Abstract

Planar droplet sizing (PDS) is a technique relying on the assumption that laser-induced fluorescence (LIF) and Mie scattering optical signals from spherical droplets depend on their volume and surface area, respectively. In this article, we verify the validity of this assumption by experimentally analyzing the light intensity of the LIF and Mie optical signals from micrometric droplets as a function of their diameter. The size of the droplets is controlled using a new flow-focusing monodisperse droplet generator capable of producing droplets of the desired size in the range of 21 µm to 60 µm. Ethanol droplets doped with eosin dye and excited at 532 nm are considered in this study, and the individual droplets were imaged simultaneously at microscopic and macroscopic scale. The effects of laser power, dye concentration, and temperature variation are systematically studied as a function of LIF/Mie ratio in the whole range of droplet sizes. Finally, a calibration curve at tracer concentration of 0.5 vol% is deduced and used to extract the droplet Sauter mean diameter (SMD) from instantaneous images of a transient ethanol spray. This droplet size mapping is done using structured laser illumination planar imaging (SLIPI), in order to suppress the artifacts induced by multiple light scattering.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Reliable LIF/Mie droplet sizing in sprays using structured laser illumination planar imaging

Yogeshwar Nath Mishra, Elias Kristensson, and Edouard Berrocal
Opt. Express 22(4) 4480-4492 (2014)

3D mapping of droplet Sauter mean diameter in sprays

Yogeshwar Nath Mishra, Matthias Koegl, Kevin Baderschneider, Bernhard Hofbeck, Edouard Berrocal, Chris Conrad, Stefan will, and Lars Zigan
Appl. Opt. 58(14) 3775-3783 (2019)

References

  • View by:
  • |
  • |
  • |

  1. C.-N. Yeh, H. Kosaka, and T. Kamimoto, “Fluorescence/scattering image technique for particle sizing in unsteady diesel spray,” Transactions of the Japan Society of Mechanical Engineers Series B 59(568), 4008–4013 (1993).
    [Crossref]
  2. P. Le Gal, N. Farrugia, and D. A. Greenhalgh, “Laser Sheet Dropsizing of dense sprays,” Opt. Laser Technol. 31(1), 75–83 (1999).
    [Crossref]
  3. A. Malarski, B. Schürer, I. Schmitz, L. Zigan, A. Flügel, and A. Leipertz, “Laser sheet dropsizing based on two-dimensional Raman and Mie scattering,” Appl. Opt. 48(10), 1853–1860 (2009).
    [Crossref] [PubMed]
  4. W. Zeng, M. Xu, Y. Zhang, and Z. Wang, “Laser sheet dropsizing of evaporating sprays using simultaneous LIEF/MIE techniques,” Proc. Combust. Inst. 34(1), 1677–1685 (2013).
    [Crossref]
  5. A. Serpengüzel, S. Küçükşenel, and R. Chang, “Microdroplet identification and size measurement in sprays with lasing images,” Opt. Express 10(20), 1118–1132 (2002).
    [Crossref] [PubMed]
  6. R. Domann and Y. Hardalupas, “Quantitative Measurement of Planar Droplet Sauter Mean Diameter in Sprays using Planar Droplet Sizing,” Particle & Particle Systems Characterization 20(3), 209–218 (2003).
    [Crossref]
  7. R. Domann and Y. Hardalupas, “Spatial distribution of fluorescence intensity within large droplets and its dependence on dye concentration,” Appl. Opt. 40(21), 3586–3597 (2001).
    [Crossref] [PubMed]
  8. R. Domann, Y. Hardalupas, and A. R. Jones, “A study of the influence of absorption on the spatial distribution of fluorescence intensity within large droplets using Mie theory, geometrical optics and imaging experiments,” Meas. Sci. Technol. 13(3), 280–291 (2002).
    [Crossref]
  9. B. Frackowiak and C. Tropea, “Fluorescence modeling of droplets intersecting a focused laser beam,” Opt. Lett. 35(9), 1386–1388 (2010).
    [Crossref] [PubMed]
  10. B. Frackowiak and C. Tropea, “Numerical analysis of diameter influence on droplet fluorescence,” Appl. Opt. 49(12), 2363–2370 (2010).
    [Crossref] [PubMed]
  11. G. Charalampous and Y. Hardalupas, “Method to reduce errors of droplet sizing based on the ratio of fluorescent and scattered light intensities (laser-induced fluorescence/Mie technique),” Appl. Opt. 50(20), 3622–3637 (2011).
    [Crossref] [PubMed]
  12. G. Charalampous and Y. Hardalupas, “Numerical evaluation of droplet sizing based on the ratio of fluorescent and scattered light intensities (LIF/Mie technique),” Appl. Opt. 50(9), 1197–1209 (2011).
    [Crossref] [PubMed]
  13. G. Charalampous, Y. Hardalupas, and A. M. K. P. Taylor, “Novel Technique for Measurements of Continuous Liquid Jet Core in an Atomizer,” AIAA J. 47, 2605–2615 (2009).
    [Crossref]
  14. R. Domann and Y. Hardalupas, “A Study of Parameters that Influence the Accuracy of the Planar Droplet Sizing (PDS) Technique,” Particle & Particle Systems Characterization 18(1), 3–11 (2001).
    [Crossref]
  15. W. Chaze, O. Caballina, G. Castanet, and F. Lemoine, “The saturation of the fluorescence and its consequences for laser-induced fluorescence thermometry in liquid flows,” Exp. Fluids 57(4), 58 (2016).
    [Crossref]
  16. K. Matsumoto, T. Fujii, K. Suzuki, D. Segawa, and T. Kadota, “Laser-induced fluorescence for the non-intrusive diagnostics of a fuel droplet burning under microgravity in a drop shaft,” Meas. Sci. Technol. 10(10), 853–858 (1999).
    [Crossref]
  17. M. Winter and L. A. Melton, “Measurement of internal circulation in droplets using laser-induced fluorescence,” Appl. Opt. 29(31), 4574–4577 (1990).
    [Crossref] [PubMed]
  18. P. Lavieille, F. Lemoine, G. Lavergne, and M. Lebouché, “Evaporating and combusting droplet temperature measurements using two-color laser-induced fluorescence,” Exp. Fluids 31(1), 45–55 (2001).
    [Crossref]
  19. I. Düwel, J. Schorr, J. Wolfrum, and C. Schulz, “Laser-induced fluorescence of tracers dissolved in evaporating droplets,” Appl. Phys. B 78, 127–131 (2004).
    [Crossref]
  20. K. Jung, H. Koh, and Y. Yoon, “Assessment of planar liquid-laser-induced fluorescence measurements for spray mass distributions of like-doublet injectors,” Meas. Sci. Technol. 14(8), 1387–1395 (2003).
    [Crossref]
  21. J. Trost, L. Zigan, and A. Leipertz, “Quantitative vapor temperature imaging in DISI-sprays at elevated pressures and temperatures using two-line excitation laser-induced fluorescence,” Proc. Combust. Inst. 34(2), 3645–3652 (2013).
    [Crossref]
  22. B. D. Stojkovic and V. Sick, “Evolution and impingement of an automotive fuel spray investigated with simultaneous Mie/LIF techniques,” Appl. Phys. B 73(1), 75–83 (2001).
    [Crossref]
  23. M. Storch, S. Lind, S. Will, and L. Zigan, “Influence of ethanol admixture on the determination of equivalence ratios in DISI engines by laser-induced fluorescence,” Appl. Opt. 55(30), 8532–8540 (2016).
    [Crossref] [PubMed]
  24. M. Storch, Y. N. Mishra, M. Koegl, E. Kristensson, S. Will, L. Zigan, and E. Berrocal, “Two-phase SLIPI for instantaneous LIF and Mie imaging of transient fuel sprays,” Opt. Lett. 41(23), 5422–5425 (2016).
    [Crossref] [PubMed]
  25. E. Berrocal, E. Kristensson, and L. Zigan, “Light sheet fluorescence microscopic imaging for high-resolution visualization of spray dynamics,” Int. J. Spray Combust. Dyn. 10(1), 86–98 (2018).
    [Crossref]
  26. Y. N. Mishra, E. Kristensson, M. Koegl, J. Jönsson, L. Zigan, and E. Berrocal, “Comparison between two-phase and one-phase SLIPI for instantaneous imaging of transient sprays,” Exp. Fluids 58(9), 110 (2017).
    [Crossref]
  27. X.-F. Zhang, J. Zhang, and L. Liu, “Fluorescence Properties of Twenty Fluorescein Derivatives: Lifetime, Quantum Yield, Absorption and Emission Spectra,” J. Fluoresc. 24(3), 819–826 (2014).
    [Crossref] [PubMed]
  28. S. V. Sankar, K. E. Maher, D. M. Robart, and W. D. Bachalo, “Rapid Characterization of Fuel Atomizers Using an Optical Patternator,” J. Eng. Gas Turbine. Power 121(3), 409–414 (1999).
    [Crossref]
  29. M. C. Jermy and D. A. Greenhalgh, “Planar dropsizing by elastic and fluorescence scattering in sprays too dense for phase Doppler measurement,” Appl. Phys. B 71(5), 703–710 (2000).
    [Crossref]
  30. J. Zelina, A. Rodrigue, and S. Sankar, “Fuel injector characterization using laser diagnostics at atmospheric and elevated pressures,” in 36th AIAA Aerospace Sciences Meeting and Exhibit (American Institute of Aeronautics and Astronautics, 1998).
    [Crossref]
  31. M. Zaller, R. J. Locke, and R. C. Anderson, “Comparison of techniques for non-intrusive fuel drop size measurements in a subscale gas turbine combustor,” J. Vis. (Tokyo) 2(3-4), 301–308 (2000).
    [Crossref]
  32. Y. N. Mishra, E. Kristensson, and E. Berrocal, “Reliable LIF/Mie droplet sizing in sprays using structured laser illumination planar imaging,” Opt. Express 22(4), 4480–4492 (2014).
    [Crossref] [PubMed]
  33. Y. N. Mishra, E. Kristensson, and E. Berrocal, “3D droplet sizing and 2D optical depth measurements in sprays using SLIPI based techniques,” in the 18th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics-LISBON Symposium, Lisbon 2016)
  34. M. Koegl, Y. N. Mishra, M. Storch, C. Conrad, E. Berrocal, S. Will, and L. Zigan, “Analysis of ethanol and butanol direct-injection spark-ignition sprays using two-phase structured laser illumination planar imaging droplet sizing,” Int. J. Spray Combust. Dyn. 2018, 1756827718772496 (2018).
    [Crossref]
  35. H. Duan, F. Romay, Z. Syedain, B. Y. H. Liu, and A. Naqwi, “A New Monodisperse Droplet Generator and its Applications,” ILASS Americas 28th Annual Conference on Liquid Atomization and Spray Systems (2016).
  36. S. Park, H. Cho, I. Yoon, and K. Min, “Measurement of droplet size distribution of gasoline direct injection spray by droplet generator and planar image technique,” Meas. Sci. Technol. 13(6), 859–864 (2002).
    [Crossref]
  37. J. A. Dean, Lange's Handbook of Chemistry, 15th ed. (McGraw-Hill Companies, 1999).
  38. A. Richard, Yetter and I. Glassman, Combustion, 4th ed. (Academic Press, Amsterdam, 2008).
  39. N. I. o. S. a. Technology, “NIST Chemistry WebBook,” (2017).
  40. J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
    [Crossref]
  41. H. El-Kashef, “The necessary requirements imposed on polar dielectric laser dye solvents,” Physica B 279(4), 295–301 (2000).
    [Crossref]
  42. J. Palmer, M. A. Reddemann, V. Kirsch, and R. Kneer, “Applying 2D-2cLIF-EET thermometry for micro-droplet internal temperature imaging,” Exp. Fluids 59(3), 51 (2018).
    [Crossref]
  43. M. Anand, A. K. Dharmadhikari, J. A. Dharmadhikari, A. Mishra, D. Mathur, and M. Krishnamurthy, “Two-photon pumped lasing from methanol micro-droplets doped by a weakly fluorescent dye,” Chem. Phys. Lett. 372(1-2), 263–268 (2003).
    [Crossref]
  44. D. L. Hofeldt, “Full-field measurements of particle size distributions: I. theoretical limitations of the polarization ratio method,” Appl. Opt. 32(36), 7551–7558 (1993).
    [Crossref] [PubMed]
  45. C. Tropea, “Optical particle characterization in flows,” Annu. Rev. Fluid Mech. 43(1), 399–426 (2011).
    [Crossref]
  46. C. F. Bohren and D. R. Huffmann, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  47. S. Bareiss, B. Bork, S. Bakić, C. Tropea, R. Irsig, J. Tiggesbäumker, and A. Dreizler, “Application of femtosecond lasers to the polarization ratio technique for droplet sizing,” Meas. Sci. Technol. 24(2), 025203 (2013).
    [Crossref]

2018 (3)

E. Berrocal, E. Kristensson, and L. Zigan, “Light sheet fluorescence microscopic imaging for high-resolution visualization of spray dynamics,” Int. J. Spray Combust. Dyn. 10(1), 86–98 (2018).
[Crossref]

M. Koegl, Y. N. Mishra, M. Storch, C. Conrad, E. Berrocal, S. Will, and L. Zigan, “Analysis of ethanol and butanol direct-injection spark-ignition sprays using two-phase structured laser illumination planar imaging droplet sizing,” Int. J. Spray Combust. Dyn. 2018, 1756827718772496 (2018).
[Crossref]

J. Palmer, M. A. Reddemann, V. Kirsch, and R. Kneer, “Applying 2D-2cLIF-EET thermometry for micro-droplet internal temperature imaging,” Exp. Fluids 59(3), 51 (2018).
[Crossref]

2017 (1)

Y. N. Mishra, E. Kristensson, M. Koegl, J. Jönsson, L. Zigan, and E. Berrocal, “Comparison between two-phase and one-phase SLIPI for instantaneous imaging of transient sprays,” Exp. Fluids 58(9), 110 (2017).
[Crossref]

2016 (3)

2014 (2)

Y. N. Mishra, E. Kristensson, and E. Berrocal, “Reliable LIF/Mie droplet sizing in sprays using structured laser illumination planar imaging,” Opt. Express 22(4), 4480–4492 (2014).
[Crossref] [PubMed]

X.-F. Zhang, J. Zhang, and L. Liu, “Fluorescence Properties of Twenty Fluorescein Derivatives: Lifetime, Quantum Yield, Absorption and Emission Spectra,” J. Fluoresc. 24(3), 819–826 (2014).
[Crossref] [PubMed]

2013 (3)

J. Trost, L. Zigan, and A. Leipertz, “Quantitative vapor temperature imaging in DISI-sprays at elevated pressures and temperatures using two-line excitation laser-induced fluorescence,” Proc. Combust. Inst. 34(2), 3645–3652 (2013).
[Crossref]

W. Zeng, M. Xu, Y. Zhang, and Z. Wang, “Laser sheet dropsizing of evaporating sprays using simultaneous LIEF/MIE techniques,” Proc. Combust. Inst. 34(1), 1677–1685 (2013).
[Crossref]

S. Bareiss, B. Bork, S. Bakić, C. Tropea, R. Irsig, J. Tiggesbäumker, and A. Dreizler, “Application of femtosecond lasers to the polarization ratio technique for droplet sizing,” Meas. Sci. Technol. 24(2), 025203 (2013).
[Crossref]

2011 (3)

2010 (2)

2009 (2)

G. Charalampous, Y. Hardalupas, and A. M. K. P. Taylor, “Novel Technique for Measurements of Continuous Liquid Jet Core in an Atomizer,” AIAA J. 47, 2605–2615 (2009).
[Crossref]

A. Malarski, B. Schürer, I. Schmitz, L. Zigan, A. Flügel, and A. Leipertz, “Laser sheet dropsizing based on two-dimensional Raman and Mie scattering,” Appl. Opt. 48(10), 1853–1860 (2009).
[Crossref] [PubMed]

2004 (1)

I. Düwel, J. Schorr, J. Wolfrum, and C. Schulz, “Laser-induced fluorescence of tracers dissolved in evaporating droplets,” Appl. Phys. B 78, 127–131 (2004).
[Crossref]

2003 (3)

K. Jung, H. Koh, and Y. Yoon, “Assessment of planar liquid-laser-induced fluorescence measurements for spray mass distributions of like-doublet injectors,” Meas. Sci. Technol. 14(8), 1387–1395 (2003).
[Crossref]

R. Domann and Y. Hardalupas, “Quantitative Measurement of Planar Droplet Sauter Mean Diameter in Sprays using Planar Droplet Sizing,” Particle & Particle Systems Characterization 20(3), 209–218 (2003).
[Crossref]

M. Anand, A. K. Dharmadhikari, J. A. Dharmadhikari, A. Mishra, D. Mathur, and M. Krishnamurthy, “Two-photon pumped lasing from methanol micro-droplets doped by a weakly fluorescent dye,” Chem. Phys. Lett. 372(1-2), 263–268 (2003).
[Crossref]

2002 (3)

R. Domann, Y. Hardalupas, and A. R. Jones, “A study of the influence of absorption on the spatial distribution of fluorescence intensity within large droplets using Mie theory, geometrical optics and imaging experiments,” Meas. Sci. Technol. 13(3), 280–291 (2002).
[Crossref]

A. Serpengüzel, S. Küçükşenel, and R. Chang, “Microdroplet identification and size measurement in sprays with lasing images,” Opt. Express 10(20), 1118–1132 (2002).
[Crossref] [PubMed]

S. Park, H. Cho, I. Yoon, and K. Min, “Measurement of droplet size distribution of gasoline direct injection spray by droplet generator and planar image technique,” Meas. Sci. Technol. 13(6), 859–864 (2002).
[Crossref]

2001 (4)

P. Lavieille, F. Lemoine, G. Lavergne, and M. Lebouché, “Evaporating and combusting droplet temperature measurements using two-color laser-induced fluorescence,” Exp. Fluids 31(1), 45–55 (2001).
[Crossref]

B. D. Stojkovic and V. Sick, “Evolution and impingement of an automotive fuel spray investigated with simultaneous Mie/LIF techniques,” Appl. Phys. B 73(1), 75–83 (2001).
[Crossref]

R. Domann and Y. Hardalupas, “Spatial distribution of fluorescence intensity within large droplets and its dependence on dye concentration,” Appl. Opt. 40(21), 3586–3597 (2001).
[Crossref] [PubMed]

R. Domann and Y. Hardalupas, “A Study of Parameters that Influence the Accuracy of the Planar Droplet Sizing (PDS) Technique,” Particle & Particle Systems Characterization 18(1), 3–11 (2001).
[Crossref]

2000 (3)

M. C. Jermy and D. A. Greenhalgh, “Planar dropsizing by elastic and fluorescence scattering in sprays too dense for phase Doppler measurement,” Appl. Phys. B 71(5), 703–710 (2000).
[Crossref]

M. Zaller, R. J. Locke, and R. C. Anderson, “Comparison of techniques for non-intrusive fuel drop size measurements in a subscale gas turbine combustor,” J. Vis. (Tokyo) 2(3-4), 301–308 (2000).
[Crossref]

H. El-Kashef, “The necessary requirements imposed on polar dielectric laser dye solvents,” Physica B 279(4), 295–301 (2000).
[Crossref]

1999 (3)

S. V. Sankar, K. E. Maher, D. M. Robart, and W. D. Bachalo, “Rapid Characterization of Fuel Atomizers Using an Optical Patternator,” J. Eng. Gas Turbine. Power 121(3), 409–414 (1999).
[Crossref]

K. Matsumoto, T. Fujii, K. Suzuki, D. Segawa, and T. Kadota, “Laser-induced fluorescence for the non-intrusive diagnostics of a fuel droplet burning under microgravity in a drop shaft,” Meas. Sci. Technol. 10(10), 853–858 (1999).
[Crossref]

P. Le Gal, N. Farrugia, and D. A. Greenhalgh, “Laser Sheet Dropsizing of dense sprays,” Opt. Laser Technol. 31(1), 75–83 (1999).
[Crossref]

1997 (1)

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]

1993 (2)

C.-N. Yeh, H. Kosaka, and T. Kamimoto, “Fluorescence/scattering image technique for particle sizing in unsteady diesel spray,” Transactions of the Japan Society of Mechanical Engineers Series B 59(568), 4008–4013 (1993).
[Crossref]

D. L. Hofeldt, “Full-field measurements of particle size distributions: I. theoretical limitations of the polarization ratio method,” Appl. Opt. 32(36), 7551–7558 (1993).
[Crossref] [PubMed]

1990 (1)

Anand, M.

M. Anand, A. K. Dharmadhikari, J. A. Dharmadhikari, A. Mishra, D. Mathur, and M. Krishnamurthy, “Two-photon pumped lasing from methanol micro-droplets doped by a weakly fluorescent dye,” Chem. Phys. Lett. 372(1-2), 263–268 (2003).
[Crossref]

Anderson, R. C.

M. Zaller, R. J. Locke, and R. C. Anderson, “Comparison of techniques for non-intrusive fuel drop size measurements in a subscale gas turbine combustor,” J. Vis. (Tokyo) 2(3-4), 301–308 (2000).
[Crossref]

Bachalo, W. D.

S. V. Sankar, K. E. Maher, D. M. Robart, and W. D. Bachalo, “Rapid Characterization of Fuel Atomizers Using an Optical Patternator,” J. Eng. Gas Turbine. Power 121(3), 409–414 (1999).
[Crossref]

Bakic, S.

S. Bareiss, B. Bork, S. Bakić, C. Tropea, R. Irsig, J. Tiggesbäumker, and A. Dreizler, “Application of femtosecond lasers to the polarization ratio technique for droplet sizing,” Meas. Sci. Technol. 24(2), 025203 (2013).
[Crossref]

Bareiss, S.

S. Bareiss, B. Bork, S. Bakić, C. Tropea, R. Irsig, J. Tiggesbäumker, and A. Dreizler, “Application of femtosecond lasers to the polarization ratio technique for droplet sizing,” Meas. Sci. Technol. 24(2), 025203 (2013).
[Crossref]

Berrocal, E.

M. Koegl, Y. N. Mishra, M. Storch, C. Conrad, E. Berrocal, S. Will, and L. Zigan, “Analysis of ethanol and butanol direct-injection spark-ignition sprays using two-phase structured laser illumination planar imaging droplet sizing,” Int. J. Spray Combust. Dyn. 2018, 1756827718772496 (2018).
[Crossref]

E. Berrocal, E. Kristensson, and L. Zigan, “Light sheet fluorescence microscopic imaging for high-resolution visualization of spray dynamics,” Int. J. Spray Combust. Dyn. 10(1), 86–98 (2018).
[Crossref]

Y. N. Mishra, E. Kristensson, M. Koegl, J. Jönsson, L. Zigan, and E. Berrocal, “Comparison between two-phase and one-phase SLIPI for instantaneous imaging of transient sprays,” Exp. Fluids 58(9), 110 (2017).
[Crossref]

M. Storch, Y. N. Mishra, M. Koegl, E. Kristensson, S. Will, L. Zigan, and E. Berrocal, “Two-phase SLIPI for instantaneous LIF and Mie imaging of transient fuel sprays,” Opt. Lett. 41(23), 5422–5425 (2016).
[Crossref] [PubMed]

Y. N. Mishra, E. Kristensson, and E. Berrocal, “Reliable LIF/Mie droplet sizing in sprays using structured laser illumination planar imaging,” Opt. Express 22(4), 4480–4492 (2014).
[Crossref] [PubMed]

Bork, B.

S. Bareiss, B. Bork, S. Bakić, C. Tropea, R. Irsig, J. Tiggesbäumker, and A. Dreizler, “Application of femtosecond lasers to the polarization ratio technique for droplet sizing,” Meas. Sci. Technol. 24(2), 025203 (2013).
[Crossref]

Caballina, O.

W. Chaze, O. Caballina, G. Castanet, and F. Lemoine, “The saturation of the fluorescence and its consequences for laser-induced fluorescence thermometry in liquid flows,” Exp. Fluids 57(4), 58 (2016).
[Crossref]

Castanet, G.

W. Chaze, O. Caballina, G. Castanet, and F. Lemoine, “The saturation of the fluorescence and its consequences for laser-induced fluorescence thermometry in liquid flows,” Exp. Fluids 57(4), 58 (2016).
[Crossref]

Chang, R.

Charalampous, G.

Chaze, W.

W. Chaze, O. Caballina, G. Castanet, and F. Lemoine, “The saturation of the fluorescence and its consequences for laser-induced fluorescence thermometry in liquid flows,” Exp. Fluids 57(4), 58 (2016).
[Crossref]

Cho, H.

S. Park, H. Cho, I. Yoon, and K. Min, “Measurement of droplet size distribution of gasoline direct injection spray by droplet generator and planar image technique,” Meas. Sci. Technol. 13(6), 859–864 (2002).
[Crossref]

Conrad, C.

M. Koegl, Y. N. Mishra, M. Storch, C. Conrad, E. Berrocal, S. Will, and L. Zigan, “Analysis of ethanol and butanol direct-injection spark-ignition sprays using two-phase structured laser illumination planar imaging droplet sizing,” Int. J. Spray Combust. Dyn. 2018, 1756827718772496 (2018).
[Crossref]

Dharmadhikari, A. K.

M. Anand, A. K. Dharmadhikari, J. A. Dharmadhikari, A. Mishra, D. Mathur, and M. Krishnamurthy, “Two-photon pumped lasing from methanol micro-droplets doped by a weakly fluorescent dye,” Chem. Phys. Lett. 372(1-2), 263–268 (2003).
[Crossref]

Dharmadhikari, J. A.

M. Anand, A. K. Dharmadhikari, J. A. Dharmadhikari, A. Mishra, D. Mathur, and M. Krishnamurthy, “Two-photon pumped lasing from methanol micro-droplets doped by a weakly fluorescent dye,” Chem. Phys. Lett. 372(1-2), 263–268 (2003).
[Crossref]

Domann, R.

R. Domann and Y. Hardalupas, “Quantitative Measurement of Planar Droplet Sauter Mean Diameter in Sprays using Planar Droplet Sizing,” Particle & Particle Systems Characterization 20(3), 209–218 (2003).
[Crossref]

R. Domann, Y. Hardalupas, and A. R. Jones, “A study of the influence of absorption on the spatial distribution of fluorescence intensity within large droplets using Mie theory, geometrical optics and imaging experiments,” Meas. Sci. Technol. 13(3), 280–291 (2002).
[Crossref]

R. Domann and Y. Hardalupas, “Spatial distribution of fluorescence intensity within large droplets and its dependence on dye concentration,” Appl. Opt. 40(21), 3586–3597 (2001).
[Crossref] [PubMed]

R. Domann and Y. Hardalupas, “A Study of Parameters that Influence the Accuracy of the Planar Droplet Sizing (PDS) Technique,” Particle & Particle Systems Characterization 18(1), 3–11 (2001).
[Crossref]

Dreizler, A.

S. Bareiss, B. Bork, S. Bakić, C. Tropea, R. Irsig, J. Tiggesbäumker, and A. Dreizler, “Application of femtosecond lasers to the polarization ratio technique for droplet sizing,” Meas. Sci. Technol. 24(2), 025203 (2013).
[Crossref]

Düwel, I.

I. Düwel, J. Schorr, J. Wolfrum, and C. Schulz, “Laser-induced fluorescence of tracers dissolved in evaporating droplets,” Appl. Phys. B 78, 127–131 (2004).
[Crossref]

El-Kashef, H.

H. El-Kashef, “The necessary requirements imposed on polar dielectric laser dye solvents,” Physica B 279(4), 295–301 (2000).
[Crossref]

Farrugia, N.

P. Le Gal, N. Farrugia, and D. A. Greenhalgh, “Laser Sheet Dropsizing of dense sprays,” Opt. Laser Technol. 31(1), 75–83 (1999).
[Crossref]

Flügel, A.

Frackowiak, B.

Fujii, T.

K. Matsumoto, T. Fujii, K. Suzuki, D. Segawa, and T. Kadota, “Laser-induced fluorescence for the non-intrusive diagnostics of a fuel droplet burning under microgravity in a drop shaft,” Meas. Sci. Technol. 10(10), 853–858 (1999).
[Crossref]

Greenhalgh, D. A.

M. C. Jermy and D. A. Greenhalgh, “Planar dropsizing by elastic and fluorescence scattering in sprays too dense for phase Doppler measurement,” Appl. Phys. B 71(5), 703–710 (2000).
[Crossref]

P. Le Gal, N. Farrugia, and D. A. Greenhalgh, “Laser Sheet Dropsizing of dense sprays,” Opt. Laser Technol. 31(1), 75–83 (1999).
[Crossref]

Hardalupas, Y.

G. Charalampous and Y. Hardalupas, “Numerical evaluation of droplet sizing based on the ratio of fluorescent and scattered light intensities (LIF/Mie technique),” Appl. Opt. 50(9), 1197–1209 (2011).
[Crossref] [PubMed]

G. Charalampous and Y. Hardalupas, “Method to reduce errors of droplet sizing based on the ratio of fluorescent and scattered light intensities (laser-induced fluorescence/Mie technique),” Appl. Opt. 50(20), 3622–3637 (2011).
[Crossref] [PubMed]

G. Charalampous, Y. Hardalupas, and A. M. K. P. Taylor, “Novel Technique for Measurements of Continuous Liquid Jet Core in an Atomizer,” AIAA J. 47, 2605–2615 (2009).
[Crossref]

R. Domann and Y. Hardalupas, “Quantitative Measurement of Planar Droplet Sauter Mean Diameter in Sprays using Planar Droplet Sizing,” Particle & Particle Systems Characterization 20(3), 209–218 (2003).
[Crossref]

R. Domann, Y. Hardalupas, and A. R. Jones, “A study of the influence of absorption on the spatial distribution of fluorescence intensity within large droplets using Mie theory, geometrical optics and imaging experiments,” Meas. Sci. Technol. 13(3), 280–291 (2002).
[Crossref]

R. Domann and Y. Hardalupas, “Spatial distribution of fluorescence intensity within large droplets and its dependence on dye concentration,” Appl. Opt. 40(21), 3586–3597 (2001).
[Crossref] [PubMed]

R. Domann and Y. Hardalupas, “A Study of Parameters that Influence the Accuracy of the Planar Droplet Sizing (PDS) Technique,” Particle & Particle Systems Characterization 18(1), 3–11 (2001).
[Crossref]

Hofeldt, D. L.

Irsig, R.

S. Bareiss, B. Bork, S. Bakić, C. Tropea, R. Irsig, J. Tiggesbäumker, and A. Dreizler, “Application of femtosecond lasers to the polarization ratio technique for droplet sizing,” Meas. Sci. Technol. 24(2), 025203 (2013).
[Crossref]

Jermy, M. C.

M. C. Jermy and D. A. Greenhalgh, “Planar dropsizing by elastic and fluorescence scattering in sprays too dense for phase Doppler measurement,” Appl. Phys. B 71(5), 703–710 (2000).
[Crossref]

Jones, A. R.

R. Domann, Y. Hardalupas, and A. R. Jones, “A study of the influence of absorption on the spatial distribution of fluorescence intensity within large droplets using Mie theory, geometrical optics and imaging experiments,” Meas. Sci. Technol. 13(3), 280–291 (2002).
[Crossref]

Jönsson, J.

Y. N. Mishra, E. Kristensson, M. Koegl, J. Jönsson, L. Zigan, and E. Berrocal, “Comparison between two-phase and one-phase SLIPI for instantaneous imaging of transient sprays,” Exp. Fluids 58(9), 110 (2017).
[Crossref]

Jung, K.

K. Jung, H. Koh, and Y. Yoon, “Assessment of planar liquid-laser-induced fluorescence measurements for spray mass distributions of like-doublet injectors,” Meas. Sci. Technol. 14(8), 1387–1395 (2003).
[Crossref]

Kadota, T.

K. Matsumoto, T. Fujii, K. Suzuki, D. Segawa, and T. Kadota, “Laser-induced fluorescence for the non-intrusive diagnostics of a fuel droplet burning under microgravity in a drop shaft,” Meas. Sci. Technol. 10(10), 853–858 (1999).
[Crossref]

Kamimoto, T.

C.-N. Yeh, H. Kosaka, and T. Kamimoto, “Fluorescence/scattering image technique for particle sizing in unsteady diesel spray,” Transactions of the Japan Society of Mechanical Engineers Series B 59(568), 4008–4013 (1993).
[Crossref]

Kirsch, V.

J. Palmer, M. A. Reddemann, V. Kirsch, and R. Kneer, “Applying 2D-2cLIF-EET thermometry for micro-droplet internal temperature imaging,” Exp. Fluids 59(3), 51 (2018).
[Crossref]

Kneer, R.

J. Palmer, M. A. Reddemann, V. Kirsch, and R. Kneer, “Applying 2D-2cLIF-EET thermometry for micro-droplet internal temperature imaging,” Exp. Fluids 59(3), 51 (2018).
[Crossref]

Koegl, M.

M. Koegl, Y. N. Mishra, M. Storch, C. Conrad, E. Berrocal, S. Will, and L. Zigan, “Analysis of ethanol and butanol direct-injection spark-ignition sprays using two-phase structured laser illumination planar imaging droplet sizing,” Int. J. Spray Combust. Dyn. 2018, 1756827718772496 (2018).
[Crossref]

Y. N. Mishra, E. Kristensson, M. Koegl, J. Jönsson, L. Zigan, and E. Berrocal, “Comparison between two-phase and one-phase SLIPI for instantaneous imaging of transient sprays,” Exp. Fluids 58(9), 110 (2017).
[Crossref]

M. Storch, Y. N. Mishra, M. Koegl, E. Kristensson, S. Will, L. Zigan, and E. Berrocal, “Two-phase SLIPI for instantaneous LIF and Mie imaging of transient fuel sprays,” Opt. Lett. 41(23), 5422–5425 (2016).
[Crossref] [PubMed]

Koh, H.

K. Jung, H. Koh, and Y. Yoon, “Assessment of planar liquid-laser-induced fluorescence measurements for spray mass distributions of like-doublet injectors,” Meas. Sci. Technol. 14(8), 1387–1395 (2003).
[Crossref]

Kosaka, H.

C.-N. Yeh, H. Kosaka, and T. Kamimoto, “Fluorescence/scattering image technique for particle sizing in unsteady diesel spray,” Transactions of the Japan Society of Mechanical Engineers Series B 59(568), 4008–4013 (1993).
[Crossref]

Köser, J.

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]

Krishnamurthy, M.

M. Anand, A. K. Dharmadhikari, J. A. Dharmadhikari, A. Mishra, D. Mathur, and M. Krishnamurthy, “Two-photon pumped lasing from methanol micro-droplets doped by a weakly fluorescent dye,” Chem. Phys. Lett. 372(1-2), 263–268 (2003).
[Crossref]

Kristensson, E.

E. Berrocal, E. Kristensson, and L. Zigan, “Light sheet fluorescence microscopic imaging for high-resolution visualization of spray dynamics,” Int. J. Spray Combust. Dyn. 10(1), 86–98 (2018).
[Crossref]

Y. N. Mishra, E. Kristensson, M. Koegl, J. Jönsson, L. Zigan, and E. Berrocal, “Comparison between two-phase and one-phase SLIPI for instantaneous imaging of transient sprays,” Exp. Fluids 58(9), 110 (2017).
[Crossref]

M. Storch, Y. N. Mishra, M. Koegl, E. Kristensson, S. Will, L. Zigan, and E. Berrocal, “Two-phase SLIPI for instantaneous LIF and Mie imaging of transient fuel sprays,” Opt. Lett. 41(23), 5422–5425 (2016).
[Crossref] [PubMed]

Y. N. Mishra, E. Kristensson, and E. Berrocal, “Reliable LIF/Mie droplet sizing in sprays using structured laser illumination planar imaging,” Opt. Express 22(4), 4480–4492 (2014).
[Crossref] [PubMed]

Küçüksenel, S.

Lavergne, G.

P. Lavieille, F. Lemoine, G. Lavergne, and M. Lebouché, “Evaporating and combusting droplet temperature measurements using two-color laser-induced fluorescence,” Exp. Fluids 31(1), 45–55 (2001).
[Crossref]

Lavieille, P.

P. Lavieille, F. Lemoine, G. Lavergne, and M. Lebouché, “Evaporating and combusting droplet temperature measurements using two-color laser-induced fluorescence,” Exp. Fluids 31(1), 45–55 (2001).
[Crossref]

Le Gal, P.

P. Le Gal, N. Farrugia, and D. A. Greenhalgh, “Laser Sheet Dropsizing of dense sprays,” Opt. Laser Technol. 31(1), 75–83 (1999).
[Crossref]

Lebouché, M.

P. Lavieille, F. Lemoine, G. Lavergne, and M. Lebouché, “Evaporating and combusting droplet temperature measurements using two-color laser-induced fluorescence,” Exp. Fluids 31(1), 45–55 (2001).
[Crossref]

Leipertz, A.

J. Trost, L. Zigan, and A. Leipertz, “Quantitative vapor temperature imaging in DISI-sprays at elevated pressures and temperatures using two-line excitation laser-induced fluorescence,” Proc. Combust. Inst. 34(2), 3645–3652 (2013).
[Crossref]

A. Malarski, B. Schürer, I. Schmitz, L. Zigan, A. Flügel, and A. Leipertz, “Laser sheet dropsizing based on two-dimensional Raman and Mie scattering,” Appl. Opt. 48(10), 1853–1860 (2009).
[Crossref] [PubMed]

Lemoine, F.

W. Chaze, O. Caballina, G. Castanet, and F. Lemoine, “The saturation of the fluorescence and its consequences for laser-induced fluorescence thermometry in liquid flows,” Exp. Fluids 57(4), 58 (2016).
[Crossref]

P. Lavieille, F. Lemoine, G. Lavergne, and M. Lebouché, “Evaporating and combusting droplet temperature measurements using two-color laser-induced fluorescence,” Exp. Fluids 31(1), 45–55 (2001).
[Crossref]

Lind, S.

Liu, L.

X.-F. Zhang, J. Zhang, and L. Liu, “Fluorescence Properties of Twenty Fluorescein Derivatives: Lifetime, Quantum Yield, Absorption and Emission Spectra,” J. Fluoresc. 24(3), 819–826 (2014).
[Crossref] [PubMed]

Locke, R. J.

M. Zaller, R. J. Locke, and R. C. Anderson, “Comparison of techniques for non-intrusive fuel drop size measurements in a subscale gas turbine combustor,” J. Vis. (Tokyo) 2(3-4), 301–308 (2000).
[Crossref]

Maher, K. E.

S. V. Sankar, K. E. Maher, D. M. Robart, and W. D. Bachalo, “Rapid Characterization of Fuel Atomizers Using an Optical Patternator,” J. Eng. Gas Turbine. Power 121(3), 409–414 (1999).
[Crossref]

Malarski, A.

Mathur, D.

M. Anand, A. K. Dharmadhikari, J. A. Dharmadhikari, A. Mishra, D. Mathur, and M. Krishnamurthy, “Two-photon pumped lasing from methanol micro-droplets doped by a weakly fluorescent dye,” Chem. Phys. Lett. 372(1-2), 263–268 (2003).
[Crossref]

Matsumoto, K.

K. Matsumoto, T. Fujii, K. Suzuki, D. Segawa, and T. Kadota, “Laser-induced fluorescence for the non-intrusive diagnostics of a fuel droplet burning under microgravity in a drop shaft,” Meas. Sci. Technol. 10(10), 853–858 (1999).
[Crossref]

Melton, L. A.

Min, K.

S. Park, H. Cho, I. Yoon, and K. Min, “Measurement of droplet size distribution of gasoline direct injection spray by droplet generator and planar image technique,” Meas. Sci. Technol. 13(6), 859–864 (2002).
[Crossref]

Mishra, A.

M. Anand, A. K. Dharmadhikari, J. A. Dharmadhikari, A. Mishra, D. Mathur, and M. Krishnamurthy, “Two-photon pumped lasing from methanol micro-droplets doped by a weakly fluorescent dye,” Chem. Phys. Lett. 372(1-2), 263–268 (2003).
[Crossref]

Mishra, Y. N.

M. Koegl, Y. N. Mishra, M. Storch, C. Conrad, E. Berrocal, S. Will, and L. Zigan, “Analysis of ethanol and butanol direct-injection spark-ignition sprays using two-phase structured laser illumination planar imaging droplet sizing,” Int. J. Spray Combust. Dyn. 2018, 1756827718772496 (2018).
[Crossref]

Y. N. Mishra, E. Kristensson, M. Koegl, J. Jönsson, L. Zigan, and E. Berrocal, “Comparison between two-phase and one-phase SLIPI for instantaneous imaging of transient sprays,” Exp. Fluids 58(9), 110 (2017).
[Crossref]

M. Storch, Y. N. Mishra, M. Koegl, E. Kristensson, S. Will, L. Zigan, and E. Berrocal, “Two-phase SLIPI for instantaneous LIF and Mie imaging of transient fuel sprays,” Opt. Lett. 41(23), 5422–5425 (2016).
[Crossref] [PubMed]

Y. N. Mishra, E. Kristensson, and E. Berrocal, “Reliable LIF/Mie droplet sizing in sprays using structured laser illumination planar imaging,” Opt. Express 22(4), 4480–4492 (2014).
[Crossref] [PubMed]

Palmer, J.

J. Palmer, M. A. Reddemann, V. Kirsch, and R. Kneer, “Applying 2D-2cLIF-EET thermometry for micro-droplet internal temperature imaging,” Exp. Fluids 59(3), 51 (2018).
[Crossref]

Park, S.

S. Park, H. Cho, I. Yoon, and K. Min, “Measurement of droplet size distribution of gasoline direct injection spray by droplet generator and planar image technique,” Meas. Sci. Technol. 13(6), 859–864 (2002).
[Crossref]

Reddemann, M. A.

J. Palmer, M. A. Reddemann, V. Kirsch, and R. Kneer, “Applying 2D-2cLIF-EET thermometry for micro-droplet internal temperature imaging,” Exp. Fluids 59(3), 51 (2018).
[Crossref]

Rheims, J.

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]

Robart, D. M.

S. V. Sankar, K. E. Maher, D. M. Robart, and W. D. Bachalo, “Rapid Characterization of Fuel Atomizers Using an Optical Patternator,” J. Eng. Gas Turbine. Power 121(3), 409–414 (1999).
[Crossref]

Rodrigue, A.

J. Zelina, A. Rodrigue, and S. Sankar, “Fuel injector characterization using laser diagnostics at atmospheric and elevated pressures,” in 36th AIAA Aerospace Sciences Meeting and Exhibit (American Institute of Aeronautics and Astronautics, 1998).
[Crossref]

Sankar, S.

J. Zelina, A. Rodrigue, and S. Sankar, “Fuel injector characterization using laser diagnostics at atmospheric and elevated pressures,” in 36th AIAA Aerospace Sciences Meeting and Exhibit (American Institute of Aeronautics and Astronautics, 1998).
[Crossref]

Sankar, S. V.

S. V. Sankar, K. E. Maher, D. M. Robart, and W. D. Bachalo, “Rapid Characterization of Fuel Atomizers Using an Optical Patternator,” J. Eng. Gas Turbine. Power 121(3), 409–414 (1999).
[Crossref]

Schmitz, I.

Schorr, J.

I. Düwel, J. Schorr, J. Wolfrum, and C. Schulz, “Laser-induced fluorescence of tracers dissolved in evaporating droplets,” Appl. Phys. B 78, 127–131 (2004).
[Crossref]

Schulz, C.

I. Düwel, J. Schorr, J. Wolfrum, and C. Schulz, “Laser-induced fluorescence of tracers dissolved in evaporating droplets,” Appl. Phys. B 78, 127–131 (2004).
[Crossref]

Schürer, B.

Segawa, D.

K. Matsumoto, T. Fujii, K. Suzuki, D. Segawa, and T. Kadota, “Laser-induced fluorescence for the non-intrusive diagnostics of a fuel droplet burning under microgravity in a drop shaft,” Meas. Sci. Technol. 10(10), 853–858 (1999).
[Crossref]

Serpengüzel, A.

Sick, V.

B. D. Stojkovic and V. Sick, “Evolution and impingement of an automotive fuel spray investigated with simultaneous Mie/LIF techniques,” Appl. Phys. B 73(1), 75–83 (2001).
[Crossref]

Stojkovic, B. D.

B. D. Stojkovic and V. Sick, “Evolution and impingement of an automotive fuel spray investigated with simultaneous Mie/LIF techniques,” Appl. Phys. B 73(1), 75–83 (2001).
[Crossref]

Storch, M.

Suzuki, K.

K. Matsumoto, T. Fujii, K. Suzuki, D. Segawa, and T. Kadota, “Laser-induced fluorescence for the non-intrusive diagnostics of a fuel droplet burning under microgravity in a drop shaft,” Meas. Sci. Technol. 10(10), 853–858 (1999).
[Crossref]

Taylor, A. M. K. P.

G. Charalampous, Y. Hardalupas, and A. M. K. P. Taylor, “Novel Technique for Measurements of Continuous Liquid Jet Core in an Atomizer,” AIAA J. 47, 2605–2615 (2009).
[Crossref]

Technology, N. I. o. S. a.

N. I. o. S. a. Technology, “NIST Chemistry WebBook,” (2017).

Tiggesbäumker, J.

S. Bareiss, B. Bork, S. Bakić, C. Tropea, R. Irsig, J. Tiggesbäumker, and A. Dreizler, “Application of femtosecond lasers to the polarization ratio technique for droplet sizing,” Meas. Sci. Technol. 24(2), 025203 (2013).
[Crossref]

Tropea, C.

S. Bareiss, B. Bork, S. Bakić, C. Tropea, R. Irsig, J. Tiggesbäumker, and A. Dreizler, “Application of femtosecond lasers to the polarization ratio technique for droplet sizing,” Meas. Sci. Technol. 24(2), 025203 (2013).
[Crossref]

C. Tropea, “Optical particle characterization in flows,” Annu. Rev. Fluid Mech. 43(1), 399–426 (2011).
[Crossref]

B. Frackowiak and C. Tropea, “Numerical analysis of diameter influence on droplet fluorescence,” Appl. Opt. 49(12), 2363–2370 (2010).
[Crossref] [PubMed]

B. Frackowiak and C. Tropea, “Fluorescence modeling of droplets intersecting a focused laser beam,” Opt. Lett. 35(9), 1386–1388 (2010).
[Crossref] [PubMed]

Trost, J.

J. Trost, L. Zigan, and A. Leipertz, “Quantitative vapor temperature imaging in DISI-sprays at elevated pressures and temperatures using two-line excitation laser-induced fluorescence,” Proc. Combust. Inst. 34(2), 3645–3652 (2013).
[Crossref]

Wang, Z.

W. Zeng, M. Xu, Y. Zhang, and Z. Wang, “Laser sheet dropsizing of evaporating sprays using simultaneous LIEF/MIE techniques,” Proc. Combust. Inst. 34(1), 1677–1685 (2013).
[Crossref]

Will, S.

Winter, M.

Wolfrum, J.

I. Düwel, J. Schorr, J. Wolfrum, and C. Schulz, “Laser-induced fluorescence of tracers dissolved in evaporating droplets,” Appl. Phys. B 78, 127–131 (2004).
[Crossref]

Wriedt, T.

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]

Xu, M.

W. Zeng, M. Xu, Y. Zhang, and Z. Wang, “Laser sheet dropsizing of evaporating sprays using simultaneous LIEF/MIE techniques,” Proc. Combust. Inst. 34(1), 1677–1685 (2013).
[Crossref]

Yeh, C.-N.

C.-N. Yeh, H. Kosaka, and T. Kamimoto, “Fluorescence/scattering image technique for particle sizing in unsteady diesel spray,” Transactions of the Japan Society of Mechanical Engineers Series B 59(568), 4008–4013 (1993).
[Crossref]

Yoon, I.

S. Park, H. Cho, I. Yoon, and K. Min, “Measurement of droplet size distribution of gasoline direct injection spray by droplet generator and planar image technique,” Meas. Sci. Technol. 13(6), 859–864 (2002).
[Crossref]

Yoon, Y.

K. Jung, H. Koh, and Y. Yoon, “Assessment of planar liquid-laser-induced fluorescence measurements for spray mass distributions of like-doublet injectors,” Meas. Sci. Technol. 14(8), 1387–1395 (2003).
[Crossref]

Zaller, M.

M. Zaller, R. J. Locke, and R. C. Anderson, “Comparison of techniques for non-intrusive fuel drop size measurements in a subscale gas turbine combustor,” J. Vis. (Tokyo) 2(3-4), 301–308 (2000).
[Crossref]

Zelina, J.

J. Zelina, A. Rodrigue, and S. Sankar, “Fuel injector characterization using laser diagnostics at atmospheric and elevated pressures,” in 36th AIAA Aerospace Sciences Meeting and Exhibit (American Institute of Aeronautics and Astronautics, 1998).
[Crossref]

Zeng, W.

W. Zeng, M. Xu, Y. Zhang, and Z. Wang, “Laser sheet dropsizing of evaporating sprays using simultaneous LIEF/MIE techniques,” Proc. Combust. Inst. 34(1), 1677–1685 (2013).
[Crossref]

Zhang, J.

X.-F. Zhang, J. Zhang, and L. Liu, “Fluorescence Properties of Twenty Fluorescein Derivatives: Lifetime, Quantum Yield, Absorption and Emission Spectra,” J. Fluoresc. 24(3), 819–826 (2014).
[Crossref] [PubMed]

Zhang, X.-F.

X.-F. Zhang, J. Zhang, and L. Liu, “Fluorescence Properties of Twenty Fluorescein Derivatives: Lifetime, Quantum Yield, Absorption and Emission Spectra,” J. Fluoresc. 24(3), 819–826 (2014).
[Crossref] [PubMed]

Zhang, Y.

W. Zeng, M. Xu, Y. Zhang, and Z. Wang, “Laser sheet dropsizing of evaporating sprays using simultaneous LIEF/MIE techniques,” Proc. Combust. Inst. 34(1), 1677–1685 (2013).
[Crossref]

Zigan, L.

E. Berrocal, E. Kristensson, and L. Zigan, “Light sheet fluorescence microscopic imaging for high-resolution visualization of spray dynamics,” Int. J. Spray Combust. Dyn. 10(1), 86–98 (2018).
[Crossref]

M. Koegl, Y. N. Mishra, M. Storch, C. Conrad, E. Berrocal, S. Will, and L. Zigan, “Analysis of ethanol and butanol direct-injection spark-ignition sprays using two-phase structured laser illumination planar imaging droplet sizing,” Int. J. Spray Combust. Dyn. 2018, 1756827718772496 (2018).
[Crossref]

Y. N. Mishra, E. Kristensson, M. Koegl, J. Jönsson, L. Zigan, and E. Berrocal, “Comparison between two-phase and one-phase SLIPI for instantaneous imaging of transient sprays,” Exp. Fluids 58(9), 110 (2017).
[Crossref]

M. Storch, Y. N. Mishra, M. Koegl, E. Kristensson, S. Will, L. Zigan, and E. Berrocal, “Two-phase SLIPI for instantaneous LIF and Mie imaging of transient fuel sprays,” Opt. Lett. 41(23), 5422–5425 (2016).
[Crossref] [PubMed]

M. Storch, S. Lind, S. Will, and L. Zigan, “Influence of ethanol admixture on the determination of equivalence ratios in DISI engines by laser-induced fluorescence,” Appl. Opt. 55(30), 8532–8540 (2016).
[Crossref] [PubMed]

J. Trost, L. Zigan, and A. Leipertz, “Quantitative vapor temperature imaging in DISI-sprays at elevated pressures and temperatures using two-line excitation laser-induced fluorescence,” Proc. Combust. Inst. 34(2), 3645–3652 (2013).
[Crossref]

A. Malarski, B. Schürer, I. Schmitz, L. Zigan, A. Flügel, and A. Leipertz, “Laser sheet dropsizing based on two-dimensional Raman and Mie scattering,” Appl. Opt. 48(10), 1853–1860 (2009).
[Crossref] [PubMed]

AIAA J. (1)

G. Charalampous, Y. Hardalupas, and A. M. K. P. Taylor, “Novel Technique for Measurements of Continuous Liquid Jet Core in an Atomizer,” AIAA J. 47, 2605–2615 (2009).
[Crossref]

Annu. Rev. Fluid Mech. (1)

C. Tropea, “Optical particle characterization in flows,” Annu. Rev. Fluid Mech. 43(1), 399–426 (2011).
[Crossref]

Appl. Opt. (8)

D. L. Hofeldt, “Full-field measurements of particle size distributions: I. theoretical limitations of the polarization ratio method,” Appl. Opt. 32(36), 7551–7558 (1993).
[Crossref] [PubMed]

B. Frackowiak and C. Tropea, “Numerical analysis of diameter influence on droplet fluorescence,” Appl. Opt. 49(12), 2363–2370 (2010).
[Crossref] [PubMed]

G. Charalampous and Y. Hardalupas, “Method to reduce errors of droplet sizing based on the ratio of fluorescent and scattered light intensities (laser-induced fluorescence/Mie technique),” Appl. Opt. 50(20), 3622–3637 (2011).
[Crossref] [PubMed]

G. Charalampous and Y. Hardalupas, “Numerical evaluation of droplet sizing based on the ratio of fluorescent and scattered light intensities (LIF/Mie technique),” Appl. Opt. 50(9), 1197–1209 (2011).
[Crossref] [PubMed]

M. Winter and L. A. Melton, “Measurement of internal circulation in droplets using laser-induced fluorescence,” Appl. Opt. 29(31), 4574–4577 (1990).
[Crossref] [PubMed]

A. Malarski, B. Schürer, I. Schmitz, L. Zigan, A. Flügel, and A. Leipertz, “Laser sheet dropsizing based on two-dimensional Raman and Mie scattering,” Appl. Opt. 48(10), 1853–1860 (2009).
[Crossref] [PubMed]

R. Domann and Y. Hardalupas, “Spatial distribution of fluorescence intensity within large droplets and its dependence on dye concentration,” Appl. Opt. 40(21), 3586–3597 (2001).
[Crossref] [PubMed]

M. Storch, S. Lind, S. Will, and L. Zigan, “Influence of ethanol admixture on the determination of equivalence ratios in DISI engines by laser-induced fluorescence,” Appl. Opt. 55(30), 8532–8540 (2016).
[Crossref] [PubMed]

Appl. Phys. B (3)

I. Düwel, J. Schorr, J. Wolfrum, and C. Schulz, “Laser-induced fluorescence of tracers dissolved in evaporating droplets,” Appl. Phys. B 78, 127–131 (2004).
[Crossref]

B. D. Stojkovic and V. Sick, “Evolution and impingement of an automotive fuel spray investigated with simultaneous Mie/LIF techniques,” Appl. Phys. B 73(1), 75–83 (2001).
[Crossref]

M. C. Jermy and D. A. Greenhalgh, “Planar dropsizing by elastic and fluorescence scattering in sprays too dense for phase Doppler measurement,” Appl. Phys. B 71(5), 703–710 (2000).
[Crossref]

Chem. Phys. Lett. (1)

M. Anand, A. K. Dharmadhikari, J. A. Dharmadhikari, A. Mishra, D. Mathur, and M. Krishnamurthy, “Two-photon pumped lasing from methanol micro-droplets doped by a weakly fluorescent dye,” Chem. Phys. Lett. 372(1-2), 263–268 (2003).
[Crossref]

Exp. Fluids (4)

J. Palmer, M. A. Reddemann, V. Kirsch, and R. Kneer, “Applying 2D-2cLIF-EET thermometry for micro-droplet internal temperature imaging,” Exp. Fluids 59(3), 51 (2018).
[Crossref]

Y. N. Mishra, E. Kristensson, M. Koegl, J. Jönsson, L. Zigan, and E. Berrocal, “Comparison between two-phase and one-phase SLIPI for instantaneous imaging of transient sprays,” Exp. Fluids 58(9), 110 (2017).
[Crossref]

P. Lavieille, F. Lemoine, G. Lavergne, and M. Lebouché, “Evaporating and combusting droplet temperature measurements using two-color laser-induced fluorescence,” Exp. Fluids 31(1), 45–55 (2001).
[Crossref]

W. Chaze, O. Caballina, G. Castanet, and F. Lemoine, “The saturation of the fluorescence and its consequences for laser-induced fluorescence thermometry in liquid flows,” Exp. Fluids 57(4), 58 (2016).
[Crossref]

Int. J. Spray Combust. Dyn. (2)

E. Berrocal, E. Kristensson, and L. Zigan, “Light sheet fluorescence microscopic imaging for high-resolution visualization of spray dynamics,” Int. J. Spray Combust. Dyn. 10(1), 86–98 (2018).
[Crossref]

M. Koegl, Y. N. Mishra, M. Storch, C. Conrad, E. Berrocal, S. Will, and L. Zigan, “Analysis of ethanol and butanol direct-injection spark-ignition sprays using two-phase structured laser illumination planar imaging droplet sizing,” Int. J. Spray Combust. Dyn. 2018, 1756827718772496 (2018).
[Crossref]

J. Eng. Gas Turbine. Power (1)

S. V. Sankar, K. E. Maher, D. M. Robart, and W. D. Bachalo, “Rapid Characterization of Fuel Atomizers Using an Optical Patternator,” J. Eng. Gas Turbine. Power 121(3), 409–414 (1999).
[Crossref]

J. Fluoresc. (1)

X.-F. Zhang, J. Zhang, and L. Liu, “Fluorescence Properties of Twenty Fluorescein Derivatives: Lifetime, Quantum Yield, Absorption and Emission Spectra,” J. Fluoresc. 24(3), 819–826 (2014).
[Crossref] [PubMed]

J. Vis. (Tokyo) (1)

M. Zaller, R. J. Locke, and R. C. Anderson, “Comparison of techniques for non-intrusive fuel drop size measurements in a subscale gas turbine combustor,” J. Vis. (Tokyo) 2(3-4), 301–308 (2000).
[Crossref]

Meas. Sci. Technol. (6)

S. Park, H. Cho, I. Yoon, and K. Min, “Measurement of droplet size distribution of gasoline direct injection spray by droplet generator and planar image technique,” Meas. Sci. Technol. 13(6), 859–864 (2002).
[Crossref]

K. Jung, H. Koh, and Y. Yoon, “Assessment of planar liquid-laser-induced fluorescence measurements for spray mass distributions of like-doublet injectors,” Meas. Sci. Technol. 14(8), 1387–1395 (2003).
[Crossref]

K. Matsumoto, T. Fujii, K. Suzuki, D. Segawa, and T. Kadota, “Laser-induced fluorescence for the non-intrusive diagnostics of a fuel droplet burning under microgravity in a drop shaft,” Meas. Sci. Technol. 10(10), 853–858 (1999).
[Crossref]

R. Domann, Y. Hardalupas, and A. R. Jones, “A study of the influence of absorption on the spatial distribution of fluorescence intensity within large droplets using Mie theory, geometrical optics and imaging experiments,” Meas. Sci. Technol. 13(3), 280–291 (2002).
[Crossref]

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]

S. Bareiss, B. Bork, S. Bakić, C. Tropea, R. Irsig, J. Tiggesbäumker, and A. Dreizler, “Application of femtosecond lasers to the polarization ratio technique for droplet sizing,” Meas. Sci. Technol. 24(2), 025203 (2013).
[Crossref]

Opt. Express (2)

Opt. Laser Technol. (1)

P. Le Gal, N. Farrugia, and D. A. Greenhalgh, “Laser Sheet Dropsizing of dense sprays,” Opt. Laser Technol. 31(1), 75–83 (1999).
[Crossref]

Opt. Lett. (2)

Particle & Particle Systems Characterization (2)

R. Domann and Y. Hardalupas, “Quantitative Measurement of Planar Droplet Sauter Mean Diameter in Sprays using Planar Droplet Sizing,” Particle & Particle Systems Characterization 20(3), 209–218 (2003).
[Crossref]

R. Domann and Y. Hardalupas, “A Study of Parameters that Influence the Accuracy of the Planar Droplet Sizing (PDS) Technique,” Particle & Particle Systems Characterization 18(1), 3–11 (2001).
[Crossref]

Physica B (1)

H. El-Kashef, “The necessary requirements imposed on polar dielectric laser dye solvents,” Physica B 279(4), 295–301 (2000).
[Crossref]

Proc. Combust. Inst. (2)

W. Zeng, M. Xu, Y. Zhang, and Z. Wang, “Laser sheet dropsizing of evaporating sprays using simultaneous LIEF/MIE techniques,” Proc. Combust. Inst. 34(1), 1677–1685 (2013).
[Crossref]

J. Trost, L. Zigan, and A. Leipertz, “Quantitative vapor temperature imaging in DISI-sprays at elevated pressures and temperatures using two-line excitation laser-induced fluorescence,” Proc. Combust. Inst. 34(2), 3645–3652 (2013).
[Crossref]

Transactions of the Japan Society of Mechanical Engineers Series B (1)

C.-N. Yeh, H. Kosaka, and T. Kamimoto, “Fluorescence/scattering image technique for particle sizing in unsteady diesel spray,” Transactions of the Japan Society of Mechanical Engineers Series B 59(568), 4008–4013 (1993).
[Crossref]

Other (7)

Y. N. Mishra, E. Kristensson, and E. Berrocal, “3D droplet sizing and 2D optical depth measurements in sprays using SLIPI based techniques,” in the 18th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics-LISBON Symposium, Lisbon 2016)

J. Zelina, A. Rodrigue, and S. Sankar, “Fuel injector characterization using laser diagnostics at atmospheric and elevated pressures,” in 36th AIAA Aerospace Sciences Meeting and Exhibit (American Institute of Aeronautics and Astronautics, 1998).
[Crossref]

J. A. Dean, Lange's Handbook of Chemistry, 15th ed. (McGraw-Hill Companies, 1999).

A. Richard, Yetter and I. Glassman, Combustion, 4th ed. (Academic Press, Amsterdam, 2008).

N. I. o. S. a. Technology, “NIST Chemistry WebBook,” (2017).

H. Duan, F. Romay, Z. Syedain, B. Y. H. Liu, and A. Naqwi, “A New Monodisperse Droplet Generator and its Applications,” ILASS Americas 28th Annual Conference on Liquid Atomization and Spray Systems (2016).

C. F. Bohren and D. R. Huffmann, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Optical arrangement of the simultaneous microscopic and macroscopic LIF/Mie setup in combination with 2p-SLIPI (top). Detailed spray chamber with modulated light sheet and droplet generator view (bottom).
Fig. 2
Fig. 2 Averaged LIF and Mie optical signals from micro-droplets in diameter ranging from 25 µm to 60 µm. The intensity of each image is normalized to their individual maximum value. Note that there are glare points and coinciding MDR modes on the LIF images, while only glare points visible on Mie images.
Fig. 3
Fig. 3 The fitting curve of the experimental data plotted for LIF, Mie and LIF/Mie ratio as a function of droplet diameter for the reference conditions (1 MPa, 293 K, eosin concentration in ethanol: 0.5 vol %) with their corresponding standard deviations.
Fig. 4
Fig. 4 The microscopic fitting curve (red) with the corresponding experimental data of single droplets plotted for LIF/Mie ratio as a function of droplet diameter for the reference conditions (0.1 MPa, 293 K, eosin concentration in ethanol: 0.5 vol %). The curves of the standard deviation are presented as well.
Fig. 5
Fig. 5 The histograms of the LIF/Mie ratio distribution are provided and the corresponding fit value (red) for certain droplet sizes ( ± 1 µm).
Fig. 6
Fig. 6 Simultaneous micro/macroscopic LIF (top row) and Mie images (bottom row) of ethanol droplets (0.5 vol% eosin, 293 K). The percentage represents the zooming factor for better comparison of the droplet representation.
Fig. 7
Fig. 7 The micro and macro (reference marked red) LIF/Mie ratio plotted as a function of droplet diameter. The deviations between the two detections is due to loss of resolution in macroscopic system and opposite collection angle.
Fig. 8
Fig. 8 Effects of laser power variation (reference marked red) on the macroscopic LIF/Mie ratio at constant dye concentration and fuel temperature. In general, there are small effects of laser power variation.
Fig. 9
Fig. 9 Effects of dye concentration (reference marked red) for macroscopic LIF/Mie ratio as a function of droplet diameter. The three times increase in dye concentration leads 3.08 times increase in the ratio for 30 µm droplet.
Fig. 10
Fig. 10 Effects of liquid temperature variation on macroscopic LIF/Mie ratio (reference marked red) at constant laser power and dye concentration. The ratio increases at higher temperature of 333 K due to evaporation of the fuel. Under these elevated temperature conditions, the dye remains in the droplet while droplet diameter shrinks. Therefore, LIF signal increases but Mie signal decreases, yielding higher ratio. At the lower temperatures, evaporation is negligible but the small temperature effect in LIF is mainly responsible for the ratio increase.
Fig. 11
Fig. 11 Left: Calibrated SLIPI-LIF/Mie ratio single shot images representing the 2D droplet SMD distribution of a DISI ethanol fuel spray studied at 0.2 MPa chamber pressure, 16 MPa injection pressure, 293 K fuel and ambient temperature. Droplet SMD ranges from a minimum of 2 µm to a maximum of 50 µm.
Fig. 12
Fig. 12 The calculated Mie signal for the microscopic detection and the fitting curves of the calculated and the experimental Mie signal (0.1 MPa, 293 K, eosin concentration in ethanol: 0.5 vol %).

Tables (6)

Tables Icon

Table 1 Physical and chemical properties of ethanol [37–41]

Tables Icon

Table 2 Curve fitting parameters including average pre-factors and exponents as well as respective standard deviations for microscopic measurements of ethanol droplet (0.5 vol % eosin, 293 K).

Tables Icon

Table 3 Microscopic and macroscopic LIF/Mie ratio curve fitting parameters for the pre-factor A and exponent b including the standard deviation for 0.5 vol% eosin 0.5 vol% at 293 K (reference marked grey).

Tables Icon

Table 4 Variation of laser energy/fluence at constant dye concentration and temperature (reference marked grey).

Tables Icon

Table 5 The curve fitting parameters for macroscopic LIF/Mie ratio as the effects of laser power, dye concentration and liquid temperature (reference marked grey).

Tables Icon

Table 6 Normalized microscopic Mie curve fitting parameters for the experimental data and the calculations for the pre-factor A and exponent b including the standard deviation for 0.5 vol% eosin 0.5 vol% at 293 K

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I LIF =f( d droplet )=43.94 d droplet 3.33
I Mie =f( d droplet )=7062.5 d droplet 2.12
I LIF Mie =f( d droplet )=0.0054 d droplet 1.25

Metrics