Abstract

We demonstrate an all-fiber single-longitudinal-mode (SLM) narrow-linewidth ring laser stabilized by a microsphere resonator and fiber Bragg gratings (FBGs) with a large continuous wavelength tuning range from 1540 nm to 1570 nm. In the experiment, stable lasing with a linewidth smaller than 5 kHz was obtained. The laser wavelength was linearly and continuously tuned in the range of 0.15 nm by increasing the pump power and discretely tuning with a step of 0.1 nm by stress-controlled FBGs. The tuning range of the proposed laser configuration was determined by the FBG, and the SLM state was ensured by the coupling between the few-mode tapered fiber and the microsphere, which was simpler in alignment than other ring lasers utilizing microresonators.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Watt-level tunable 1.5  μm narrow linewidth fiber ring laser based on a temperature tuning π-phase-shifted fiber Bragg grating

Junjie Sun, Zefeng Wang, Meng Wang, Zhiyue Zhou, Ni Tang, Jinbao Chen, and Xijia Gu
Appl. Opt. 56(32) 9114-9118 (2017)

Widely tunable single-/dual-wavelength fiber lasers with ultra-narrow linewidth and high OSNR using high quality passive subring cavity and novel tuning method

Ting Feng, Dongliang Ding, Fengping Yan, Ziwei Zhao, Hongxin Su, and X. Steve Yao
Opt. Express 24(17) 19760-19768 (2016)

Continuously tunable, narrow-linewidth laser based on a semiconductor optical amplifier and a linearly chirped fiber Bragg grating

Xiong Yang, Robert Lindberg, Walter Margulis, Krister Fröjdh, and Fredrik Laurell
Opt. Express 27(10) 14213-14220 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Y. Han and G. F. Li, “Coherent optical communication using polarization multiple-input-multiple-output,” Opt. Express 13, 7527–7534 (2005).
    [Crossref] [PubMed]
  2. J. H. Geng, C. Spiegelberg, and S. B. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photon. Technol. Lett. 17, 1827–1829 (2005).
    [Crossref]
  3. S. L. Pan and J. P. Yao, “A wavelength-switchable single-longitudinal-mode dual-wavelength erbium-doped fiber laser for switchable microwave generation,” Opt. Express 17, 5414–5419 (2009).
    [Crossref] [PubMed]
  4. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996).
    [Crossref] [PubMed]
  5. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
    [Crossref] [PubMed]
  6. H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
    [Crossref]
  7. V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, and A. V. Yarovitsky, “Narrow-line-width diode laser with a high-Q microsphere resonator,” Opt. Commun. 158, 305–312 (1998).
    [Crossref]
  8. M. C. Collodo, F. Sedlmeir, B. Sprenger, S. Svitlov, L. J. Wang, and H. G. L. Schwefel, “Sub-kHz lasing of a CaF2 whispering gallery mode resonator stabilized fiber ring laser,” Opt. Express 22, 19277–19283 (2014).
    [Crossref] [PubMed]
  9. K. Kieu and M. Mansuripur, “Fiber laser using a microsphere resonator as a feedback element,” Opt. Lett. 32, 244–246 (2007).
    [Crossref] [PubMed]
  10. B. Sprenger, H. G. L. Schwefel, and L. J. Wang, “Whispering-gallery-mode-resonator-stabilized narrow-linewidth fiber loop laser,” Opt. Lett. 34, 3370–3372 (2009).
    [Crossref] [PubMed]
  11. G. N. Conti, S. Berneschi, A. Barucci, F. Cosi, S. Soria, and C. Trono, “Fiber ring laser for intracavity sensing using a whispering-gallery-mode resonator,” Opt. Lett. 37, 2697–2699 (2012).
    [Crossref]
  12. E. Rivera-Pérez, A. Díez, M. V. Andrés, J. L. Cruz, and A. Rodríguez-Cobos, “Tunable narrowband fiber laser with feedback based on whispering gallery mode resonances of a cylindrical microresonator,” Opt. Lett. 38, 1636–1638 (2013).
    [Crossref] [PubMed]
  13. Q. L. Ma, T. Rossmann, and Z. X. Guo, “Temperature sensitivity of silica micro-resonators,” J. Phys. D Appl. Phys. 41, 245111 (2008).
    [Crossref]
  14. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
    [Crossref] [PubMed]
  15. M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102, 113601 (2009).
    [Crossref] [PubMed]
  16. Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photon. Technol. Lett. 13, 1167–1169 (2001).
    [Crossref]
  17. G. A. Ball and W. W. Morey, “Continuously tunable single-mode erbium fiber laser,” Opt. Lett. 17, 420–422 (1992).
    [Crossref] [PubMed]
  18. L. G. Huang, J. Wang, W. H. Peng, W. D. Zhang, F. Bo, X. Y. Yu, F. Gao, P. F. Chang, X. B. Song, G. Q. Zhang, and J. J. Xu, “Mode conversion in a tapered fiber via a whispering gallery mode resonator and its application as add/drop filter,” Opt. Lett. 41, 638–641 (2016).
    [Crossref] [PubMed]
  19. M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285, 4648–4654 (2012).
    [Crossref]
  20. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
    [Crossref] [PubMed]
  21. W. D. Zhang, L. G. Huang, F. Gao, F. Bo, L. Xuan, G. Q. Zhang, and J. J. Xu, “Tunable add/drop channel coupler based on an acousto-optic tunable filter and a tapered fiber,” Opt. Lett. 37, 1241–1243 (2012).
    [Crossref] [PubMed]
  22. C. Schmidt, A. Chipouline, T. Pertsch, A. Tünnermann, O. Egorov, F. Lederer, and L. Deych, “Nonlinear thermal effects in optical microspheres at different wavelength sweeping speeds,” Opt. Express 16, 6285–6301 (2008).
    [Crossref] [PubMed]
  23. H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41, 5187–5198 (1990).
    [Crossref] [PubMed]
  24. T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630–631 (1980).
    [Crossref]
  25. K. Iwatsuki, H. Okamura, and M. Saruwatari, “Wavelength-tunable single-frequency and single-polarisation Er-doped fibre ring-laser with 1.4 kHz linewidth,” Electron. Lett. 26, 2033–2035 (1990).
    [Crossref]
  26. W. D. Zhang, W. Gao, L. G. Huang, D. Mao, B. Q. Jiang, F. Gao, D. X. Yang, G. Q. Zhang, J. J. Xu, and J. L. Zhao, “Optical heterodyne micro-vibration measurement based on all-fiber acousto-optic frequency shifter,” Opt. Express 23, 17576–17583 (2015).
    [Crossref] [PubMed]
  27. P. Horak and W. H. Loh, “On the delayed self-heterodyne interferometric technique for determining the linewidth of fiber lasers,” Opt. Express 14, 3923–3928 (2006).
    [Crossref] [PubMed]
  28. L. B. Mercer, “1/f frequency noise effects on self-heterodyne linewidth measurements,” J. Lightwave Technol. 9, 485–493 (1991).
    [Crossref]
  29. G. D. Domenico, S. Schilt, and P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Opt. 49, 4801–4807 (2010).
    [Crossref] [PubMed]
  30. T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
    [Crossref] [PubMed]
  31. J. G. Zhu, S. K. Özdemir, L. N. He, and L. Yang, “Optothermal spectroscopy of whispering gallery microresonators,” Appl. Phys. Lett. 99, 171101 (2011).
    [Crossref]

2016 (1)

2015 (1)

2014 (1)

2013 (1)

2012 (4)

W. D. Zhang, L. G. Huang, F. Gao, F. Bo, L. Xuan, G. Q. Zhang, and J. J. Xu, “Tunable add/drop channel coupler based on an acousto-optic tunable filter and a tapered fiber,” Opt. Lett. 37, 1241–1243 (2012).
[Crossref] [PubMed]

G. N. Conti, S. Berneschi, A. Barucci, F. Cosi, S. Soria, and C. Trono, “Fiber ring laser for intracavity sensing using a whispering-gallery-mode resonator,” Opt. Lett. 37, 2697–2699 (2012).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285, 4648–4654 (2012).
[Crossref]

2011 (1)

J. G. Zhu, S. K. Özdemir, L. N. He, and L. Yang, “Optothermal spectroscopy of whispering gallery microresonators,” Appl. Phys. Lett. 99, 171101 (2011).
[Crossref]

2010 (1)

2009 (3)

2008 (2)

2007 (1)

2006 (1)

2005 (2)

Y. Han and G. F. Li, “Coherent optical communication using polarization multiple-input-multiple-output,” Opt. Express 13, 7527–7534 (2005).
[Crossref] [PubMed]

J. H. Geng, C. Spiegelberg, and S. B. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photon. Technol. Lett. 17, 1827–1829 (2005).
[Crossref]

2004 (1)

2003 (2)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[Crossref] [PubMed]

2002 (1)

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref] [PubMed]

2001 (1)

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photon. Technol. Lett. 13, 1167–1169 (2001).
[Crossref]

1998 (1)

V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, and A. V. Yarovitsky, “Narrow-line-width diode laser with a high-Q microsphere resonator,” Opt. Commun. 158, 305–312 (1998).
[Crossref]

1996 (1)

1992 (1)

1991 (1)

L. B. Mercer, “1/f frequency noise effects on self-heterodyne linewidth measurements,” J. Lightwave Technol. 9, 485–493 (1991).
[Crossref]

1990 (2)

K. Iwatsuki, H. Okamura, and M. Saruwatari, “Wavelength-tunable single-frequency and single-polarisation Er-doped fibre ring-laser with 1.4 kHz linewidth,” Electron. Lett. 26, 2033–2035 (1990).
[Crossref]

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41, 5187–5198 (1990).
[Crossref] [PubMed]

1980 (1)

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630–631 (1980).
[Crossref]

Andrés, M. V.

Ball, G. A.

Barber, P. W.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41, 5187–5198 (1990).
[Crossref] [PubMed]

Barucci, A.

Berneschi, S.

Bo, F.

Carmon, T.

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102, 113601 (2009).
[Crossref] [PubMed]

T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
[Crossref] [PubMed]

Chang, P. F.

Chen, T.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Chipouline, A.

Chormaic, S. N.

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285, 4648–4654 (2012).
[Crossref]

Collodo, M. C.

Conti, G. N.

Cosi, F.

Cruz, J. L.

Deych, L.

Díez, A.

Domenico, G. D.

Egorov, O.

Feinberg, J.

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photon. Technol. Lett. 13, 1167–1169 (2001).
[Crossref]

Frawley, M. C.

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285, 4648–4654 (2012).
[Crossref]

Gao, F.

Gao, W.

Geng, J. H.

J. H. Geng, C. Spiegelberg, and S. B. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photon. Technol. Lett. 17, 1827–1829 (2005).
[Crossref]

Gorodetsky, M. L.

V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, and A. V. Yarovitsky, “Narrow-line-width diode laser with a high-Q microsphere resonator,” Opt. Commun. 158, 305–312 (1998).
[Crossref]

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996).
[Crossref] [PubMed]

Guo, Z. X.

Q. L. Ma, T. Rossmann, and Z. X. Guo, “Temperature sensitivity of silica micro-resonators,” J. Phys. D Appl. Phys. 41, 245111 (2008).
[Crossref]

Han, Y.

Havstad, S. A.

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photon. Technol. Lett. 13, 1167–1169 (2001).
[Crossref]

He, L. N.

J. G. Zhu, S. K. Özdemir, L. N. He, and L. Yang, “Optothermal spectroscopy of whispering gallery microresonators,” Appl. Phys. Lett. 99, 171101 (2011).
[Crossref]

Hill, S. C.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41, 5187–5198 (1990).
[Crossref] [PubMed]

Hollberg, L.

V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, and A. V. Yarovitsky, “Narrow-line-width diode laser with a high-Q microsphere resonator,” Opt. Commun. 158, 305–312 (1998).
[Crossref]

Horak, P.

Huang, L. G.

Ilchenko, V. S.

V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, and A. V. Yarovitsky, “Narrow-line-width diode laser with a high-Q microsphere resonator,” Opt. Commun. 158, 305–312 (1998).
[Crossref]

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996).
[Crossref] [PubMed]

Iwatsuki, K.

K. Iwatsuki, H. Okamura, and M. Saruwatari, “Wavelength-tunable single-frequency and single-polarisation Er-doped fibre ring-laser with 1.4 kHz linewidth,” Electron. Lett. 26, 2033–2035 (1990).
[Crossref]

Jeon, S.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Jiang, B. Q.

Jiang, S. B.

J. H. Geng, C. Spiegelberg, and S. B. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photon. Technol. Lett. 17, 1827–1829 (2005).
[Crossref]

Kieu, K.

Kikuchi, K.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630–631 (1980).
[Crossref]

Kippenberg, T. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref] [PubMed]

Lai, H. M.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41, 5187–5198 (1990).
[Crossref] [PubMed]

Lederer, F.

Lee, H.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Leung, P. T.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41, 5187–5198 (1990).
[Crossref] [PubMed]

Li, G. F.

Li, J.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Loh, W. H.

Ma, Q. L.

Q. L. Ma, T. Rossmann, and Z. X. Guo, “Temperature sensitivity of silica micro-resonators,” J. Phys. D Appl. Phys. 41, 245111 (2008).
[Crossref]

Mansuripur, M.

Mao, D.

Mercer, L. B.

L. B. Mercer, “1/f frequency noise effects on self-heterodyne linewidth measurements,” J. Lightwave Technol. 9, 485–493 (1991).
[Crossref]

Morey, W. W.

Nakayama, A.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630–631 (1980).
[Crossref]

Okamura, H.

K. Iwatsuki, H. Okamura, and M. Saruwatari, “Wavelength-tunable single-frequency and single-polarisation Er-doped fibre ring-laser with 1.4 kHz linewidth,” Electron. Lett. 26, 2033–2035 (1990).
[Crossref]

Okoshi, T.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630–631 (1980).
[Crossref]

Özdemir, S. K.

J. G. Zhu, S. K. Özdemir, L. N. He, and L. Yang, “Optothermal spectroscopy of whispering gallery microresonators,” Appl. Phys. Lett. 99, 171101 (2011).
[Crossref]

Painter, O.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Painter, O. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[Crossref] [PubMed]

Pan, S. L.

Peng, W. H.

Pertsch, T.

Petcu-Colan, A.

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285, 4648–4654 (2012).
[Crossref]

Rivera-Pérez, E.

Rodríguez-Cobos, A.

Rossmann, T.

Q. L. Ma, T. Rossmann, and Z. X. Guo, “Temperature sensitivity of silica micro-resonators,” J. Phys. D Appl. Phys. 41, 245111 (2008).
[Crossref]

Saruwatari, M.

K. Iwatsuki, H. Okamura, and M. Saruwatari, “Wavelength-tunable single-frequency and single-polarisation Er-doped fibre ring-laser with 1.4 kHz linewidth,” Electron. Lett. 26, 2033–2035 (1990).
[Crossref]

Savchenkov, A. A.

Schilt, S.

Schmidt, C.

Schwefel, H. G. L.

Sedlmeir, F.

Song, X. B.

Song, Y. W.

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photon. Technol. Lett. 13, 1167–1169 (2001).
[Crossref]

Soria, S.

Spiegelberg, C.

J. H. Geng, C. Spiegelberg, and S. B. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photon. Technol. Lett. 17, 1827–1829 (2005).
[Crossref]

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref] [PubMed]

Sprenger, B.

Starodubov, D.

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photon. Technol. Lett. 13, 1167–1169 (2001).
[Crossref]

Svitlov, S.

Thomann, P.

Tomes, M.

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102, 113601 (2009).
[Crossref] [PubMed]

Trono, C.

Truong, V. G.

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285, 4648–4654 (2012).
[Crossref]

Tünnermann, A.

Vahala, K. J.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
[Crossref] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref] [PubMed]

Vassiliev, V. V.

V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, and A. V. Yarovitsky, “Narrow-line-width diode laser with a high-Q microsphere resonator,” Opt. Commun. 158, 305–312 (1998).
[Crossref]

Velichansky, V. L.

V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, and A. V. Yarovitsky, “Narrow-line-width diode laser with a high-Q microsphere resonator,” Opt. Commun. 158, 305–312 (1998).
[Crossref]

Wang, J.

Wang, L. J.

Willner, A. E.

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photon. Technol. Lett. 13, 1167–1169 (2001).
[Crossref]

Xie, Y.

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photon. Technol. Lett. 13, 1167–1169 (2001).
[Crossref]

Xu, J. J.

Xuan, L.

Yang, D. X.

Yang, K. Y.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Yang, L.

J. G. Zhu, S. K. Özdemir, L. N. He, and L. Yang, “Optothermal spectroscopy of whispering gallery microresonators,” Appl. Phys. Lett. 99, 171101 (2011).
[Crossref]

T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
[Crossref] [PubMed]

Yao, J. P.

Yarovitsky, A. V.

V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, and A. V. Yarovitsky, “Narrow-line-width diode laser with a high-Q microsphere resonator,” Opt. Commun. 158, 305–312 (1998).
[Crossref]

Young, K.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41, 5187–5198 (1990).
[Crossref] [PubMed]

Yu, X. Y.

Zhang, G. Q.

Zhang, W. D.

Zhao, J. L.

Zhu, J. G.

J. G. Zhu, S. K. Özdemir, L. N. He, and L. Yang, “Optothermal spectroscopy of whispering gallery microresonators,” Appl. Phys. Lett. 99, 171101 (2011).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. G. Zhu, S. K. Özdemir, L. N. He, and L. Yang, “Optothermal spectroscopy of whispering gallery microresonators,” Appl. Phys. Lett. 99, 171101 (2011).
[Crossref]

Electron. Lett. (2)

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630–631 (1980).
[Crossref]

K. Iwatsuki, H. Okamura, and M. Saruwatari, “Wavelength-tunable single-frequency and single-polarisation Er-doped fibre ring-laser with 1.4 kHz linewidth,” Electron. Lett. 26, 2033–2035 (1990).
[Crossref]

IEEE Photon. Technol. Lett. (2)

J. H. Geng, C. Spiegelberg, and S. B. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photon. Technol. Lett. 17, 1827–1829 (2005).
[Crossref]

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photon. Technol. Lett. 13, 1167–1169 (2001).
[Crossref]

J. Lightwave Technol. (1)

L. B. Mercer, “1/f frequency noise effects on self-heterodyne linewidth measurements,” J. Lightwave Technol. 9, 485–493 (1991).
[Crossref]

J. Phys. D Appl. Phys. (1)

Q. L. Ma, T. Rossmann, and Z. X. Guo, “Temperature sensitivity of silica micro-resonators,” J. Phys. D Appl. Phys. 41, 245111 (2008).
[Crossref]

Nat. Photonics (1)

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Nature (2)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref] [PubMed]

Opt. Commun. (2)

V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, and A. V. Yarovitsky, “Narrow-line-width diode laser with a high-Q microsphere resonator,” Opt. Commun. 158, 305–312 (1998).
[Crossref]

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285, 4648–4654 (2012).
[Crossref]

Opt. Express (7)

T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
[Crossref] [PubMed]

Y. Han and G. F. Li, “Coherent optical communication using polarization multiple-input-multiple-output,” Opt. Express 13, 7527–7534 (2005).
[Crossref] [PubMed]

P. Horak and W. H. Loh, “On the delayed self-heterodyne interferometric technique for determining the linewidth of fiber lasers,” Opt. Express 14, 3923–3928 (2006).
[Crossref] [PubMed]

M. C. Collodo, F. Sedlmeir, B. Sprenger, S. Svitlov, L. J. Wang, and H. G. L. Schwefel, “Sub-kHz lasing of a CaF2 whispering gallery mode resonator stabilized fiber ring laser,” Opt. Express 22, 19277–19283 (2014).
[Crossref] [PubMed]

W. D. Zhang, W. Gao, L. G. Huang, D. Mao, B. Q. Jiang, F. Gao, D. X. Yang, G. Q. Zhang, J. J. Xu, and J. L. Zhao, “Optical heterodyne micro-vibration measurement based on all-fiber acousto-optic frequency shifter,” Opt. Express 23, 17576–17583 (2015).
[Crossref] [PubMed]

C. Schmidt, A. Chipouline, T. Pertsch, A. Tünnermann, O. Egorov, F. Lederer, and L. Deych, “Nonlinear thermal effects in optical microspheres at different wavelength sweeping speeds,” Opt. Express 16, 6285–6301 (2008).
[Crossref] [PubMed]

S. L. Pan and J. P. Yao, “A wavelength-switchable single-longitudinal-mode dual-wavelength erbium-doped fiber laser for switchable microwave generation,” Opt. Express 17, 5414–5419 (2009).
[Crossref] [PubMed]

Opt. Lett. (8)

B. Sprenger, H. G. L. Schwefel, and L. J. Wang, “Whispering-gallery-mode-resonator-stabilized narrow-linewidth fiber loop laser,” Opt. Lett. 34, 3370–3372 (2009).
[Crossref] [PubMed]

G. A. Ball and W. W. Morey, “Continuously tunable single-mode erbium fiber laser,” Opt. Lett. 17, 420–422 (1992).
[Crossref] [PubMed]

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996).
[Crossref] [PubMed]

W. D. Zhang, L. G. Huang, F. Gao, F. Bo, L. Xuan, G. Q. Zhang, and J. J. Xu, “Tunable add/drop channel coupler based on an acousto-optic tunable filter and a tapered fiber,” Opt. Lett. 37, 1241–1243 (2012).
[Crossref] [PubMed]

G. N. Conti, S. Berneschi, A. Barucci, F. Cosi, S. Soria, and C. Trono, “Fiber ring laser for intracavity sensing using a whispering-gallery-mode resonator,” Opt. Lett. 37, 2697–2699 (2012).
[Crossref]

E. Rivera-Pérez, A. Díez, M. V. Andrés, J. L. Cruz, and A. Rodríguez-Cobos, “Tunable narrowband fiber laser with feedback based on whispering gallery mode resonances of a cylindrical microresonator,” Opt. Lett. 38, 1636–1638 (2013).
[Crossref] [PubMed]

L. G. Huang, J. Wang, W. H. Peng, W. D. Zhang, F. Bo, X. Y. Yu, F. Gao, P. F. Chang, X. B. Song, G. Q. Zhang, and J. J. Xu, “Mode conversion in a tapered fiber via a whispering gallery mode resonator and its application as add/drop filter,” Opt. Lett. 41, 638–641 (2016).
[Crossref] [PubMed]

K. Kieu and M. Mansuripur, “Fiber laser using a microsphere resonator as a feedback element,” Opt. Lett. 32, 244–246 (2007).
[Crossref] [PubMed]

Phys. Rev. A (1)

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41, 5187–5198 (1990).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102, 113601 (2009).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Configuration of the WS for the SLM narrow-linewidth laser based on a microsphere and a TF. SMF: single mode fiber; TF: tapered fiber; MSR: microsphere resonator; ADF: add/drop filter that we constructed; FBG: fiber Bragg grating, which could be replaced in the experiment according to the requirement; FC: fiber circulator. The ports of the WS are marked as Port A, Port B and Port C, respectively, and the ports of the ADF are marked as Port 1, Port 2 and Port 3, respectively.
Fig. 2
Fig. 2 The transmission spectra of the ADF at Port 2 and Port 3. (a) The transmission spectra of the ADF from 1550 nm to 1560 nm. (b) The transmission spectra of the ADF around 1550 nm. (c) The transmission spectra of the ADF at a single resonance peak. (d) The quality factor statistics of peaks in the transmission spectrum of Port 3.
Fig. 3
Fig. 3 Principle of wavelength selection and stabilization. (a) The microsphere resonance wavelength selected by the FBG. (b) The SLM laser selected and stabilized by the resonance peak of the microsphere transmission spectrum.
Fig. 4
Fig. 4 The configuration of the ring laser. OSA: optical spectrum analyzer; PC: polarization controller; FI: fiber isolator; EDFA: erbium doped fiber amplifier; WS: wavelength selector as shown in Fig. 1; DSHI: delayed self-heterodyne interferometer.
Fig. 5
Fig. 5 Laser output spectrum and linewidth measurement. (a) Laser spectrum at the wavelength of 1550.5 nm. (b) The full-range and (c) detailed spectrum of the DSHI beat signal. The frequency shift in the DSHI was 0.9 MHz. The side longitudinal mode was suppressed to be about −70 dB. The FWHM of the DSHI spectrum was 6.6 kHz. (d) Laser noise spectrum based on the DSHI. The noise background was well fitted in a Lorentzian profile with a 3-dB bandwidth of 300 Hz, while the low-frequency noise deviated from the Lorentzian shape with a 3-dB bandwidth of 3.3 kHz.
Fig. 6
Fig. 6 Laser wavelength tunability. (a) The laser wavelength tuned discretely by stretching the FBG with a tuning step of about 1 nm. (b) The laser wavelength tuned discretely by stretching the FBG with a tuning step of about 0.1 nm.(c) The laser wavelength tuned continuously by increasing the pump power with a tuning range of 0.15 nm. (d) The tuning relationship of the output laser wavelength and power with the pump power.
Fig. 7
Fig. 7 Laser linewidth measurement when tuning the laser wavelengths. (a) Spectra of the DSHI beat signal and (b) the measured linewidths when tuning the laser wavelength from 1540 nm to 1570 nm. The frequency offset denotes the difference between the Fourier frequency and the shifted frequency of 0.9 MHz in DSHI.
Fig. 8
Fig. 8 Laser stability measured in 1 hour.

Metrics