J. Appl. Phys. 110(6), 063702 (2011).
[Crossref]

Lin, T.

Liu, J.

Q. Zhang, X. Li, M. M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M. D. Turner, S. Fan, Q. Bao, and M. Gu, “Graphene surface plasmons at the near-infrared optical regime,” Sci. Rep. 4(1), 6559 (2015).
[Crossref] [PubMed]

Liu, J. Q.

Liu, K.

Liu, N.

L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Opt. Express 25(10), 11223–11232 (2017).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic building blocks for magnetic molecules in three- dimensional optical metamaterials,” Adv. Mater. 20(20), 3859–3865 (2008).
[Crossref]

Liu, Q. H.

Liu, X.

K. Fan, J. Y. Suen, X. Liu, and W. J. Padilla, “All-dielectric metasurface absorbers for uncooled terahertz imaging,” Optica 4(6), 601–604 (2017).
[Crossref]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), 98–181 (2012).
[PubMed]

Lu, Q. S.

Ma, H. F.

Ma, Y.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Ma, Z.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Meng, Z.

Y. Shi, J. Yang, H. Shen, Z. Meng, and T. Hao, “Design of broadband metamaterial-based ferromagnetic absorber,” Mater. Sci. 2(2), 1–7 (2018).

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Mou, N.

Mozooni, B.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Niesler, F.

F. Niesler, J. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 203508 (2012).
[Crossref]

Niu, Z. Y.

Padilla, W. J.

K. Fan, J. Y. Suen, X. Liu, and W. J. Padilla, “All-dielectric metasurface absorbers for uncooled terahertz imaging,” Optica 4(6), 601–604 (2017).
[Crossref]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), 98–181 (2012).
[PubMed]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging,” Phys. Rev. B Condens. Matter Mater. Phys. 79(12), 125104 (2009).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

Pan, W.

W. Pan, X. Yu, J. Zhang, and W. Zeng, “A broadband terahertz metamaterial absorber based on two circular split rings,” IEEE J. Quantum Electron. 53(1), 1 (2017).
[Crossref]

Pinczuk, A.

J. Yan, Y. Zhang, P. Kim, and A. Pinczuk, “Electric field effect tuning of electron-phonon coupling in graphene,” Phys. Rev. Lett. 98(16), 166802 (2007).
[Crossref] [PubMed]

Qin, S. Q.

Qu, Y.

Y. Zhao, X. Li, Y. Du, G. Chen, Y. Qu, J. Jiang, and Y. Zhu, “Strong light-matter interactions in sub-nanometer gaps defined by monolayer graphene: toward highly sensitive SERS substrates,” Nanoscale 6(19), 11112–11120 (2014).
[Crossref] [PubMed]

Rahmanzadeh, M.

Rajabalipanah, H.

Rejaei, B.

Rockstuhl, C.

Safian, R.

A. Fardoost, F. Vanani, and R. Safian, “Design of a multilayer graphene-based ultrawideband terahertz absorber,” IEEE Trans. NanoTechnol. 16(1), 68–74 (2017).

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Schweizer, H.

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic building blocks for magnetic molecules in three- dimensional optical metamaterials,” Adv. Mater. 20(20), 3859–3865 (2008).
[Crossref]

Shen, H.

Y. Shi, J. Yang, H. Shen, Z. Meng, and T. Hao, “Design of broadband metamaterial-based ferromagnetic absorber,” Mater. Sci. 2(2), 1–7 (2018).

Shen, X.

Shi, Y.

Y. Shi, J. Yang, H. Shen, Z. Meng, and T. Hao, “Design of broadband metamaterial-based ferromagnetic absorber,” Mater. Sci. 2(2), 1–7 (2018).

Y. Shi, Y. Li, T. Hao, L. Li, and C. Liang, “A design of ultra-broadband metamaterial absorber,” Wave. Random Complex. 27(2), 381–391 (2017).
[Crossref]

Y. Zhang, Y. Shi, and C. Liang, “Broadband tunable graphene-based metamaterial absorber,” Opt. Mater. Express 6(9), 3036–3044 (2016).
[Crossref]

Smith, D. R.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging,” Phys. Rev. B Condens. Matter Mater. Phys. 79(12), 125104 (2009).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Song, J.

Q. Zhang, X. Li, M. M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M. D. Turner, S. Fan, Q. Bao, and M. Gu, “Graphene surface plasmons at the near-infrared optical regime,” Sci. Rep. 4(1), 6559 (2015).
[Crossref] [PubMed]

Song, Z.

Soukoulis, C. M.

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B Condens. Matter Mater. Phys. 73(4), 041101 (2006).
[Crossref]

Strunkus, T.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Suen, J. Y.

Sun, S.

Sun, W.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Tang, M. C.

Tao, H.

Tavassolizadeh, A.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Turner, M. D.

Q. Zhang, X. Li, M. M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M. D. Turner, S. Fan, Q. Bao, and M. Gu, “Graphene surface plasmons at the near-infrared optical regime,” Sci. Rep. 4(1), 6559 (2015).
[Crossref] [PubMed]

Tuttle, G.

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B Condens. Matter Mater. Phys. 73(4), 041101 (2006).
[Crossref]

Tyler, T.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging,” Phys. Rev. B Condens. Matter Mater. Phys. 79(12), 125104 (2009).
[Crossref]

Vanani, F.

A. Fardoost, F. Vanani, and R. Safian, “Design of a multilayer graphene-based ultrawideband terahertz absorber,” IEEE Trans. NanoTechnol. 16(1), 68–74 (2017).

Wang, J.

Wang, L. L.

Wang, Z.

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), 98–181 (2012).
[PubMed]

Wegener, M.

F. Niesler, J. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 203508 (2012).
[Crossref]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Wen, S. C.

Wu, B.

Wu, Y. B.

Xia, S. X.

Xiong, H.

Xu, B. Z.

Xu, W.

Xue, Y.

Q. Zhang, X. Li, M. M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M. D. Turner, S. Fan, Q. Bao, and M. Gu, “Graphene surface plasmons at the near-infrared optical regime,” Sci. Rep. 4(1), 6559 (2015).
[Crossref] [PubMed]

Yan, J.

J. Yan, Y. Zhang, P. Kim, and A. Pinczuk, “Electric field effect tuning of electron-phonon coupling in graphene,” Phys. Rev. Lett. 98(16), 166802 (2007).
[Crossref] [PubMed]

Yan, S.

Yang, J.

Y. Shi, J. Yang, H. Shen, Z. Meng, and T. Hao, “Design of broadband metamaterial-based ferromagnetic absorber,” Mater. Sci. 2(2), 1–7 (2018).

Yang, Y.

L. Li, Y. Yang, and C. Liang, “A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes,” J. Appl. Phys. 110(6), 063702 (2011).
[Crossref]

Ye, L.

Ye, Y.

Yu, X.

W. Pan, X. Yu, J. Zhang, and W. Zeng, “A broadband terahertz metamaterial absorber based on two circular split rings,” IEEE J. Quantum Electron. 53(1), 1 (2017).
[Crossref]

Yuan, X. D.

Zaporojtchenko, V.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Zeng, W.

W. Pan, X. Yu, J. Zhang, and W. Zeng, “A broadband terahertz metamaterial absorber based on two circular split rings,” IEEE J. Quantum Electron. 53(1), 1 (2017).
[Crossref]

Zeng, X. P.

Zhai, X.

Zhang, H.

Zhang, J.

W. Pan, X. Yu, J. Zhang, and W. Zeng, “A broadband terahertz metamaterial absorber based on two circular split rings,” IEEE J. Quantum Electron. 53(1), 1 (2017).
[Crossref]

Q. Zhang, X. Li, M. M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M. D. Turner, S. Fan, Q. Bao, and M. Gu, “Graphene surface plasmons at the near-infrared optical regime,” Sci. Rep. 4(1), 6559 (2015).
[Crossref] [PubMed]

Zhang, J. F.

Zhang, L.

N. Mou, S. Sun, H. Dong, S. Dong, Q. He, L. Zhou, and L. Zhang, “Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces,” Opt. Express 26(9), 11728–11736 (2018).
[Crossref] [PubMed]

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B Condens. Matter Mater. Phys. 73(4), 041101 (2006).
[Crossref]

Zhang, Q.

Q. Zhang, X. Li, M. M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M. D. Turner, S. Fan, Q. Bao, and M. Gu, “Graphene surface plasmons at the near-infrared optical regime,” Sci. Rep. 4(1), 6559 (2015).
[Crossref] [PubMed]

Zhang, X.

Zhang, Y.

Y. Zhang, Y. Shi, and C. Liang, “Broadband tunable graphene-based metamaterial absorber,” Opt. Mater. Express 6(9), 3036–3044 (2016).
[Crossref]

J. Yan, Y. Zhang, P. Kim, and A. Pinczuk, “Electric field effect tuning of electron-phonon coupling in graphene,” Phys. Rev. Lett. 98(16), 166802 (2007).
[Crossref] [PubMed]

Zhao, J.

Zhao, Y.

Y. Zhao, X. Li, Y. Du, G. Chen, Y. Qu, J. Jiang, and Y. Zhu, “Strong light-matter interactions in sub-nanometer gaps defined by monolayer graphene: toward highly sensitive SERS substrates,” Nanoscale 6(19), 11112–11120 (2014).
[Crossref] [PubMed]

Zhao, Y. T.

Zhou, J.

Y. Cai, J. Zhu, Q. H. Liu, T. Lin, J. Zhou, L. Ye, and Z. Cai, “Enhanced spatial near-infrared modulation of graphene-loaded perfect absorbers using plasmonic nanoslits,” Opt. Express 23(25), 32318–32328 (2015).
[Crossref] [PubMed]

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B Condens. Matter Mater. Phys. 73(4), 041101 (2006).
[Crossref]

Zhou, L.

N. Mou, S. Sun, H. Dong, S. Dong, Q. He, L. Zhou, and L. Zhang, “Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces,” Opt. Express 26(9), 11728–11736 (2018).
[Crossref] [PubMed]

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Zhu, J.

Zhu, Y.

Y. Zhao, X. Li, Y. Du, G. Chen, Y. Qu, J. Jiang, and Y. Zhu, “Strong light-matter interactions in sub-nanometer gaps defined by monolayer graphene: toward highly sensitive SERS substrates,” Nanoscale 6(19), 11112–11120 (2014).
[Crossref] [PubMed]

Zhu, Z. H.

Adv. Mater. (3)

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), 98–181 (2012).
[PubMed]

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic building blocks for magnetic molecules in three- dimensional optical metamaterials,” Adv. Mater. 20(20), 3859–3865 (2008).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

F. Niesler, J. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 203508 (2012).
[Crossref]

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Y. Cai, J. Zhu, and Q. H. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers,” Appl. Phys. Lett. 106(4), 043105 (2015).
[Crossref]

IEEE J. Quantum Electron. (1)

W. Pan, X. Yu, J. Zhang, and W. Zeng, “A broadband terahertz metamaterial absorber based on two circular split rings,” IEEE J. Quantum Electron. 53(1), 1 (2017).
[Crossref]

IEEE Trans. NanoTechnol. (1)

A. Fardoost, F. Vanani, and R. Safian, “Design of a multilayer graphene-based ultrawideband terahertz absorber,” IEEE Trans. NanoTechnol. 16(1), 68–74 (2017).

J. Appl. Phys. (2)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

L. Li, Y. Yang, and C. Liang, “A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes,” J. Appl. Phys. 110(6), 063702 (2011).
[Crossref]

J. Opt. Soc. Am. B (3)

Mater. Sci. (1)

Y. Shi, J. Yang, H. Shen, Z. Meng, and T. Hao, “Design of broadband metamaterial-based ferromagnetic absorber,” Mater. Sci. 2(2), 1–7 (2018).

Nano Lett. (1)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Nanoscale (1)

Y. Zhao, X. Li, Y. Du, G. Chen, Y. Qu, J. Jiang, and Y. Zhu, “Strong light-matter interactions in sub-nanometer gaps defined by monolayer graphene: toward highly sensitive SERS substrates,” Nanoscale 6(19), 11112–11120 (2014).
[Crossref] [PubMed]

Opt. Express (15)

Y. Cai, J. Zhu, Q. H. Liu, T. Lin, J. Zhou, L. Ye, and Z. Cai, “Enhanced spatial near-infrared modulation of graphene-loaded perfect absorbers using plasmonic nanoslits,” Opt. Express 23(25), 32318–32328 (2015).
[Crossref] [PubMed]

H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
[Crossref] [PubMed]

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
[Crossref] [PubMed]

F. Alves, B. Kearney, D. Grbovic, and G. Karunasiri, “Narrowband terahertz emitters using metamaterial films,” Opt. Express 20(19), 21025–21032 (2012).
[Crossref] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

Y. T. Zhao, B. Wu, B. J. Huang, and Q. Cheng, “Switchable broadband terahertz absorber/reflector enabled by hybrid graphene-gold metasurface,” Opt. Express 25(7), 7161–7169 (2017).
[Crossref] [PubMed]

H. Xiong, Y. B. Wu, J. Dong, M. C. Tang, Y. N. Jiang, and X. P. Zeng, “Ultra-thin and broadband tunable metamaterial graphene absorber,” Opt. Express 26(2), 1681–1688 (2018).
[Crossref] [PubMed]

L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Opt. Express 25(10), 11223–11232 (2017).
[Crossref] [PubMed]

N. Mou, S. Sun, H. Dong, S. Dong, Q. He, L. Zhou, and L. Zhang, “Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces,” Opt. Express 26(9), 11728–11736 (2018).
[Crossref] [PubMed]

M. Amin, M. Farhat, and H. Bağcı, “An ultra-broadband multilayered graphene absorber,” Opt. Express 21(24), 29938–29948 (2013).
[Crossref] [PubMed]

B. Z. Xu, C. Q. Gu, Z. Li, and Z. Y. Niu, “A novel structure for tunable terahertz absorber based on graphene,” Opt. Express 21(20), 23803–23811 (2013).
[Crossref] [PubMed]

J. Wang and Y. Jiang, “Infrared absorber based on sandwiched two-dimensional black phosphorus metamaterials,” Opt. Express 25(5), 5206–5216 (2017).
[Crossref] [PubMed]

Y. Jiang, W. Chen, and J. Wang, “Broadband MoS2-based absorber investigated by a generalized interference theory,” Opt. Express 26(19), 24403–24412 (2018).
[Crossref]

R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
[Crossref] [PubMed]

A. Khavasi and B. Rejaei, “Analytical modeling of graphene ribbons as optical circuit elements,” Opt. Express 20(27), 28017–28023 (2014).

Opt. Lett. (3)

Opt. Mater. Express (2)

Optica (1)

Phys. Rev. B Condens. Matter Mater. Phys. (2)

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging,” Phys. Rev. B Condens. Matter Mater. Phys. 79(12), 125104 (2009).
[Crossref]

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B Condens. Matter Mater. Phys. 73(4), 041101 (2006).
[Crossref]

Phys. Rev. Lett. (2)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

J. Yan, Y. Zhang, P. Kim, and A. Pinczuk, “Electric field effect tuning of electron-phonon coupling in graphene,” Phys. Rev. Lett. 98(16), 166802 (2007).
[Crossref] [PubMed]

Sci. Rep. (1)

Q. Zhang, X. Li, M. M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M. D. Turner, S. Fan, Q. Bao, and M. Gu, “Graphene surface plasmons at the near-infrared optical regime,” Sci. Rep. 4(1), 6559 (2015).
[Crossref] [PubMed]

Wave. Random Complex. (1)

Y. Shi, Y. Li, T. Hao, L. Li, and C. Liang, “A design of ultra-broadband metamaterial absorber,” Wave. Random Complex. 27(2), 381–391 (2017).
[Crossref]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Perspective view and (b) cross-section view of proposed three-layer graphene-sandwiched plasmonic absorber (GSPA). The symbols w1, w2 and w3 represent the widths of different graphene layers, respectively. The symbols t and d represent the thickness of the upper three Al2O3 layers and bottom Al2O3 layer, respectively. The symbol p represents the periodicity of the periodic structure.
Fig. 2
Fig. 2 Light absorption of three-layer GSPA (a) under TM and TE incident light and (b) using different thickness of lower Al2O3 layer, for w1 = 0.155 μm, w2 = 0.170 μm, w3 = 0.180 μm, p = 0.25 μm and t = 0.5 μm, under normal incidence.
Fig. 3
Fig. 3 Absorption spectra for various layers of graphene, for w1 = 0.155 μm, w2 = 0.170 μm, w3 = 0.180 μm, p = 0.25 μm, d = 8 μm and t = 0.5 μm.
Fig. 4
Fig. 4 Simulated average electric field intensity distributions. Figure 4(a) and 4(b) present sectional views at the in-plane across the 1st graphene for NGL = 3 at the frequency of 6.38 THz and 5.00 THz respectively. Figure 4(c)-4(f) present cross-section views for NGL = 3 at the frequency of 6.38 THz, 5.00 THz, 6.11 THz and 5.86 THz respectively. Figure 4(g) and 4(h) present cross-section views for NGL = 2 and NGL = 1 at the frequency of 6.38 THz. The dimensions in the GSPA are w1 = 0.155 μm, w2 = 0.170 μm, w3 = 0.180 μm, p = 0.25 μm, d = 8 μm and t = 0.5 μm. Four unit cells are plotted in the figure.
Fig. 5
Fig. 5 Absorption of three-layer GSPA under different incident angles, for w1 = 0.155 μm, w2 = 0.170 μm, w3 = 0.180 μm, p = 0.25 μm, d = 8 μm and t = 0.5 μm.
Fig. 6
Fig. 6 Center frequency of three-layer GSPA versus graphene chemical potential, for w1 = 0.155 μm, w2 = 0.170 μm, w3 = 0.180 μm, p = 0.25 μm, d = 8 μm and t = 0.5 μm, under normal incidence.
Fig. 7
Fig. 7 (a) Schematics of the 3D three-layer GSPA structure. (b) Absorption rate of TM and TE polarization incident light.
Fig. 8
Fig. 8 Absorption of 3D three-layer GSPA under different incident angles of (a) TM incidence and (b) TE incidence, for w1 = 0.155 μm, w2 = 0.170 μm, w3 = 0.180 μm, p = 0.25 μm, d = 8 μm and t = 0.5 μm.

Tables (1)

Tables Icon

Table 1 Comparisons between broadband absorbers at THz frequencies.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ε = =[ ε xx (ω) 0 0 0 ε yy (ω) 0 0 0 ε zz ]
ε in (ω)= ε xx (ω)= ε yy (ω)= ε 0 +i σ(ω) Hω
σ(ω, μ c ,Г,T)= σ intra + σ inter
σ intra = j e 2 π 2 (ωj2Г) 0 ξ( f d (ξ, μ c ,T) ξ f d (ξ, μ c ,T) ξ ) dξ
σ inter = j e 2 (ωj2Г) π 2 0 f d (ξ, μ c ,T) f d (ξ, μ c ,T) (ωj2Г) 2 4 (ξ/) 2 dξ
f d ( ξ, μ c ,T )= ( e (ξ μ c )/ k B T +1) 1
σ= i e 2 μ c π 2 (ω+i τ -1 )
A(λ)=2π c λ ε '' V | E l | 2 dV

Metrics