Abstract

We obtained chirped gratings by performing hot water gradient thermal annealing of uniform poly (methylmethacrylate) (PMMA) microstructured polymer optical fiber Bragg gratings (POFBGs). The proposed method’s simplicity is one of its main advantages because no special phase mask or additional etching are needed. It not only enables easy control tuning of the central wavelength and chirp characteristics, but it also leads to obtain flexible grating response, compared with tapered chirped POFBGs. Therefore, a flexible and low-cost chirped POFBG devices fabrication technique has been presented by using a single uniform phase mask.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of tunable chirped mPOF Bragg gratings using a uniform phase mask

Rui Min, Beatriz Ortega, and Carlos Marques
Opt. Express 26(4) 4411-4420 (2018)

Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor

Getinet Woyessa, Kristian Nielsen, Alessio Stefani, Christos Markos, and Ole Bang
Opt. Express 24(2) 1206-1213 (2016)

Novel thermal annealing methodology for permanent tuning polymer optical fiber Bragg gratings to longer wavelengths

A. Pospori, C. A. F. Marques, G. Sagias, H. Lamela-Rivera, and D. J. Webb
Opt. Express 26(2) 1411-1421 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Webb, Polymer fiber Bragg grating sensors and their applications in Optical Fiber Sensors Advanced Techniques and Applications, G. Rajan Ed. Boca Raton, FL, USA: CRC, 257–276 (2015).
  2. J. Bonefacino, H. Y. Tam, T. S. Glen, X. Cheng, C. F. J. Pun, J. Wang, P. H. Lee, M. L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light Sci. Appl. 7(3), 17161 (2018).
    [Crossref]
  3. X. Cheng, J. Bonefacino, B. O. Guan, and H. Y. Tam, “All-polymer fiber-optic pH sensor,” Opt. Express 26(11), 14610–14616 (2018).
    [Crossref] [PubMed]
  4. G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjaer, and L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fiber,” Opt. Lett. 32(5), 460–462 (2007).
    [Crossref] [PubMed]
  5. H. U. Hassan, J. Janting, S. Aasmul, and O. Bang, “Polymer Optical Fiber Compound Parabolic Concentrator fiber tip based glucose sensor: in-Vitro Testing,” IEEE Sens. J. 16(23), 1 (2016).
    [Crossref]
  6. Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
    [Crossref]
  7. A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond laser inscribed Bragg gratings in low loss CYTOP polymer optical fiber,” IEEE Photonics Technol. Lett. 27(7), 693–696 (2015).
    [Crossref]
  8. G. Woyessa, A. Fasano, C. Markos, A. Stefani, H. K. Rasmussen, and O. Bang, “Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing,” Opt. Mater. Express 7(1), 286–295 (2017).
    [Crossref]
  9. A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649–659 (2016).
    [Crossref]
  10. C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
    [Crossref] [PubMed]
  11. G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
    [Crossref] [PubMed]
  12. I. P. Johnson, D. J. Webb, K. Kalli, M. C. J. Large, and A. Argyros, “Multiplexed FBG sensor recorded in multimode microstructured polymer optical fibre,” Proc. SPIE 7714, 77140 (2010).
    [Crossref]
  13. G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
    [Crossref] [PubMed]
  14. W. Yuan, A. Stefani, and O. Bang, “Tunable polymer Fiber Bragg Grating (FBG) inscription: Fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photonics Technol. Lett. 24(5), 401–403 (2012).
    [Crossref]
  15. P. I. Reyes, N. Litchinitser, M. Sumetsky, and P. S. Westbrook, “160-Gb/s tunable dispersion slope compensator using a chirped fiber Bragg grating and a quadratic heater,” IEEE Photonics Technol. Lett. 17(4), 831–833 (2005).
    [Crossref]
  16. D. Tosi, E. G. Macchi, M. Gallati, G. Braschi, A. Cigada, S. Rossi, G. Leen, and E. Lewis, “Fiber-optic chirped FBG for distributed thermal monitoring of ex-vivo radiofrequency ablation of liver,” Biomed. Opt. Express 5(6), 1799–1811 (2014).
    [Crossref] [PubMed]
  17. D. Shan, C. Zhang, S. Kalaba, N. Mehta, G. B. Kim, Z. Liu, and J. Yang, “Flexible biodegradable citrate-based polymeric step-index optical fiber,” Biomaterials 143, 142–148 (2017).
    [Crossref] [PubMed]
  18. H. Liu, H. Liu, G. Peng, and T. W. Whitbread, “Tunable dispersion using linearly chirped polymer optical fiber Bragg gratings with fixed center wavelength,” IEEE Photonics Technol. Lett. 17(2), 411–413 (2005).
    [Crossref]
  19. C. A. F. Marques, P. Antunes, P. Mergo, D. J. Webb, and P. André, “Chirped Bragg gratings in PMMA step-index polymer optical fiber,” IEEE Photonics Technol. Lett. 29(6), 500–503 (2017).
    [Crossref]
  20. R. Min, B. Ortega, and C. Marques, “Fabrication of tunable chirped mPOF Bragg gratings using a uniform phase mask,” Opt. Express 26(4), 4411–4420 (2018).
    [Crossref] [PubMed]
  21. S. Korganbayev, R. Min, M. Jelbuldina, X. Hu, C. Caucheteur, O. Bang, B. Ortega, C. Marques, and D. Tosi, “Thermal profile detection through high-sensitivity fiber optic chirped Bragg grating on microstructured PMMA fiber,” J. Lightwave Technol. 36(20), 4723–4729 (2018).
    [Crossref]
  22. R. Min, S. Korganbayev, C. Molardi, C. Broadway, X. Hu, C. Caucheteur, O. Bang, P. Antunes, D. Tosi, C. Marques, and B. Ortega, “Largely tunable dispersion chirped polymer FBG,” Opt. Lett. 43(20), 5106–5109 (2018).
    [Crossref] [PubMed]
  23. A. Fasano, G. Woyessa, J. Janting, H. K. Rasmussen, and O. Bang, “Solution-mediated annealing of polymer optical fiber Bragg gratings at room temperature,” IEEE Photonics Technol. Lett. 29(8), 687–690 (2017).
    [Crossref]
  24. A. Pospori, C. A. F. Marques, G. Sagias, H. Lamela-Rivera, and D. J. Webb, “Novel thermal annealing methodology for permanent tuning polymer optical fiber Bragg gratings to longer wavelengths,” Opt. Express 26(2), 1411–1421 (2018).
    [Crossref] [PubMed]
  25. A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
    [Crossref]
  26. P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
    [Crossref]
  27. X. Hu, G. Woyessa, D. Kinet, J. Janting, K. Nielsen, O. Bang, and C. Caucheteur, “BDK-doped core microstructured PMMA optical fiber for effective Bragg grating photo-inscription,” Opt. Lett. 42(11), 2209–2212 (2017).
    [Crossref] [PubMed]
  28. A. Pospori, C. A. F. Marques, O. Bang, D. J. Webb, and P. André, “Polymer optical fiber Bragg grating inscription with a single UV laser pulse,” Opt. Express 25(8), 9028–9038 (2017).
    [Crossref] [PubMed]
  29. D. Sáez-Rodríguez, R. Min, B. Ortega, K. Nielsen, and D. J. Webb, “Passive and Portable Polymer Optical Fiber Cleaver,” IEEE Photonics Technol. Lett. 28(24), 2834–2837 (2016).
    [Crossref]
  30. W. Zhang, D. J. Webb, and G. D. Peng, “Investigation into time response of polymer fiber Bragg grating based humidity sensors,” J. Lightwave Technol. 30(8), 1090–1096 (2012).
    [Crossref]
  31. A. G. Leal-Junior, A. Theodosiou, C. Marques, M. J. Pontes, K. Kalli, and A. Frizera, “Compensation Method for Temperature Cross-Sensitivity in Transverse Force Applications With FBG Sensors in POFs,” J. Lightwave Technol. 36(17), 3660–3665 (2018).
    [Crossref]
  32. L. Pereira, A. Pospori, P. Antunes, M. F. Domingues, S. Marques, O. Bang, D. J. Webb, and C. Marques, “Phase-Shifted Bragg Grating Inscription in PMMA Microstructured POF Using 248-nm UV Radiation,” J. Lightwave Technol. 35(23), 5176–5184 (2017).
    [Crossref]

2018 (7)

J. Bonefacino, H. Y. Tam, T. S. Glen, X. Cheng, C. F. J. Pun, J. Wang, P. H. Lee, M. L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light Sci. Appl. 7(3), 17161 (2018).
[Crossref]

X. Cheng, J. Bonefacino, B. O. Guan, and H. Y. Tam, “All-polymer fiber-optic pH sensor,” Opt. Express 26(11), 14610–14616 (2018).
[Crossref] [PubMed]

R. Min, B. Ortega, and C. Marques, “Fabrication of tunable chirped mPOF Bragg gratings using a uniform phase mask,” Opt. Express 26(4), 4411–4420 (2018).
[Crossref] [PubMed]

S. Korganbayev, R. Min, M. Jelbuldina, X. Hu, C. Caucheteur, O. Bang, B. Ortega, C. Marques, and D. Tosi, “Thermal profile detection through high-sensitivity fiber optic chirped Bragg grating on microstructured PMMA fiber,” J. Lightwave Technol. 36(20), 4723–4729 (2018).
[Crossref]

R. Min, S. Korganbayev, C. Molardi, C. Broadway, X. Hu, C. Caucheteur, O. Bang, P. Antunes, D. Tosi, C. Marques, and B. Ortega, “Largely tunable dispersion chirped polymer FBG,” Opt. Lett. 43(20), 5106–5109 (2018).
[Crossref] [PubMed]

A. Pospori, C. A. F. Marques, G. Sagias, H. Lamela-Rivera, and D. J. Webb, “Novel thermal annealing methodology for permanent tuning polymer optical fiber Bragg gratings to longer wavelengths,” Opt. Express 26(2), 1411–1421 (2018).
[Crossref] [PubMed]

A. G. Leal-Junior, A. Theodosiou, C. Marques, M. J. Pontes, K. Kalli, and A. Frizera, “Compensation Method for Temperature Cross-Sensitivity in Transverse Force Applications With FBG Sensors in POFs,” J. Lightwave Technol. 36(17), 3660–3665 (2018).
[Crossref]

2017 (8)

L. Pereira, A. Pospori, P. Antunes, M. F. Domingues, S. Marques, O. Bang, D. J. Webb, and C. Marques, “Phase-Shifted Bragg Grating Inscription in PMMA Microstructured POF Using 248-nm UV Radiation,” J. Lightwave Technol. 35(23), 5176–5184 (2017).
[Crossref]

C. A. F. Marques, P. Antunes, P. Mergo, D. J. Webb, and P. André, “Chirped Bragg gratings in PMMA step-index polymer optical fiber,” IEEE Photonics Technol. Lett. 29(6), 500–503 (2017).
[Crossref]

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
[Crossref]

D. Shan, C. Zhang, S. Kalaba, N. Mehta, G. B. Kim, Z. Liu, and J. Yang, “Flexible biodegradable citrate-based polymeric step-index optical fiber,” Biomaterials 143, 142–148 (2017).
[Crossref] [PubMed]

X. Hu, G. Woyessa, D. Kinet, J. Janting, K. Nielsen, O. Bang, and C. Caucheteur, “BDK-doped core microstructured PMMA optical fiber for effective Bragg grating photo-inscription,” Opt. Lett. 42(11), 2209–2212 (2017).
[Crossref] [PubMed]

A. Pospori, C. A. F. Marques, O. Bang, D. J. Webb, and P. André, “Polymer optical fiber Bragg grating inscription with a single UV laser pulse,” Opt. Express 25(8), 9028–9038 (2017).
[Crossref] [PubMed]

A. Fasano, G. Woyessa, J. Janting, H. K. Rasmussen, and O. Bang, “Solution-mediated annealing of polymer optical fiber Bragg gratings at room temperature,” IEEE Photonics Technol. Lett. 29(8), 687–690 (2017).
[Crossref]

G. Woyessa, A. Fasano, C. Markos, A. Stefani, H. K. Rasmussen, and O. Bang, “Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing,” Opt. Mater. Express 7(1), 286–295 (2017).
[Crossref]

2016 (6)

A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649–659 (2016).
[Crossref]

G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
[Crossref] [PubMed]

H. U. Hassan, J. Janting, S. Aasmul, and O. Bang, “Polymer Optical Fiber Compound Parabolic Concentrator fiber tip based glucose sensor: in-Vitro Testing,” IEEE Sens. J. 16(23), 1 (2016).
[Crossref]

G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
[Crossref] [PubMed]

D. Sáez-Rodríguez, R. Min, B. Ortega, K. Nielsen, and D. J. Webb, “Passive and Portable Polymer Optical Fiber Cleaver,” IEEE Photonics Technol. Lett. 28(24), 2834–2837 (2016).
[Crossref]

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
[Crossref]

2015 (1)

A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond laser inscribed Bragg gratings in low loss CYTOP polymer optical fiber,” IEEE Photonics Technol. Lett. 27(7), 693–696 (2015).
[Crossref]

2014 (1)

2013 (1)

2012 (2)

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer Fiber Bragg Grating (FBG) inscription: Fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photonics Technol. Lett. 24(5), 401–403 (2012).
[Crossref]

W. Zhang, D. J. Webb, and G. D. Peng, “Investigation into time response of polymer fiber Bragg grating based humidity sensors,” J. Lightwave Technol. 30(8), 1090–1096 (2012).
[Crossref]

2010 (1)

I. P. Johnson, D. J. Webb, K. Kalli, M. C. J. Large, and A. Argyros, “Multiplexed FBG sensor recorded in multimode microstructured polymer optical fibre,” Proc. SPIE 7714, 77140 (2010).
[Crossref]

2007 (1)

2005 (2)

P. I. Reyes, N. Litchinitser, M. Sumetsky, and P. S. Westbrook, “160-Gb/s tunable dispersion slope compensator using a chirped fiber Bragg grating and a quadratic heater,” IEEE Photonics Technol. Lett. 17(4), 831–833 (2005).
[Crossref]

H. Liu, H. Liu, G. Peng, and T. W. Whitbread, “Tunable dispersion using linearly chirped polymer optical fiber Bragg gratings with fixed center wavelength,” IEEE Photonics Technol. Lett. 17(2), 411–413 (2005).
[Crossref]

1999 (1)

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[Crossref]

Aasmul, S.

H. U. Hassan, J. Janting, S. Aasmul, and O. Bang, “Polymer Optical Fiber Compound Parabolic Concentrator fiber tip based glucose sensor: in-Vitro Testing,” IEEE Sens. J. 16(23), 1 (2016).
[Crossref]

André, P.

C. A. F. Marques, P. Antunes, P. Mergo, D. J. Webb, and P. André, “Chirped Bragg gratings in PMMA step-index polymer optical fiber,” IEEE Photonics Technol. Lett. 29(6), 500–503 (2017).
[Crossref]

A. Pospori, C. A. F. Marques, O. Bang, D. J. Webb, and P. André, “Polymer optical fiber Bragg grating inscription with a single UV laser pulse,” Opt. Express 25(8), 9028–9038 (2017).
[Crossref] [PubMed]

Antunes, P.

Argyros, A.

I. P. Johnson, D. J. Webb, K. Kalli, M. C. J. Large, and A. Argyros, “Multiplexed FBG sensor recorded in multimode microstructured polymer optical fibre,” Proc. SPIE 7714, 77140 (2010).
[Crossref]

Bang, O.

S. Korganbayev, R. Min, M. Jelbuldina, X. Hu, C. Caucheteur, O. Bang, B. Ortega, C. Marques, and D. Tosi, “Thermal profile detection through high-sensitivity fiber optic chirped Bragg grating on microstructured PMMA fiber,” J. Lightwave Technol. 36(20), 4723–4729 (2018).
[Crossref]

R. Min, S. Korganbayev, C. Molardi, C. Broadway, X. Hu, C. Caucheteur, O. Bang, P. Antunes, D. Tosi, C. Marques, and B. Ortega, “Largely tunable dispersion chirped polymer FBG,” Opt. Lett. 43(20), 5106–5109 (2018).
[Crossref] [PubMed]

A. Pospori, C. A. F. Marques, O. Bang, D. J. Webb, and P. André, “Polymer optical fiber Bragg grating inscription with a single UV laser pulse,” Opt. Express 25(8), 9028–9038 (2017).
[Crossref] [PubMed]

X. Hu, G. Woyessa, D. Kinet, J. Janting, K. Nielsen, O. Bang, and C. Caucheteur, “BDK-doped core microstructured PMMA optical fiber for effective Bragg grating photo-inscription,” Opt. Lett. 42(11), 2209–2212 (2017).
[Crossref] [PubMed]

A. Fasano, G. Woyessa, J. Janting, H. K. Rasmussen, and O. Bang, “Solution-mediated annealing of polymer optical fiber Bragg gratings at room temperature,” IEEE Photonics Technol. Lett. 29(8), 687–690 (2017).
[Crossref]

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
[Crossref]

L. Pereira, A. Pospori, P. Antunes, M. F. Domingues, S. Marques, O. Bang, D. J. Webb, and C. Marques, “Phase-Shifted Bragg Grating Inscription in PMMA Microstructured POF Using 248-nm UV Radiation,” J. Lightwave Technol. 35(23), 5176–5184 (2017).
[Crossref]

G. Woyessa, A. Fasano, C. Markos, A. Stefani, H. K. Rasmussen, and O. Bang, “Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing,” Opt. Mater. Express 7(1), 286–295 (2017).
[Crossref]

G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
[Crossref] [PubMed]

G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
[Crossref] [PubMed]

H. U. Hassan, J. Janting, S. Aasmul, and O. Bang, “Polymer Optical Fiber Compound Parabolic Concentrator fiber tip based glucose sensor: in-Vitro Testing,” IEEE Sens. J. 16(23), 1 (2016).
[Crossref]

A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649–659 (2016).
[Crossref]

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer Fiber Bragg Grating (FBG) inscription: Fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photonics Technol. Lett. 24(5), 401–403 (2012).
[Crossref]

G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjaer, and L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fiber,” Opt. Lett. 32(5), 460–462 (2007).
[Crossref] [PubMed]

Boles, S. T.

J. Bonefacino, H. Y. Tam, T. S. Glen, X. Cheng, C. F. J. Pun, J. Wang, P. H. Lee, M. L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light Sci. Appl. 7(3), 17161 (2018).
[Crossref]

Bonefacino, J.

J. Bonefacino, H. Y. Tam, T. S. Glen, X. Cheng, C. F. J. Pun, J. Wang, P. H. Lee, M. L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light Sci. Appl. 7(3), 17161 (2018).
[Crossref]

X. Cheng, J. Bonefacino, B. O. Guan, and H. Y. Tam, “All-polymer fiber-optic pH sensor,” Opt. Express 26(11), 14610–14616 (2018).
[Crossref] [PubMed]

Braschi, G.

Broadway, C.

Caucheteur, C.

Cetinkaya, O.

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
[Crossref]

Cheng, X.

J. Bonefacino, H. Y. Tam, T. S. Glen, X. Cheng, C. F. J. Pun, J. Wang, P. H. Lee, M. L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light Sci. Appl. 7(3), 17161 (2018).
[Crossref]

X. Cheng, J. Bonefacino, B. O. Guan, and H. Y. Tam, “All-polymer fiber-optic pH sensor,” Opt. Express 26(11), 14610–14616 (2018).
[Crossref] [PubMed]

Chu, P. L.

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[Crossref]

Cigada, A.

Domingues, M. F.

Emiliyanov, G.

Fasano, A.

Frizera, A.

Gallati, M.

Glen, T. S.

J. Bonefacino, H. Y. Tam, T. S. Glen, X. Cheng, C. F. J. Pun, J. Wang, P. H. Lee, M. L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light Sci. Appl. 7(3), 17161 (2018).
[Crossref]

Guan, B. O.

Hassan, H. U.

H. U. Hassan, J. Janting, S. Aasmul, and O. Bang, “Polymer Optical Fiber Compound Parabolic Concentrator fiber tip based glucose sensor: in-Vitro Testing,” IEEE Sens. J. 16(23), 1 (2016).
[Crossref]

Hoiby, P. E.

Hu, X.

Janting, J.

X. Hu, G. Woyessa, D. Kinet, J. Janting, K. Nielsen, O. Bang, and C. Caucheteur, “BDK-doped core microstructured PMMA optical fiber for effective Bragg grating photo-inscription,” Opt. Lett. 42(11), 2209–2212 (2017).
[Crossref] [PubMed]

A. Fasano, G. Woyessa, J. Janting, H. K. Rasmussen, and O. Bang, “Solution-mediated annealing of polymer optical fiber Bragg gratings at room temperature,” IEEE Photonics Technol. Lett. 29(8), 687–690 (2017).
[Crossref]

H. U. Hassan, J. Janting, S. Aasmul, and O. Bang, “Polymer Optical Fiber Compound Parabolic Concentrator fiber tip based glucose sensor: in-Vitro Testing,” IEEE Sens. J. 16(23), 1 (2016).
[Crossref]

Jelbuldina, M.

Jensen, J. B.

Johnson, I. P.

I. P. Johnson, D. J. Webb, K. Kalli, M. C. J. Large, and A. Argyros, “Multiplexed FBG sensor recorded in multimode microstructured polymer optical fibre,” Proc. SPIE 7714, 77140 (2010).
[Crossref]

Kalaba, S.

D. Shan, C. Zhang, S. Kalaba, N. Mehta, G. B. Kim, Z. Liu, and J. Yang, “Flexible biodegradable citrate-based polymeric step-index optical fiber,” Biomaterials 143, 142–148 (2017).
[Crossref] [PubMed]

Kalli, K.

A. G. Leal-Junior, A. Theodosiou, C. Marques, M. J. Pontes, K. Kalli, and A. Frizera, “Compensation Method for Temperature Cross-Sensitivity in Transverse Force Applications With FBG Sensors in POFs,” J. Lightwave Technol. 36(17), 3660–3665 (2018).
[Crossref]

A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond laser inscribed Bragg gratings in low loss CYTOP polymer optical fiber,” IEEE Photonics Technol. Lett. 27(7), 693–696 (2015).
[Crossref]

I. P. Johnson, D. J. Webb, K. Kalli, M. C. J. Large, and A. Argyros, “Multiplexed FBG sensor recorded in multimode microstructured polymer optical fibre,” Proc. SPIE 7714, 77140 (2010).
[Crossref]

Kim, G. B.

D. Shan, C. Zhang, S. Kalaba, N. Mehta, G. B. Kim, Z. Liu, and J. Yang, “Flexible biodegradable citrate-based polymeric step-index optical fiber,” Biomaterials 143, 142–148 (2017).
[Crossref] [PubMed]

Kinet, D.

Kjaer, E. M.

Korganbayev, S.

Koutsides, C.

A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond laser inscribed Bragg gratings in low loss CYTOP polymer optical fiber,” IEEE Photonics Technol. Lett. 27(7), 693–696 (2015).
[Crossref]

Krebber, K.

Lacraz, A.

A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond laser inscribed Bragg gratings in low loss CYTOP polymer optical fiber,” IEEE Photonics Technol. Lett. 27(7), 693–696 (2015).
[Crossref]

Lamela-Rivera, H.

Large, M. C. J.

I. P. Johnson, D. J. Webb, K. Kalli, M. C. J. Large, and A. Argyros, “Multiplexed FBG sensor recorded in multimode microstructured polymer optical fibre,” Proc. SPIE 7714, 77140 (2010).
[Crossref]

Leal-Junior, A. G.

Lee, P. H.

J. Bonefacino, H. Y. Tam, T. S. Glen, X. Cheng, C. F. J. Pun, J. Wang, P. H. Lee, M. L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light Sci. Appl. 7(3), 17161 (2018).
[Crossref]

Leen, G.

Lewis, E.

Lindvold, L.

Litchinitser, N.

P. I. Reyes, N. Litchinitser, M. Sumetsky, and P. S. Westbrook, “160-Gb/s tunable dispersion slope compensator using a chirped fiber Bragg grating and a quadratic heater,” IEEE Photonics Technol. Lett. 17(4), 831–833 (2005).
[Crossref]

Liu, H.

H. Liu, H. Liu, G. Peng, and T. W. Whitbread, “Tunable dispersion using linearly chirped polymer optical fiber Bragg gratings with fixed center wavelength,” IEEE Photonics Technol. Lett. 17(2), 411–413 (2005).
[Crossref]

H. Liu, H. Liu, G. Peng, and T. W. Whitbread, “Tunable dispersion using linearly chirped polymer optical fiber Bragg gratings with fixed center wavelength,” IEEE Photonics Technol. Lett. 17(2), 411–413 (2005).
[Crossref]

Liu, Z.

D. Shan, C. Zhang, S. Kalaba, N. Mehta, G. B. Kim, Z. Liu, and J. Yang, “Flexible biodegradable citrate-based polymeric step-index optical fiber,” Biomaterials 143, 142–148 (2017).
[Crossref] [PubMed]

Macchi, E. G.

Markos, C.

Marques, C.

Marques, C. A. F.

A. Pospori, C. A. F. Marques, G. Sagias, H. Lamela-Rivera, and D. J. Webb, “Novel thermal annealing methodology for permanent tuning polymer optical fiber Bragg gratings to longer wavelengths,” Opt. Express 26(2), 1411–1421 (2018).
[Crossref] [PubMed]

C. A. F. Marques, P. Antunes, P. Mergo, D. J. Webb, and P. André, “Chirped Bragg gratings in PMMA step-index polymer optical fiber,” IEEE Photonics Technol. Lett. 29(6), 500–503 (2017).
[Crossref]

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
[Crossref]

A. Pospori, C. A. F. Marques, O. Bang, D. J. Webb, and P. André, “Polymer optical fiber Bragg grating inscription with a single UV laser pulse,” Opt. Express 25(8), 9028–9038 (2017).
[Crossref] [PubMed]

Marques, S.

Mehta, N.

D. Shan, C. Zhang, S. Kalaba, N. Mehta, G. B. Kim, Z. Liu, and J. Yang, “Flexible biodegradable citrate-based polymeric step-index optical fiber,” Biomaterials 143, 142–148 (2017).
[Crossref] [PubMed]

Mergo, P.

C. A. F. Marques, P. Antunes, P. Mergo, D. J. Webb, and P. André, “Chirped Bragg gratings in PMMA step-index polymer optical fiber,” IEEE Photonics Technol. Lett. 29(6), 500–503 (2017).
[Crossref]

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
[Crossref]

Min, R.

Molardi, C.

Nielsen, K.

X. Hu, G. Woyessa, D. Kinet, J. Janting, K. Nielsen, O. Bang, and C. Caucheteur, “BDK-doped core microstructured PMMA optical fiber for effective Bragg grating photo-inscription,” Opt. Lett. 42(11), 2209–2212 (2017).
[Crossref] [PubMed]

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
[Crossref]

D. Sáez-Rodríguez, R. Min, B. Ortega, K. Nielsen, and D. J. Webb, “Passive and Portable Polymer Optical Fiber Cleaver,” IEEE Photonics Technol. Lett. 28(24), 2834–2837 (2016).
[Crossref]

A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649–659 (2016).
[Crossref]

G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
[Crossref] [PubMed]

G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
[Crossref] [PubMed]

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

Ortega, B.

Pedersen, L. H.

Peng, G.

H. Liu, H. Liu, G. Peng, and T. W. Whitbread, “Tunable dispersion using linearly chirped polymer optical fiber Bragg gratings with fixed center wavelength,” IEEE Photonics Technol. Lett. 17(2), 411–413 (2005).
[Crossref]

Peng, G. D.

W. Zhang, D. J. Webb, and G. D. Peng, “Investigation into time response of polymer fiber Bragg grating based humidity sensors,” J. Lightwave Technol. 30(8), 1090–1096 (2012).
[Crossref]

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[Crossref]

Pereira, L.

Polis, M.

A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond laser inscribed Bragg gratings in low loss CYTOP polymer optical fiber,” IEEE Photonics Technol. Lett. 27(7), 693–696 (2015).
[Crossref]

Pontes, M. J.

Pospori, A.

Pun, C. F. J.

J. Bonefacino, H. Y. Tam, T. S. Glen, X. Cheng, C. F. J. Pun, J. Wang, P. H. Lee, M. L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light Sci. Appl. 7(3), 17161 (2018).
[Crossref]

Rasmussen, H. K.

Reyes, P. I.

P. I. Reyes, N. Litchinitser, M. Sumetsky, and P. S. Westbrook, “160-Gb/s tunable dispersion slope compensator using a chirped fiber Bragg grating and a quadratic heater,” IEEE Photonics Technol. Lett. 17(4), 831–833 (2005).
[Crossref]

Rossi, S.

Sáez-Rodríguez, D.

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
[Crossref]

D. Sáez-Rodríguez, R. Min, B. Ortega, K. Nielsen, and D. J. Webb, “Passive and Portable Polymer Optical Fiber Cleaver,” IEEE Photonics Technol. Lett. 28(24), 2834–2837 (2016).
[Crossref]

Sagias, G.

Schukar, M.

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
[Crossref]

Shan, D.

D. Shan, C. Zhang, S. Kalaba, N. Mehta, G. B. Kim, Z. Liu, and J. Yang, “Flexible biodegradable citrate-based polymeric step-index optical fiber,” Biomaterials 143, 142–148 (2017).
[Crossref] [PubMed]

Stajanca, P.

Stefani, A.

G. Woyessa, A. Fasano, C. Markos, A. Stefani, H. K. Rasmussen, and O. Bang, “Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing,” Opt. Mater. Express 7(1), 286–295 (2017).
[Crossref]

G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
[Crossref] [PubMed]

G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
[Crossref] [PubMed]

A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649–659 (2016).
[Crossref]

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer Fiber Bragg Grating (FBG) inscription: Fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photonics Technol. Lett. 24(5), 401–403 (2012).
[Crossref]

Sumetsky, M.

P. I. Reyes, N. Litchinitser, M. Sumetsky, and P. S. Westbrook, “160-Gb/s tunable dispersion slope compensator using a chirped fiber Bragg grating and a quadratic heater,” IEEE Photonics Technol. Lett. 17(4), 831–833 (2005).
[Crossref]

Tam, H. Y.

J. Bonefacino, H. Y. Tam, T. S. Glen, X. Cheng, C. F. J. Pun, J. Wang, P. H. Lee, M. L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light Sci. Appl. 7(3), 17161 (2018).
[Crossref]

X. Cheng, J. Bonefacino, B. O. Guan, and H. Y. Tam, “All-polymer fiber-optic pH sensor,” Opt. Express 26(11), 14610–14616 (2018).
[Crossref] [PubMed]

Theodosiou, A.

A. G. Leal-Junior, A. Theodosiou, C. Marques, M. J. Pontes, K. Kalli, and A. Frizera, “Compensation Method for Temperature Cross-Sensitivity in Transverse Force Applications With FBG Sensors in POFs,” J. Lightwave Technol. 36(17), 3660–3665 (2018).
[Crossref]

A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond laser inscribed Bragg gratings in low loss CYTOP polymer optical fiber,” IEEE Photonics Technol. Lett. 27(7), 693–696 (2015).
[Crossref]

Tosi, D.

Tse, M. L. V.

J. Bonefacino, H. Y. Tam, T. S. Glen, X. Cheng, C. F. J. Pun, J. Wang, P. H. Lee, M. L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light Sci. Appl. 7(3), 17161 (2018).
[Crossref]

Wang, J.

J. Bonefacino, H. Y. Tam, T. S. Glen, X. Cheng, C. F. J. Pun, J. Wang, P. H. Lee, M. L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light Sci. Appl. 7(3), 17161 (2018).
[Crossref]

Webb, D. J.

A. Pospori, C. A. F. Marques, G. Sagias, H. Lamela-Rivera, and D. J. Webb, “Novel thermal annealing methodology for permanent tuning polymer optical fiber Bragg gratings to longer wavelengths,” Opt. Express 26(2), 1411–1421 (2018).
[Crossref] [PubMed]

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
[Crossref]

C. A. F. Marques, P. Antunes, P. Mergo, D. J. Webb, and P. André, “Chirped Bragg gratings in PMMA step-index polymer optical fiber,” IEEE Photonics Technol. Lett. 29(6), 500–503 (2017).
[Crossref]

L. Pereira, A. Pospori, P. Antunes, M. F. Domingues, S. Marques, O. Bang, D. J. Webb, and C. Marques, “Phase-Shifted Bragg Grating Inscription in PMMA Microstructured POF Using 248-nm UV Radiation,” J. Lightwave Technol. 35(23), 5176–5184 (2017).
[Crossref]

A. Pospori, C. A. F. Marques, O. Bang, D. J. Webb, and P. André, “Polymer optical fiber Bragg grating inscription with a single UV laser pulse,” Opt. Express 25(8), 9028–9038 (2017).
[Crossref] [PubMed]

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
[Crossref]

D. Sáez-Rodríguez, R. Min, B. Ortega, K. Nielsen, and D. J. Webb, “Passive and Portable Polymer Optical Fiber Cleaver,” IEEE Photonics Technol. Lett. 28(24), 2834–2837 (2016).
[Crossref]

W. Zhang, D. J. Webb, and G. D. Peng, “Investigation into time response of polymer fiber Bragg grating based humidity sensors,” J. Lightwave Technol. 30(8), 1090–1096 (2012).
[Crossref]

I. P. Johnson, D. J. Webb, K. Kalli, M. C. J. Large, and A. Argyros, “Multiplexed FBG sensor recorded in multimode microstructured polymer optical fibre,” Proc. SPIE 7714, 77140 (2010).
[Crossref]

Westbrook, P. S.

P. I. Reyes, N. Litchinitser, M. Sumetsky, and P. S. Westbrook, “160-Gb/s tunable dispersion slope compensator using a chirped fiber Bragg grating and a quadratic heater,” IEEE Photonics Technol. Lett. 17(4), 831–833 (2005).
[Crossref]

Whitbread, T. W.

H. Liu, H. Liu, G. Peng, and T. W. Whitbread, “Tunable dispersion using linearly chirped polymer optical fiber Bragg gratings with fixed center wavelength,” IEEE Photonics Technol. Lett. 17(2), 411–413 (2005).
[Crossref]

Woyessa, G.

A. Fasano, G. Woyessa, J. Janting, H. K. Rasmussen, and O. Bang, “Solution-mediated annealing of polymer optical fiber Bragg gratings at room temperature,” IEEE Photonics Technol. Lett. 29(8), 687–690 (2017).
[Crossref]

G. Woyessa, A. Fasano, C. Markos, A. Stefani, H. K. Rasmussen, and O. Bang, “Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing,” Opt. Mater. Express 7(1), 286–295 (2017).
[Crossref]

X. Hu, G. Woyessa, D. Kinet, J. Janting, K. Nielsen, O. Bang, and C. Caucheteur, “BDK-doped core microstructured PMMA optical fiber for effective Bragg grating photo-inscription,” Opt. Lett. 42(11), 2209–2212 (2017).
[Crossref] [PubMed]

G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
[Crossref] [PubMed]

G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
[Crossref] [PubMed]

A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649–659 (2016).
[Crossref]

Wu, B.

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[Crossref]

Xiong, Z.

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[Crossref]

Yang, J.

D. Shan, C. Zhang, S. Kalaba, N. Mehta, G. B. Kim, Z. Liu, and J. Yang, “Flexible biodegradable citrate-based polymeric step-index optical fiber,” Biomaterials 143, 142–148 (2017).
[Crossref] [PubMed]

Yuan, W.

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer Fiber Bragg Grating (FBG) inscription: Fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photonics Technol. Lett. 24(5), 401–403 (2012).
[Crossref]

Zhang, C.

D. Shan, C. Zhang, S. Kalaba, N. Mehta, G. B. Kim, Z. Liu, and J. Yang, “Flexible biodegradable citrate-based polymeric step-index optical fiber,” Biomaterials 143, 142–148 (2017).
[Crossref] [PubMed]

Zhang, W.

Biomaterials (1)

D. Shan, C. Zhang, S. Kalaba, N. Mehta, G. B. Kim, Z. Liu, and J. Yang, “Flexible biodegradable citrate-based polymeric step-index optical fiber,” Biomaterials 143, 142–148 (2017).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

IEEE Photonics Technol. Lett. (8)

H. Liu, H. Liu, G. Peng, and T. W. Whitbread, “Tunable dispersion using linearly chirped polymer optical fiber Bragg gratings with fixed center wavelength,” IEEE Photonics Technol. Lett. 17(2), 411–413 (2005).
[Crossref]

C. A. F. Marques, P. Antunes, P. Mergo, D. J. Webb, and P. André, “Chirped Bragg gratings in PMMA step-index polymer optical fiber,” IEEE Photonics Technol. Lett. 29(6), 500–503 (2017).
[Crossref]

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer Fiber Bragg Grating (FBG) inscription: Fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photonics Technol. Lett. 24(5), 401–403 (2012).
[Crossref]

P. I. Reyes, N. Litchinitser, M. Sumetsky, and P. S. Westbrook, “160-Gb/s tunable dispersion slope compensator using a chirped fiber Bragg grating and a quadratic heater,” IEEE Photonics Technol. Lett. 17(4), 831–833 (2005).
[Crossref]

A. Fasano, G. Woyessa, J. Janting, H. K. Rasmussen, and O. Bang, “Solution-mediated annealing of polymer optical fiber Bragg gratings at room temperature,” IEEE Photonics Technol. Lett. 29(8), 687–690 (2017).
[Crossref]

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[Crossref]

A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond laser inscribed Bragg gratings in low loss CYTOP polymer optical fiber,” IEEE Photonics Technol. Lett. 27(7), 693–696 (2015).
[Crossref]

D. Sáez-Rodríguez, R. Min, B. Ortega, K. Nielsen, and D. J. Webb, “Passive and Portable Polymer Optical Fiber Cleaver,” IEEE Photonics Technol. Lett. 28(24), 2834–2837 (2016).
[Crossref]

IEEE Sens. J. (1)

H. U. Hassan, J. Janting, S. Aasmul, and O. Bang, “Polymer Optical Fiber Compound Parabolic Concentrator fiber tip based glucose sensor: in-Vitro Testing,” IEEE Sens. J. 16(23), 1 (2016).
[Crossref]

J. Lightwave Technol. (4)

Light Sci. Appl. (1)

J. Bonefacino, H. Y. Tam, T. S. Glen, X. Cheng, C. F. J. Pun, J. Wang, P. H. Lee, M. L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light Sci. Appl. 7(3), 17161 (2018).
[Crossref]

Opt. Express (7)

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

A. Pospori, C. A. F. Marques, G. Sagias, H. Lamela-Rivera, and D. J. Webb, “Novel thermal annealing methodology for permanent tuning polymer optical fiber Bragg gratings to longer wavelengths,” Opt. Express 26(2), 1411–1421 (2018).
[Crossref] [PubMed]

R. Min, B. Ortega, and C. Marques, “Fabrication of tunable chirped mPOF Bragg gratings using a uniform phase mask,” Opt. Express 26(4), 4411–4420 (2018).
[Crossref] [PubMed]

X. Cheng, J. Bonefacino, B. O. Guan, and H. Y. Tam, “All-polymer fiber-optic pH sensor,” Opt. Express 26(11), 14610–14616 (2018).
[Crossref] [PubMed]

G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
[Crossref] [PubMed]

G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
[Crossref] [PubMed]

A. Pospori, C. A. F. Marques, O. Bang, D. J. Webb, and P. André, “Polymer optical fiber Bragg grating inscription with a single UV laser pulse,” Opt. Express 25(8), 9028–9038 (2017).
[Crossref] [PubMed]

Opt. Fiber Technol. (2)

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
[Crossref]

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
[Crossref]

Opt. Lett. (3)

Opt. Mater. Express (2)

Proc. SPIE (1)

I. P. Johnson, D. J. Webb, K. Kalli, M. C. J. Large, and A. Argyros, “Multiplexed FBG sensor recorded in multimode microstructured polymer optical fibre,” Proc. SPIE 7714, 77140 (2010).
[Crossref]

Other (1)

D. J. Webb, Polymer fiber Bragg grating sensors and their applications in Optical Fiber Sensors Advanced Techniques and Applications, G. Rajan Ed. Boca Raton, FL, USA: CRC, 257–276 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Reflected spectral power of a 10 mm long uniform FBG inscribed by a single 15 ns pulse.
Fig. 2
Fig. 2 (a) Experimental setup for annealing POFBG, (b) Temperature vs hot water depth in the container.
Fig. 3
Fig. 3 Measurements during uniform annealing: (a) POFBG central wavelength and bandwidth, (b) Reflected spectral power.
Fig. 4
Fig. 4 Experimental setup for gradient thermal annealing.
Fig. 5
Fig. 5 Measurements during gradient annealing: (a) POFBG central wavelength shift and bandwidth, (b) Reflected spectral power.
Fig. 6
Fig. 6 Improved experimental setup for gradient thermal annealing.
Fig. 7
Fig. 7 POFBG under strong gradient annealing: Grating #1: (a) Reflected spectral power (total annealing time of 40 s), (b) Bandwidth vs time; Grating #2: (c) Reflected spectral power (total annealing time of 155 s), (d) Bandwidth vs time; Grating #3: (e) Reflected spectral power once the grating is brought out after 510 s annealing time, (d) Bandwidth vs time (total annealing time of 510 s).
Fig. 8
Fig. 8 (a) Central wavelength shift (the center of the wavelength spacing between the first minima (nulls)) vs time when temperature is changed. (b) Reflected spectra vs temperature.
Fig. 9
Fig. 9 (a) Central wavelength during strain increasing (blue) and decreasing (red) cycle of chirped POFBG. (b) Reflected Spectra vs strain.
Fig. 10
Fig. 10 (a). Central wavelength of the chirped grating vs time when humidity is changed. (b) Reflected spectrum vs humidity.

Metrics