Abstract

Total suspended matter (TSM) is related to water quality. High TSM concentrations limit underwater light availability, thus affecting the primary productivity of aquatic ecosystems. Accurate estimation of TSM concentrations in various waters with remote sensing technology is particularly challenging, as the concentrations and optical properties vary greatly among different waters. In this research, a semi-analytical model was established for Hangzhou Bay and Lake Taihu for estimating TSM concentration. The model construction proceeded in two steps. 1) Two indices of the model were calculated by deriving absorption and backscattering coefficients of suspended matter (ap(λ) and bbp(λ)) from the reflectance signal using a semi-analytical method. 2) The two indices were then weighted to derive TSM. The performance of the proposed model was tested using in situ reflectance and Geostationary Ocean Color Imager (GOCI) data. The derived TSM based on in situ reflectance and GOCI images both corresponded well with the in situ TSM with low mean relative error (32%, 41%), root mean square error (20.1 mg/L, 43.1 mg/L), and normalized root mean square error (33%, 55%). The model was further used for the slightly turbid Xin’anjiang Reservoir to demonstrate its applicability to derive ap(λ) and bbp(λ) in other water types. The results indicated that the form Rrs−11) − Rrs−12) could minimize the effect of CDOM absorption in deriving ap(λ) from the total absorption. The model exploited the different relationships between TSM concentration and multiband reflectance, thus improving the performance and application range in deriving TSM.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
A semi-analytical total suspended sediment retrieval model in turbid coastal waters: A case study in Changjiang River Estuary

Jun Chen, Eurico D'Sa, Tingwei Cui, and Xunhua Zhang
Opt. Express 21(11) 13018-13031 (2013)

Innovative GOCI algorithm to derive turbidity in highly turbid waters: a case study in the Zhejiang coastal area

Zhongfeng Qiu, Lufei Zheng, Yan Zhou, Deyong Sun, Shengqiang Wang, and Wei Wu
Opt. Express 23(19) A1179-A1193 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Z. Mao, D. Pan, C. L. Tang, B. Tao, J. Chen, Y. Bai, P. Chen, X. He, Z. Hao, H. Huang, and Q. Zhu, “A dynamic sediment model based on satellite-measured concentration of the surface suspended matter in the East China Sea,” J. Geophys. Res. 121(4), 2755–2768 (2016).
    [Crossref]
  2. Y. Zhang, K. Shi, X. Liu, Y. Zhou, and B. Qin, “Lake topography and wind waves determining seasonal-spatial dynamics of total suspended matter in turbid Lake Taihu, China: assessment using long-term high-resolution MERIS data,” PLoS One 9(5), e98055 (2014).
    [Crossref] [PubMed]
  3. Y. Zhang, K. Shi, Y. Zhou, X. Liu, and B. Qin, “Monitoring the river plume induced by heavy rainfall events in large, shallow, Lake Taihu using MODIS 250 m imagery,” Remote Sens. Environ. 173, 109–121 (2016).
    [Crossref]
  4. K. Shi, Y. Zhang, G. Zhu, X. Liu, Y. Zhou, H. Xu, B. Qin, G. Liu, and Y. Li, “Long-term remote monitoring of total suspended matter concentration in Lake Taihu using 250m MODIS-Aqua data,” Remote Sens. Environ. 164, 43–56 (2015).
    [Crossref]
  5. A. A. Corcoran, K. M. Reifel, B. H. Jones, and R. F. Shipe, “Spatiotemporal development of physical, chemical, and biological characteristics of stormwater plumes in Santa Monica Bay, California (USA),” J. Sea Res. 63(2), 129–142 (2010).
    [Crossref]
  6. M. Ondrusek, E. Stengel, C. S. Kinkade, R. L. Vogel, P. Keegstra, C. Hunter, and C. Kim, “The development of a new optical total suspended matter algorithm for the Chesapeake Bay,” Remote Sens. Environ. 119, 243–254 (2012).
    [Crossref]
  7. C. Giardino, V. E. Brando, A. G. Dekker, N. Strömbeck, and G. Candiani, “Assessment of water quality in Lake Garda (Italy) using Hyperion,” Remote Sens. Environ. 109(2), 183–195 (2007).
    [Crossref]
  8. M. J. Moreno-Madriñán and A. M. Fischer, “Performance of the MODIS FLH algorithm in estuarine waters: a multi-year (2003–2010) analysis from Tampa Bay, Florida (USA),” Int. J. Remote Sens. 34(19), 6467–6483 (2013).
    [Crossref]
  9. V. Volpe, S. Silvestri, and M. Marani, “Remote sensing retrieval of suspended sediment concentration in shallow waters,” Remote Sens. Environ. 115(1), 44–54 (2011).
    [Crossref]
  10. A. G. Dekker, R. J. Vos, and S. W. M. Peters, “Comparison of remote sensing data, model results and in situ data for total suspended matter (TSM) in the southern Frisian lakes,” Sci. Total Environ. 268(1-3), 197–214 (2001).
    [Crossref] [PubMed]
  11. M. Lei, A. Minghelli, M. Fraysse, I. Pairaud, R. Verney, and C. Pinazo, “Geostationary image simulation on coastal waters using hydrodynamic biogeochemical and sedimentary coupled models,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(11), 5209–5222 (2016).
    [Crossref]
  12. C. Mitchell and A. Cunningham, “Remote sensing of spatio-temporal relationships between the partitioned absorption coefficients of phytoplankton cells and mineral particles and euphotic zone depths in a partially mixed shelf sea,” Remote Sens. Environ. 160, 193–205 (2015).
    [Crossref]
  13. C. B. Mouw, H. Chen, G. A. Mckinley, S. Effler, D. O’Donnell, M. G. Perkins, and C. Strait, “Evaluation and optimization of bio-optical inversion algorithms for remote sensing of Lake Superior’s optical properties,” J. Geophys. Res. 118(4), 1696–1714 (2013).
    [Crossref]
  14. D. Odermatt, A. Gitelson, V. E. Brando, and M. Schaepman, “Review of constituent retrieval in optically deep and complex waters from satellite imagery,” Remote Sens. Environ. 118, 116–126 (2012).
    [Crossref]
  15. L. Feng, C. Hu, X. Chen, and Q. Song, “Influence of the Three Gorges Dam on total suspended matters in the Yangtze Estuary and its adjacent coastal waters: Observations from MODIS,” Remote Sens. Environ. 140, 779–788 (2014).
    [Crossref]
  16. R. P. Stumpf, R. A. Arnone, R. W. Gould, P. M. Martinolich, and V. Ransibrahmanakul, “A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters, SeaWiFS postlaunch,” Tech. Rep. Ser. (World Health Organ.) 22, 51–59 (2003).
  17. D. Doxaran, J. M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters,” Remote Sens. Environ. 81(1), 149–161 (2002).
    [Crossref]
  18. Y. Zhang, Y. Zhang, K. Shi, Y. Zha, Y. Zhou, and M. Liu, “A Landsat 8 OLI-based, semianalytical model for estimating the total suspended matter concentration in the slightly turbid Xin’anjiang Reservoir (China),” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(1), 398–413 (2016).
    [Crossref]
  19. G. Zheng and P. M. Digiacomo, “Uncertainties and applications of satellite-derived coastal water quality products,” Prog. Oceanogr. 159, 45–72 (2017).
    [Crossref]
  20. S. Koponen, J. Attila, J. Pulliainen, K. Kallio, T. Pyhalahti, A. Lindfors, K. Rasmus, and M. Hallikainen, “A case study of airborne and satellite remote sensing of a spring bloom event in the Gulf of Finland,” Cont. Shelf Res. 27(2), 228–244 (2007).
    [Crossref]
  21. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
    [Crossref]
  22. M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48(2), 843–859 (2003).
    [Crossref]
  23. S. B. Woźniak, D. Stramski, M. Stramska, R. A. Reynolds, V. M. Wright, E. Y. Miksic, M. Cichocka, and A. M. Cieplak, “Optical variability of seawater in relation to particle concentration, composition, and size distribution in the nearshore marine environment at Imperial Beach, California,” J. Geophys. Res. 115(C8), C08027 (2010).
    [Crossref]
  24. C. E. Binding, J. H. Jerome, R. P. Bukata, and W. G. Booty, “Suspended particulate matter in Lake Erie derived from MODIS aquatic colour imagery,” Int. J. Remote Sens. 31(19), 5239–5255 (2010).
    [Crossref]
  25. M. Babin and D. Stramski, “Light absorption by aquatic particles in the near‐infrared spectral region,” Limnol. Oceanogr. 47(3), 911–915 (2002).
    [Crossref]
  26. Z. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41(27), 5755–5772 (2002).
    [Crossref] [PubMed]
  27. B. Qin, P. Xu, Q. Wu, L. Luo, and Y. Zhang, “Environmental issues of Lake Taihu, China,” Hydrobiologia 581(1), 3–14 (2007).
    [Crossref]
  28. D. Xie, Z. Wang, S. Gao, and H. J. De Vriend, “Modeling the tidal channel morphodynamics in a macro-tidal embayment, Hangzhou Bay, China,” Cont. Shelf Res. 29(15), 1757–1767 (2009).
    [Crossref]
  29. X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C.-T. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ. 133, 225–239 (2013).
    [Crossref]
  30. Y. Zhang, B. Zhang, X. Wang, J. Li, S. Feng, Q. Zhao, M. Liu, and B. Qin, “A study of absorption characteristics of chromophoric dissolved organic matter and particles in Lake Taihu, China,” Hydrobiologia 592(1), 105–120 (2007).
    [Crossref]
  31. Y. Zhang, Y. Zhou, K. Shi, B. Qin, X. Yao, and Y. Zhang, “Optical properties and composition changes in chromophoric dissolved organic matter along trophic gradients: Implications for monitoring and assessing lake eutrophication,” Water Res. 131, 255–263 (2018).
    [Crossref] [PubMed]
  32. C. D. Clark, L. P. Litz, and S. B. Grant, “Saltmarshes as a source of chromophoric dissolved organic matter (CDOM) to Southern California coastal waters,” Limnol. Oceanogr. 53(5), 1923–1933 (2008).
    [Crossref]
  33. K. G. Ruddick, F. Ovidio, and M. Rijkeboer, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Appl. Opt. 39(6), 897–912 (2000).
    [Crossref] [PubMed]
  34. C. Hu, K. L. Carder, and F. E. Muller-Karger, “Atmospheric correction of SeaWiFS imagery over turbid coastal waters: A practical method,” Remote Sens. Environ. 74(2), 195–206 (2000).
    [Crossref]
  35. J. K. Choi, Y. J. Park, J. H. Ahn, H. S. Lim, J. Eom, and J. H. Ryu, “GOCI, the world’s first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity,” J. Geophys. Res. 117(C9), 9004 (2012).
    [Crossref]
  36. B. Nechad, K. G. Ruddick, and Y. Park, “Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters,” Remote Sens. Environ. 114(4), 854–866 (2010).
    [Crossref]
  37. H. Loisel and A. Morel, “Non-isotropy of the upward radiance field in typical coastal (Case 2) waters,” Int. J. Remote Sens. 22(2-3), 275–295 (2001).
    [Crossref]
  38. A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem,” Appl. Opt. 35(24), 4850–4862 (1996).
    [Crossref] [PubMed]
  39. M. Wang, W. Shi, and L. Jiang, “Atmospheric correction using near-infrared bands for satellite ocean color data processing in the turbid western Pacific region,” Opt. Express 20(2), 741–753 (2012).
    [Crossref] [PubMed]
  40. D. Sun, Y. Li, Q. Wang, H. Lv, C. Le, C. Huang, and S. Gong, “Partitioning particulate scattering and absorption into contributions of phytoplankton and non-algal particles in winter in Lake Taihu (China),” Hydrobiologia 644(1), 337–349 (2010).
    [Crossref]
  41. W. Zhou, G. Wang, Z. Sun, W. Cao, Z. Xu, S. Hu, and J. Zhao, “Variations in the optical scattering properties of phytoplankton cultures,” Opt. Express 20(10), 11189–11206 (2012).
    [Crossref] [PubMed]
  42. Y. Zha, D. Sun, B. Yin, C. F. Le, and Y. M. Li, “Validation of a quasi-analytical algorithm for highly turbid eutrophic water of Meiliang Bay in Taihu Lake, China,” IEEE Trans. Geosci. Remote Sens. 47(8), 2492–2500 (2009).
    [Crossref]
  43. X. Hou, L. Feng, H. Duan, X. Chen, D. Sun, and K. Shi, “Fifteen-year monitoring of the turbidity dynamics in large lakes and reservoirs in the middle and lower basin of the Yangtze River, China,” Remote Sens. Environ. 190, 107–121 (2017).
    [Crossref]
  44. C. Huang, H. Yang, A. X. Zhu, M. Zhang, H. Lü, T. Huang, J. Zou, and Y. Li, “Evaluation of the Geostationary Ocean Color Imager (GOCI) to monitor the dynamic characteristics of suspension sediment in Taihu Lake,” Int. J. Remote Sens. 36(15), 3859–3874 (2015).
    [Crossref]
  45. Y. Zhang, S. Lin, J. Liu, X. Qian, and Y. Ge, “Time-series MODIS image-based retrieval and distribution analysis of total suspended matter concentrations in Lake Taihu (China),” Int. J. Environ. Res. Public Health 7(9), 3545–3560 (2010).
    [Crossref] [PubMed]
  46. W. Zhou, S. Wang, Y. Zhou, and A. Troy, “Mapping the concentrations of total suspended matter in Lake Taihu, China, using Landsat‐5 TM data,” Int. J. Remote Sens. 27(6), 1177–1191 (2006).
    [Crossref]
  47. Z. Mao, J. Chen, D. Pan, B. Tao, and Q. Zhu, “A regional remote sensing algorithm for total suspended matter in the East China Sea,” Remote Sens. Environ. 124, 819–831 (2012).
    [Crossref]
  48. M. Zhang, J. Tang, Q. Dong, Q. T. Song, and J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ. 114(2), 392–403 (2010).
    [Crossref]
  49. areE. Siswanto, J. Tang, H. Yamaguchi, Y.-H. Ahn, J. Ishizaka, S. Yoo, S.-W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang, and H. Kawamura, “Empirical ocean-color algorithms to retrieve chlorophyll-, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas,” J. Oceanogr. 67(5), 627–650 (2011).
    [Crossref]
  50. J. H. Ryu, H. J. Han, S. Cho, Y. J. Park, and Y. H. Ahn, “Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS),” Ocean Sci. J. 47(3), 223–233 (2012).
    [Crossref]
  51. D. Doxaran, N. Lamquin, Y. J. Park, C. Mazeran, J. H. Ryu, M. Wang, and A. Poteau, “Retrieval of the seawater reflectance for suspended solids monitoring in the East China Sea using MODIS, MERIS and GOCI satellite data,” Remote Sens. Environ. 146, 36–48 (2014).
    [Crossref]

2018 (1)

Y. Zhang, Y. Zhou, K. Shi, B. Qin, X. Yao, and Y. Zhang, “Optical properties and composition changes in chromophoric dissolved organic matter along trophic gradients: Implications for monitoring and assessing lake eutrophication,” Water Res. 131, 255–263 (2018).
[Crossref] [PubMed]

2017 (2)

G. Zheng and P. M. Digiacomo, “Uncertainties and applications of satellite-derived coastal water quality products,” Prog. Oceanogr. 159, 45–72 (2017).
[Crossref]

X. Hou, L. Feng, H. Duan, X. Chen, D. Sun, and K. Shi, “Fifteen-year monitoring of the turbidity dynamics in large lakes and reservoirs in the middle and lower basin of the Yangtze River, China,” Remote Sens. Environ. 190, 107–121 (2017).
[Crossref]

2016 (4)

M. Lei, A. Minghelli, M. Fraysse, I. Pairaud, R. Verney, and C. Pinazo, “Geostationary image simulation on coastal waters using hydrodynamic biogeochemical and sedimentary coupled models,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(11), 5209–5222 (2016).
[Crossref]

Z. Mao, D. Pan, C. L. Tang, B. Tao, J. Chen, Y. Bai, P. Chen, X. He, Z. Hao, H. Huang, and Q. Zhu, “A dynamic sediment model based on satellite-measured concentration of the surface suspended matter in the East China Sea,” J. Geophys. Res. 121(4), 2755–2768 (2016).
[Crossref]

Y. Zhang, K. Shi, Y. Zhou, X. Liu, and B. Qin, “Monitoring the river plume induced by heavy rainfall events in large, shallow, Lake Taihu using MODIS 250 m imagery,” Remote Sens. Environ. 173, 109–121 (2016).
[Crossref]

Y. Zhang, Y. Zhang, K. Shi, Y. Zha, Y. Zhou, and M. Liu, “A Landsat 8 OLI-based, semianalytical model for estimating the total suspended matter concentration in the slightly turbid Xin’anjiang Reservoir (China),” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(1), 398–413 (2016).
[Crossref]

2015 (3)

K. Shi, Y. Zhang, G. Zhu, X. Liu, Y. Zhou, H. Xu, B. Qin, G. Liu, and Y. Li, “Long-term remote monitoring of total suspended matter concentration in Lake Taihu using 250m MODIS-Aqua data,” Remote Sens. Environ. 164, 43–56 (2015).
[Crossref]

C. Mitchell and A. Cunningham, “Remote sensing of spatio-temporal relationships between the partitioned absorption coefficients of phytoplankton cells and mineral particles and euphotic zone depths in a partially mixed shelf sea,” Remote Sens. Environ. 160, 193–205 (2015).
[Crossref]

C. Huang, H. Yang, A. X. Zhu, M. Zhang, H. Lü, T. Huang, J. Zou, and Y. Li, “Evaluation of the Geostationary Ocean Color Imager (GOCI) to monitor the dynamic characteristics of suspension sediment in Taihu Lake,” Int. J. Remote Sens. 36(15), 3859–3874 (2015).
[Crossref]

2014 (3)

D. Doxaran, N. Lamquin, Y. J. Park, C. Mazeran, J. H. Ryu, M. Wang, and A. Poteau, “Retrieval of the seawater reflectance for suspended solids monitoring in the East China Sea using MODIS, MERIS and GOCI satellite data,” Remote Sens. Environ. 146, 36–48 (2014).
[Crossref]

L. Feng, C. Hu, X. Chen, and Q. Song, “Influence of the Three Gorges Dam on total suspended matters in the Yangtze Estuary and its adjacent coastal waters: Observations from MODIS,” Remote Sens. Environ. 140, 779–788 (2014).
[Crossref]

Y. Zhang, K. Shi, X. Liu, Y. Zhou, and B. Qin, “Lake topography and wind waves determining seasonal-spatial dynamics of total suspended matter in turbid Lake Taihu, China: assessment using long-term high-resolution MERIS data,” PLoS One 9(5), e98055 (2014).
[Crossref] [PubMed]

2013 (3)

M. J. Moreno-Madriñán and A. M. Fischer, “Performance of the MODIS FLH algorithm in estuarine waters: a multi-year (2003–2010) analysis from Tampa Bay, Florida (USA),” Int. J. Remote Sens. 34(19), 6467–6483 (2013).
[Crossref]

C. B. Mouw, H. Chen, G. A. Mckinley, S. Effler, D. O’Donnell, M. G. Perkins, and C. Strait, “Evaluation and optimization of bio-optical inversion algorithms for remote sensing of Lake Superior’s optical properties,” J. Geophys. Res. 118(4), 1696–1714 (2013).
[Crossref]

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C.-T. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ. 133, 225–239 (2013).
[Crossref]

2012 (7)

M. Wang, W. Shi, and L. Jiang, “Atmospheric correction using near-infrared bands for satellite ocean color data processing in the turbid western Pacific region,” Opt. Express 20(2), 741–753 (2012).
[Crossref] [PubMed]

J. H. Ryu, H. J. Han, S. Cho, Y. J. Park, and Y. H. Ahn, “Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS),” Ocean Sci. J. 47(3), 223–233 (2012).
[Crossref]

W. Zhou, G. Wang, Z. Sun, W. Cao, Z. Xu, S. Hu, and J. Zhao, “Variations in the optical scattering properties of phytoplankton cultures,” Opt. Express 20(10), 11189–11206 (2012).
[Crossref] [PubMed]

Z. Mao, J. Chen, D. Pan, B. Tao, and Q. Zhu, “A regional remote sensing algorithm for total suspended matter in the East China Sea,” Remote Sens. Environ. 124, 819–831 (2012).
[Crossref]

D. Odermatt, A. Gitelson, V. E. Brando, and M. Schaepman, “Review of constituent retrieval in optically deep and complex waters from satellite imagery,” Remote Sens. Environ. 118, 116–126 (2012).
[Crossref]

M. Ondrusek, E. Stengel, C. S. Kinkade, R. L. Vogel, P. Keegstra, C. Hunter, and C. Kim, “The development of a new optical total suspended matter algorithm for the Chesapeake Bay,” Remote Sens. Environ. 119, 243–254 (2012).
[Crossref]

J. K. Choi, Y. J. Park, J. H. Ahn, H. S. Lim, J. Eom, and J. H. Ryu, “GOCI, the world’s first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity,” J. Geophys. Res. 117(C9), 9004 (2012).
[Crossref]

2011 (2)

V. Volpe, S. Silvestri, and M. Marani, “Remote sensing retrieval of suspended sediment concentration in shallow waters,” Remote Sens. Environ. 115(1), 44–54 (2011).
[Crossref]

areE. Siswanto, J. Tang, H. Yamaguchi, Y.-H. Ahn, J. Ishizaka, S. Yoo, S.-W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang, and H. Kawamura, “Empirical ocean-color algorithms to retrieve chlorophyll-, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas,” J. Oceanogr. 67(5), 627–650 (2011).
[Crossref]

2010 (7)

M. Zhang, J. Tang, Q. Dong, Q. T. Song, and J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ. 114(2), 392–403 (2010).
[Crossref]

D. Sun, Y. Li, Q. Wang, H. Lv, C. Le, C. Huang, and S. Gong, “Partitioning particulate scattering and absorption into contributions of phytoplankton and non-algal particles in winter in Lake Taihu (China),” Hydrobiologia 644(1), 337–349 (2010).
[Crossref]

Y. Zhang, S. Lin, J. Liu, X. Qian, and Y. Ge, “Time-series MODIS image-based retrieval and distribution analysis of total suspended matter concentrations in Lake Taihu (China),” Int. J. Environ. Res. Public Health 7(9), 3545–3560 (2010).
[Crossref] [PubMed]

A. A. Corcoran, K. M. Reifel, B. H. Jones, and R. F. Shipe, “Spatiotemporal development of physical, chemical, and biological characteristics of stormwater plumes in Santa Monica Bay, California (USA),” J. Sea Res. 63(2), 129–142 (2010).
[Crossref]

B. Nechad, K. G. Ruddick, and Y. Park, “Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters,” Remote Sens. Environ. 114(4), 854–866 (2010).
[Crossref]

S. B. Woźniak, D. Stramski, M. Stramska, R. A. Reynolds, V. M. Wright, E. Y. Miksic, M. Cichocka, and A. M. Cieplak, “Optical variability of seawater in relation to particle concentration, composition, and size distribution in the nearshore marine environment at Imperial Beach, California,” J. Geophys. Res. 115(C8), C08027 (2010).
[Crossref]

C. E. Binding, J. H. Jerome, R. P. Bukata, and W. G. Booty, “Suspended particulate matter in Lake Erie derived from MODIS aquatic colour imagery,” Int. J. Remote Sens. 31(19), 5239–5255 (2010).
[Crossref]

2009 (2)

D. Xie, Z. Wang, S. Gao, and H. J. De Vriend, “Modeling the tidal channel morphodynamics in a macro-tidal embayment, Hangzhou Bay, China,” Cont. Shelf Res. 29(15), 1757–1767 (2009).
[Crossref]

Y. Zha, D. Sun, B. Yin, C. F. Le, and Y. M. Li, “Validation of a quasi-analytical algorithm for highly turbid eutrophic water of Meiliang Bay in Taihu Lake, China,” IEEE Trans. Geosci. Remote Sens. 47(8), 2492–2500 (2009).
[Crossref]

2008 (1)

C. D. Clark, L. P. Litz, and S. B. Grant, “Saltmarshes as a source of chromophoric dissolved organic matter (CDOM) to Southern California coastal waters,” Limnol. Oceanogr. 53(5), 1923–1933 (2008).
[Crossref]

2007 (4)

B. Qin, P. Xu, Q. Wu, L. Luo, and Y. Zhang, “Environmental issues of Lake Taihu, China,” Hydrobiologia 581(1), 3–14 (2007).
[Crossref]

C. Giardino, V. E. Brando, A. G. Dekker, N. Strömbeck, and G. Candiani, “Assessment of water quality in Lake Garda (Italy) using Hyperion,” Remote Sens. Environ. 109(2), 183–195 (2007).
[Crossref]

S. Koponen, J. Attila, J. Pulliainen, K. Kallio, T. Pyhalahti, A. Lindfors, K. Rasmus, and M. Hallikainen, “A case study of airborne and satellite remote sensing of a spring bloom event in the Gulf of Finland,” Cont. Shelf Res. 27(2), 228–244 (2007).
[Crossref]

Y. Zhang, B. Zhang, X. Wang, J. Li, S. Feng, Q. Zhao, M. Liu, and B. Qin, “A study of absorption characteristics of chromophoric dissolved organic matter and particles in Lake Taihu, China,” Hydrobiologia 592(1), 105–120 (2007).
[Crossref]

2006 (1)

W. Zhou, S. Wang, Y. Zhou, and A. Troy, “Mapping the concentrations of total suspended matter in Lake Taihu, China, using Landsat‐5 TM data,” Int. J. Remote Sens. 27(6), 1177–1191 (2006).
[Crossref]

2003 (2)

R. P. Stumpf, R. A. Arnone, R. W. Gould, P. M. Martinolich, and V. Ransibrahmanakul, “A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters, SeaWiFS postlaunch,” Tech. Rep. Ser. (World Health Organ.) 22, 51–59 (2003).

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48(2), 843–859 (2003).
[Crossref]

2002 (3)

M. Babin and D. Stramski, “Light absorption by aquatic particles in the near‐infrared spectral region,” Limnol. Oceanogr. 47(3), 911–915 (2002).
[Crossref]

Z. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41(27), 5755–5772 (2002).
[Crossref] [PubMed]

D. Doxaran, J. M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters,” Remote Sens. Environ. 81(1), 149–161 (2002).
[Crossref]

2001 (2)

A. G. Dekker, R. J. Vos, and S. W. M. Peters, “Comparison of remote sensing data, model results and in situ data for total suspended matter (TSM) in the southern Frisian lakes,” Sci. Total Environ. 268(1-3), 197–214 (2001).
[Crossref] [PubMed]

H. Loisel and A. Morel, “Non-isotropy of the upward radiance field in typical coastal (Case 2) waters,” Int. J. Remote Sens. 22(2-3), 275–295 (2001).
[Crossref]

2000 (2)

K. G. Ruddick, F. Ovidio, and M. Rijkeboer, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Appl. Opt. 39(6), 897–912 (2000).
[Crossref] [PubMed]

C. Hu, K. L. Carder, and F. E. Muller-Karger, “Atmospheric correction of SeaWiFS imagery over turbid coastal waters: A practical method,” Remote Sens. Environ. 74(2), 195–206 (2000).
[Crossref]

1996 (1)

1988 (1)

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

Ahn, J. H.

J. K. Choi, Y. J. Park, J. H. Ahn, H. S. Lim, J. Eom, and J. H. Ryu, “GOCI, the world’s first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity,” J. Geophys. Res. 117(C9), 9004 (2012).
[Crossref]

Ahn, Y. H.

J. H. Ryu, H. J. Han, S. Cho, Y. J. Park, and Y. H. Ahn, “Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS),” Ocean Sci. J. 47(3), 223–233 (2012).
[Crossref]

Ahn, Y.-H.

areE. Siswanto, J. Tang, H. Yamaguchi, Y.-H. Ahn, J. Ishizaka, S. Yoo, S.-W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang, and H. Kawamura, “Empirical ocean-color algorithms to retrieve chlorophyll-, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas,” J. Oceanogr. 67(5), 627–650 (2011).
[Crossref]

Arnone, R. A.

R. P. Stumpf, R. A. Arnone, R. W. Gould, P. M. Martinolich, and V. Ransibrahmanakul, “A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters, SeaWiFS postlaunch,” Tech. Rep. Ser. (World Health Organ.) 22, 51–59 (2003).

Z. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41(27), 5755–5772 (2002).
[Crossref] [PubMed]

Attila, J.

S. Koponen, J. Attila, J. Pulliainen, K. Kallio, T. Pyhalahti, A. Lindfors, K. Rasmus, and M. Hallikainen, “A case study of airborne and satellite remote sensing of a spring bloom event in the Gulf of Finland,” Cont. Shelf Res. 27(2), 228–244 (2007).
[Crossref]

Babin, M.

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48(2), 843–859 (2003).
[Crossref]

M. Babin and D. Stramski, “Light absorption by aquatic particles in the near‐infrared spectral region,” Limnol. Oceanogr. 47(3), 911–915 (2002).
[Crossref]

Bai, Y.

Z. Mao, D. Pan, C. L. Tang, B. Tao, J. Chen, Y. Bai, P. Chen, X. He, Z. Hao, H. Huang, and Q. Zhu, “A dynamic sediment model based on satellite-measured concentration of the surface suspended matter in the East China Sea,” J. Geophys. Res. 121(4), 2755–2768 (2016).
[Crossref]

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C.-T. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ. 133, 225–239 (2013).
[Crossref]

Baker, K. S.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

Binding, C. E.

C. E. Binding, J. H. Jerome, R. P. Bukata, and W. G. Booty, “Suspended particulate matter in Lake Erie derived from MODIS aquatic colour imagery,” Int. J. Remote Sens. 31(19), 5239–5255 (2010).
[Crossref]

Booty, W. G.

C. E. Binding, J. H. Jerome, R. P. Bukata, and W. G. Booty, “Suspended particulate matter in Lake Erie derived from MODIS aquatic colour imagery,” Int. J. Remote Sens. 31(19), 5239–5255 (2010).
[Crossref]

Brando, V. E.

D. Odermatt, A. Gitelson, V. E. Brando, and M. Schaepman, “Review of constituent retrieval in optically deep and complex waters from satellite imagery,” Remote Sens. Environ. 118, 116–126 (2012).
[Crossref]

C. Giardino, V. E. Brando, A. G. Dekker, N. Strömbeck, and G. Candiani, “Assessment of water quality in Lake Garda (Italy) using Hyperion,” Remote Sens. Environ. 109(2), 183–195 (2007).
[Crossref]

Brown, J. W.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

Brown, O. B.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

Bukata, R. P.

C. E. Binding, J. H. Jerome, R. P. Bukata, and W. G. Booty, “Suspended particulate matter in Lake Erie derived from MODIS aquatic colour imagery,” Int. J. Remote Sens. 31(19), 5239–5255 (2010).
[Crossref]

Candiani, G.

C. Giardino, V. E. Brando, A. G. Dekker, N. Strömbeck, and G. Candiani, “Assessment of water quality in Lake Garda (Italy) using Hyperion,” Remote Sens. Environ. 109(2), 183–195 (2007).
[Crossref]

Cao, W.

Carder, K. L.

Z. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41(27), 5755–5772 (2002).
[Crossref] [PubMed]

C. Hu, K. L. Carder, and F. E. Muller-Karger, “Atmospheric correction of SeaWiFS imagery over turbid coastal waters: A practical method,” Remote Sens. Environ. 74(2), 195–206 (2000).
[Crossref]

Castaing, P.

D. Doxaran, J. M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters,” Remote Sens. Environ. 81(1), 149–161 (2002).
[Crossref]

Chen, C.-T. A.

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C.-T. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ. 133, 225–239 (2013).
[Crossref]

Chen, H.

C. B. Mouw, H. Chen, G. A. Mckinley, S. Effler, D. O’Donnell, M. G. Perkins, and C. Strait, “Evaluation and optimization of bio-optical inversion algorithms for remote sensing of Lake Superior’s optical properties,” J. Geophys. Res. 118(4), 1696–1714 (2013).
[Crossref]

Chen, J.

Z. Mao, D. Pan, C. L. Tang, B. Tao, J. Chen, Y. Bai, P. Chen, X. He, Z. Hao, H. Huang, and Q. Zhu, “A dynamic sediment model based on satellite-measured concentration of the surface suspended matter in the East China Sea,” J. Geophys. Res. 121(4), 2755–2768 (2016).
[Crossref]

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C.-T. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ. 133, 225–239 (2013).
[Crossref]

Z. Mao, J. Chen, D. Pan, B. Tao, and Q. Zhu, “A regional remote sensing algorithm for total suspended matter in the East China Sea,” Remote Sens. Environ. 124, 819–831 (2012).
[Crossref]

Chen, P.

Z. Mao, D. Pan, C. L. Tang, B. Tao, J. Chen, Y. Bai, P. Chen, X. He, Z. Hao, H. Huang, and Q. Zhu, “A dynamic sediment model based on satellite-measured concentration of the surface suspended matter in the East China Sea,” J. Geophys. Res. 121(4), 2755–2768 (2016).
[Crossref]

Chen, X.

X. Hou, L. Feng, H. Duan, X. Chen, D. Sun, and K. Shi, “Fifteen-year monitoring of the turbidity dynamics in large lakes and reservoirs in the middle and lower basin of the Yangtze River, China,” Remote Sens. Environ. 190, 107–121 (2017).
[Crossref]

L. Feng, C. Hu, X. Chen, and Q. Song, “Influence of the Three Gorges Dam on total suspended matters in the Yangtze Estuary and its adjacent coastal waters: Observations from MODIS,” Remote Sens. Environ. 140, 779–788 (2014).
[Crossref]

Chiang, C.

areE. Siswanto, J. Tang, H. Yamaguchi, Y.-H. Ahn, J. Ishizaka, S. Yoo, S.-W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang, and H. Kawamura, “Empirical ocean-color algorithms to retrieve chlorophyll-, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas,” J. Oceanogr. 67(5), 627–650 (2011).
[Crossref]

Cho, S.

J. H. Ryu, H. J. Han, S. Cho, Y. J. Park, and Y. H. Ahn, “Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS),” Ocean Sci. J. 47(3), 223–233 (2012).
[Crossref]

Choi, J. K.

J. K. Choi, Y. J. Park, J. H. Ahn, H. S. Lim, J. Eom, and J. H. Ryu, “GOCI, the world’s first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity,” J. Geophys. Res. 117(C9), 9004 (2012).
[Crossref]

Cichocka, M.

S. B. Woźniak, D. Stramski, M. Stramska, R. A. Reynolds, V. M. Wright, E. Y. Miksic, M. Cichocka, and A. M. Cieplak, “Optical variability of seawater in relation to particle concentration, composition, and size distribution in the nearshore marine environment at Imperial Beach, California,” J. Geophys. Res. 115(C8), C08027 (2010).
[Crossref]

Cieplak, A. M.

S. B. Woźniak, D. Stramski, M. Stramska, R. A. Reynolds, V. M. Wright, E. Y. Miksic, M. Cichocka, and A. M. Cieplak, “Optical variability of seawater in relation to particle concentration, composition, and size distribution in the nearshore marine environment at Imperial Beach, California,” J. Geophys. Res. 115(C8), C08027 (2010).
[Crossref]

Clark, C. D.

C. D. Clark, L. P. Litz, and S. B. Grant, “Saltmarshes as a source of chromophoric dissolved organic matter (CDOM) to Southern California coastal waters,” Limnol. Oceanogr. 53(5), 1923–1933 (2008).
[Crossref]

Clark, D. K.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

Corcoran, A. A.

A. A. Corcoran, K. M. Reifel, B. H. Jones, and R. F. Shipe, “Spatiotemporal development of physical, chemical, and biological characteristics of stormwater plumes in Santa Monica Bay, California (USA),” J. Sea Res. 63(2), 129–142 (2010).
[Crossref]

Cui, Q.

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C.-T. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ. 133, 225–239 (2013).
[Crossref]

Cunningham, A.

C. Mitchell and A. Cunningham, “Remote sensing of spatio-temporal relationships between the partitioned absorption coefficients of phytoplankton cells and mineral particles and euphotic zone depths in a partially mixed shelf sea,” Remote Sens. Environ. 160, 193–205 (2015).
[Crossref]

De Vriend, H. J.

D. Xie, Z. Wang, S. Gao, and H. J. De Vriend, “Modeling the tidal channel morphodynamics in a macro-tidal embayment, Hangzhou Bay, China,” Cont. Shelf Res. 29(15), 1757–1767 (2009).
[Crossref]

Dekker, A. G.

C. Giardino, V. E. Brando, A. G. Dekker, N. Strömbeck, and G. Candiani, “Assessment of water quality in Lake Garda (Italy) using Hyperion,” Remote Sens. Environ. 109(2), 183–195 (2007).
[Crossref]

A. G. Dekker, R. J. Vos, and S. W. M. Peters, “Comparison of remote sensing data, model results and in situ data for total suspended matter (TSM) in the southern Frisian lakes,” Sci. Total Environ. 268(1-3), 197–214 (2001).
[Crossref] [PubMed]

Digiacomo, P. M.

G. Zheng and P. M. Digiacomo, “Uncertainties and applications of satellite-derived coastal water quality products,” Prog. Oceanogr. 159, 45–72 (2017).
[Crossref]

Ding, J.

M. Zhang, J. Tang, Q. Dong, Q. T. Song, and J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ. 114(2), 392–403 (2010).
[Crossref]

Dong, Q.

M. Zhang, J. Tang, Q. Dong, Q. T. Song, and J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ. 114(2), 392–403 (2010).
[Crossref]

Dong, X.

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C.-T. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ. 133, 225–239 (2013).
[Crossref]

Doxaran, D.

D. Doxaran, N. Lamquin, Y. J. Park, C. Mazeran, J. H. Ryu, M. Wang, and A. Poteau, “Retrieval of the seawater reflectance for suspended solids monitoring in the East China Sea using MODIS, MERIS and GOCI satellite data,” Remote Sens. Environ. 146, 36–48 (2014).
[Crossref]

D. Doxaran, J. M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters,” Remote Sens. Environ. 81(1), 149–161 (2002).
[Crossref]

Duan, H.

X. Hou, L. Feng, H. Duan, X. Chen, D. Sun, and K. Shi, “Fifteen-year monitoring of the turbidity dynamics in large lakes and reservoirs in the middle and lower basin of the Yangtze River, China,” Remote Sens. Environ. 190, 107–121 (2017).
[Crossref]

Effler, S.

C. B. Mouw, H. Chen, G. A. Mckinley, S. Effler, D. O’Donnell, M. G. Perkins, and C. Strait, “Evaluation and optimization of bio-optical inversion algorithms for remote sensing of Lake Superior’s optical properties,” J. Geophys. Res. 118(4), 1696–1714 (2013).
[Crossref]

Eom, J.

J. K. Choi, Y. J. Park, J. H. Ahn, H. S. Lim, J. Eom, and J. H. Ryu, “GOCI, the world’s first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity,” J. Geophys. Res. 117(C9), 9004 (2012).
[Crossref]

Evans, R. H.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

Fell, F.

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48(2), 843–859 (2003).
[Crossref]

Feng, L.

X. Hou, L. Feng, H. Duan, X. Chen, D. Sun, and K. Shi, “Fifteen-year monitoring of the turbidity dynamics in large lakes and reservoirs in the middle and lower basin of the Yangtze River, China,” Remote Sens. Environ. 190, 107–121 (2017).
[Crossref]

L. Feng, C. Hu, X. Chen, and Q. Song, “Influence of the Three Gorges Dam on total suspended matters in the Yangtze Estuary and its adjacent coastal waters: Observations from MODIS,” Remote Sens. Environ. 140, 779–788 (2014).
[Crossref]

Feng, S.

Y. Zhang, B. Zhang, X. Wang, J. Li, S. Feng, Q. Zhao, M. Liu, and B. Qin, “A study of absorption characteristics of chromophoric dissolved organic matter and particles in Lake Taihu, China,” Hydrobiologia 592(1), 105–120 (2007).
[Crossref]

Fischer, A. M.

M. J. Moreno-Madriñán and A. M. Fischer, “Performance of the MODIS FLH algorithm in estuarine waters: a multi-year (2003–2010) analysis from Tampa Bay, Florida (USA),” Int. J. Remote Sens. 34(19), 6467–6483 (2013).
[Crossref]

Fournier-Sicre, V.

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48(2), 843–859 (2003).
[Crossref]

Fraysse, M.

M. Lei, A. Minghelli, M. Fraysse, I. Pairaud, R. Verney, and C. Pinazo, “Geostationary image simulation on coastal waters using hydrodynamic biogeochemical and sedimentary coupled models,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(11), 5209–5222 (2016).
[Crossref]

Froidefond, J. M.

D. Doxaran, J. M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters,” Remote Sens. Environ. 81(1), 149–161 (2002).
[Crossref]

Gao, S.

D. Xie, Z. Wang, S. Gao, and H. J. De Vriend, “Modeling the tidal channel morphodynamics in a macro-tidal embayment, Hangzhou Bay, China,” Cont. Shelf Res. 29(15), 1757–1767 (2009).
[Crossref]

Ge, Y.

Y. Zhang, S. Lin, J. Liu, X. Qian, and Y. Ge, “Time-series MODIS image-based retrieval and distribution analysis of total suspended matter concentrations in Lake Taihu (China),” Int. J. Environ. Res. Public Health 7(9), 3545–3560 (2010).
[Crossref] [PubMed]

Gentili, B.

Giardino, C.

C. Giardino, V. E. Brando, A. G. Dekker, N. Strömbeck, and G. Candiani, “Assessment of water quality in Lake Garda (Italy) using Hyperion,” Remote Sens. Environ. 109(2), 183–195 (2007).
[Crossref]

Gitelson, A.

D. Odermatt, A. Gitelson, V. E. Brando, and M. Schaepman, “Review of constituent retrieval in optically deep and complex waters from satellite imagery,” Remote Sens. Environ. 118, 116–126 (2012).
[Crossref]

Gong, S.

D. Sun, Y. Li, Q. Wang, H. Lv, C. Le, C. Huang, and S. Gong, “Partitioning particulate scattering and absorption into contributions of phytoplankton and non-algal particles in winter in Lake Taihu (China),” Hydrobiologia 644(1), 337–349 (2010).
[Crossref]

Gordon, H. R.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

Gould, R. W.

R. P. Stumpf, R. A. Arnone, R. W. Gould, P. M. Martinolich, and V. Ransibrahmanakul, “A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters, SeaWiFS postlaunch,” Tech. Rep. Ser. (World Health Organ.) 22, 51–59 (2003).

Grant, S. B.

C. D. Clark, L. P. Litz, and S. B. Grant, “Saltmarshes as a source of chromophoric dissolved organic matter (CDOM) to Southern California coastal waters,” Limnol. Oceanogr. 53(5), 1923–1933 (2008).
[Crossref]

Hallikainen, M.

S. Koponen, J. Attila, J. Pulliainen, K. Kallio, T. Pyhalahti, A. Lindfors, K. Rasmus, and M. Hallikainen, “A case study of airborne and satellite remote sensing of a spring bloom event in the Gulf of Finland,” Cont. Shelf Res. 27(2), 228–244 (2007).
[Crossref]

Han, H. J.

J. H. Ryu, H. J. Han, S. Cho, Y. J. Park, and Y. H. Ahn, “Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS),” Ocean Sci. J. 47(3), 223–233 (2012).
[Crossref]

Hao, Z.

Z. Mao, D. Pan, C. L. Tang, B. Tao, J. Chen, Y. Bai, P. Chen, X. He, Z. Hao, H. Huang, and Q. Zhu, “A dynamic sediment model based on satellite-measured concentration of the surface suspended matter in the East China Sea,” J. Geophys. Res. 121(4), 2755–2768 (2016).
[Crossref]

He, X.

Z. Mao, D. Pan, C. L. Tang, B. Tao, J. Chen, Y. Bai, P. Chen, X. He, Z. Hao, H. Huang, and Q. Zhu, “A dynamic sediment model based on satellite-measured concentration of the surface suspended matter in the East China Sea,” J. Geophys. Res. 121(4), 2755–2768 (2016).
[Crossref]

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C.-T. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ. 133, 225–239 (2013).
[Crossref]

Hou, X.

X. Hou, L. Feng, H. Duan, X. Chen, D. Sun, and K. Shi, “Fifteen-year monitoring of the turbidity dynamics in large lakes and reservoirs in the middle and lower basin of the Yangtze River, China,” Remote Sens. Environ. 190, 107–121 (2017).
[Crossref]

Hu, C.

L. Feng, C. Hu, X. Chen, and Q. Song, “Influence of the Three Gorges Dam on total suspended matters in the Yangtze Estuary and its adjacent coastal waters: Observations from MODIS,” Remote Sens. Environ. 140, 779–788 (2014).
[Crossref]

C. Hu, K. L. Carder, and F. E. Muller-Karger, “Atmospheric correction of SeaWiFS imagery over turbid coastal waters: A practical method,” Remote Sens. Environ. 74(2), 195–206 (2000).
[Crossref]

Hu, S.

Huang, C.

C. Huang, H. Yang, A. X. Zhu, M. Zhang, H. Lü, T. Huang, J. Zou, and Y. Li, “Evaluation of the Geostationary Ocean Color Imager (GOCI) to monitor the dynamic characteristics of suspension sediment in Taihu Lake,” Int. J. Remote Sens. 36(15), 3859–3874 (2015).
[Crossref]

D. Sun, Y. Li, Q. Wang, H. Lv, C. Le, C. Huang, and S. Gong, “Partitioning particulate scattering and absorption into contributions of phytoplankton and non-algal particles in winter in Lake Taihu (China),” Hydrobiologia 644(1), 337–349 (2010).
[Crossref]

Huang, H.

Z. Mao, D. Pan, C. L. Tang, B. Tao, J. Chen, Y. Bai, P. Chen, X. He, Z. Hao, H. Huang, and Q. Zhu, “A dynamic sediment model based on satellite-measured concentration of the surface suspended matter in the East China Sea,” J. Geophys. Res. 121(4), 2755–2768 (2016).
[Crossref]

Huang, N.

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C.-T. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ. 133, 225–239 (2013).
[Crossref]

Huang, T.

C. Huang, H. Yang, A. X. Zhu, M. Zhang, H. Lü, T. Huang, J. Zou, and Y. Li, “Evaluation of the Geostationary Ocean Color Imager (GOCI) to monitor the dynamic characteristics of suspension sediment in Taihu Lake,” Int. J. Remote Sens. 36(15), 3859–3874 (2015).
[Crossref]

Hunter, C.

M. Ondrusek, E. Stengel, C. S. Kinkade, R. L. Vogel, P. Keegstra, C. Hunter, and C. Kim, “The development of a new optical total suspended matter algorithm for the Chesapeake Bay,” Remote Sens. Environ. 119, 243–254 (2012).
[Crossref]

Ishizaka, J.

areE. Siswanto, J. Tang, H. Yamaguchi, Y.-H. Ahn, J. Ishizaka, S. Yoo, S.-W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang, and H. Kawamura, “Empirical ocean-color algorithms to retrieve chlorophyll-, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas,” J. Oceanogr. 67(5), 627–650 (2011).
[Crossref]

Jerome, J. H.

C. E. Binding, J. H. Jerome, R. P. Bukata, and W. G. Booty, “Suspended particulate matter in Lake Erie derived from MODIS aquatic colour imagery,” Int. J. Remote Sens. 31(19), 5239–5255 (2010).
[Crossref]

Jiang, L.

Jones, B. H.

A. A. Corcoran, K. M. Reifel, B. H. Jones, and R. F. Shipe, “Spatiotemporal development of physical, chemical, and biological characteristics of stormwater plumes in Santa Monica Bay, California (USA),” J. Sea Res. 63(2), 129–142 (2010).
[Crossref]

Kallio, K.

S. Koponen, J. Attila, J. Pulliainen, K. Kallio, T. Pyhalahti, A. Lindfors, K. Rasmus, and M. Hallikainen, “A case study of airborne and satellite remote sensing of a spring bloom event in the Gulf of Finland,” Cont. Shelf Res. 27(2), 228–244 (2007).
[Crossref]

Kawamura, H.

areE. Siswanto, J. Tang, H. Yamaguchi, Y.-H. Ahn, J. Ishizaka, S. Yoo, S.-W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang, and H. Kawamura, “Empirical ocean-color algorithms to retrieve chlorophyll-, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas,” J. Oceanogr. 67(5), 627–650 (2011).
[Crossref]

Keegstra, P.

M. Ondrusek, E. Stengel, C. S. Kinkade, R. L. Vogel, P. Keegstra, C. Hunter, and C. Kim, “The development of a new optical total suspended matter algorithm for the Chesapeake Bay,” Remote Sens. Environ. 119, 243–254 (2012).
[Crossref]

Kim, C.

M. Ondrusek, E. Stengel, C. S. Kinkade, R. L. Vogel, P. Keegstra, C. Hunter, and C. Kim, “The development of a new optical total suspended matter algorithm for the Chesapeake Bay,” Remote Sens. Environ. 119, 243–254 (2012).
[Crossref]

Kim, S.-W.

areE. Siswanto, J. Tang, H. Yamaguchi, Y.-H. Ahn, J. Ishizaka, S. Yoo, S.-W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang, and H. Kawamura, “Empirical ocean-color algorithms to retrieve chlorophyll-, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas,” J. Oceanogr. 67(5), 627–650 (2011).
[Crossref]

Kinkade, C. S.

M. Ondrusek, E. Stengel, C. S. Kinkade, R. L. Vogel, P. Keegstra, C. Hunter, and C. Kim, “The development of a new optical total suspended matter algorithm for the Chesapeake Bay,” Remote Sens. Environ. 119, 243–254 (2012).
[Crossref]

Kiyomoto, Y.

areE. Siswanto, J. Tang, H. Yamaguchi, Y.-H. Ahn, J. Ishizaka, S. Yoo, S.-W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang, and H. Kawamura, “Empirical ocean-color algorithms to retrieve chlorophyll-, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas,” J. Oceanogr. 67(5), 627–650 (2011).
[Crossref]

Koponen, S.

S. Koponen, J. Attila, J. Pulliainen, K. Kallio, T. Pyhalahti, A. Lindfors, K. Rasmus, and M. Hallikainen, “A case study of airborne and satellite remote sensing of a spring bloom event in the Gulf of Finland,” Cont. Shelf Res. 27(2), 228–244 (2007).
[Crossref]

Lamquin, N.

D. Doxaran, N. Lamquin, Y. J. Park, C. Mazeran, J. H. Ryu, M. Wang, and A. Poteau, “Retrieval of the seawater reflectance for suspended solids monitoring in the East China Sea using MODIS, MERIS and GOCI satellite data,” Remote Sens. Environ. 146, 36–48 (2014).
[Crossref]

Lavender, S.

D. Doxaran, J. M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters,” Remote Sens. Environ. 81(1), 149–161 (2002).
[Crossref]

Le, C.

D. Sun, Y. Li, Q. Wang, H. Lv, C. Le, C. Huang, and S. Gong, “Partitioning particulate scattering and absorption into contributions of phytoplankton and non-algal particles in winter in Lake Taihu (China),” Hydrobiologia 644(1), 337–349 (2010).
[Crossref]

Le, C. F.

Y. Zha, D. Sun, B. Yin, C. F. Le, and Y. M. Li, “Validation of a quasi-analytical algorithm for highly turbid eutrophic water of Meiliang Bay in Taihu Lake, China,” IEEE Trans. Geosci. Remote Sens. 47(8), 2492–2500 (2009).
[Crossref]

Lee, Z.

Lei, M.

M. Lei, A. Minghelli, M. Fraysse, I. Pairaud, R. Verney, and C. Pinazo, “Geostationary image simulation on coastal waters using hydrodynamic biogeochemical and sedimentary coupled models,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(11), 5209–5222 (2016).
[Crossref]

Li, J.

Y. Zhang, B. Zhang, X. Wang, J. Li, S. Feng, Q. Zhao, M. Liu, and B. Qin, “A study of absorption characteristics of chromophoric dissolved organic matter and particles in Lake Taihu, China,” Hydrobiologia 592(1), 105–120 (2007).
[Crossref]

Li, Y.

C. Huang, H. Yang, A. X. Zhu, M. Zhang, H. Lü, T. Huang, J. Zou, and Y. Li, “Evaluation of the Geostationary Ocean Color Imager (GOCI) to monitor the dynamic characteristics of suspension sediment in Taihu Lake,” Int. J. Remote Sens. 36(15), 3859–3874 (2015).
[Crossref]

K. Shi, Y. Zhang, G. Zhu, X. Liu, Y. Zhou, H. Xu, B. Qin, G. Liu, and Y. Li, “Long-term remote monitoring of total suspended matter concentration in Lake Taihu using 250m MODIS-Aqua data,” Remote Sens. Environ. 164, 43–56 (2015).
[Crossref]

D. Sun, Y. Li, Q. Wang, H. Lv, C. Le, C. Huang, and S. Gong, “Partitioning particulate scattering and absorption into contributions of phytoplankton and non-algal particles in winter in Lake Taihu (China),” Hydrobiologia 644(1), 337–349 (2010).
[Crossref]

Li, Y. M.

Y. Zha, D. Sun, B. Yin, C. F. Le, and Y. M. Li, “Validation of a quasi-analytical algorithm for highly turbid eutrophic water of Meiliang Bay in Taihu Lake, China,” IEEE Trans. Geosci. Remote Sens. 47(8), 2492–2500 (2009).
[Crossref]

Lim, H. S.

J. K. Choi, Y. J. Park, J. H. Ahn, H. S. Lim, J. Eom, and J. H. Ryu, “GOCI, the world’s first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity,” J. Geophys. Res. 117(C9), 9004 (2012).
[Crossref]

Lin, S.

Y. Zhang, S. Lin, J. Liu, X. Qian, and Y. Ge, “Time-series MODIS image-based retrieval and distribution analysis of total suspended matter concentrations in Lake Taihu (China),” Int. J. Environ. Res. Public Health 7(9), 3545–3560 (2010).
[Crossref] [PubMed]

Lindfors, A.

S. Koponen, J. Attila, J. Pulliainen, K. Kallio, T. Pyhalahti, A. Lindfors, K. Rasmus, and M. Hallikainen, “A case study of airborne and satellite remote sensing of a spring bloom event in the Gulf of Finland,” Cont. Shelf Res. 27(2), 228–244 (2007).
[Crossref]

Litz, L. P.

C. D. Clark, L. P. Litz, and S. B. Grant, “Saltmarshes as a source of chromophoric dissolved organic matter (CDOM) to Southern California coastal waters,” Limnol. Oceanogr. 53(5), 1923–1933 (2008).
[Crossref]

Liu, G.

K. Shi, Y. Zhang, G. Zhu, X. Liu, Y. Zhou, H. Xu, B. Qin, G. Liu, and Y. Li, “Long-term remote monitoring of total suspended matter concentration in Lake Taihu using 250m MODIS-Aqua data,” Remote Sens. Environ. 164, 43–56 (2015).
[Crossref]

Liu, J.

Y. Zhang, S. Lin, J. Liu, X. Qian, and Y. Ge, “Time-series MODIS image-based retrieval and distribution analysis of total suspended matter concentrations in Lake Taihu (China),” Int. J. Environ. Res. Public Health 7(9), 3545–3560 (2010).
[Crossref] [PubMed]

Liu, M.

Y. Zhang, Y. Zhang, K. Shi, Y. Zha, Y. Zhou, and M. Liu, “A Landsat 8 OLI-based, semianalytical model for estimating the total suspended matter concentration in the slightly turbid Xin’anjiang Reservoir (China),” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(1), 398–413 (2016).
[Crossref]

Y. Zhang, B. Zhang, X. Wang, J. Li, S. Feng, Q. Zhao, M. Liu, and B. Qin, “A study of absorption characteristics of chromophoric dissolved organic matter and particles in Lake Taihu, China,” Hydrobiologia 592(1), 105–120 (2007).
[Crossref]

Liu, X.

Y. Zhang, K. Shi, Y. Zhou, X. Liu, and B. Qin, “Monitoring the river plume induced by heavy rainfall events in large, shallow, Lake Taihu using MODIS 250 m imagery,” Remote Sens. Environ. 173, 109–121 (2016).
[Crossref]

K. Shi, Y. Zhang, G. Zhu, X. Liu, Y. Zhou, H. Xu, B. Qin, G. Liu, and Y. Li, “Long-term remote monitoring of total suspended matter concentration in Lake Taihu using 250m MODIS-Aqua data,” Remote Sens. Environ. 164, 43–56 (2015).
[Crossref]

Y. Zhang, K. Shi, X. Liu, Y. Zhou, and B. Qin, “Lake topography and wind waves determining seasonal-spatial dynamics of total suspended matter in turbid Lake Taihu, China: assessment using long-term high-resolution MERIS data,” PLoS One 9(5), e98055 (2014).
[Crossref] [PubMed]

Loisel, H.

H. Loisel and A. Morel, “Non-isotropy of the upward radiance field in typical coastal (Case 2) waters,” Int. J. Remote Sens. 22(2-3), 275–295 (2001).
[Crossref]

Lü, H.

C. Huang, H. Yang, A. X. Zhu, M. Zhang, H. Lü, T. Huang, J. Zou, and Y. Li, “Evaluation of the Geostationary Ocean Color Imager (GOCI) to monitor the dynamic characteristics of suspension sediment in Taihu Lake,” Int. J. Remote Sens. 36(15), 3859–3874 (2015).
[Crossref]

Luo, L.

B. Qin, P. Xu, Q. Wu, L. Luo, and Y. Zhang, “Environmental issues of Lake Taihu, China,” Hydrobiologia 581(1), 3–14 (2007).
[Crossref]

Lv, H.

D. Sun, Y. Li, Q. Wang, H. Lv, C. Le, C. Huang, and S. Gong, “Partitioning particulate scattering and absorption into contributions of phytoplankton and non-algal particles in winter in Lake Taihu (China),” Hydrobiologia 644(1), 337–349 (2010).
[Crossref]

Mao, Z.

Z. Mao, D. Pan, C. L. Tang, B. Tao, J. Chen, Y. Bai, P. Chen, X. He, Z. Hao, H. Huang, and Q. Zhu, “A dynamic sediment model based on satellite-measured concentration of the surface suspended matter in the East China Sea,” J. Geophys. Res. 121(4), 2755–2768 (2016).
[Crossref]

Z. Mao, J. Chen, D. Pan, B. Tao, and Q. Zhu, “A regional remote sensing algorithm for total suspended matter in the East China Sea,” Remote Sens. Environ. 124, 819–831 (2012).
[Crossref]

Marani, M.

V. Volpe, S. Silvestri, and M. Marani, “Remote sensing retrieval of suspended sediment concentration in shallow waters,” Remote Sens. Environ. 115(1), 44–54 (2011).
[Crossref]

Martinolich, P. M.

R. P. Stumpf, R. A. Arnone, R. W. Gould, P. M. Martinolich, and V. Ransibrahmanakul, “A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters, SeaWiFS postlaunch,” Tech. Rep. Ser. (World Health Organ.) 22, 51–59 (2003).

Mazeran, C.

D. Doxaran, N. Lamquin, Y. J. Park, C. Mazeran, J. H. Ryu, M. Wang, and A. Poteau, “Retrieval of the seawater reflectance for suspended solids monitoring in the East China Sea using MODIS, MERIS and GOCI satellite data,” Remote Sens. Environ. 146, 36–48 (2014).
[Crossref]

Mckinley, G. A.

C. B. Mouw, H. Chen, G. A. Mckinley, S. Effler, D. O’Donnell, M. G. Perkins, and C. Strait, “Evaluation and optimization of bio-optical inversion algorithms for remote sensing of Lake Superior’s optical properties,” J. Geophys. Res. 118(4), 1696–1714 (2013).
[Crossref]

Miksic, E. Y.

S. B. Woźniak, D. Stramski, M. Stramska, R. A. Reynolds, V. M. Wright, E. Y. Miksic, M. Cichocka, and A. M. Cieplak, “Optical variability of seawater in relation to particle concentration, composition, and size distribution in the nearshore marine environment at Imperial Beach, California,” J. Geophys. Res. 115(C8), C08027 (2010).
[Crossref]

Minghelli, A.

M. Lei, A. Minghelli, M. Fraysse, I. Pairaud, R. Verney, and C. Pinazo, “Geostationary image simulation on coastal waters using hydrodynamic biogeochemical and sedimentary coupled models,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(11), 5209–5222 (2016).
[Crossref]

Mitchell, C.

C. Mitchell and A. Cunningham, “Remote sensing of spatio-temporal relationships between the partitioned absorption coefficients of phytoplankton cells and mineral particles and euphotic zone depths in a partially mixed shelf sea,” Remote Sens. Environ. 160, 193–205 (2015).
[Crossref]

Morel, A.

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48(2), 843–859 (2003).
[Crossref]

H. Loisel and A. Morel, “Non-isotropy of the upward radiance field in typical coastal (Case 2) waters,” Int. J. Remote Sens. 22(2-3), 275–295 (2001).
[Crossref]

A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem,” Appl. Opt. 35(24), 4850–4862 (1996).
[Crossref] [PubMed]

Moreno-Madriñán, M. J.

M. J. Moreno-Madriñán and A. M. Fischer, “Performance of the MODIS FLH algorithm in estuarine waters: a multi-year (2003–2010) analysis from Tampa Bay, Florida (USA),” Int. J. Remote Sens. 34(19), 6467–6483 (2013).
[Crossref]

Mouw, C. B.

C. B. Mouw, H. Chen, G. A. Mckinley, S. Effler, D. O’Donnell, M. G. Perkins, and C. Strait, “Evaluation and optimization of bio-optical inversion algorithms for remote sensing of Lake Superior’s optical properties,” J. Geophys. Res. 118(4), 1696–1714 (2013).
[Crossref]

Muller-Karger, F. E.

C. Hu, K. L. Carder, and F. E. Muller-Karger, “Atmospheric correction of SeaWiFS imagery over turbid coastal waters: A practical method,” Remote Sens. Environ. 74(2), 195–206 (2000).
[Crossref]

Nechad, B.

B. Nechad, K. G. Ruddick, and Y. Park, “Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters,” Remote Sens. Environ. 114(4), 854–866 (2010).
[Crossref]

O’Donnell, D.

C. B. Mouw, H. Chen, G. A. Mckinley, S. Effler, D. O’Donnell, M. G. Perkins, and C. Strait, “Evaluation and optimization of bio-optical inversion algorithms for remote sensing of Lake Superior’s optical properties,” J. Geophys. Res. 118(4), 1696–1714 (2013).
[Crossref]

Odermatt, D.

D. Odermatt, A. Gitelson, V. E. Brando, and M. Schaepman, “Review of constituent retrieval in optically deep and complex waters from satellite imagery,” Remote Sens. Environ. 118, 116–126 (2012).
[Crossref]

Ondrusek, M.

M. Ondrusek, E. Stengel, C. S. Kinkade, R. L. Vogel, P. Keegstra, C. Hunter, and C. Kim, “The development of a new optical total suspended matter algorithm for the Chesapeake Bay,” Remote Sens. Environ. 119, 243–254 (2012).
[Crossref]

Ovidio, F.

Pairaud, I.

M. Lei, A. Minghelli, M. Fraysse, I. Pairaud, R. Verney, and C. Pinazo, “Geostationary image simulation on coastal waters using hydrodynamic biogeochemical and sedimentary coupled models,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(11), 5209–5222 (2016).
[Crossref]

Pan, D.

Z. Mao, D. Pan, C. L. Tang, B. Tao, J. Chen, Y. Bai, P. Chen, X. He, Z. Hao, H. Huang, and Q. Zhu, “A dynamic sediment model based on satellite-measured concentration of the surface suspended matter in the East China Sea,” J. Geophys. Res. 121(4), 2755–2768 (2016).
[Crossref]

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C.-T. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ. 133, 225–239 (2013).
[Crossref]

Z. Mao, J. Chen, D. Pan, B. Tao, and Q. Zhu, “A regional remote sensing algorithm for total suspended matter in the East China Sea,” Remote Sens. Environ. 124, 819–831 (2012).
[Crossref]

Park, Y.

B. Nechad, K. G. Ruddick, and Y. Park, “Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters,” Remote Sens. Environ. 114(4), 854–866 (2010).
[Crossref]

Park, Y. J.

D. Doxaran, N. Lamquin, Y. J. Park, C. Mazeran, J. H. Ryu, M. Wang, and A. Poteau, “Retrieval of the seawater reflectance for suspended solids monitoring in the East China Sea using MODIS, MERIS and GOCI satellite data,” Remote Sens. Environ. 146, 36–48 (2014).
[Crossref]

J. H. Ryu, H. J. Han, S. Cho, Y. J. Park, and Y. H. Ahn, “Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS),” Ocean Sci. J. 47(3), 223–233 (2012).
[Crossref]

J. K. Choi, Y. J. Park, J. H. Ahn, H. S. Lim, J. Eom, and J. H. Ryu, “GOCI, the world’s first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity,” J. Geophys. Res. 117(C9), 9004 (2012).
[Crossref]

Perkins, M. G.

C. B. Mouw, H. Chen, G. A. Mckinley, S. Effler, D. O’Donnell, M. G. Perkins, and C. Strait, “Evaluation and optimization of bio-optical inversion algorithms for remote sensing of Lake Superior’s optical properties,” J. Geophys. Res. 118(4), 1696–1714 (2013).
[Crossref]

Peters, S. W. M.

A. G. Dekker, R. J. Vos, and S. W. M. Peters, “Comparison of remote sensing data, model results and in situ data for total suspended matter (TSM) in the southern Frisian lakes,” Sci. Total Environ. 268(1-3), 197–214 (2001).
[Crossref] [PubMed]

Pinazo, C.

M. Lei, A. Minghelli, M. Fraysse, I. Pairaud, R. Verney, and C. Pinazo, “Geostationary image simulation on coastal waters using hydrodynamic biogeochemical and sedimentary coupled models,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(11), 5209–5222 (2016).
[Crossref]

Poteau, A.

D. Doxaran, N. Lamquin, Y. J. Park, C. Mazeran, J. H. Ryu, M. Wang, and A. Poteau, “Retrieval of the seawater reflectance for suspended solids monitoring in the East China Sea using MODIS, MERIS and GOCI satellite data,” Remote Sens. Environ. 146, 36–48 (2014).
[Crossref]

Pulliainen, J.

S. Koponen, J. Attila, J. Pulliainen, K. Kallio, T. Pyhalahti, A. Lindfors, K. Rasmus, and M. Hallikainen, “A case study of airborne and satellite remote sensing of a spring bloom event in the Gulf of Finland,” Cont. Shelf Res. 27(2), 228–244 (2007).
[Crossref]

Pyhalahti, T.

S. Koponen, J. Attila, J. Pulliainen, K. Kallio, T. Pyhalahti, A. Lindfors, K. Rasmus, and M. Hallikainen, “A case study of airborne and satellite remote sensing of a spring bloom event in the Gulf of Finland,” Cont. Shelf Res. 27(2), 228–244 (2007).
[Crossref]

Qian, X.

Y. Zhang, S. Lin, J. Liu, X. Qian, and Y. Ge, “Time-series MODIS image-based retrieval and distribution analysis of total suspended matter concentrations in Lake Taihu (China),” Int. J. Environ. Res. Public Health 7(9), 3545–3560 (2010).
[Crossref] [PubMed]

Qin, B.

Y. Zhang, Y. Zhou, K. Shi, B. Qin, X. Yao, and Y. Zhang, “Optical properties and composition changes in chromophoric dissolved organic matter along trophic gradients: Implications for monitoring and assessing lake eutrophication,” Water Res. 131, 255–263 (2018).
[Crossref] [PubMed]

Y. Zhang, K. Shi, Y. Zhou, X. Liu, and B. Qin, “Monitoring the river plume induced by heavy rainfall events in large, shallow, Lake Taihu using MODIS 250 m imagery,” Remote Sens. Environ. 173, 109–121 (2016).
[Crossref]

K. Shi, Y. Zhang, G. Zhu, X. Liu, Y. Zhou, H. Xu, B. Qin, G. Liu, and Y. Li, “Long-term remote monitoring of total suspended matter concentration in Lake Taihu using 250m MODIS-Aqua data,” Remote Sens. Environ. 164, 43–56 (2015).
[Crossref]

Y. Zhang, K. Shi, X. Liu, Y. Zhou, and B. Qin, “Lake topography and wind waves determining seasonal-spatial dynamics of total suspended matter in turbid Lake Taihu, China: assessment using long-term high-resolution MERIS data,” PLoS One 9(5), e98055 (2014).
[Crossref] [PubMed]

B. Qin, P. Xu, Q. Wu, L. Luo, and Y. Zhang, “Environmental issues of Lake Taihu, China,” Hydrobiologia 581(1), 3–14 (2007).
[Crossref]

Y. Zhang, B. Zhang, X. Wang, J. Li, S. Feng, Q. Zhao, M. Liu, and B. Qin, “A study of absorption characteristics of chromophoric dissolved organic matter and particles in Lake Taihu, China,” Hydrobiologia 592(1), 105–120 (2007).
[Crossref]

Ransibrahmanakul, V.

R. P. Stumpf, R. A. Arnone, R. W. Gould, P. M. Martinolich, and V. Ransibrahmanakul, “A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters, SeaWiFS postlaunch,” Tech. Rep. Ser. (World Health Organ.) 22, 51–59 (2003).

Rasmus, K.

S. Koponen, J. Attila, J. Pulliainen, K. Kallio, T. Pyhalahti, A. Lindfors, K. Rasmus, and M. Hallikainen, “A case study of airborne and satellite remote sensing of a spring bloom event in the Gulf of Finland,” Cont. Shelf Res. 27(2), 228–244 (2007).
[Crossref]

Reifel, K. M.

A. A. Corcoran, K. M. Reifel, B. H. Jones, and R. F. Shipe, “Spatiotemporal development of physical, chemical, and biological characteristics of stormwater plumes in Santa Monica Bay, California (USA),” J. Sea Res. 63(2), 129–142 (2010).
[Crossref]

Reynolds, R. A.

S. B. Woźniak, D. Stramski, M. Stramska, R. A. Reynolds, V. M. Wright, E. Y. Miksic, M. Cichocka, and A. M. Cieplak, “Optical variability of seawater in relation to particle concentration, composition, and size distribution in the nearshore marine environment at Imperial Beach, California,” J. Geophys. Res. 115(C8), C08027 (2010).
[Crossref]

Rijkeboer, M.

Ruddick, K. G.

B. Nechad, K. G. Ruddick, and Y. Park, “Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters,” Remote Sens. Environ. 114(4), 854–866 (2010).
[Crossref]

K. G. Ruddick, F. Ovidio, and M. Rijkeboer, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Appl. Opt. 39(6), 897–912 (2000).
[Crossref] [PubMed]

Ryu, J. H.

D. Doxaran, N. Lamquin, Y. J. Park, C. Mazeran, J. H. Ryu, M. Wang, and A. Poteau, “Retrieval of the seawater reflectance for suspended solids monitoring in the East China Sea using MODIS, MERIS and GOCI satellite data,” Remote Sens. Environ. 146, 36–48 (2014).
[Crossref]

J. H. Ryu, H. J. Han, S. Cho, Y. J. Park, and Y. H. Ahn, “Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS),” Ocean Sci. J. 47(3), 223–233 (2012).
[Crossref]

J. K. Choi, Y. J. Park, J. H. Ahn, H. S. Lim, J. Eom, and J. H. Ryu, “GOCI, the world’s first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity,” J. Geophys. Res. 117(C9), 9004 (2012).
[Crossref]

Schaepman, M.

D. Odermatt, A. Gitelson, V. E. Brando, and M. Schaepman, “Review of constituent retrieval in optically deep and complex waters from satellite imagery,” Remote Sens. Environ. 118, 116–126 (2012).
[Crossref]

Shi, K.

Y. Zhang, Y. Zhou, K. Shi, B. Qin, X. Yao, and Y. Zhang, “Optical properties and composition changes in chromophoric dissolved organic matter along trophic gradients: Implications for monitoring and assessing lake eutrophication,” Water Res. 131, 255–263 (2018).
[Crossref] [PubMed]

X. Hou, L. Feng, H. Duan, X. Chen, D. Sun, and K. Shi, “Fifteen-year monitoring of the turbidity dynamics in large lakes and reservoirs in the middle and lower basin of the Yangtze River, China,” Remote Sens. Environ. 190, 107–121 (2017).
[Crossref]

Y. Zhang, Y. Zhang, K. Shi, Y. Zha, Y. Zhou, and M. Liu, “A Landsat 8 OLI-based, semianalytical model for estimating the total suspended matter concentration in the slightly turbid Xin’anjiang Reservoir (China),” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(1), 398–413 (2016).
[Crossref]

Y. Zhang, K. Shi, Y. Zhou, X. Liu, and B. Qin, “Monitoring the river plume induced by heavy rainfall events in large, shallow, Lake Taihu using MODIS 250 m imagery,” Remote Sens. Environ. 173, 109–121 (2016).
[Crossref]

K. Shi, Y. Zhang, G. Zhu, X. Liu, Y. Zhou, H. Xu, B. Qin, G. Liu, and Y. Li, “Long-term remote monitoring of total suspended matter concentration in Lake Taihu using 250m MODIS-Aqua data,” Remote Sens. Environ. 164, 43–56 (2015).
[Crossref]

Y. Zhang, K. Shi, X. Liu, Y. Zhou, and B. Qin, “Lake topography and wind waves determining seasonal-spatial dynamics of total suspended matter in turbid Lake Taihu, China: assessment using long-term high-resolution MERIS data,” PLoS One 9(5), e98055 (2014).
[Crossref] [PubMed]

Shi, W.

Shipe, R. F.

A. A. Corcoran, K. M. Reifel, B. H. Jones, and R. F. Shipe, “Spatiotemporal development of physical, chemical, and biological characteristics of stormwater plumes in Santa Monica Bay, California (USA),” J. Sea Res. 63(2), 129–142 (2010).
[Crossref]

Silvestri, S.

V. Volpe, S. Silvestri, and M. Marani, “Remote sensing retrieval of suspended sediment concentration in shallow waters,” Remote Sens. Environ. 115(1), 44–54 (2011).
[Crossref]

Siswanto, E.

areE. Siswanto, J. Tang, H. Yamaguchi, Y.-H. Ahn, J. Ishizaka, S. Yoo, S.-W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang, and H. Kawamura, “Empirical ocean-color algorithms to retrieve chlorophyll-, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas,” J. Oceanogr. 67(5), 627–650 (2011).
[Crossref]

Smith, R. C.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

Song, Q.

L. Feng, C. Hu, X. Chen, and Q. Song, “Influence of the Three Gorges Dam on total suspended matters in the Yangtze Estuary and its adjacent coastal waters: Observations from MODIS,” Remote Sens. Environ. 140, 779–788 (2014).
[Crossref]

Song, Q. T.

M. Zhang, J. Tang, Q. Dong, Q. T. Song, and J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ. 114(2), 392–403 (2010).
[Crossref]

Stengel, E.

M. Ondrusek, E. Stengel, C. S. Kinkade, R. L. Vogel, P. Keegstra, C. Hunter, and C. Kim, “The development of a new optical total suspended matter algorithm for the Chesapeake Bay,” Remote Sens. Environ. 119, 243–254 (2012).
[Crossref]

Strait, C.

C. B. Mouw, H. Chen, G. A. Mckinley, S. Effler, D. O’Donnell, M. G. Perkins, and C. Strait, “Evaluation and optimization of bio-optical inversion algorithms for remote sensing of Lake Superior’s optical properties,” J. Geophys. Res. 118(4), 1696–1714 (2013).
[Crossref]

Stramska, M.

S. B. Woźniak, D. Stramski, M. Stramska, R. A. Reynolds, V. M. Wright, E. Y. Miksic, M. Cichocka, and A. M. Cieplak, “Optical variability of seawater in relation to particle concentration, composition, and size distribution in the nearshore marine environment at Imperial Beach, California,” J. Geophys. Res. 115(C8), C08027 (2010).
[Crossref]

Stramski, D.

S. B. Woźniak, D. Stramski, M. Stramska, R. A. Reynolds, V. M. Wright, E. Y. Miksic, M. Cichocka, and A. M. Cieplak, “Optical variability of seawater in relation to particle concentration, composition, and size distribution in the nearshore marine environment at Imperial Beach, California,” J. Geophys. Res. 115(C8), C08027 (2010).
[Crossref]

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48(2), 843–859 (2003).
[Crossref]

M. Babin and D. Stramski, “Light absorption by aquatic particles in the near‐infrared spectral region,” Limnol. Oceanogr. 47(3), 911–915 (2002).
[Crossref]

Strömbeck, N.

C. Giardino, V. E. Brando, A. G. Dekker, N. Strömbeck, and G. Candiani, “Assessment of water quality in Lake Garda (Italy) using Hyperion,” Remote Sens. Environ. 109(2), 183–195 (2007).
[Crossref]

Stumpf, R. P.

R. P. Stumpf, R. A. Arnone, R. W. Gould, P. M. Martinolich, and V. Ransibrahmanakul, “A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters, SeaWiFS postlaunch,” Tech. Rep. Ser. (World Health Organ.) 22, 51–59 (2003).

Sun, D.

X. Hou, L. Feng, H. Duan, X. Chen, D. Sun, and K. Shi, “Fifteen-year monitoring of the turbidity dynamics in large lakes and reservoirs in the middle and lower basin of the Yangtze River, China,” Remote Sens. Environ. 190, 107–121 (2017).
[Crossref]

D. Sun, Y. Li, Q. Wang, H. Lv, C. Le, C. Huang, and S. Gong, “Partitioning particulate scattering and absorption into contributions of phytoplankton and non-algal particles in winter in Lake Taihu (China),” Hydrobiologia 644(1), 337–349 (2010).
[Crossref]

Y. Zha, D. Sun, B. Yin, C. F. Le, and Y. M. Li, “Validation of a quasi-analytical algorithm for highly turbid eutrophic water of Meiliang Bay in Taihu Lake, China,” IEEE Trans. Geosci. Remote Sens. 47(8), 2492–2500 (2009).
[Crossref]

Sun, Z.

Tang, C. L.

Z. Mao, D. Pan, C. L. Tang, B. Tao, J. Chen, Y. Bai, P. Chen, X. He, Z. Hao, H. Huang, and Q. Zhu, “A dynamic sediment model based on satellite-measured concentration of the surface suspended matter in the East China Sea,” J. Geophys. Res. 121(4), 2755–2768 (2016).
[Crossref]

Tang, J.

areE. Siswanto, J. Tang, H. Yamaguchi, Y.-H. Ahn, J. Ishizaka, S. Yoo, S.-W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang, and H. Kawamura, “Empirical ocean-color algorithms to retrieve chlorophyll-, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas,” J. Oceanogr. 67(5), 627–650 (2011).
[Crossref]

M. Zhang, J. Tang, Q. Dong, Q. T. Song, and J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ. 114(2), 392–403 (2010).
[Crossref]

Tao, B.

Z. Mao, D. Pan, C. L. Tang, B. Tao, J. Chen, Y. Bai, P. Chen, X. He, Z. Hao, H. Huang, and Q. Zhu, “A dynamic sediment model based on satellite-measured concentration of the surface suspended matter in the East China Sea,” J. Geophys. Res. 121(4), 2755–2768 (2016).
[Crossref]

Z. Mao, J. Chen, D. Pan, B. Tao, and Q. Zhu, “A regional remote sensing algorithm for total suspended matter in the East China Sea,” Remote Sens. Environ. 124, 819–831 (2012).
[Crossref]

Troy, A.

W. Zhou, S. Wang, Y. Zhou, and A. Troy, “Mapping the concentrations of total suspended matter in Lake Taihu, China, using Landsat‐5 TM data,” Int. J. Remote Sens. 27(6), 1177–1191 (2006).
[Crossref]

Verney, R.

M. Lei, A. Minghelli, M. Fraysse, I. Pairaud, R. Verney, and C. Pinazo, “Geostationary image simulation on coastal waters using hydrodynamic biogeochemical and sedimentary coupled models,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(11), 5209–5222 (2016).
[Crossref]

Vogel, R. L.

M. Ondrusek, E. Stengel, C. S. Kinkade, R. L. Vogel, P. Keegstra, C. Hunter, and C. Kim, “The development of a new optical total suspended matter algorithm for the Chesapeake Bay,” Remote Sens. Environ. 119, 243–254 (2012).
[Crossref]

Volpe, V.

V. Volpe, S. Silvestri, and M. Marani, “Remote sensing retrieval of suspended sediment concentration in shallow waters,” Remote Sens. Environ. 115(1), 44–54 (2011).
[Crossref]

Vos, R. J.

A. G. Dekker, R. J. Vos, and S. W. M. Peters, “Comparison of remote sensing data, model results and in situ data for total suspended matter (TSM) in the southern Frisian lakes,” Sci. Total Environ. 268(1-3), 197–214 (2001).
[Crossref] [PubMed]

Wang, G.

Wang, M.

D. Doxaran, N. Lamquin, Y. J. Park, C. Mazeran, J. H. Ryu, M. Wang, and A. Poteau, “Retrieval of the seawater reflectance for suspended solids monitoring in the East China Sea using MODIS, MERIS and GOCI satellite data,” Remote Sens. Environ. 146, 36–48 (2014).
[Crossref]

M. Wang, W. Shi, and L. Jiang, “Atmospheric correction using near-infrared bands for satellite ocean color data processing in the turbid western Pacific region,” Opt. Express 20(2), 741–753 (2012).
[Crossref] [PubMed]

Wang, Q.

D. Sun, Y. Li, Q. Wang, H. Lv, C. Le, C. Huang, and S. Gong, “Partitioning particulate scattering and absorption into contributions of phytoplankton and non-algal particles in winter in Lake Taihu (China),” Hydrobiologia 644(1), 337–349 (2010).
[Crossref]

Wang, S.

W. Zhou, S. Wang, Y. Zhou, and A. Troy, “Mapping the concentrations of total suspended matter in Lake Taihu, China, using Landsat‐5 TM data,” Int. J. Remote Sens. 27(6), 1177–1191 (2006).
[Crossref]

Wang, X.

Y. Zhang, B. Zhang, X. Wang, J. Li, S. Feng, Q. Zhao, M. Liu, and B. Qin, “A study of absorption characteristics of chromophoric dissolved organic matter and particles in Lake Taihu, China,” Hydrobiologia 592(1), 105–120 (2007).
[Crossref]

Wang, Z.

D. Xie, Z. Wang, S. Gao, and H. J. De Vriend, “Modeling the tidal channel morphodynamics in a macro-tidal embayment, Hangzhou Bay, China,” Cont. Shelf Res. 29(15), 1757–1767 (2009).
[Crossref]

Wozniak, S. B.

S. B. Woźniak, D. Stramski, M. Stramska, R. A. Reynolds, V. M. Wright, E. Y. Miksic, M. Cichocka, and A. M. Cieplak, “Optical variability of seawater in relation to particle concentration, composition, and size distribution in the nearshore marine environment at Imperial Beach, California,” J. Geophys. Res. 115(C8), C08027 (2010).
[Crossref]

Wright, V. M.

S. B. Woźniak, D. Stramski, M. Stramska, R. A. Reynolds, V. M. Wright, E. Y. Miksic, M. Cichocka, and A. M. Cieplak, “Optical variability of seawater in relation to particle concentration, composition, and size distribution in the nearshore marine environment at Imperial Beach, California,” J. Geophys. Res. 115(C8), C08027 (2010).
[Crossref]

Wu, Q.

B. Qin, P. Xu, Q. Wu, L. Luo, and Y. Zhang, “Environmental issues of Lake Taihu, China,” Hydrobiologia 581(1), 3–14 (2007).
[Crossref]

Xie, D.

D. Xie, Z. Wang, S. Gao, and H. J. De Vriend, “Modeling the tidal channel morphodynamics in a macro-tidal embayment, Hangzhou Bay, China,” Cont. Shelf Res. 29(15), 1757–1767 (2009).
[Crossref]

Xu, H.

K. Shi, Y. Zhang, G. Zhu, X. Liu, Y. Zhou, H. Xu, B. Qin, G. Liu, and Y. Li, “Long-term remote monitoring of total suspended matter concentration in Lake Taihu using 250m MODIS-Aqua data,” Remote Sens. Environ. 164, 43–56 (2015).
[Crossref]

Xu, P.

B. Qin, P. Xu, Q. Wu, L. Luo, and Y. Zhang, “Environmental issues of Lake Taihu, China,” Hydrobiologia 581(1), 3–14 (2007).
[Crossref]

Xu, Z.

Yamada, K.

areE. Siswanto, J. Tang, H. Yamaguchi, Y.-H. Ahn, J. Ishizaka, S. Yoo, S.-W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang, and H. Kawamura, “Empirical ocean-color algorithms to retrieve chlorophyll-, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas,” J. Oceanogr. 67(5), 627–650 (2011).
[Crossref]

Yamaguchi, H.

areE. Siswanto, J. Tang, H. Yamaguchi, Y.-H. Ahn, J. Ishizaka, S. Yoo, S.-W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang, and H. Kawamura, “Empirical ocean-color algorithms to retrieve chlorophyll-, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas,” J. Oceanogr. 67(5), 627–650 (2011).
[Crossref]

Yang, H.

C. Huang, H. Yang, A. X. Zhu, M. Zhang, H. Lü, T. Huang, J. Zou, and Y. Li, “Evaluation of the Geostationary Ocean Color Imager (GOCI) to monitor the dynamic characteristics of suspension sediment in Taihu Lake,” Int. J. Remote Sens. 36(15), 3859–3874 (2015).
[Crossref]

Yao, X.

Y. Zhang, Y. Zhou, K. Shi, B. Qin, X. Yao, and Y. Zhang, “Optical properties and composition changes in chromophoric dissolved organic matter along trophic gradients: Implications for monitoring and assessing lake eutrophication,” Water Res. 131, 255–263 (2018).
[Crossref] [PubMed]

Yin, B.

Y. Zha, D. Sun, B. Yin, C. F. Le, and Y. M. Li, “Validation of a quasi-analytical algorithm for highly turbid eutrophic water of Meiliang Bay in Taihu Lake, China,” IEEE Trans. Geosci. Remote Sens. 47(8), 2492–2500 (2009).
[Crossref]

Yoo, S.

areE. Siswanto, J. Tang, H. Yamaguchi, Y.-H. Ahn, J. Ishizaka, S. Yoo, S.-W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang, and H. Kawamura, “Empirical ocean-color algorithms to retrieve chlorophyll-, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas,” J. Oceanogr. 67(5), 627–650 (2011).
[Crossref]

Zha, Y.

Y. Zhang, Y. Zhang, K. Shi, Y. Zha, Y. Zhou, and M. Liu, “A Landsat 8 OLI-based, semianalytical model for estimating the total suspended matter concentration in the slightly turbid Xin’anjiang Reservoir (China),” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(1), 398–413 (2016).
[Crossref]

Y. Zha, D. Sun, B. Yin, C. F. Le, and Y. M. Li, “Validation of a quasi-analytical algorithm for highly turbid eutrophic water of Meiliang Bay in Taihu Lake, China,” IEEE Trans. Geosci. Remote Sens. 47(8), 2492–2500 (2009).
[Crossref]

Zhang, B.

Y. Zhang, B. Zhang, X. Wang, J. Li, S. Feng, Q. Zhao, M. Liu, and B. Qin, “A study of absorption characteristics of chromophoric dissolved organic matter and particles in Lake Taihu, China,” Hydrobiologia 592(1), 105–120 (2007).
[Crossref]

Zhang, M.

C. Huang, H. Yang, A. X. Zhu, M. Zhang, H. Lü, T. Huang, J. Zou, and Y. Li, “Evaluation of the Geostationary Ocean Color Imager (GOCI) to monitor the dynamic characteristics of suspension sediment in Taihu Lake,” Int. J. Remote Sens. 36(15), 3859–3874 (2015).
[Crossref]

M. Zhang, J. Tang, Q. Dong, Q. T. Song, and J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ. 114(2), 392–403 (2010).
[Crossref]

Zhang, Y.

Y. Zhang, Y. Zhou, K. Shi, B. Qin, X. Yao, and Y. Zhang, “Optical properties and composition changes in chromophoric dissolved organic matter along trophic gradients: Implications for monitoring and assessing lake eutrophication,” Water Res. 131, 255–263 (2018).
[Crossref] [PubMed]

Y. Zhang, Y. Zhou, K. Shi, B. Qin, X. Yao, and Y. Zhang, “Optical properties and composition changes in chromophoric dissolved organic matter along trophic gradients: Implications for monitoring and assessing lake eutrophication,” Water Res. 131, 255–263 (2018).
[Crossref] [PubMed]

Y. Zhang, Y. Zhang, K. Shi, Y. Zha, Y. Zhou, and M. Liu, “A Landsat 8 OLI-based, semianalytical model for estimating the total suspended matter concentration in the slightly turbid Xin’anjiang Reservoir (China),” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(1), 398–413 (2016).
[Crossref]

Y. Zhang, Y. Zhang, K. Shi, Y. Zha, Y. Zhou, and M. Liu, “A Landsat 8 OLI-based, semianalytical model for estimating the total suspended matter concentration in the slightly turbid Xin’anjiang Reservoir (China),” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(1), 398–413 (2016).
[Crossref]

Y. Zhang, K. Shi, Y. Zhou, X. Liu, and B. Qin, “Monitoring the river plume induced by heavy rainfall events in large, shallow, Lake Taihu using MODIS 250 m imagery,” Remote Sens. Environ. 173, 109–121 (2016).
[Crossref]

K. Shi, Y. Zhang, G. Zhu, X. Liu, Y. Zhou, H. Xu, B. Qin, G. Liu, and Y. Li, “Long-term remote monitoring of total suspended matter concentration in Lake Taihu using 250m MODIS-Aqua data,” Remote Sens. Environ. 164, 43–56 (2015).
[Crossref]

Y. Zhang, K. Shi, X. Liu, Y. Zhou, and B. Qin, “Lake topography and wind waves determining seasonal-spatial dynamics of total suspended matter in turbid Lake Taihu, China: assessment using long-term high-resolution MERIS data,” PLoS One 9(5), e98055 (2014).
[Crossref] [PubMed]

Y. Zhang, S. Lin, J. Liu, X. Qian, and Y. Ge, “Time-series MODIS image-based retrieval and distribution analysis of total suspended matter concentrations in Lake Taihu (China),” Int. J. Environ. Res. Public Health 7(9), 3545–3560 (2010).
[Crossref] [PubMed]

Y. Zhang, B. Zhang, X. Wang, J. Li, S. Feng, Q. Zhao, M. Liu, and B. Qin, “A study of absorption characteristics of chromophoric dissolved organic matter and particles in Lake Taihu, China,” Hydrobiologia 592(1), 105–120 (2007).
[Crossref]

B. Qin, P. Xu, Q. Wu, L. Luo, and Y. Zhang, “Environmental issues of Lake Taihu, China,” Hydrobiologia 581(1), 3–14 (2007).
[Crossref]

Zhao, J.

Zhao, Q.

Y. Zhang, B. Zhang, X. Wang, J. Li, S. Feng, Q. Zhao, M. Liu, and B. Qin, “A study of absorption characteristics of chromophoric dissolved organic matter and particles in Lake Taihu, China,” Hydrobiologia 592(1), 105–120 (2007).
[Crossref]

Zheng, G.

G. Zheng and P. M. Digiacomo, “Uncertainties and applications of satellite-derived coastal water quality products,” Prog. Oceanogr. 159, 45–72 (2017).
[Crossref]

Zhou, W.

W. Zhou, G. Wang, Z. Sun, W. Cao, Z. Xu, S. Hu, and J. Zhao, “Variations in the optical scattering properties of phytoplankton cultures,” Opt. Express 20(10), 11189–11206 (2012).
[Crossref] [PubMed]

W. Zhou, S. Wang, Y. Zhou, and A. Troy, “Mapping the concentrations of total suspended matter in Lake Taihu, China, using Landsat‐5 TM data,” Int. J. Remote Sens. 27(6), 1177–1191 (2006).
[Crossref]

Zhou, Y.

Y. Zhang, Y. Zhou, K. Shi, B. Qin, X. Yao, and Y. Zhang, “Optical properties and composition changes in chromophoric dissolved organic matter along trophic gradients: Implications for monitoring and assessing lake eutrophication,” Water Res. 131, 255–263 (2018).
[Crossref] [PubMed]

Y. Zhang, Y. Zhang, K. Shi, Y. Zha, Y. Zhou, and M. Liu, “A Landsat 8 OLI-based, semianalytical model for estimating the total suspended matter concentration in the slightly turbid Xin’anjiang Reservoir (China),” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(1), 398–413 (2016).
[Crossref]

Y. Zhang, K. Shi, Y. Zhou, X. Liu, and B. Qin, “Monitoring the river plume induced by heavy rainfall events in large, shallow, Lake Taihu using MODIS 250 m imagery,” Remote Sens. Environ. 173, 109–121 (2016).
[Crossref]

K. Shi, Y. Zhang, G. Zhu, X. Liu, Y. Zhou, H. Xu, B. Qin, G. Liu, and Y. Li, “Long-term remote monitoring of total suspended matter concentration in Lake Taihu using 250m MODIS-Aqua data,” Remote Sens. Environ. 164, 43–56 (2015).
[Crossref]

Y. Zhang, K. Shi, X. Liu, Y. Zhou, and B. Qin, “Lake topography and wind waves determining seasonal-spatial dynamics of total suspended matter in turbid Lake Taihu, China: assessment using long-term high-resolution MERIS data,” PLoS One 9(5), e98055 (2014).
[Crossref] [PubMed]

W. Zhou, S. Wang, Y. Zhou, and A. Troy, “Mapping the concentrations of total suspended matter in Lake Taihu, China, using Landsat‐5 TM data,” Int. J. Remote Sens. 27(6), 1177–1191 (2006).
[Crossref]

Zhu, A. X.

C. Huang, H. Yang, A. X. Zhu, M. Zhang, H. Lü, T. Huang, J. Zou, and Y. Li, “Evaluation of the Geostationary Ocean Color Imager (GOCI) to monitor the dynamic characteristics of suspension sediment in Taihu Lake,” Int. J. Remote Sens. 36(15), 3859–3874 (2015).
[Crossref]

Zhu, G.

K. Shi, Y. Zhang, G. Zhu, X. Liu, Y. Zhou, H. Xu, B. Qin, G. Liu, and Y. Li, “Long-term remote monitoring of total suspended matter concentration in Lake Taihu using 250m MODIS-Aqua data,” Remote Sens. Environ. 164, 43–56 (2015).
[Crossref]

Zhu, Q.

Z. Mao, D. Pan, C. L. Tang, B. Tao, J. Chen, Y. Bai, P. Chen, X. He, Z. Hao, H. Huang, and Q. Zhu, “A dynamic sediment model based on satellite-measured concentration of the surface suspended matter in the East China Sea,” J. Geophys. Res. 121(4), 2755–2768 (2016).
[Crossref]

Z. Mao, J. Chen, D. Pan, B. Tao, and Q. Zhu, “A regional remote sensing algorithm for total suspended matter in the East China Sea,” Remote Sens. Environ. 124, 819–831 (2012).
[Crossref]

Zou, J.

C. Huang, H. Yang, A. X. Zhu, M. Zhang, H. Lü, T. Huang, J. Zou, and Y. Li, “Evaluation of the Geostationary Ocean Color Imager (GOCI) to monitor the dynamic characteristics of suspension sediment in Taihu Lake,” Int. J. Remote Sens. 36(15), 3859–3874 (2015).
[Crossref]

Appl. Opt. (3)

Cont. Shelf Res. (2)

S. Koponen, J. Attila, J. Pulliainen, K. Kallio, T. Pyhalahti, A. Lindfors, K. Rasmus, and M. Hallikainen, “A case study of airborne and satellite remote sensing of a spring bloom event in the Gulf of Finland,” Cont. Shelf Res. 27(2), 228–244 (2007).
[Crossref]

D. Xie, Z. Wang, S. Gao, and H. J. De Vriend, “Modeling the tidal channel morphodynamics in a macro-tidal embayment, Hangzhou Bay, China,” Cont. Shelf Res. 29(15), 1757–1767 (2009).
[Crossref]

Hydrobiologia (3)

Y. Zhang, B. Zhang, X. Wang, J. Li, S. Feng, Q. Zhao, M. Liu, and B. Qin, “A study of absorption characteristics of chromophoric dissolved organic matter and particles in Lake Taihu, China,” Hydrobiologia 592(1), 105–120 (2007).
[Crossref]

B. Qin, P. Xu, Q. Wu, L. Luo, and Y. Zhang, “Environmental issues of Lake Taihu, China,” Hydrobiologia 581(1), 3–14 (2007).
[Crossref]

D. Sun, Y. Li, Q. Wang, H. Lv, C. Le, C. Huang, and S. Gong, “Partitioning particulate scattering and absorption into contributions of phytoplankton and non-algal particles in winter in Lake Taihu (China),” Hydrobiologia 644(1), 337–349 (2010).
[Crossref]

IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. (2)

M. Lei, A. Minghelli, M. Fraysse, I. Pairaud, R. Verney, and C. Pinazo, “Geostationary image simulation on coastal waters using hydrodynamic biogeochemical and sedimentary coupled models,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(11), 5209–5222 (2016).
[Crossref]

Y. Zhang, Y. Zhang, K. Shi, Y. Zha, Y. Zhou, and M. Liu, “A Landsat 8 OLI-based, semianalytical model for estimating the total suspended matter concentration in the slightly turbid Xin’anjiang Reservoir (China),” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(1), 398–413 (2016).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (1)

Y. Zha, D. Sun, B. Yin, C. F. Le, and Y. M. Li, “Validation of a quasi-analytical algorithm for highly turbid eutrophic water of Meiliang Bay in Taihu Lake, China,” IEEE Trans. Geosci. Remote Sens. 47(8), 2492–2500 (2009).
[Crossref]

Int. J. Environ. Res. Public Health (1)

Y. Zhang, S. Lin, J. Liu, X. Qian, and Y. Ge, “Time-series MODIS image-based retrieval and distribution analysis of total suspended matter concentrations in Lake Taihu (China),” Int. J. Environ. Res. Public Health 7(9), 3545–3560 (2010).
[Crossref] [PubMed]

Int. J. Remote Sens. (5)

W. Zhou, S. Wang, Y. Zhou, and A. Troy, “Mapping the concentrations of total suspended matter in Lake Taihu, China, using Landsat‐5 TM data,” Int. J. Remote Sens. 27(6), 1177–1191 (2006).
[Crossref]

C. Huang, H. Yang, A. X. Zhu, M. Zhang, H. Lü, T. Huang, J. Zou, and Y. Li, “Evaluation of the Geostationary Ocean Color Imager (GOCI) to monitor the dynamic characteristics of suspension sediment in Taihu Lake,” Int. J. Remote Sens. 36(15), 3859–3874 (2015).
[Crossref]

M. J. Moreno-Madriñán and A. M. Fischer, “Performance of the MODIS FLH algorithm in estuarine waters: a multi-year (2003–2010) analysis from Tampa Bay, Florida (USA),” Int. J. Remote Sens. 34(19), 6467–6483 (2013).
[Crossref]

H. Loisel and A. Morel, “Non-isotropy of the upward radiance field in typical coastal (Case 2) waters,” Int. J. Remote Sens. 22(2-3), 275–295 (2001).
[Crossref]

C. E. Binding, J. H. Jerome, R. P. Bukata, and W. G. Booty, “Suspended particulate matter in Lake Erie derived from MODIS aquatic colour imagery,” Int. J. Remote Sens. 31(19), 5239–5255 (2010).
[Crossref]

J. Geophys. Res. (5)

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

S. B. Woźniak, D. Stramski, M. Stramska, R. A. Reynolds, V. M. Wright, E. Y. Miksic, M. Cichocka, and A. M. Cieplak, “Optical variability of seawater in relation to particle concentration, composition, and size distribution in the nearshore marine environment at Imperial Beach, California,” J. Geophys. Res. 115(C8), C08027 (2010).
[Crossref]

J. K. Choi, Y. J. Park, J. H. Ahn, H. S. Lim, J. Eom, and J. H. Ryu, “GOCI, the world’s first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity,” J. Geophys. Res. 117(C9), 9004 (2012).
[Crossref]

Z. Mao, D. Pan, C. L. Tang, B. Tao, J. Chen, Y. Bai, P. Chen, X. He, Z. Hao, H. Huang, and Q. Zhu, “A dynamic sediment model based on satellite-measured concentration of the surface suspended matter in the East China Sea,” J. Geophys. Res. 121(4), 2755–2768 (2016).
[Crossref]

C. B. Mouw, H. Chen, G. A. Mckinley, S. Effler, D. O’Donnell, M. G. Perkins, and C. Strait, “Evaluation and optimization of bio-optical inversion algorithms for remote sensing of Lake Superior’s optical properties,” J. Geophys. Res. 118(4), 1696–1714 (2013).
[Crossref]

J. Oceanogr. (1)

areE. Siswanto, J. Tang, H. Yamaguchi, Y.-H. Ahn, J. Ishizaka, S. Yoo, S.-W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang, and H. Kawamura, “Empirical ocean-color algorithms to retrieve chlorophyll-, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas,” J. Oceanogr. 67(5), 627–650 (2011).
[Crossref]

J. Sea Res. (1)

A. A. Corcoran, K. M. Reifel, B. H. Jones, and R. F. Shipe, “Spatiotemporal development of physical, chemical, and biological characteristics of stormwater plumes in Santa Monica Bay, California (USA),” J. Sea Res. 63(2), 129–142 (2010).
[Crossref]

Limnol. Oceanogr. (3)

C. D. Clark, L. P. Litz, and S. B. Grant, “Saltmarshes as a source of chromophoric dissolved organic matter (CDOM) to Southern California coastal waters,” Limnol. Oceanogr. 53(5), 1923–1933 (2008).
[Crossref]

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48(2), 843–859 (2003).
[Crossref]

M. Babin and D. Stramski, “Light absorption by aquatic particles in the near‐infrared spectral region,” Limnol. Oceanogr. 47(3), 911–915 (2002).
[Crossref]

Ocean Sci. J. (1)

J. H. Ryu, H. J. Han, S. Cho, Y. J. Park, and Y. H. Ahn, “Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS),” Ocean Sci. J. 47(3), 223–233 (2012).
[Crossref]

Opt. Express (2)

PLoS One (1)

Y. Zhang, K. Shi, X. Liu, Y. Zhou, and B. Qin, “Lake topography and wind waves determining seasonal-spatial dynamics of total suspended matter in turbid Lake Taihu, China: assessment using long-term high-resolution MERIS data,” PLoS One 9(5), e98055 (2014).
[Crossref] [PubMed]

Prog. Oceanogr. (1)

G. Zheng and P. M. Digiacomo, “Uncertainties and applications of satellite-derived coastal water quality products,” Prog. Oceanogr. 159, 45–72 (2017).
[Crossref]

Remote Sens. Environ. (16)

C. Mitchell and A. Cunningham, “Remote sensing of spatio-temporal relationships between the partitioned absorption coefficients of phytoplankton cells and mineral particles and euphotic zone depths in a partially mixed shelf sea,” Remote Sens. Environ. 160, 193–205 (2015).
[Crossref]

D. Odermatt, A. Gitelson, V. E. Brando, and M. Schaepman, “Review of constituent retrieval in optically deep and complex waters from satellite imagery,” Remote Sens. Environ. 118, 116–126 (2012).
[Crossref]

L. Feng, C. Hu, X. Chen, and Q. Song, “Influence of the Three Gorges Dam on total suspended matters in the Yangtze Estuary and its adjacent coastal waters: Observations from MODIS,” Remote Sens. Environ. 140, 779–788 (2014).
[Crossref]

Y. Zhang, K. Shi, Y. Zhou, X. Liu, and B. Qin, “Monitoring the river plume induced by heavy rainfall events in large, shallow, Lake Taihu using MODIS 250 m imagery,” Remote Sens. Environ. 173, 109–121 (2016).
[Crossref]

K. Shi, Y. Zhang, G. Zhu, X. Liu, Y. Zhou, H. Xu, B. Qin, G. Liu, and Y. Li, “Long-term remote monitoring of total suspended matter concentration in Lake Taihu using 250m MODIS-Aqua data,” Remote Sens. Environ. 164, 43–56 (2015).
[Crossref]

M. Ondrusek, E. Stengel, C. S. Kinkade, R. L. Vogel, P. Keegstra, C. Hunter, and C. Kim, “The development of a new optical total suspended matter algorithm for the Chesapeake Bay,” Remote Sens. Environ. 119, 243–254 (2012).
[Crossref]

C. Giardino, V. E. Brando, A. G. Dekker, N. Strömbeck, and G. Candiani, “Assessment of water quality in Lake Garda (Italy) using Hyperion,” Remote Sens. Environ. 109(2), 183–195 (2007).
[Crossref]

V. Volpe, S. Silvestri, and M. Marani, “Remote sensing retrieval of suspended sediment concentration in shallow waters,” Remote Sens. Environ. 115(1), 44–54 (2011).
[Crossref]

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C.-T. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ. 133, 225–239 (2013).
[Crossref]

D. Doxaran, J. M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters,” Remote Sens. Environ. 81(1), 149–161 (2002).
[Crossref]

C. Hu, K. L. Carder, and F. E. Muller-Karger, “Atmospheric correction of SeaWiFS imagery over turbid coastal waters: A practical method,” Remote Sens. Environ. 74(2), 195–206 (2000).
[Crossref]

B. Nechad, K. G. Ruddick, and Y. Park, “Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters,” Remote Sens. Environ. 114(4), 854–866 (2010).
[Crossref]

D. Doxaran, N. Lamquin, Y. J. Park, C. Mazeran, J. H. Ryu, M. Wang, and A. Poteau, “Retrieval of the seawater reflectance for suspended solids monitoring in the East China Sea using MODIS, MERIS and GOCI satellite data,” Remote Sens. Environ. 146, 36–48 (2014).
[Crossref]

X. Hou, L. Feng, H. Duan, X. Chen, D. Sun, and K. Shi, “Fifteen-year monitoring of the turbidity dynamics in large lakes and reservoirs in the middle and lower basin of the Yangtze River, China,” Remote Sens. Environ. 190, 107–121 (2017).
[Crossref]

Z. Mao, J. Chen, D. Pan, B. Tao, and Q. Zhu, “A regional remote sensing algorithm for total suspended matter in the East China Sea,” Remote Sens. Environ. 124, 819–831 (2012).
[Crossref]

M. Zhang, J. Tang, Q. Dong, Q. T. Song, and J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ. 114(2), 392–403 (2010).
[Crossref]

Sci. Total Environ. (1)

A. G. Dekker, R. J. Vos, and S. W. M. Peters, “Comparison of remote sensing data, model results and in situ data for total suspended matter (TSM) in the southern Frisian lakes,” Sci. Total Environ. 268(1-3), 197–214 (2001).
[Crossref] [PubMed]

Tech. Rep. Ser. (World Health Organ.) (1)

R. P. Stumpf, R. A. Arnone, R. W. Gould, P. M. Martinolich, and V. Ransibrahmanakul, “A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters, SeaWiFS postlaunch,” Tech. Rep. Ser. (World Health Organ.) 22, 51–59 (2003).

Water Res. (1)

Y. Zhang, Y. Zhou, K. Shi, B. Qin, X. Yao, and Y. Zhang, “Optical properties and composition changes in chromophoric dissolved organic matter along trophic gradients: Implications for monitoring and assessing lake eutrophication,” Water Res. 131, 255–263 (2018).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Locations of Lake Taihu and Hangzhou Bay (A) and distribution of sampling sites in Lake Taihu (B) and Hangzhou Bay (C).
Fig. 2
Fig. 2 Relationships between TSM and OSM or ISM for Lake Taihu (A) and Hangzhou Bay (B) and histogram distribution of ISM/OSM for Lake Taihu (C) and Hangzhou Bay (D).
Fig. 3
Fig. 3 Average absorption coefficients of CDOM, pure water, and TSM in Lake Taihu (A) and Hangzhou Bay (B).
Fig. 4
Fig. 4 Comparison between in situ measured and GOCI-derived Rrs(λ). The in situ measured reflectance corresponded to the GOCI bands for Hangzhou Bay (A) and Lake Taihu (D). The spectra of the GOCI-derived Rrs(λ) with the MUMM atmospheric correction method for Hangzhou Bay (B) and Lake Taihu (E). The linear regression between the in situ measured and GOCI-derived Rrs(λ) for Hangzhou Bay (C) and Lake Taihu (F).
Fig. 5
Fig. 5 R2 and NRMSE between the TSM concentration and derived bbp(λ) based on Eq. (8) plotted as a function of wavelength for Hangzhou Bay and Lake Taihu (A). The relationship between the in situ TSM concentration and derived bbp(750) nm in Hangzhou Bay and Lake Taihu (B).
Fig. 6
Fig. 6 R2 and NRMSE in Hangzhou Bay and Lake Taihu between in situ TSM and the semi-analytical results plotted as a function of the wavelength in the first iteration (A), second iteration (B), and third iteration (C). The maximal values of R2 and the minimum NRMSE were at 550 nm for λ1, 750 nm for λ2, and 750 nm for λ3. (D) The relationship between in situ measured TSM and the derived ap(550) in Hangzhou Bay and Lake Taihu.
Fig. 7
Fig. 7 Linear relationship between in situ measured and TSM concentrations derived from ASD reflectance (A) and GOCI-derived reflectance (B) for Hangzhou Bay and Lake Taihu.
Fig. 8
Fig. 8 R2 and NRMSE between TSM concentration and derived bbp(λ) in the Xin’anjiang Reservoir based on Eq. (8) plotted as a function of wavelength (A); relationship between TSM concentration and derived bbp(750) in the Xin’anjiang Reservoir (B).
Fig. 9
Fig. 9 R2 and NRMSE between measured TSM concentration and semi-analytical model plotted as a function of wavelength for (A) λ3, (B) λ1, and (C) λ2. The maximal values of R2 and minimum NRMSE were at 542 nm for λ1, at 600 nm for λ2, and at 650 nm for λ3. The relationship between the in situ TSM and derived ap(542) and the distribution of the relative error along with aCDOM(254) in the Xin’anjiang Reservoir (D).
Fig. 10
Fig. 10 Comparison of the bbp(750) values derived by QAA_Le and our model from remote sensing reflectance data in Hangzhou Bay and Lake Taihu.
Fig. 11
Fig. 11 Comparison of the ap(550) values derived by QAA_Le and our model from remote sensing reflectance data in Hangzhou bay and Lake Taihu.
Fig. 12
Fig. 12 Linear regression between TSM measured in situ and derived from ASD reflectance using the algorithm by He, et al. [29] for Hangzhou Bay (A) and Lake Taihu (B).

Tables (3)

Tables Icon

Table 1 Sampling date, number, and parameters for four cruises in Lake Taihu and Hangzhou Bay during 2013, 2014, 2015, and 2017.

Tables Icon

Table 2 Statistics of the measured parameters (TSM; ISM; OSM; ap(550); aCDOM(254)) for Lake Taihu and Hangzhou Bay. Coefficient of variation (CV) = SD/Mean.

Tables Icon

Table 3 Performance comparison of TSM estimation models for Lake Taihu and Hangzhou Bay.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

r rs ( λ ) = f ' Q b b ( λ ) a ( λ ) + b b ( λ )
ρ w ( λ ) = π r rs ( λ )
b b ( λ ) = a ( λ ) ρ w ( λ ) f π / Q ρ w ( λ )
ρ w ( λ ) = π R rs ( λ )
b b ( λ ) = R rs ( λ ) f / ( Q a ( λ ) ) R rs ( λ )
b bp ( λ ) =TSM × b bp * ( λ )
b bp ( λ ) = b b ( λ ) b bw ( λ )
X 1 R rs ( λ ) f / ( Q a ( λ ) ) R rs ( λ )
a p ( λ 1 ) = [ R r s ( λ 1 ) 1 R r s ( λ 2 ) 1 ] × R r s ( λ 3 ) × a w a t e r ( λ 3 ) + a w a t e r ( λ 2 ) a w a t e r ( λ 1 )
X 2 a p ( λ 1 ) = [ R r s ( λ 1 ) 1 R r s ( λ 2 ) 1 ] × R r s ( λ 3 ) × a w a t e r ( λ 3 ) + a w a t e r ( λ 2 ) a w a t e r ( λ 1 )
C TSM = W 1 * X 1 + W 2 * X 2
MRE = 100 % × 1 n i = 1 n | X esti, i X meas, i X esti, i |
RMSE = 1 n i = 1 n ( X esti , i X meas , i ) 2
NRMSE = 100 % × 1 n i = 1 n ( X esti , i X meas , i ) 2 / ( 1 N i = 1 N X meas, i )

Metrics