Abstract

Herein, the low-cost and eco-friendly zinc cation (Zn2+) is used to replace part of the lead cation (Pb2+) in methylammonium lead iodide (CH3NH3PbI3). The modified perovskite material, CH3NH3PbxZn1-xI3, is then obtained and successfully applied in the construction of hole-conductor-free perovskite solar cells (PSCs) based on carbon counter electrodes. The obtained PSCs with 1 mol% Zn doping dramatically facilitate the formation of dense, high surface coverage perovskite films with large grain size and superior crystallinity. Especially, the power conversion efficiency is up to 15.37%, which is a 14.8% increase, compared to the pristine PSCs. This work finds a superior way to further research lead-reduced PSCs.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
TiO2 nanotube/TiO2 nanoparticle hybrid photoanode for hole-conductor-free perovskite solar cells based on carbon counter electrodes

Jing-hua Hu, Wen-hui Liu, Ying-ping Yang, Li Zhao, Yu Qiao, Shu-han Li, Pei-han Liu, and Meng-wei Chen
Opt. Mater. Express 7(9) 3322-3331 (2017)

Facile solvothermal method to synthesize hybrid perovskite CH3NH3PbX3 (X = I, Br, Cl) crystals

Fuqiang Guo, Baohua Zhang, Junjun Wang, Haineng Ba, Renqing Guo, Yineng Huang, and Pinyun Ren
Opt. Mater. Express 7(11) 4156-4162 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Kojima, M. Ikegami, K. Teshima, and T. Miyasaka, “Highly luminescent lead bromide perovskite nanoparticles synthesized with porous alumina media,” Chem. Lett. 41(4), 397–399 (2012).
    [Crossref]
  2. G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells,” Energy Environ. Sci. 7(3), 982–988 (2014).
    [Crossref]
  3. C. Wehrenfennig, M. Liu, H. J. Snaith, M. B. Johnston, and L. M. Herz, “Charge-carrier dynamics in vapour-deposited films of the organolead halide perovskite CH3NH3PbI3−xClx,” Energy Environ. Sci. 7(7), 2269–2275 (2014).
    [Crossref]
  4. C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High charge carrier mobilities and lifetimes in organolead trihalide perovskites,” Adv. Mater. 26(10), 1584–1589 (2014).
    [Crossref] [PubMed]
  5. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
    [Crossref] [PubMed]
  6. N. J. Jeon, H. Na, E. H. Jung, T.-Y. Yang, Y. G. Lee, G. Kim, H.-W. Shin, S. Il Seok, J. Lee, and J. Seo, “A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells,” Nat. Energy 3(8), 682–689 (2018).
    [Crossref]
  7. F. Dong, Y. Guo, P. Xu, X. Yin, Y. Li, and M. He, “Hydrothermal growth of MoS2/Co3S4 composites as efficient Pt-free counter electrodes for dye-sensitized solar cells,” Sci. China Mater. 60(4), 295–303 (2017).
    [Crossref]
  8. W. Lu, R. Jiang, X. Yin, and L. Wang, “Porous N-doped-carbon coated CoSe2 anchored on carbon cloth as 3D photocathode for dye-sensitized solar cell with efficiency and stability outperforming Pt,” Nano Res. 12(1), 159–163 (2018).
  9. Z. Xu, X. Yin, Y. Guo, Y. Pu, and M. He, “Ru-Doping in TiO2 electron transport layers of planar heterojunction perovskite solar cells for enhanced performance,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(17), 4746–4752 (2018).
    [Crossref]
  10. J.-P. Correa-Baena, A. Abate, M. Saliba, W. Tress, T. Jesper Jacobsson, M. Grätzel, and A. Hagfeldt, “The rapid evolution of highly efficient perovskite solar cells,” Energy Environ. Sci. 10(3), 710–727 (2017).
    [Crossref]
  11. T. Handa, D. M. Tex, A. Shimazaki, T. Aharen, A. Wakamiya, and Y. Kanemitsu, “Optical characterization of voltage-accelerated degradation in CH3NH3PbI3 perovskite solar cells,” Opt. Express 24(10), 917–924 (2016).
    [Crossref] [PubMed]
  12. Y. Rong, Y. Hu, A. Mei, H. Tan, M. I. Saidaminov, S. I. Seok, M. D. McGehee, E. H. Sargent, and H. Han, “Challenges for commercializing perovskite solar cells,” Science 361(6408), 8235 (2018).
    [Crossref] [PubMed]
  13. D. B. Mitzi, S. Wang, C. A. Feild, C. A. Chess, and A. M. Guloy, “Conducting layered organic-inorganic halides containing <110>-oriented perovskite sheets,” Science 267(5203), 1473–1476 (1995).
    [Crossref] [PubMed]
  14. T. M. Koh, K. Fu, Y. Fang, S. Chen, T. C. Sum, N. Mathews, S. G. Mhaisalkar, P. P. Boix, and T. Baikie, “Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells,” J. Phys. Chem. C 118(30), 16458–16462 (2014).
    [Crossref]
  15. Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, N. Fujikawa, Q. Shen, T. Toyoda, K. Yoshino, S. S. Pandey, T. Ma, and S. Hayase, “CH3NH3SnxPb(1-x)I3 Perovskite Solar Cells Covering up to 1060 nm,” J. Phys. Chem. Lett. 5(6), 1004–1011 (2014).
    [Crossref] [PubMed]
  16. M. H. Kumar, S. Dharani, W. L. Leong, P. P. Boix, R. R. Prabhakar, T. Baikie, C. Shi, H. Ding, R. Ramesh, M. Asta, M. Graetzel, S. G. Mhaisalkar, and N. Mathews, “Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation,” Adv. Mater. 26(41), 7122–7127 (2014).
    [Crossref] [PubMed]
  17. N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A. A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz, and H. J. Snaith, “Lead-free organic-inorganic tin halide perovskites for photovoltaic applications,” Energy Environ. Sci. 7(9), 3061–3068 (2014).
    [Crossref]
  18. D. Bai, J. Zhang, Z. Jin, H. Bian, K. Wang, H. Wang, L. Liang, Q. Wang, and S. Liu, “Interstitial Mn2+-driven high-aspect-ratio grain growth for low-trap-density microcrystalline films for record efficiency inorganic CsPbI2Br solar cells,” ACS Energy Lett. 3(4), 970–978 (2018).
    [Crossref]
  19. L. Zhou, J. Chang, Z. Lin, C. Zhang, D. Chen, J. Zhang, and Y. Hao, “Investigation of Fe2+-incorporating organic–inorganic hybrid perovskites from first principles and experiments,” RSC Advances 7(86), 54586–54593 (2017).
    [Crossref]
  20. M. T. Klug, A. Osherov, A. A. Haghighirad, S. D. Stranks, P. R. Brown, S. Bai, J. T.-W. Wang, X. Dang, V. Bulovic, H. J. Snaith, and A. M. Belcher, “Tailoring metal halide perovskites through metal substitution: influence on photovoltaic and material properties,” Energy Environ. Sci. 10(1), 236–246 (2017).
    [Crossref]
  21. A. M. Elseman, A. E. Shalan, S. Sajid, M. M. Rashad, A. M. Hassan, and M. Li, “Copper-substituted lead perovskite materials constructed with different halides for working (CH3NH3)2CuX4-based perovskite solar cells from experimental and theoretical view,” ACS Appl. Mater. Interfaces 10(14), 11699–11707 (2018).
    [Crossref] [PubMed]
  22. W. Zhao, D. Yang, Z. Yang, and S. Liu, “Zn-doping for reduced hysteresis and improved performance of methylammonium lead iodide perovskite hybrid solar cells,” Mater. Today Energy 5, 205–213 (2017).
    [Crossref]
  23. G. Tong, Z. Song, C. Li, Y. Zhao, L. Yu, J. Xu, Y. Jiang, Y. Sheng, Y. Shi, and K. Chen, “Cadmium-doped flexible perovskite solar cells with a low-cost and low-temperature-processed CdS electron transport layer,” RSC Advances 7(32), 19457–19463 (2017).
    [Crossref]
  24. C. Chen, Y. Xu, S. Wu, S. Zhang, Z. Yang, W. Zhang, H. Zhu, Z. Xiong, W. Chen, and W. Chen, “CaI2: a more effective passivator of perovskite films than PbI2 for high efficiency and long-term stability of perovskite solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 6(17), 7903–7912 (2018).
    [Crossref]
  25. H. Zhang, R. Li, M. Zhang, and M. Guo, “The effect of SrI2 substitution on perovskite film formation and its photovoltaic properties via two different deposition methods,” Inorg. Chem. Front. 5(6), 1354–1364 (2018).
    [Crossref]
  26. S.-H. Chan, M.-C. Wu, K.-M. Lee, W.-C. Chen, T.-H. Lin, and W.-F. Su, “Enhancing perovskite solar cell performance and stability by doping barium in methylammonium lead halide,” J. Mater. Chem. A Mater. Energy Sustain. 5(34), 18044–18052 (2017).
    [Crossref]
  27. A. L. Abdelhady, M. I. Saidaminov, B. Murali, V. Adinolfi, O. Voznyy, K. Katsiev, E. Alarousu, R. Comin, I. Dursun, L. Sinatra, E. H. Sargent, O. F. Mohammed, and O. M. Bakr, “Heterovalent dopant incorporation for bandgap and type engineering of perovskite crystals,” J. Phys. Chem. Lett. 7(2), 295–301 (2016).
    [Crossref] [PubMed]
  28. Z.-K. Wang, M. Li, Y.-G. Yang, Y. Hu, H. Ma, X.-Y. Gao, and L.-S. Liao, “High efficiency Pb-In binary metal perovskite solar cells,” Adv. Mater. 28(31), 6695–6703 (2016).
    [Crossref] [PubMed]
  29. F. P. Zhu, Z. J. Yong, B. M. Liu, Y. M. Chen, Y. Zhou, J. P. Ma, H. T. Sun, and Y. Z. Fang, “Superbroad near-infrared photoluminescence from bismuth-doped CsPbI3 perovskite nanocrystals,” Opt. Express 25(26), 33283–33289 (2017).
    [Crossref]
  30. Z. Tang, S. Uchida, T. Bessho, T. Kinoshita, H. Wang, F. Awai, R. Jono, M. M. Maitani, J. Nakazaki, T. Kubo, and H. Segawa, “Modulations of various alkali metal cations on organometal halide perovskites and their influence on photovoltaic performance,” Nano Energy 45, 184–192 (2018).
    [Crossref]
  31. J. Zhang, M. Shang, P. Wang, X. Huang, J. Xu, Z. Hu, Y. Zhu, and L. Han, “N-type doping and energy states tuning in CH3NH3Pb1–xSb2x/3I3 perovskite solar cells,” ACS Energy Lett. 1(3), 535–541 (2016).
    [Crossref]
  32. J.-S. Yao, J. Ge, B.-N. Han, K.-H. Wang, H.-B. Yao, H.-L. Yu, J.-H. Li, B.-S. Zhu, J.-Z. Song, C. Chen, Q. Zhang, H.-B. Zeng, Y. Luo, and S.-H. Yu, “Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes,” J. Am. Chem. Soc. 140(10), 3626–3634 (2018).
    [Crossref] [PubMed]
  33. Q. Chen, L. Chen, F. Ye, T. Zhao, F. Tang, A. Rajagopal, Z. Jiang, S. Jiang, A. K.-Y. Jen, Y. Xie, J. Cai, and L. Chen, “Ag-incorporated organic–inorganic perovskite films and planar heterojunction solar cells,” Nano Lett. 17(5), 3231–3237 (2017).
    [Crossref] [PubMed]
  34. L. A. Frolova, D. V. Anokhin, K. L. Gerasimov, N. N. Dremova, and P. A. Troshin, “Exploring the effects of the Pb2+ substitution in MAPbI3 on the photovoltaic performance of the hybrid perovskite solar cells,” J. Phys. Chem. Lett. 7(21), 4353–4357 (2016).
    [Crossref] [PubMed]
  35. J. L. Knutson, J. D. Martin, and D. B. Mitzi, “Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating,” Inorg. Chem. 44(13), 4699–4705 (2005).
    [Crossref] [PubMed]
  36. Z. Ku, Y. Rong, M. Xu, T. Liu, and H. Han, “Full printable processed mesoscopic CH₃NH₃PbI₃/TiO₂ heterojunction solar cells with carbon counter electrode,” Sci. Rep. 3(1), 3132 (2013).
    [Crossref] [PubMed]
  37. Y. Hu, Z. Zhang, A. Mei, Y. Jiang, X. Hou, Q. Wang, K. Du, Y. Rong, Y. Zhou, G. Xu, and H. Han, “Improved performance of printable perovskite solar cells with bifunctional conjugated organic molecule,” Adv. Mater. 30(11), 1705786 (2018).
    [Crossref] [PubMed]
  38. H. Chen and S. Yang, “Carbon-based perovskite solar cells without hole transport materials: the front runner to the market?” Adv. Mater. 29(24), 1603994 (2017).
    [Crossref] [PubMed]
  39. L. Xu, Y. Xiong, A. Mei, Y. Hu, Y. Rong, Y. Zhou, B. Hu, and H. Han, “Efficient perovskite photovoltaic-thermoelectric hybrid device,” Adv. Energy Mater. 8(13), 1702937 (2018).
    [Crossref]
  40. M. Acik and S. B. Darling, “Graphene in perovskite solar cells: device design, characterization and implementation,” J. Mater. Chem. A Mater. Energy Sustain. 4(17), 6185–6235 (2016).
    [Crossref]
  41. C.-M. Tsai, G.-W. Wu, S. Narra, H.-M. Chang, N. Mohanta, H.-P. Wu, C.-L. Wang, and E. W.-G. Diau, “Control of preferred orientation with slow crystallization for carbon-based mesoscopic perovskite solar cells attaining efficiency 15%,” J. Mater. Chem. A Mater. Energy Sustain. 5(2), 739–747 (2017).
    [Crossref]
  42. C. Tian, A. Mei, S. Zhang, H. Tian, S. Liu, F. Qin, Y. Xiong, Y. Rong, Y. Hu, Y. Zhou, S. Xie, and H. Han, “Oxygen management in carbon electrode for high-performance printable perovskite solar cells,” Nano Energy 53, 160–167 (2018).
    [Crossref]
  43. J. Hu, J. Cheng, S. Tong, L. Zhao, J. Duan, and Y. Yang, “Dye-sensitized solar cells based on P25 nanoparticles/TiO2 nanotube arrays/hollow TiO2 boxes three-layer composite film,” J. Mater. Sci. 27(5), 5362–5370 (2016).
  44. S. Li, J. Hu, Y. Yang, L. Zhao, Y. Qiao, W. Liu, P. Liu, and M. Chen, “Ag/nano-TiO2 composite compact film for enhanced performance of perovskite solar cells based on carbon counter electrodes,” Appl. Phys., A Mater. Sci. Process. 123(10), 628 (2017).
    [Crossref]
  45. J. H. Hu, W. H. Liu, Y. P. Yang, L. Zhao, Y. Qiao, S. H. Li, P. H. Liu, and M. W. Chen, “TiO2 nanotube/TiO2 nanoparticle hybrid photoanode for hole-conductor-free perovskite solar cells based on carbon counter electrodes,” Opt. Mater. Express 7(9), 3322–3331 (2017).
    [Crossref]
  46. J. Hu, Y. Qiao, Y. Yang, L. Zhao, W. Liu, S. Li, P. Liu, and M. Chen, “Enhanced performance of hole-conductor-free perovskite solar cells by utilization of core/shell-structured β-NaYF4:Yb3+,Er3+@SiO2 nanoparticles in ambient air,” IEEE J. Photovolt. 8(1), 132–136 (2018).
    [Crossref]
  47. Y. Qiao, S. Li, W. Liu, M. Ran, H. Lu, and Y. Yang, “Recent advances of rare-earth ion doped luminescent nanomaterials in perovskite solar cells,” Nanomaterials (Basel) 8(1), 43 (2018).
    [Crossref] [PubMed]
  48. S. Li, X. Zhu, B. Wang, Y. Qiao, W. Liu, H. Yang, N. Liu, M. Chen, H. Lu, and Y. Yang, “Influence of Ag nanoparticles with different sizes and concentrations embedded in a TiO2 compact layer on the conversion efficiency of perovskite solar cells,” Nanoscale Res. Lett. 13(1), 210 (2018).
    [Crossref] [PubMed]
  49. N. Ahn, D.-Y. Son, I.-H. Jang, S. M. Kang, M. Choi, and N.-G. Park, “Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide,” J. Am. Chem. Soc. 137(27), 8696–8699 (2015).
    [Crossref] [PubMed]
  50. J.-W. Lee, H.-S. Kim, and N.-G. Park, “Lewis acid–base adduct approach for high efficiency perovskite solar cells,” Acc. Chem. Res. 49(2), 311–319 (2016).
    [Crossref] [PubMed]
  51. D.-Y. Son, J.-W. Lee, Y. J. Choi, I.-H. Jang, S. Lee, P. J. Yoo, H. Shin, N. Ahn, M. Choi, D. Kim, and N.-G. Park, “Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells,” Nat. Energy 1(7), 16081 (2016).
    [Crossref]
  52. M.-C. Wu, W.-C. Chen, S.-H. Chan, and W.-F. Su, “The effect of strontium and barium doping on perovskite-structured energy materials for photovoltaic applications,” Appl. Surf. Sci. 429, 9–15 (2018).
    [Crossref]
  53. H. Zhang, M. Shang, X. Zheng, Z. Zeng, R. Chen, Y. Zhang, J. Zhang, and Y. Zhu, “Ba2+ doped CH3NH3PbI3 to tune the energy state and improve the performance of perovskite solar cells,” Electrochim. Acta 254, 165–171 (2017).
    [Crossref]
  54. R. Chen, D. Hou, C. Lu, J. Zhang, P. Liu, H. Tian, Z. Zeng, Q. Xiong, Z. Hu, Y. Zhu, and L. Han, “Zinc ion as effective film morphology controller in perovskite solar cells,” Sust. Energy Fuels 2(5), 1093–1100 (2018).
    [Crossref]

2018 (18)

W. Lu, R. Jiang, X. Yin, and L. Wang, “Porous N-doped-carbon coated CoSe2 anchored on carbon cloth as 3D photocathode for dye-sensitized solar cell with efficiency and stability outperforming Pt,” Nano Res. 12(1), 159–163 (2018).

Z. Xu, X. Yin, Y. Guo, Y. Pu, and M. He, “Ru-Doping in TiO2 electron transport layers of planar heterojunction perovskite solar cells for enhanced performance,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(17), 4746–4752 (2018).
[Crossref]

N. J. Jeon, H. Na, E. H. Jung, T.-Y. Yang, Y. G. Lee, G. Kim, H.-W. Shin, S. Il Seok, J. Lee, and J. Seo, “A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells,” Nat. Energy 3(8), 682–689 (2018).
[Crossref]

Y. Rong, Y. Hu, A. Mei, H. Tan, M. I. Saidaminov, S. I. Seok, M. D. McGehee, E. H. Sargent, and H. Han, “Challenges for commercializing perovskite solar cells,” Science 361(6408), 8235 (2018).
[Crossref] [PubMed]

D. Bai, J. Zhang, Z. Jin, H. Bian, K. Wang, H. Wang, L. Liang, Q. Wang, and S. Liu, “Interstitial Mn2+-driven high-aspect-ratio grain growth for low-trap-density microcrystalline films for record efficiency inorganic CsPbI2Br solar cells,” ACS Energy Lett. 3(4), 970–978 (2018).
[Crossref]

A. M. Elseman, A. E. Shalan, S. Sajid, M. M. Rashad, A. M. Hassan, and M. Li, “Copper-substituted lead perovskite materials constructed with different halides for working (CH3NH3)2CuX4-based perovskite solar cells from experimental and theoretical view,” ACS Appl. Mater. Interfaces 10(14), 11699–11707 (2018).
[Crossref] [PubMed]

C. Chen, Y. Xu, S. Wu, S. Zhang, Z. Yang, W. Zhang, H. Zhu, Z. Xiong, W. Chen, and W. Chen, “CaI2: a more effective passivator of perovskite films than PbI2 for high efficiency and long-term stability of perovskite solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 6(17), 7903–7912 (2018).
[Crossref]

H. Zhang, R. Li, M. Zhang, and M. Guo, “The effect of SrI2 substitution on perovskite film formation and its photovoltaic properties via two different deposition methods,” Inorg. Chem. Front. 5(6), 1354–1364 (2018).
[Crossref]

J.-S. Yao, J. Ge, B.-N. Han, K.-H. Wang, H.-B. Yao, H.-L. Yu, J.-H. Li, B.-S. Zhu, J.-Z. Song, C. Chen, Q. Zhang, H.-B. Zeng, Y. Luo, and S.-H. Yu, “Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes,” J. Am. Chem. Soc. 140(10), 3626–3634 (2018).
[Crossref] [PubMed]

Z. Tang, S. Uchida, T. Bessho, T. Kinoshita, H. Wang, F. Awai, R. Jono, M. M. Maitani, J. Nakazaki, T. Kubo, and H. Segawa, “Modulations of various alkali metal cations on organometal halide perovskites and their influence on photovoltaic performance,” Nano Energy 45, 184–192 (2018).
[Crossref]

Y. Hu, Z. Zhang, A. Mei, Y. Jiang, X. Hou, Q. Wang, K. Du, Y. Rong, Y. Zhou, G. Xu, and H. Han, “Improved performance of printable perovskite solar cells with bifunctional conjugated organic molecule,” Adv. Mater. 30(11), 1705786 (2018).
[Crossref] [PubMed]

L. Xu, Y. Xiong, A. Mei, Y. Hu, Y. Rong, Y. Zhou, B. Hu, and H. Han, “Efficient perovskite photovoltaic-thermoelectric hybrid device,” Adv. Energy Mater. 8(13), 1702937 (2018).
[Crossref]

C. Tian, A. Mei, S. Zhang, H. Tian, S. Liu, F. Qin, Y. Xiong, Y. Rong, Y. Hu, Y. Zhou, S. Xie, and H. Han, “Oxygen management in carbon electrode for high-performance printable perovskite solar cells,” Nano Energy 53, 160–167 (2018).
[Crossref]

J. Hu, Y. Qiao, Y. Yang, L. Zhao, W. Liu, S. Li, P. Liu, and M. Chen, “Enhanced performance of hole-conductor-free perovskite solar cells by utilization of core/shell-structured β-NaYF4:Yb3+,Er3+@SiO2 nanoparticles in ambient air,” IEEE J. Photovolt. 8(1), 132–136 (2018).
[Crossref]

Y. Qiao, S. Li, W. Liu, M. Ran, H. Lu, and Y. Yang, “Recent advances of rare-earth ion doped luminescent nanomaterials in perovskite solar cells,” Nanomaterials (Basel) 8(1), 43 (2018).
[Crossref] [PubMed]

S. Li, X. Zhu, B. Wang, Y. Qiao, W. Liu, H. Yang, N. Liu, M. Chen, H. Lu, and Y. Yang, “Influence of Ag nanoparticles with different sizes and concentrations embedded in a TiO2 compact layer on the conversion efficiency of perovskite solar cells,” Nanoscale Res. Lett. 13(1), 210 (2018).
[Crossref] [PubMed]

M.-C. Wu, W.-C. Chen, S.-H. Chan, and W.-F. Su, “The effect of strontium and barium doping on perovskite-structured energy materials for photovoltaic applications,” Appl. Surf. Sci. 429, 9–15 (2018).
[Crossref]

R. Chen, D. Hou, C. Lu, J. Zhang, P. Liu, H. Tian, Z. Zeng, Q. Xiong, Z. Hu, Y. Zhu, and L. Han, “Zinc ion as effective film morphology controller in perovskite solar cells,” Sust. Energy Fuels 2(5), 1093–1100 (2018).
[Crossref]

2017 (14)

J. H. Hu, W. H. Liu, Y. P. Yang, L. Zhao, Y. Qiao, S. H. Li, P. H. Liu, and M. W. Chen, “TiO2 nanotube/TiO2 nanoparticle hybrid photoanode for hole-conductor-free perovskite solar cells based on carbon counter electrodes,” Opt. Mater. Express 7(9), 3322–3331 (2017).
[Crossref]

F. P. Zhu, Z. J. Yong, B. M. Liu, Y. M. Chen, Y. Zhou, J. P. Ma, H. T. Sun, and Y. Z. Fang, “Superbroad near-infrared photoluminescence from bismuth-doped CsPbI3 perovskite nanocrystals,” Opt. Express 25(26), 33283–33289 (2017).
[Crossref]

H. Zhang, M. Shang, X. Zheng, Z. Zeng, R. Chen, Y. Zhang, J. Zhang, and Y. Zhu, “Ba2+ doped CH3NH3PbI3 to tune the energy state and improve the performance of perovskite solar cells,” Electrochim. Acta 254, 165–171 (2017).
[Crossref]

C.-M. Tsai, G.-W. Wu, S. Narra, H.-M. Chang, N. Mohanta, H.-P. Wu, C.-L. Wang, and E. W.-G. Diau, “Control of preferred orientation with slow crystallization for carbon-based mesoscopic perovskite solar cells attaining efficiency 15%,” J. Mater. Chem. A Mater. Energy Sustain. 5(2), 739–747 (2017).
[Crossref]

S. Li, J. Hu, Y. Yang, L. Zhao, Y. Qiao, W. Liu, P. Liu, and M. Chen, “Ag/nano-TiO2 composite compact film for enhanced performance of perovskite solar cells based on carbon counter electrodes,” Appl. Phys., A Mater. Sci. Process. 123(10), 628 (2017).
[Crossref]

H. Chen and S. Yang, “Carbon-based perovskite solar cells without hole transport materials: the front runner to the market?” Adv. Mater. 29(24), 1603994 (2017).
[Crossref] [PubMed]

Q. Chen, L. Chen, F. Ye, T. Zhao, F. Tang, A. Rajagopal, Z. Jiang, S. Jiang, A. K.-Y. Jen, Y. Xie, J. Cai, and L. Chen, “Ag-incorporated organic–inorganic perovskite films and planar heterojunction solar cells,” Nano Lett. 17(5), 3231–3237 (2017).
[Crossref] [PubMed]

S.-H. Chan, M.-C. Wu, K.-M. Lee, W.-C. Chen, T.-H. Lin, and W.-F. Su, “Enhancing perovskite solar cell performance and stability by doping barium in methylammonium lead halide,” J. Mater. Chem. A Mater. Energy Sustain. 5(34), 18044–18052 (2017).
[Crossref]

W. Zhao, D. Yang, Z. Yang, and S. Liu, “Zn-doping for reduced hysteresis and improved performance of methylammonium lead iodide perovskite hybrid solar cells,” Mater. Today Energy 5, 205–213 (2017).
[Crossref]

G. Tong, Z. Song, C. Li, Y. Zhao, L. Yu, J. Xu, Y. Jiang, Y. Sheng, Y. Shi, and K. Chen, “Cadmium-doped flexible perovskite solar cells with a low-cost and low-temperature-processed CdS electron transport layer,” RSC Advances 7(32), 19457–19463 (2017).
[Crossref]

L. Zhou, J. Chang, Z. Lin, C. Zhang, D. Chen, J. Zhang, and Y. Hao, “Investigation of Fe2+-incorporating organic–inorganic hybrid perovskites from first principles and experiments,” RSC Advances 7(86), 54586–54593 (2017).
[Crossref]

M. T. Klug, A. Osherov, A. A. Haghighirad, S. D. Stranks, P. R. Brown, S. Bai, J. T.-W. Wang, X. Dang, V. Bulovic, H. J. Snaith, and A. M. Belcher, “Tailoring metal halide perovskites through metal substitution: influence on photovoltaic and material properties,” Energy Environ. Sci. 10(1), 236–246 (2017).
[Crossref]

F. Dong, Y. Guo, P. Xu, X. Yin, Y. Li, and M. He, “Hydrothermal growth of MoS2/Co3S4 composites as efficient Pt-free counter electrodes for dye-sensitized solar cells,” Sci. China Mater. 60(4), 295–303 (2017).
[Crossref]

J.-P. Correa-Baena, A. Abate, M. Saliba, W. Tress, T. Jesper Jacobsson, M. Grätzel, and A. Hagfeldt, “The rapid evolution of highly efficient perovskite solar cells,” Energy Environ. Sci. 10(3), 710–727 (2017).
[Crossref]

2016 (9)

T. Handa, D. M. Tex, A. Shimazaki, T. Aharen, A. Wakamiya, and Y. Kanemitsu, “Optical characterization of voltage-accelerated degradation in CH3NH3PbI3 perovskite solar cells,” Opt. Express 24(10), 917–924 (2016).
[Crossref] [PubMed]

A. L. Abdelhady, M. I. Saidaminov, B. Murali, V. Adinolfi, O. Voznyy, K. Katsiev, E. Alarousu, R. Comin, I. Dursun, L. Sinatra, E. H. Sargent, O. F. Mohammed, and O. M. Bakr, “Heterovalent dopant incorporation for bandgap and type engineering of perovskite crystals,” J. Phys. Chem. Lett. 7(2), 295–301 (2016).
[Crossref] [PubMed]

Z.-K. Wang, M. Li, Y.-G. Yang, Y. Hu, H. Ma, X.-Y. Gao, and L.-S. Liao, “High efficiency Pb-In binary metal perovskite solar cells,” Adv. Mater. 28(31), 6695–6703 (2016).
[Crossref] [PubMed]

L. A. Frolova, D. V. Anokhin, K. L. Gerasimov, N. N. Dremova, and P. A. Troshin, “Exploring the effects of the Pb2+ substitution in MAPbI3 on the photovoltaic performance of the hybrid perovskite solar cells,” J. Phys. Chem. Lett. 7(21), 4353–4357 (2016).
[Crossref] [PubMed]

J. Zhang, M. Shang, P. Wang, X. Huang, J. Xu, Z. Hu, Y. Zhu, and L. Han, “N-type doping and energy states tuning in CH3NH3Pb1–xSb2x/3I3 perovskite solar cells,” ACS Energy Lett. 1(3), 535–541 (2016).
[Crossref]

M. Acik and S. B. Darling, “Graphene in perovskite solar cells: device design, characterization and implementation,” J. Mater. Chem. A Mater. Energy Sustain. 4(17), 6185–6235 (2016).
[Crossref]

J. Hu, J. Cheng, S. Tong, L. Zhao, J. Duan, and Y. Yang, “Dye-sensitized solar cells based on P25 nanoparticles/TiO2 nanotube arrays/hollow TiO2 boxes three-layer composite film,” J. Mater. Sci. 27(5), 5362–5370 (2016).

J.-W. Lee, H.-S. Kim, and N.-G. Park, “Lewis acid–base adduct approach for high efficiency perovskite solar cells,” Acc. Chem. Res. 49(2), 311–319 (2016).
[Crossref] [PubMed]

D.-Y. Son, J.-W. Lee, Y. J. Choi, I.-H. Jang, S. Lee, P. J. Yoo, H. Shin, N. Ahn, M. Choi, D. Kim, and N.-G. Park, “Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells,” Nat. Energy 1(7), 16081 (2016).
[Crossref]

2015 (1)

N. Ahn, D.-Y. Son, I.-H. Jang, S. M. Kang, M. Choi, and N.-G. Park, “Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide,” J. Am. Chem. Soc. 137(27), 8696–8699 (2015).
[Crossref] [PubMed]

2014 (7)

G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells,” Energy Environ. Sci. 7(3), 982–988 (2014).
[Crossref]

C. Wehrenfennig, M. Liu, H. J. Snaith, M. B. Johnston, and L. M. Herz, “Charge-carrier dynamics in vapour-deposited films of the organolead halide perovskite CH3NH3PbI3−xClx,” Energy Environ. Sci. 7(7), 2269–2275 (2014).
[Crossref]

C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High charge carrier mobilities and lifetimes in organolead trihalide perovskites,” Adv. Mater. 26(10), 1584–1589 (2014).
[Crossref] [PubMed]

T. M. Koh, K. Fu, Y. Fang, S. Chen, T. C. Sum, N. Mathews, S. G. Mhaisalkar, P. P. Boix, and T. Baikie, “Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells,” J. Phys. Chem. C 118(30), 16458–16462 (2014).
[Crossref]

Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, N. Fujikawa, Q. Shen, T. Toyoda, K. Yoshino, S. S. Pandey, T. Ma, and S. Hayase, “CH3NH3SnxPb(1-x)I3 Perovskite Solar Cells Covering up to 1060 nm,” J. Phys. Chem. Lett. 5(6), 1004–1011 (2014).
[Crossref] [PubMed]

M. H. Kumar, S. Dharani, W. L. Leong, P. P. Boix, R. R. Prabhakar, T. Baikie, C. Shi, H. Ding, R. Ramesh, M. Asta, M. Graetzel, S. G. Mhaisalkar, and N. Mathews, “Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation,” Adv. Mater. 26(41), 7122–7127 (2014).
[Crossref] [PubMed]

N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A. A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz, and H. J. Snaith, “Lead-free organic-inorganic tin halide perovskites for photovoltaic applications,” Energy Environ. Sci. 7(9), 3061–3068 (2014).
[Crossref]

2013 (1)

Z. Ku, Y. Rong, M. Xu, T. Liu, and H. Han, “Full printable processed mesoscopic CH₃NH₃PbI₃/TiO₂ heterojunction solar cells with carbon counter electrode,” Sci. Rep. 3(1), 3132 (2013).
[Crossref] [PubMed]

2012 (1)

A. Kojima, M. Ikegami, K. Teshima, and T. Miyasaka, “Highly luminescent lead bromide perovskite nanoparticles synthesized with porous alumina media,” Chem. Lett. 41(4), 397–399 (2012).
[Crossref]

2009 (1)

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[Crossref] [PubMed]

2005 (1)

J. L. Knutson, J. D. Martin, and D. B. Mitzi, “Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating,” Inorg. Chem. 44(13), 4699–4705 (2005).
[Crossref] [PubMed]

1995 (1)

D. B. Mitzi, S. Wang, C. A. Feild, C. A. Chess, and A. M. Guloy, “Conducting layered organic-inorganic halides containing <110>-oriented perovskite sheets,” Science 267(5203), 1473–1476 (1995).
[Crossref] [PubMed]

Abate, A.

J.-P. Correa-Baena, A. Abate, M. Saliba, W. Tress, T. Jesper Jacobsson, M. Grätzel, and A. Hagfeldt, “The rapid evolution of highly efficient perovskite solar cells,” Energy Environ. Sci. 10(3), 710–727 (2017).
[Crossref]

N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A. A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz, and H. J. Snaith, “Lead-free organic-inorganic tin halide perovskites for photovoltaic applications,” Energy Environ. Sci. 7(9), 3061–3068 (2014).
[Crossref]

Abdelhady, A. L.

A. L. Abdelhady, M. I. Saidaminov, B. Murali, V. Adinolfi, O. Voznyy, K. Katsiev, E. Alarousu, R. Comin, I. Dursun, L. Sinatra, E. H. Sargent, O. F. Mohammed, and O. M. Bakr, “Heterovalent dopant incorporation for bandgap and type engineering of perovskite crystals,” J. Phys. Chem. Lett. 7(2), 295–301 (2016).
[Crossref] [PubMed]

Acik, M.

M. Acik and S. B. Darling, “Graphene in perovskite solar cells: device design, characterization and implementation,” J. Mater. Chem. A Mater. Energy Sustain. 4(17), 6185–6235 (2016).
[Crossref]

Adinolfi, V.

A. L. Abdelhady, M. I. Saidaminov, B. Murali, V. Adinolfi, O. Voznyy, K. Katsiev, E. Alarousu, R. Comin, I. Dursun, L. Sinatra, E. H. Sargent, O. F. Mohammed, and O. M. Bakr, “Heterovalent dopant incorporation for bandgap and type engineering of perovskite crystals,” J. Phys. Chem. Lett. 7(2), 295–301 (2016).
[Crossref] [PubMed]

Aharen, T.

T. Handa, D. M. Tex, A. Shimazaki, T. Aharen, A. Wakamiya, and Y. Kanemitsu, “Optical characterization of voltage-accelerated degradation in CH3NH3PbI3 perovskite solar cells,” Opt. Express 24(10), 917–924 (2016).
[Crossref] [PubMed]

Ahn, N.

D.-Y. Son, J.-W. Lee, Y. J. Choi, I.-H. Jang, S. Lee, P. J. Yoo, H. Shin, N. Ahn, M. Choi, D. Kim, and N.-G. Park, “Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells,” Nat. Energy 1(7), 16081 (2016).
[Crossref]

N. Ahn, D.-Y. Son, I.-H. Jang, S. M. Kang, M. Choi, and N.-G. Park, “Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide,” J. Am. Chem. Soc. 137(27), 8696–8699 (2015).
[Crossref] [PubMed]

Alarousu, E.

A. L. Abdelhady, M. I. Saidaminov, B. Murali, V. Adinolfi, O. Voznyy, K. Katsiev, E. Alarousu, R. Comin, I. Dursun, L. Sinatra, E. H. Sargent, O. F. Mohammed, and O. M. Bakr, “Heterovalent dopant incorporation for bandgap and type engineering of perovskite crystals,” J. Phys. Chem. Lett. 7(2), 295–301 (2016).
[Crossref] [PubMed]

Anokhin, D. V.

L. A. Frolova, D. V. Anokhin, K. L. Gerasimov, N. N. Dremova, and P. A. Troshin, “Exploring the effects of the Pb2+ substitution in MAPbI3 on the photovoltaic performance of the hybrid perovskite solar cells,” J. Phys. Chem. Lett. 7(21), 4353–4357 (2016).
[Crossref] [PubMed]

Asta, M.

M. H. Kumar, S. Dharani, W. L. Leong, P. P. Boix, R. R. Prabhakar, T. Baikie, C. Shi, H. Ding, R. Ramesh, M. Asta, M. Graetzel, S. G. Mhaisalkar, and N. Mathews, “Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation,” Adv. Mater. 26(41), 7122–7127 (2014).
[Crossref] [PubMed]

Awai, F.

Z. Tang, S. Uchida, T. Bessho, T. Kinoshita, H. Wang, F. Awai, R. Jono, M. M. Maitani, J. Nakazaki, T. Kubo, and H. Segawa, “Modulations of various alkali metal cations on organometal halide perovskites and their influence on photovoltaic performance,” Nano Energy 45, 184–192 (2018).
[Crossref]

Bai, D.

D. Bai, J. Zhang, Z. Jin, H. Bian, K. Wang, H. Wang, L. Liang, Q. Wang, and S. Liu, “Interstitial Mn2+-driven high-aspect-ratio grain growth for low-trap-density microcrystalline films for record efficiency inorganic CsPbI2Br solar cells,” ACS Energy Lett. 3(4), 970–978 (2018).
[Crossref]

Bai, S.

M. T. Klug, A. Osherov, A. A. Haghighirad, S. D. Stranks, P. R. Brown, S. Bai, J. T.-W. Wang, X. Dang, V. Bulovic, H. J. Snaith, and A. M. Belcher, “Tailoring metal halide perovskites through metal substitution: influence on photovoltaic and material properties,” Energy Environ. Sci. 10(1), 236–246 (2017).
[Crossref]

Baikie, T.

M. H. Kumar, S. Dharani, W. L. Leong, P. P. Boix, R. R. Prabhakar, T. Baikie, C. Shi, H. Ding, R. Ramesh, M. Asta, M. Graetzel, S. G. Mhaisalkar, and N. Mathews, “Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation,” Adv. Mater. 26(41), 7122–7127 (2014).
[Crossref] [PubMed]

T. M. Koh, K. Fu, Y. Fang, S. Chen, T. C. Sum, N. Mathews, S. G. Mhaisalkar, P. P. Boix, and T. Baikie, “Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells,” J. Phys. Chem. C 118(30), 16458–16462 (2014).
[Crossref]

Bakr, O. M.

A. L. Abdelhady, M. I. Saidaminov, B. Murali, V. Adinolfi, O. Voznyy, K. Katsiev, E. Alarousu, R. Comin, I. Dursun, L. Sinatra, E. H. Sargent, O. F. Mohammed, and O. M. Bakr, “Heterovalent dopant incorporation for bandgap and type engineering of perovskite crystals,” J. Phys. Chem. Lett. 7(2), 295–301 (2016).
[Crossref] [PubMed]

Belcher, A. M.

M. T. Klug, A. Osherov, A. A. Haghighirad, S. D. Stranks, P. R. Brown, S. Bai, J. T.-W. Wang, X. Dang, V. Bulovic, H. J. Snaith, and A. M. Belcher, “Tailoring metal halide perovskites through metal substitution: influence on photovoltaic and material properties,” Energy Environ. Sci. 10(1), 236–246 (2017).
[Crossref]

Bessho, T.

Z. Tang, S. Uchida, T. Bessho, T. Kinoshita, H. Wang, F. Awai, R. Jono, M. M. Maitani, J. Nakazaki, T. Kubo, and H. Segawa, “Modulations of various alkali metal cations on organometal halide perovskites and their influence on photovoltaic performance,” Nano Energy 45, 184–192 (2018).
[Crossref]

Bian, H.

D. Bai, J. Zhang, Z. Jin, H. Bian, K. Wang, H. Wang, L. Liang, Q. Wang, and S. Liu, “Interstitial Mn2+-driven high-aspect-ratio grain growth for low-trap-density microcrystalline films for record efficiency inorganic CsPbI2Br solar cells,” ACS Energy Lett. 3(4), 970–978 (2018).
[Crossref]

Boix, P. P.

T. M. Koh, K. Fu, Y. Fang, S. Chen, T. C. Sum, N. Mathews, S. G. Mhaisalkar, P. P. Boix, and T. Baikie, “Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells,” J. Phys. Chem. C 118(30), 16458–16462 (2014).
[Crossref]

M. H. Kumar, S. Dharani, W. L. Leong, P. P. Boix, R. R. Prabhakar, T. Baikie, C. Shi, H. Ding, R. Ramesh, M. Asta, M. Graetzel, S. G. Mhaisalkar, and N. Mathews, “Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation,” Adv. Mater. 26(41), 7122–7127 (2014).
[Crossref] [PubMed]

Brown, P. R.

M. T. Klug, A. Osherov, A. A. Haghighirad, S. D. Stranks, P. R. Brown, S. Bai, J. T.-W. Wang, X. Dang, V. Bulovic, H. J. Snaith, and A. M. Belcher, “Tailoring metal halide perovskites through metal substitution: influence on photovoltaic and material properties,” Energy Environ. Sci. 10(1), 236–246 (2017).
[Crossref]

Bulovic, V.

M. T. Klug, A. Osherov, A. A. Haghighirad, S. D. Stranks, P. R. Brown, S. Bai, J. T.-W. Wang, X. Dang, V. Bulovic, H. J. Snaith, and A. M. Belcher, “Tailoring metal halide perovskites through metal substitution: influence on photovoltaic and material properties,” Energy Environ. Sci. 10(1), 236–246 (2017).
[Crossref]

Cai, J.

Q. Chen, L. Chen, F. Ye, T. Zhao, F. Tang, A. Rajagopal, Z. Jiang, S. Jiang, A. K.-Y. Jen, Y. Xie, J. Cai, and L. Chen, “Ag-incorporated organic–inorganic perovskite films and planar heterojunction solar cells,” Nano Lett. 17(5), 3231–3237 (2017).
[Crossref] [PubMed]

Chan, S.-H.

M.-C. Wu, W.-C. Chen, S.-H. Chan, and W.-F. Su, “The effect of strontium and barium doping on perovskite-structured energy materials for photovoltaic applications,” Appl. Surf. Sci. 429, 9–15 (2018).
[Crossref]

S.-H. Chan, M.-C. Wu, K.-M. Lee, W.-C. Chen, T.-H. Lin, and W.-F. Su, “Enhancing perovskite solar cell performance and stability by doping barium in methylammonium lead halide,” J. Mater. Chem. A Mater. Energy Sustain. 5(34), 18044–18052 (2017).
[Crossref]

Chang, H.-M.

C.-M. Tsai, G.-W. Wu, S. Narra, H.-M. Chang, N. Mohanta, H.-P. Wu, C.-L. Wang, and E. W.-G. Diau, “Control of preferred orientation with slow crystallization for carbon-based mesoscopic perovskite solar cells attaining efficiency 15%,” J. Mater. Chem. A Mater. Energy Sustain. 5(2), 739–747 (2017).
[Crossref]

Chang, J.

L. Zhou, J. Chang, Z. Lin, C. Zhang, D. Chen, J. Zhang, and Y. Hao, “Investigation of Fe2+-incorporating organic–inorganic hybrid perovskites from first principles and experiments,” RSC Advances 7(86), 54586–54593 (2017).
[Crossref]

Chen, C.

C. Chen, Y. Xu, S. Wu, S. Zhang, Z. Yang, W. Zhang, H. Zhu, Z. Xiong, W. Chen, and W. Chen, “CaI2: a more effective passivator of perovskite films than PbI2 for high efficiency and long-term stability of perovskite solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 6(17), 7903–7912 (2018).
[Crossref]

J.-S. Yao, J. Ge, B.-N. Han, K.-H. Wang, H.-B. Yao, H.-L. Yu, J.-H. Li, B.-S. Zhu, J.-Z. Song, C. Chen, Q. Zhang, H.-B. Zeng, Y. Luo, and S.-H. Yu, “Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes,” J. Am. Chem. Soc. 140(10), 3626–3634 (2018).
[Crossref] [PubMed]

Chen, D.

L. Zhou, J. Chang, Z. Lin, C. Zhang, D. Chen, J. Zhang, and Y. Hao, “Investigation of Fe2+-incorporating organic–inorganic hybrid perovskites from first principles and experiments,” RSC Advances 7(86), 54586–54593 (2017).
[Crossref]

Chen, H.

H. Chen and S. Yang, “Carbon-based perovskite solar cells without hole transport materials: the front runner to the market?” Adv. Mater. 29(24), 1603994 (2017).
[Crossref] [PubMed]

Chen, K.

G. Tong, Z. Song, C. Li, Y. Zhao, L. Yu, J. Xu, Y. Jiang, Y. Sheng, Y. Shi, and K. Chen, “Cadmium-doped flexible perovskite solar cells with a low-cost and low-temperature-processed CdS electron transport layer,” RSC Advances 7(32), 19457–19463 (2017).
[Crossref]

Chen, L.

Q. Chen, L. Chen, F. Ye, T. Zhao, F. Tang, A. Rajagopal, Z. Jiang, S. Jiang, A. K.-Y. Jen, Y. Xie, J. Cai, and L. Chen, “Ag-incorporated organic–inorganic perovskite films and planar heterojunction solar cells,” Nano Lett. 17(5), 3231–3237 (2017).
[Crossref] [PubMed]

Q. Chen, L. Chen, F. Ye, T. Zhao, F. Tang, A. Rajagopal, Z. Jiang, S. Jiang, A. K.-Y. Jen, Y. Xie, J. Cai, and L. Chen, “Ag-incorporated organic–inorganic perovskite films and planar heterojunction solar cells,” Nano Lett. 17(5), 3231–3237 (2017).
[Crossref] [PubMed]

Chen, M.

S. Li, X. Zhu, B. Wang, Y. Qiao, W. Liu, H. Yang, N. Liu, M. Chen, H. Lu, and Y. Yang, “Influence of Ag nanoparticles with different sizes and concentrations embedded in a TiO2 compact layer on the conversion efficiency of perovskite solar cells,” Nanoscale Res. Lett. 13(1), 210 (2018).
[Crossref] [PubMed]

J. Hu, Y. Qiao, Y. Yang, L. Zhao, W. Liu, S. Li, P. Liu, and M. Chen, “Enhanced performance of hole-conductor-free perovskite solar cells by utilization of core/shell-structured β-NaYF4:Yb3+,Er3+@SiO2 nanoparticles in ambient air,” IEEE J. Photovolt. 8(1), 132–136 (2018).
[Crossref]

S. Li, J. Hu, Y. Yang, L. Zhao, Y. Qiao, W. Liu, P. Liu, and M. Chen, “Ag/nano-TiO2 composite compact film for enhanced performance of perovskite solar cells based on carbon counter electrodes,” Appl. Phys., A Mater. Sci. Process. 123(10), 628 (2017).
[Crossref]

Chen, M. W.

Chen, Q.

Q. Chen, L. Chen, F. Ye, T. Zhao, F. Tang, A. Rajagopal, Z. Jiang, S. Jiang, A. K.-Y. Jen, Y. Xie, J. Cai, and L. Chen, “Ag-incorporated organic–inorganic perovskite films and planar heterojunction solar cells,” Nano Lett. 17(5), 3231–3237 (2017).
[Crossref] [PubMed]

Chen, R.

R. Chen, D. Hou, C. Lu, J. Zhang, P. Liu, H. Tian, Z. Zeng, Q. Xiong, Z. Hu, Y. Zhu, and L. Han, “Zinc ion as effective film morphology controller in perovskite solar cells,” Sust. Energy Fuels 2(5), 1093–1100 (2018).
[Crossref]

H. Zhang, M. Shang, X. Zheng, Z. Zeng, R. Chen, Y. Zhang, J. Zhang, and Y. Zhu, “Ba2+ doped CH3NH3PbI3 to tune the energy state and improve the performance of perovskite solar cells,” Electrochim. Acta 254, 165–171 (2017).
[Crossref]

Chen, S.

T. M. Koh, K. Fu, Y. Fang, S. Chen, T. C. Sum, N. Mathews, S. G. Mhaisalkar, P. P. Boix, and T. Baikie, “Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells,” J. Phys. Chem. C 118(30), 16458–16462 (2014).
[Crossref]

Chen, W.

C. Chen, Y. Xu, S. Wu, S. Zhang, Z. Yang, W. Zhang, H. Zhu, Z. Xiong, W. Chen, and W. Chen, “CaI2: a more effective passivator of perovskite films than PbI2 for high efficiency and long-term stability of perovskite solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 6(17), 7903–7912 (2018).
[Crossref]

C. Chen, Y. Xu, S. Wu, S. Zhang, Z. Yang, W. Zhang, H. Zhu, Z. Xiong, W. Chen, and W. Chen, “CaI2: a more effective passivator of perovskite films than PbI2 for high efficiency and long-term stability of perovskite solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 6(17), 7903–7912 (2018).
[Crossref]

Chen, W.-C.

M.-C. Wu, W.-C. Chen, S.-H. Chan, and W.-F. Su, “The effect of strontium and barium doping on perovskite-structured energy materials for photovoltaic applications,” Appl. Surf. Sci. 429, 9–15 (2018).
[Crossref]

S.-H. Chan, M.-C. Wu, K.-M. Lee, W.-C. Chen, T.-H. Lin, and W.-F. Su, “Enhancing perovskite solar cell performance and stability by doping barium in methylammonium lead halide,” J. Mater. Chem. A Mater. Energy Sustain. 5(34), 18044–18052 (2017).
[Crossref]

Chen, Y. M.

Cheng, J.

J. Hu, J. Cheng, S. Tong, L. Zhao, J. Duan, and Y. Yang, “Dye-sensitized solar cells based on P25 nanoparticles/TiO2 nanotube arrays/hollow TiO2 boxes three-layer composite film,” J. Mater. Sci. 27(5), 5362–5370 (2016).

Chess, C. A.

D. B. Mitzi, S. Wang, C. A. Feild, C. A. Chess, and A. M. Guloy, “Conducting layered organic-inorganic halides containing <110>-oriented perovskite sheets,” Science 267(5203), 1473–1476 (1995).
[Crossref] [PubMed]

Choi, M.

D.-Y. Son, J.-W. Lee, Y. J. Choi, I.-H. Jang, S. Lee, P. J. Yoo, H. Shin, N. Ahn, M. Choi, D. Kim, and N.-G. Park, “Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells,” Nat. Energy 1(7), 16081 (2016).
[Crossref]

N. Ahn, D.-Y. Son, I.-H. Jang, S. M. Kang, M. Choi, and N.-G. Park, “Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide,” J. Am. Chem. Soc. 137(27), 8696–8699 (2015).
[Crossref] [PubMed]

Choi, Y. J.

D.-Y. Son, J.-W. Lee, Y. J. Choi, I.-H. Jang, S. Lee, P. J. Yoo, H. Shin, N. Ahn, M. Choi, D. Kim, and N.-G. Park, “Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells,” Nat. Energy 1(7), 16081 (2016).
[Crossref]

Comin, R.

A. L. Abdelhady, M. I. Saidaminov, B. Murali, V. Adinolfi, O. Voznyy, K. Katsiev, E. Alarousu, R. Comin, I. Dursun, L. Sinatra, E. H. Sargent, O. F. Mohammed, and O. M. Bakr, “Heterovalent dopant incorporation for bandgap and type engineering of perovskite crystals,” J. Phys. Chem. Lett. 7(2), 295–301 (2016).
[Crossref] [PubMed]

Correa-Baena, J.-P.

J.-P. Correa-Baena, A. Abate, M. Saliba, W. Tress, T. Jesper Jacobsson, M. Grätzel, and A. Hagfeldt, “The rapid evolution of highly efficient perovskite solar cells,” Energy Environ. Sci. 10(3), 710–727 (2017).
[Crossref]

Dang, X.

M. T. Klug, A. Osherov, A. A. Haghighirad, S. D. Stranks, P. R. Brown, S. Bai, J. T.-W. Wang, X. Dang, V. Bulovic, H. J. Snaith, and A. M. Belcher, “Tailoring metal halide perovskites through metal substitution: influence on photovoltaic and material properties,” Energy Environ. Sci. 10(1), 236–246 (2017).
[Crossref]

Darling, S. B.

M. Acik and S. B. Darling, “Graphene in perovskite solar cells: device design, characterization and implementation,” J. Mater. Chem. A Mater. Energy Sustain. 4(17), 6185–6235 (2016).
[Crossref]

Dharani, S.

M. H. Kumar, S. Dharani, W. L. Leong, P. P. Boix, R. R. Prabhakar, T. Baikie, C. Shi, H. Ding, R. Ramesh, M. Asta, M. Graetzel, S. G. Mhaisalkar, and N. Mathews, “Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation,” Adv. Mater. 26(41), 7122–7127 (2014).
[Crossref] [PubMed]

Diau, E. W.-G.

C.-M. Tsai, G.-W. Wu, S. Narra, H.-M. Chang, N. Mohanta, H.-P. Wu, C.-L. Wang, and E. W.-G. Diau, “Control of preferred orientation with slow crystallization for carbon-based mesoscopic perovskite solar cells attaining efficiency 15%,” J. Mater. Chem. A Mater. Energy Sustain. 5(2), 739–747 (2017).
[Crossref]

Ding, H.

M. H. Kumar, S. Dharani, W. L. Leong, P. P. Boix, R. R. Prabhakar, T. Baikie, C. Shi, H. Ding, R. Ramesh, M. Asta, M. Graetzel, S. G. Mhaisalkar, and N. Mathews, “Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation,” Adv. Mater. 26(41), 7122–7127 (2014).
[Crossref] [PubMed]

Dong, F.

F. Dong, Y. Guo, P. Xu, X. Yin, Y. Li, and M. He, “Hydrothermal growth of MoS2/Co3S4 composites as efficient Pt-free counter electrodes for dye-sensitized solar cells,” Sci. China Mater. 60(4), 295–303 (2017).
[Crossref]

Dremova, N. N.

L. A. Frolova, D. V. Anokhin, K. L. Gerasimov, N. N. Dremova, and P. A. Troshin, “Exploring the effects of the Pb2+ substitution in MAPbI3 on the photovoltaic performance of the hybrid perovskite solar cells,” J. Phys. Chem. Lett. 7(21), 4353–4357 (2016).
[Crossref] [PubMed]

Du, K.

Y. Hu, Z. Zhang, A. Mei, Y. Jiang, X. Hou, Q. Wang, K. Du, Y. Rong, Y. Zhou, G. Xu, and H. Han, “Improved performance of printable perovskite solar cells with bifunctional conjugated organic molecule,” Adv. Mater. 30(11), 1705786 (2018).
[Crossref] [PubMed]

Duan, J.

J. Hu, J. Cheng, S. Tong, L. Zhao, J. Duan, and Y. Yang, “Dye-sensitized solar cells based on P25 nanoparticles/TiO2 nanotube arrays/hollow TiO2 boxes three-layer composite film,” J. Mater. Sci. 27(5), 5362–5370 (2016).

Dursun, I.

A. L. Abdelhady, M. I. Saidaminov, B. Murali, V. Adinolfi, O. Voznyy, K. Katsiev, E. Alarousu, R. Comin, I. Dursun, L. Sinatra, E. H. Sargent, O. F. Mohammed, and O. M. Bakr, “Heterovalent dopant incorporation for bandgap and type engineering of perovskite crystals,” J. Phys. Chem. Lett. 7(2), 295–301 (2016).
[Crossref] [PubMed]

Elseman, A. M.

A. M. Elseman, A. E. Shalan, S. Sajid, M. M. Rashad, A. M. Hassan, and M. Li, “Copper-substituted lead perovskite materials constructed with different halides for working (CH3NH3)2CuX4-based perovskite solar cells from experimental and theoretical view,” ACS Appl. Mater. Interfaces 10(14), 11699–11707 (2018).
[Crossref] [PubMed]

Eperon, G. E.

G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells,” Energy Environ. Sci. 7(3), 982–988 (2014).
[Crossref]

C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High charge carrier mobilities and lifetimes in organolead trihalide perovskites,” Adv. Mater. 26(10), 1584–1589 (2014).
[Crossref] [PubMed]

N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A. A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz, and H. J. Snaith, “Lead-free organic-inorganic tin halide perovskites for photovoltaic applications,” Energy Environ. Sci. 7(9), 3061–3068 (2014).
[Crossref]

Fang, Y.

T. M. Koh, K. Fu, Y. Fang, S. Chen, T. C. Sum, N. Mathews, S. G. Mhaisalkar, P. P. Boix, and T. Baikie, “Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells,” J. Phys. Chem. C 118(30), 16458–16462 (2014).
[Crossref]

Fang, Y. Z.

Feild, C. A.

D. B. Mitzi, S. Wang, C. A. Feild, C. A. Chess, and A. M. Guloy, “Conducting layered organic-inorganic halides containing <110>-oriented perovskite sheets,” Science 267(5203), 1473–1476 (1995).
[Crossref] [PubMed]

Frolova, L. A.

L. A. Frolova, D. V. Anokhin, K. L. Gerasimov, N. N. Dremova, and P. A. Troshin, “Exploring the effects of the Pb2+ substitution in MAPbI3 on the photovoltaic performance of the hybrid perovskite solar cells,” J. Phys. Chem. Lett. 7(21), 4353–4357 (2016).
[Crossref] [PubMed]

Fu, K.

T. M. Koh, K. Fu, Y. Fang, S. Chen, T. C. Sum, N. Mathews, S. G. Mhaisalkar, P. P. Boix, and T. Baikie, “Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells,” J. Phys. Chem. C 118(30), 16458–16462 (2014).
[Crossref]

Fujikawa, N.

Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, N. Fujikawa, Q. Shen, T. Toyoda, K. Yoshino, S. S. Pandey, T. Ma, and S. Hayase, “CH3NH3SnxPb(1-x)I3 Perovskite Solar Cells Covering up to 1060 nm,” J. Phys. Chem. Lett. 5(6), 1004–1011 (2014).
[Crossref] [PubMed]

Gao, X.-Y.

Z.-K. Wang, M. Li, Y.-G. Yang, Y. Hu, H. Ma, X.-Y. Gao, and L.-S. Liao, “High efficiency Pb-In binary metal perovskite solar cells,” Adv. Mater. 28(31), 6695–6703 (2016).
[Crossref] [PubMed]

Ge, J.

J.-S. Yao, J. Ge, B.-N. Han, K.-H. Wang, H.-B. Yao, H.-L. Yu, J.-H. Li, B.-S. Zhu, J.-Z. Song, C. Chen, Q. Zhang, H.-B. Zeng, Y. Luo, and S.-H. Yu, “Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes,” J. Am. Chem. Soc. 140(10), 3626–3634 (2018).
[Crossref] [PubMed]

Gerasimov, K. L.

L. A. Frolova, D. V. Anokhin, K. L. Gerasimov, N. N. Dremova, and P. A. Troshin, “Exploring the effects of the Pb2+ substitution in MAPbI3 on the photovoltaic performance of the hybrid perovskite solar cells,” J. Phys. Chem. Lett. 7(21), 4353–4357 (2016).
[Crossref] [PubMed]

Graetzel, M.

M. H. Kumar, S. Dharani, W. L. Leong, P. P. Boix, R. R. Prabhakar, T. Baikie, C. Shi, H. Ding, R. Ramesh, M. Asta, M. Graetzel, S. G. Mhaisalkar, and N. Mathews, “Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation,” Adv. Mater. 26(41), 7122–7127 (2014).
[Crossref] [PubMed]

Grätzel, M.

J.-P. Correa-Baena, A. Abate, M. Saliba, W. Tress, T. Jesper Jacobsson, M. Grätzel, and A. Hagfeldt, “The rapid evolution of highly efficient perovskite solar cells,” Energy Environ. Sci. 10(3), 710–727 (2017).
[Crossref]

Guarnera, S.

N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A. A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz, and H. J. Snaith, “Lead-free organic-inorganic tin halide perovskites for photovoltaic applications,” Energy Environ. Sci. 7(9), 3061–3068 (2014).
[Crossref]

Guloy, A. M.

D. B. Mitzi, S. Wang, C. A. Feild, C. A. Chess, and A. M. Guloy, “Conducting layered organic-inorganic halides containing <110>-oriented perovskite sheets,” Science 267(5203), 1473–1476 (1995).
[Crossref] [PubMed]

Guo, M.

H. Zhang, R. Li, M. Zhang, and M. Guo, “The effect of SrI2 substitution on perovskite film formation and its photovoltaic properties via two different deposition methods,” Inorg. Chem. Front. 5(6), 1354–1364 (2018).
[Crossref]

Guo, Y.

Z. Xu, X. Yin, Y. Guo, Y. Pu, and M. He, “Ru-Doping in TiO2 electron transport layers of planar heterojunction perovskite solar cells for enhanced performance,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(17), 4746–4752 (2018).
[Crossref]

F. Dong, Y. Guo, P. Xu, X. Yin, Y. Li, and M. He, “Hydrothermal growth of MoS2/Co3S4 composites as efficient Pt-free counter electrodes for dye-sensitized solar cells,” Sci. China Mater. 60(4), 295–303 (2017).
[Crossref]

Hagfeldt, A.

J.-P. Correa-Baena, A. Abate, M. Saliba, W. Tress, T. Jesper Jacobsson, M. Grätzel, and A. Hagfeldt, “The rapid evolution of highly efficient perovskite solar cells,” Energy Environ. Sci. 10(3), 710–727 (2017).
[Crossref]

Haghighirad, A. A.

M. T. Klug, A. Osherov, A. A. Haghighirad, S. D. Stranks, P. R. Brown, S. Bai, J. T.-W. Wang, X. Dang, V. Bulovic, H. J. Snaith, and A. M. Belcher, “Tailoring metal halide perovskites through metal substitution: influence on photovoltaic and material properties,” Energy Environ. Sci. 10(1), 236–246 (2017).
[Crossref]

N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A. A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz, and H. J. Snaith, “Lead-free organic-inorganic tin halide perovskites for photovoltaic applications,” Energy Environ. Sci. 7(9), 3061–3068 (2014).
[Crossref]

Han, B.-N.

J.-S. Yao, J. Ge, B.-N. Han, K.-H. Wang, H.-B. Yao, H.-L. Yu, J.-H. Li, B.-S. Zhu, J.-Z. Song, C. Chen, Q. Zhang, H.-B. Zeng, Y. Luo, and S.-H. Yu, “Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes,” J. Am. Chem. Soc. 140(10), 3626–3634 (2018).
[Crossref] [PubMed]

Han, H.

Y. Hu, Z. Zhang, A. Mei, Y. Jiang, X. Hou, Q. Wang, K. Du, Y. Rong, Y. Zhou, G. Xu, and H. Han, “Improved performance of printable perovskite solar cells with bifunctional conjugated organic molecule,” Adv. Mater. 30(11), 1705786 (2018).
[Crossref] [PubMed]

Y. Rong, Y. Hu, A. Mei, H. Tan, M. I. Saidaminov, S. I. Seok, M. D. McGehee, E. H. Sargent, and H. Han, “Challenges for commercializing perovskite solar cells,” Science 361(6408), 8235 (2018).
[Crossref] [PubMed]

L. Xu, Y. Xiong, A. Mei, Y. Hu, Y. Rong, Y. Zhou, B. Hu, and H. Han, “Efficient perovskite photovoltaic-thermoelectric hybrid device,” Adv. Energy Mater. 8(13), 1702937 (2018).
[Crossref]

C. Tian, A. Mei, S. Zhang, H. Tian, S. Liu, F. Qin, Y. Xiong, Y. Rong, Y. Hu, Y. Zhou, S. Xie, and H. Han, “Oxygen management in carbon electrode for high-performance printable perovskite solar cells,” Nano Energy 53, 160–167 (2018).
[Crossref]

Z. Ku, Y. Rong, M. Xu, T. Liu, and H. Han, “Full printable processed mesoscopic CH₃NH₃PbI₃/TiO₂ heterojunction solar cells with carbon counter electrode,” Sci. Rep. 3(1), 3132 (2013).
[Crossref] [PubMed]

Han, L.

R. Chen, D. Hou, C. Lu, J. Zhang, P. Liu, H. Tian, Z. Zeng, Q. Xiong, Z. Hu, Y. Zhu, and L. Han, “Zinc ion as effective film morphology controller in perovskite solar cells,” Sust. Energy Fuels 2(5), 1093–1100 (2018).
[Crossref]

J. Zhang, M. Shang, P. Wang, X. Huang, J. Xu, Z. Hu, Y. Zhu, and L. Han, “N-type doping and energy states tuning in CH3NH3Pb1–xSb2x/3I3 perovskite solar cells,” ACS Energy Lett. 1(3), 535–541 (2016).
[Crossref]

Handa, T.

T. Handa, D. M. Tex, A. Shimazaki, T. Aharen, A. Wakamiya, and Y. Kanemitsu, “Optical characterization of voltage-accelerated degradation in CH3NH3PbI3 perovskite solar cells,” Opt. Express 24(10), 917–924 (2016).
[Crossref] [PubMed]

Hao, Y.

L. Zhou, J. Chang, Z. Lin, C. Zhang, D. Chen, J. Zhang, and Y. Hao, “Investigation of Fe2+-incorporating organic–inorganic hybrid perovskites from first principles and experiments,” RSC Advances 7(86), 54586–54593 (2017).
[Crossref]

Hassan, A. M.

A. M. Elseman, A. E. Shalan, S. Sajid, M. M. Rashad, A. M. Hassan, and M. Li, “Copper-substituted lead perovskite materials constructed with different halides for working (CH3NH3)2CuX4-based perovskite solar cells from experimental and theoretical view,” ACS Appl. Mater. Interfaces 10(14), 11699–11707 (2018).
[Crossref] [PubMed]

Hayase, S.

Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, N. Fujikawa, Q. Shen, T. Toyoda, K. Yoshino, S. S. Pandey, T. Ma, and S. Hayase, “CH3NH3SnxPb(1-x)I3 Perovskite Solar Cells Covering up to 1060 nm,” J. Phys. Chem. Lett. 5(6), 1004–1011 (2014).
[Crossref] [PubMed]

He, M.

Z. Xu, X. Yin, Y. Guo, Y. Pu, and M. He, “Ru-Doping in TiO2 electron transport layers of planar heterojunction perovskite solar cells for enhanced performance,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(17), 4746–4752 (2018).
[Crossref]

F. Dong, Y. Guo, P. Xu, X. Yin, Y. Li, and M. He, “Hydrothermal growth of MoS2/Co3S4 composites as efficient Pt-free counter electrodes for dye-sensitized solar cells,” Sci. China Mater. 60(4), 295–303 (2017).
[Crossref]

Herz, L. M.

C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High charge carrier mobilities and lifetimes in organolead trihalide perovskites,” Adv. Mater. 26(10), 1584–1589 (2014).
[Crossref] [PubMed]

C. Wehrenfennig, M. Liu, H. J. Snaith, M. B. Johnston, and L. M. Herz, “Charge-carrier dynamics in vapour-deposited films of the organolead halide perovskite CH3NH3PbI3−xClx,” Energy Environ. Sci. 7(7), 2269–2275 (2014).
[Crossref]

G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells,” Energy Environ. Sci. 7(3), 982–988 (2014).
[Crossref]

N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A. A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz, and H. J. Snaith, “Lead-free organic-inorganic tin halide perovskites for photovoltaic applications,” Energy Environ. Sci. 7(9), 3061–3068 (2014).
[Crossref]

Hou, D.

R. Chen, D. Hou, C. Lu, J. Zhang, P. Liu, H. Tian, Z. Zeng, Q. Xiong, Z. Hu, Y. Zhu, and L. Han, “Zinc ion as effective film morphology controller in perovskite solar cells,” Sust. Energy Fuels 2(5), 1093–1100 (2018).
[Crossref]

Hou, X.

Y. Hu, Z. Zhang, A. Mei, Y. Jiang, X. Hou, Q. Wang, K. Du, Y. Rong, Y. Zhou, G. Xu, and H. Han, “Improved performance of printable perovskite solar cells with bifunctional conjugated organic molecule,” Adv. Mater. 30(11), 1705786 (2018).
[Crossref] [PubMed]

Hu, B.

L. Xu, Y. Xiong, A. Mei, Y. Hu, Y. Rong, Y. Zhou, B. Hu, and H. Han, “Efficient perovskite photovoltaic-thermoelectric hybrid device,” Adv. Energy Mater. 8(13), 1702937 (2018).
[Crossref]

Hu, J.

J. Hu, Y. Qiao, Y. Yang, L. Zhao, W. Liu, S. Li, P. Liu, and M. Chen, “Enhanced performance of hole-conductor-free perovskite solar cells by utilization of core/shell-structured β-NaYF4:Yb3+,Er3+@SiO2 nanoparticles in ambient air,” IEEE J. Photovolt. 8(1), 132–136 (2018).
[Crossref]

S. Li, J. Hu, Y. Yang, L. Zhao, Y. Qiao, W. Liu, P. Liu, and M. Chen, “Ag/nano-TiO2 composite compact film for enhanced performance of perovskite solar cells based on carbon counter electrodes,” Appl. Phys., A Mater. Sci. Process. 123(10), 628 (2017).
[Crossref]

J. Hu, J. Cheng, S. Tong, L. Zhao, J. Duan, and Y. Yang, “Dye-sensitized solar cells based on P25 nanoparticles/TiO2 nanotube arrays/hollow TiO2 boxes three-layer composite film,” J. Mater. Sci. 27(5), 5362–5370 (2016).

Hu, J. H.

Hu, Y.

C. Tian, A. Mei, S. Zhang, H. Tian, S. Liu, F. Qin, Y. Xiong, Y. Rong, Y. Hu, Y. Zhou, S. Xie, and H. Han, “Oxygen management in carbon electrode for high-performance printable perovskite solar cells,” Nano Energy 53, 160–167 (2018).
[Crossref]

L. Xu, Y. Xiong, A. Mei, Y. Hu, Y. Rong, Y. Zhou, B. Hu, and H. Han, “Efficient perovskite photovoltaic-thermoelectric hybrid device,” Adv. Energy Mater. 8(13), 1702937 (2018).
[Crossref]

Y. Hu, Z. Zhang, A. Mei, Y. Jiang, X. Hou, Q. Wang, K. Du, Y. Rong, Y. Zhou, G. Xu, and H. Han, “Improved performance of printable perovskite solar cells with bifunctional conjugated organic molecule,” Adv. Mater. 30(11), 1705786 (2018).
[Crossref] [PubMed]

Y. Rong, Y. Hu, A. Mei, H. Tan, M. I. Saidaminov, S. I. Seok, M. D. McGehee, E. H. Sargent, and H. Han, “Challenges for commercializing perovskite solar cells,” Science 361(6408), 8235 (2018).
[Crossref] [PubMed]

Z.-K. Wang, M. Li, Y.-G. Yang, Y. Hu, H. Ma, X.-Y. Gao, and L.-S. Liao, “High efficiency Pb-In binary metal perovskite solar cells,” Adv. Mater. 28(31), 6695–6703 (2016).
[Crossref] [PubMed]

Hu, Z.

R. Chen, D. Hou, C. Lu, J. Zhang, P. Liu, H. Tian, Z. Zeng, Q. Xiong, Z. Hu, Y. Zhu, and L. Han, “Zinc ion as effective film morphology controller in perovskite solar cells,” Sust. Energy Fuels 2(5), 1093–1100 (2018).
[Crossref]

J. Zhang, M. Shang, P. Wang, X. Huang, J. Xu, Z. Hu, Y. Zhu, and L. Han, “N-type doping and energy states tuning in CH3NH3Pb1–xSb2x/3I3 perovskite solar cells,” ACS Energy Lett. 1(3), 535–541 (2016).
[Crossref]

Huang, X.

J. Zhang, M. Shang, P. Wang, X. Huang, J. Xu, Z. Hu, Y. Zhu, and L. Han, “N-type doping and energy states tuning in CH3NH3Pb1–xSb2x/3I3 perovskite solar cells,” ACS Energy Lett. 1(3), 535–541 (2016).
[Crossref]

Ikegami, M.

A. Kojima, M. Ikegami, K. Teshima, and T. Miyasaka, “Highly luminescent lead bromide perovskite nanoparticles synthesized with porous alumina media,” Chem. Lett. 41(4), 397–399 (2012).
[Crossref]

Il Seok, S.

N. J. Jeon, H. Na, E. H. Jung, T.-Y. Yang, Y. G. Lee, G. Kim, H.-W. Shin, S. Il Seok, J. Lee, and J. Seo, “A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells,” Nat. Energy 3(8), 682–689 (2018).
[Crossref]

Jang, I.-H.

D.-Y. Son, J.-W. Lee, Y. J. Choi, I.-H. Jang, S. Lee, P. J. Yoo, H. Shin, N. Ahn, M. Choi, D. Kim, and N.-G. Park, “Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells,” Nat. Energy 1(7), 16081 (2016).
[Crossref]

N. Ahn, D.-Y. Son, I.-H. Jang, S. M. Kang, M. Choi, and N.-G. Park, “Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide,” J. Am. Chem. Soc. 137(27), 8696–8699 (2015).
[Crossref] [PubMed]

Jen, A. K.-Y.

Q. Chen, L. Chen, F. Ye, T. Zhao, F. Tang, A. Rajagopal, Z. Jiang, S. Jiang, A. K.-Y. Jen, Y. Xie, J. Cai, and L. Chen, “Ag-incorporated organic–inorganic perovskite films and planar heterojunction solar cells,” Nano Lett. 17(5), 3231–3237 (2017).
[Crossref] [PubMed]

Jeon, N. J.

N. J. Jeon, H. Na, E. H. Jung, T.-Y. Yang, Y. G. Lee, G. Kim, H.-W. Shin, S. Il Seok, J. Lee, and J. Seo, “A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells,” Nat. Energy 3(8), 682–689 (2018).
[Crossref]

Jesper Jacobsson, T.

J.-P. Correa-Baena, A. Abate, M. Saliba, W. Tress, T. Jesper Jacobsson, M. Grätzel, and A. Hagfeldt, “The rapid evolution of highly efficient perovskite solar cells,” Energy Environ. Sci. 10(3), 710–727 (2017).
[Crossref]

Jiang, R.

W. Lu, R. Jiang, X. Yin, and L. Wang, “Porous N-doped-carbon coated CoSe2 anchored on carbon cloth as 3D photocathode for dye-sensitized solar cell with efficiency and stability outperforming Pt,” Nano Res. 12(1), 159–163 (2018).

Jiang, S.

Q. Chen, L. Chen, F. Ye, T. Zhao, F. Tang, A. Rajagopal, Z. Jiang, S. Jiang, A. K.-Y. Jen, Y. Xie, J. Cai, and L. Chen, “Ag-incorporated organic–inorganic perovskite films and planar heterojunction solar cells,” Nano Lett. 17(5), 3231–3237 (2017).
[Crossref] [PubMed]

Jiang, Y.

Y. Hu, Z. Zhang, A. Mei, Y. Jiang, X. Hou, Q. Wang, K. Du, Y. Rong, Y. Zhou, G. Xu, and H. Han, “Improved performance of printable perovskite solar cells with bifunctional conjugated organic molecule,” Adv. Mater. 30(11), 1705786 (2018).
[Crossref] [PubMed]

G. Tong, Z. Song, C. Li, Y. Zhao, L. Yu, J. Xu, Y. Jiang, Y. Sheng, Y. Shi, and K. Chen, “Cadmium-doped flexible perovskite solar cells with a low-cost and low-temperature-processed CdS electron transport layer,” RSC Advances 7(32), 19457–19463 (2017).
[Crossref]

Jiang, Z.

Q. Chen, L. Chen, F. Ye, T. Zhao, F. Tang, A. Rajagopal, Z. Jiang, S. Jiang, A. K.-Y. Jen, Y. Xie, J. Cai, and L. Chen, “Ag-incorporated organic–inorganic perovskite films and planar heterojunction solar cells,” Nano Lett. 17(5), 3231–3237 (2017).
[Crossref] [PubMed]

Jin, Z.

D. Bai, J. Zhang, Z. Jin, H. Bian, K. Wang, H. Wang, L. Liang, Q. Wang, and S. Liu, “Interstitial Mn2+-driven high-aspect-ratio grain growth for low-trap-density microcrystalline films for record efficiency inorganic CsPbI2Br solar cells,” ACS Energy Lett. 3(4), 970–978 (2018).
[Crossref]

Johnston, M. B.

N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A. A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz, and H. J. Snaith, “Lead-free organic-inorganic tin halide perovskites for photovoltaic applications,” Energy Environ. Sci. 7(9), 3061–3068 (2014).
[Crossref]

C. Wehrenfennig, M. Liu, H. J. Snaith, M. B. Johnston, and L. M. Herz, “Charge-carrier dynamics in vapour-deposited films of the organolead halide perovskite CH3NH3PbI3−xClx,” Energy Environ. Sci. 7(7), 2269–2275 (2014).
[Crossref]

G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells,” Energy Environ. Sci. 7(3), 982–988 (2014).
[Crossref]

C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High charge carrier mobilities and lifetimes in organolead trihalide perovskites,” Adv. Mater. 26(10), 1584–1589 (2014).
[Crossref] [PubMed]

Jono, R.

Z. Tang, S. Uchida, T. Bessho, T. Kinoshita, H. Wang, F. Awai, R. Jono, M. M. Maitani, J. Nakazaki, T. Kubo, and H. Segawa, “Modulations of various alkali metal cations on organometal halide perovskites and their influence on photovoltaic performance,” Nano Energy 45, 184–192 (2018).
[Crossref]

Jung, E. H.

N. J. Jeon, H. Na, E. H. Jung, T.-Y. Yang, Y. G. Lee, G. Kim, H.-W. Shin, S. Il Seok, J. Lee, and J. Seo, “A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells,” Nat. Energy 3(8), 682–689 (2018).
[Crossref]

Kanemitsu, Y.

T. Handa, D. M. Tex, A. Shimazaki, T. Aharen, A. Wakamiya, and Y. Kanemitsu, “Optical characterization of voltage-accelerated degradation in CH3NH3PbI3 perovskite solar cells,” Opt. Express 24(10), 917–924 (2016).
[Crossref] [PubMed]

Kang, S. M.

N. Ahn, D.-Y. Son, I.-H. Jang, S. M. Kang, M. Choi, and N.-G. Park, “Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide,” J. Am. Chem. Soc. 137(27), 8696–8699 (2015).
[Crossref] [PubMed]

Katsiev, K.

A. L. Abdelhady, M. I. Saidaminov, B. Murali, V. Adinolfi, O. Voznyy, K. Katsiev, E. Alarousu, R. Comin, I. Dursun, L. Sinatra, E. H. Sargent, O. F. Mohammed, and O. M. Bakr, “Heterovalent dopant incorporation for bandgap and type engineering of perovskite crystals,” J. Phys. Chem. Lett. 7(2), 295–301 (2016).
[Crossref] [PubMed]

Kim, D.

D.-Y. Son, J.-W. Lee, Y. J. Choi, I.-H. Jang, S. Lee, P. J. Yoo, H. Shin, N. Ahn, M. Choi, D. Kim, and N.-G. Park, “Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells,” Nat. Energy 1(7), 16081 (2016).
[Crossref]

Kim, G.

N. J. Jeon, H. Na, E. H. Jung, T.-Y. Yang, Y. G. Lee, G. Kim, H.-W. Shin, S. Il Seok, J. Lee, and J. Seo, “A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells,” Nat. Energy 3(8), 682–689 (2018).
[Crossref]

Kim, H.-S.

J.-W. Lee, H.-S. Kim, and N.-G. Park, “Lewis acid–base adduct approach for high efficiency perovskite solar cells,” Acc. Chem. Res. 49(2), 311–319 (2016).
[Crossref] [PubMed]

Kinoshita, T.

Z. Tang, S. Uchida, T. Bessho, T. Kinoshita, H. Wang, F. Awai, R. Jono, M. M. Maitani, J. Nakazaki, T. Kubo, and H. Segawa, “Modulations of various alkali metal cations on organometal halide perovskites and their influence on photovoltaic performance,” Nano Energy 45, 184–192 (2018).
[Crossref]

Klug, M. T.

M. T. Klug, A. Osherov, A. A. Haghighirad, S. D. Stranks, P. R. Brown, S. Bai, J. T.-W. Wang, X. Dang, V. Bulovic, H. J. Snaith, and A. M. Belcher, “Tailoring metal halide perovskites through metal substitution: influence on photovoltaic and material properties,” Energy Environ. Sci. 10(1), 236–246 (2017).
[Crossref]

Knutson, J. L.

J. L. Knutson, J. D. Martin, and D. B. Mitzi, “Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating,” Inorg. Chem. 44(13), 4699–4705 (2005).
[Crossref] [PubMed]

Koh, T. M.

T. M. Koh, K. Fu, Y. Fang, S. Chen, T. C. Sum, N. Mathews, S. G. Mhaisalkar, P. P. Boix, and T. Baikie, “Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells,” J. Phys. Chem. C 118(30), 16458–16462 (2014).
[Crossref]

Kojima, A.

A. Kojima, M. Ikegami, K. Teshima, and T. Miyasaka, “Highly luminescent lead bromide perovskite nanoparticles synthesized with porous alumina media,” Chem. Lett. 41(4), 397–399 (2012).
[Crossref]

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[Crossref] [PubMed]

Ku, Z.

Z. Ku, Y. Rong, M. Xu, T. Liu, and H. Han, “Full printable processed mesoscopic CH₃NH₃PbI₃/TiO₂ heterojunction solar cells with carbon counter electrode,” Sci. Rep. 3(1), 3132 (2013).
[Crossref] [PubMed]

Kubo, T.

Z. Tang, S. Uchida, T. Bessho, T. Kinoshita, H. Wang, F. Awai, R. Jono, M. M. Maitani, J. Nakazaki, T. Kubo, and H. Segawa, “Modulations of various alkali metal cations on organometal halide perovskites and their influence on photovoltaic performance,” Nano Energy 45, 184–192 (2018).
[Crossref]

Kumar, M. H.

M. H. Kumar, S. Dharani, W. L. Leong, P. P. Boix, R. R. Prabhakar, T. Baikie, C. Shi, H. Ding, R. Ramesh, M. Asta, M. Graetzel, S. G. Mhaisalkar, and N. Mathews, “Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation,” Adv. Mater. 26(41), 7122–7127 (2014).
[Crossref] [PubMed]

Lee, J.

N. J. Jeon, H. Na, E. H. Jung, T.-Y. Yang, Y. G. Lee, G. Kim, H.-W. Shin, S. Il Seok, J. Lee, and J. Seo, “A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells,” Nat. Energy 3(8), 682–689 (2018).
[Crossref]

Lee, J.-W.

J.-W. Lee, H.-S. Kim, and N.-G. Park, “Lewis acid–base adduct approach for high efficiency perovskite solar cells,” Acc. Chem. Res. 49(2), 311–319 (2016).
[Crossref] [PubMed]

D.-Y. Son, J.-W. Lee, Y. J. Choi, I.-H. Jang, S. Lee, P. J. Yoo, H. Shin, N. Ahn, M. Choi, D. Kim, and N.-G. Park, “Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells,” Nat. Energy 1(7), 16081 (2016).
[Crossref]

Lee, K.-M.

S.-H. Chan, M.-C. Wu, K.-M. Lee, W.-C. Chen, T.-H. Lin, and W.-F. Su, “Enhancing perovskite solar cell performance and stability by doping barium in methylammonium lead halide,” J. Mater. Chem. A Mater. Energy Sustain. 5(34), 18044–18052 (2017).
[Crossref]

Lee, S.

D.-Y. Son, J.-W. Lee, Y. J. Choi, I.-H. Jang, S. Lee, P. J. Yoo, H. Shin, N. Ahn, M. Choi, D. Kim, and N.-G. Park, “Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells,” Nat. Energy 1(7), 16081 (2016).
[Crossref]

Lee, Y. G.

N. J. Jeon, H. Na, E. H. Jung, T.-Y. Yang, Y. G. Lee, G. Kim, H.-W. Shin, S. Il Seok, J. Lee, and J. Seo, “A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells,” Nat. Energy 3(8), 682–689 (2018).
[Crossref]

Leong, W. L.

M. H. Kumar, S. Dharani, W. L. Leong, P. P. Boix, R. R. Prabhakar, T. Baikie, C. Shi, H. Ding, R. Ramesh, M. Asta, M. Graetzel, S. G. Mhaisalkar, and N. Mathews, “Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation,” Adv. Mater. 26(41), 7122–7127 (2014).
[Crossref] [PubMed]

Li, C.

G. Tong, Z. Song, C. Li, Y. Zhao, L. Yu, J. Xu, Y. Jiang, Y. Sheng, Y. Shi, and K. Chen, “Cadmium-doped flexible perovskite solar cells with a low-cost and low-temperature-processed CdS electron transport layer,” RSC Advances 7(32), 19457–19463 (2017).
[Crossref]

Li, J.-H.

J.-S. Yao, J. Ge, B.-N. Han, K.-H. Wang, H.-B. Yao, H.-L. Yu, J.-H. Li, B.-S. Zhu, J.-Z. Song, C. Chen, Q. Zhang, H.-B. Zeng, Y. Luo, and S.-H. Yu, “Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes,” J. Am. Chem. Soc. 140(10), 3626–3634 (2018).
[Crossref] [PubMed]

Li, M.

A. M. Elseman, A. E. Shalan, S. Sajid, M. M. Rashad, A. M. Hassan, and M. Li, “Copper-substituted lead perovskite materials constructed with different halides for working (CH3NH3)2CuX4-based perovskite solar cells from experimental and theoretical view,” ACS Appl. Mater. Interfaces 10(14), 11699–11707 (2018).
[Crossref] [PubMed]

Z.-K. Wang, M. Li, Y.-G. Yang, Y. Hu, H. Ma, X.-Y. Gao, and L.-S. Liao, “High efficiency Pb-In binary metal perovskite solar cells,” Adv. Mater. 28(31), 6695–6703 (2016).
[Crossref] [PubMed]

Li, R.

H. Zhang, R. Li, M. Zhang, and M. Guo, “The effect of SrI2 substitution on perovskite film formation and its photovoltaic properties via two different deposition methods,” Inorg. Chem. Front. 5(6), 1354–1364 (2018).
[Crossref]

Li, S.

S. Li, X. Zhu, B. Wang, Y. Qiao, W. Liu, H. Yang, N. Liu, M. Chen, H. Lu, and Y. Yang, “Influence of Ag nanoparticles with different sizes and concentrations embedded in a TiO2 compact layer on the conversion efficiency of perovskite solar cells,” Nanoscale Res. Lett. 13(1), 210 (2018).
[Crossref] [PubMed]

Y. Qiao, S. Li, W. Liu, M. Ran, H. Lu, and Y. Yang, “Recent advances of rare-earth ion doped luminescent nanomaterials in perovskite solar cells,” Nanomaterials (Basel) 8(1), 43 (2018).
[Crossref] [PubMed]

J. Hu, Y. Qiao, Y. Yang, L. Zhao, W. Liu, S. Li, P. Liu, and M. Chen, “Enhanced performance of hole-conductor-free perovskite solar cells by utilization of core/shell-structured β-NaYF4:Yb3+,Er3+@SiO2 nanoparticles in ambient air,” IEEE J. Photovolt. 8(1), 132–136 (2018).
[Crossref]

S. Li, J. Hu, Y. Yang, L. Zhao, Y. Qiao, W. Liu, P. Liu, and M. Chen, “Ag/nano-TiO2 composite compact film for enhanced performance of perovskite solar cells based on carbon counter electrodes,” Appl. Phys., A Mater. Sci. Process. 123(10), 628 (2017).
[Crossref]

Li, S. H.

Li, Y.

F. Dong, Y. Guo, P. Xu, X. Yin, Y. Li, and M. He, “Hydrothermal growth of MoS2/Co3S4 composites as efficient Pt-free counter electrodes for dye-sensitized solar cells,” Sci. China Mater. 60(4), 295–303 (2017).
[Crossref]

Liang, L.

D. Bai, J. Zhang, Z. Jin, H. Bian, K. Wang, H. Wang, L. Liang, Q. Wang, and S. Liu, “Interstitial Mn2+-driven high-aspect-ratio grain growth for low-trap-density microcrystalline films for record efficiency inorganic CsPbI2Br solar cells,” ACS Energy Lett. 3(4), 970–978 (2018).
[Crossref]

Liao, L.-S.

Z.-K. Wang, M. Li, Y.-G. Yang, Y. Hu, H. Ma, X.-Y. Gao, and L.-S. Liao, “High efficiency Pb-In binary metal perovskite solar cells,” Adv. Mater. 28(31), 6695–6703 (2016).
[Crossref] [PubMed]

Lin, T.-H.

S.-H. Chan, M.-C. Wu, K.-M. Lee, W.-C. Chen, T.-H. Lin, and W.-F. Su, “Enhancing perovskite solar cell performance and stability by doping barium in methylammonium lead halide,” J. Mater. Chem. A Mater. Energy Sustain. 5(34), 18044–18052 (2017).
[Crossref]

Lin, Z.

L. Zhou, J. Chang, Z. Lin, C. Zhang, D. Chen, J. Zhang, and Y. Hao, “Investigation of Fe2+-incorporating organic–inorganic hybrid perovskites from first principles and experiments,” RSC Advances 7(86), 54586–54593 (2017).
[Crossref]

Liu, B. M.

Liu, M.

C. Wehrenfennig, M. Liu, H. J. Snaith, M. B. Johnston, and L. M. Herz, “Charge-carrier dynamics in vapour-deposited films of the organolead halide perovskite CH3NH3PbI3−xClx,” Energy Environ. Sci. 7(7), 2269–2275 (2014).
[Crossref]

Liu, N.

S. Li, X. Zhu, B. Wang, Y. Qiao, W. Liu, H. Yang, N. Liu, M. Chen, H. Lu, and Y. Yang, “Influence of Ag nanoparticles with different sizes and concentrations embedded in a TiO2 compact layer on the conversion efficiency of perovskite solar cells,” Nanoscale Res. Lett. 13(1), 210 (2018).
[Crossref] [PubMed]

Liu, P.

R. Chen, D. Hou, C. Lu, J. Zhang, P. Liu, H. Tian, Z. Zeng, Q. Xiong, Z. Hu, Y. Zhu, and L. Han, “Zinc ion as effective film morphology controller in perovskite solar cells,” Sust. Energy Fuels 2(5), 1093–1100 (2018).
[Crossref]

J. Hu, Y. Qiao, Y. Yang, L. Zhao, W. Liu, S. Li, P. Liu, and M. Chen, “Enhanced performance of hole-conductor-free perovskite solar cells by utilization of core/shell-structured β-NaYF4:Yb3+,Er3+@SiO2 nanoparticles in ambient air,” IEEE J. Photovolt. 8(1), 132–136 (2018).
[Crossref]

S. Li, J. Hu, Y. Yang, L. Zhao, Y. Qiao, W. Liu, P. Liu, and M. Chen, “Ag/nano-TiO2 composite compact film for enhanced performance of perovskite solar cells based on carbon counter electrodes,” Appl. Phys., A Mater. Sci. Process. 123(10), 628 (2017).
[Crossref]

Liu, P. H.

Liu, S.

C. Tian, A. Mei, S. Zhang, H. Tian, S. Liu, F. Qin, Y. Xiong, Y. Rong, Y. Hu, Y. Zhou, S. Xie, and H. Han, “Oxygen management in carbon electrode for high-performance printable perovskite solar cells,” Nano Energy 53, 160–167 (2018).
[Crossref]

D. Bai, J. Zhang, Z. Jin, H. Bian, K. Wang, H. Wang, L. Liang, Q. Wang, and S. Liu, “Interstitial Mn2+-driven high-aspect-ratio grain growth for low-trap-density microcrystalline films for record efficiency inorganic CsPbI2Br solar cells,” ACS Energy Lett. 3(4), 970–978 (2018).
[Crossref]

W. Zhao, D. Yang, Z. Yang, and S. Liu, “Zn-doping for reduced hysteresis and improved performance of methylammonium lead iodide perovskite hybrid solar cells,” Mater. Today Energy 5, 205–213 (2017).
[Crossref]

Liu, T.

Z. Ku, Y. Rong, M. Xu, T. Liu, and H. Han, “Full printable processed mesoscopic CH₃NH₃PbI₃/TiO₂ heterojunction solar cells with carbon counter electrode,” Sci. Rep. 3(1), 3132 (2013).
[Crossref] [PubMed]

Liu, W.

J. Hu, Y. Qiao, Y. Yang, L. Zhao, W. Liu, S. Li, P. Liu, and M. Chen, “Enhanced performance of hole-conductor-free perovskite solar cells by utilization of core/shell-structured β-NaYF4:Yb3+,Er3+@SiO2 nanoparticles in ambient air,” IEEE J. Photovolt. 8(1), 132–136 (2018).
[Crossref]

Y. Qiao, S. Li, W. Liu, M. Ran, H. Lu, and Y. Yang, “Recent advances of rare-earth ion doped luminescent nanomaterials in perovskite solar cells,” Nanomaterials (Basel) 8(1), 43 (2018).
[Crossref] [PubMed]

S. Li, X. Zhu, B. Wang, Y. Qiao, W. Liu, H. Yang, N. Liu, M. Chen, H. Lu, and Y. Yang, “Influence of Ag nanoparticles with different sizes and concentrations embedded in a TiO2 compact layer on the conversion efficiency of perovskite solar cells,” Nanoscale Res. Lett. 13(1), 210 (2018).
[Crossref] [PubMed]

S. Li, J. Hu, Y. Yang, L. Zhao, Y. Qiao, W. Liu, P. Liu, and M. Chen, “Ag/nano-TiO2 composite compact film for enhanced performance of perovskite solar cells based on carbon counter electrodes,” Appl. Phys., A Mater. Sci. Process. 123(10), 628 (2017).
[Crossref]

Liu, W. H.

Lu, C.

R. Chen, D. Hou, C. Lu, J. Zhang, P. Liu, H. Tian, Z. Zeng, Q. Xiong, Z. Hu, Y. Zhu, and L. Han, “Zinc ion as effective film morphology controller in perovskite solar cells,” Sust. Energy Fuels 2(5), 1093–1100 (2018).
[Crossref]

Lu, H.

Y. Qiao, S. Li, W. Liu, M. Ran, H. Lu, and Y. Yang, “Recent advances of rare-earth ion doped luminescent nanomaterials in perovskite solar cells,” Nanomaterials (Basel) 8(1), 43 (2018).
[Crossref] [PubMed]

S. Li, X. Zhu, B. Wang, Y. Qiao, W. Liu, H. Yang, N. Liu, M. Chen, H. Lu, and Y. Yang, “Influence of Ag nanoparticles with different sizes and concentrations embedded in a TiO2 compact layer on the conversion efficiency of perovskite solar cells,” Nanoscale Res. Lett. 13(1), 210 (2018).
[Crossref] [PubMed]

Lu, W.

W. Lu, R. Jiang, X. Yin, and L. Wang, “Porous N-doped-carbon coated CoSe2 anchored on carbon cloth as 3D photocathode for dye-sensitized solar cell with efficiency and stability outperforming Pt,” Nano Res. 12(1), 159–163 (2018).

Luo, Y.

J.-S. Yao, J. Ge, B.-N. Han, K.-H. Wang, H.-B. Yao, H.-L. Yu, J.-H. Li, B.-S. Zhu, J.-Z. Song, C. Chen, Q. Zhang, H.-B. Zeng, Y. Luo, and S.-H. Yu, “Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes,” J. Am. Chem. Soc. 140(10), 3626–3634 (2018).
[Crossref] [PubMed]

Ma, H.

Z.-K. Wang, M. Li, Y.-G. Yang, Y. Hu, H. Ma, X.-Y. Gao, and L.-S. Liao, “High efficiency Pb-In binary metal perovskite solar cells,” Adv. Mater. 28(31), 6695–6703 (2016).
[Crossref] [PubMed]

Ma, J. P.

Ma, T.

Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, N. Fujikawa, Q. Shen, T. Toyoda, K. Yoshino, S. S. Pandey, T. Ma, and S. Hayase, “CH3NH3SnxPb(1-x)I3 Perovskite Solar Cells Covering up to 1060 nm,” J. Phys. Chem. Lett. 5(6), 1004–1011 (2014).
[Crossref] [PubMed]

Maitani, M. M.

Z. Tang, S. Uchida, T. Bessho, T. Kinoshita, H. Wang, F. Awai, R. Jono, M. M. Maitani, J. Nakazaki, T. Kubo, and H. Segawa, “Modulations of various alkali metal cations on organometal halide perovskites and their influence on photovoltaic performance,” Nano Energy 45, 184–192 (2018).
[Crossref]

Martin, J. D.

J. L. Knutson, J. D. Martin, and D. B. Mitzi, “Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating,” Inorg. Chem. 44(13), 4699–4705 (2005).
[Crossref] [PubMed]

Mathews, N.

M. H. Kumar, S. Dharani, W. L. Leong, P. P. Boix, R. R. Prabhakar, T. Baikie, C. Shi, H. Ding, R. Ramesh, M. Asta, M. Graetzel, S. G. Mhaisalkar, and N. Mathews, “Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation,” Adv. Mater. 26(41), 7122–7127 (2014).
[Crossref] [PubMed]

T. M. Koh, K. Fu, Y. Fang, S. Chen, T. C. Sum, N. Mathews, S. G. Mhaisalkar, P. P. Boix, and T. Baikie, “Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells,” J. Phys. Chem. C 118(30), 16458–16462 (2014).
[Crossref]

McGehee, M. D.

Y. Rong, Y. Hu, A. Mei, H. Tan, M. I. Saidaminov, S. I. Seok, M. D. McGehee, E. H. Sargent, and H. Han, “Challenges for commercializing perovskite solar cells,” Science 361(6408), 8235 (2018).
[Crossref] [PubMed]

Mei, A.

Y. Rong, Y. Hu, A. Mei, H. Tan, M. I. Saidaminov, S. I. Seok, M. D. McGehee, E. H. Sargent, and H. Han, “Challenges for commercializing perovskite solar cells,” Science 361(6408), 8235 (2018).
[Crossref] [PubMed]

Y. Hu, Z. Zhang, A. Mei, Y. Jiang, X. Hou, Q. Wang, K. Du, Y. Rong, Y. Zhou, G. Xu, and H. Han, “Improved performance of printable perovskite solar cells with bifunctional conjugated organic molecule,” Adv. Mater. 30(11), 1705786 (2018).
[Crossref] [PubMed]

L. Xu, Y. Xiong, A. Mei, Y. Hu, Y. Rong, Y. Zhou, B. Hu, and H. Han, “Efficient perovskite photovoltaic-thermoelectric hybrid device,” Adv. Energy Mater. 8(13), 1702937 (2018).
[Crossref]

C. Tian, A. Mei, S. Zhang, H. Tian, S. Liu, F. Qin, Y. Xiong, Y. Rong, Y. Hu, Y. Zhou, S. Xie, and H. Han, “Oxygen management in carbon electrode for high-performance printable perovskite solar cells,” Nano Energy 53, 160–167 (2018).
[Crossref]

Menelaou, C.

G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells,” Energy Environ. Sci. 7(3), 982–988 (2014).
[Crossref]

Mhaisalkar, S. G.

T. M. Koh, K. Fu, Y. Fang, S. Chen, T. C. Sum, N. Mathews, S. G. Mhaisalkar, P. P. Boix, and T. Baikie, “Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells,” J. Phys. Chem. C 118(30), 16458–16462 (2014).
[Crossref]

M. H. Kumar, S. Dharani, W. L. Leong, P. P. Boix, R. R. Prabhakar, T. Baikie, C. Shi, H. Ding, R. Ramesh, M. Asta, M. Graetzel, S. G. Mhaisalkar, and N. Mathews, “Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation,” Adv. Mater. 26(41), 7122–7127 (2014).
[Crossref] [PubMed]

Mitzi, D. B.

J. L. Knutson, J. D. Martin, and D. B. Mitzi, “Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating,” Inorg. Chem. 44(13), 4699–4705 (2005).
[Crossref] [PubMed]

D. B. Mitzi, S. Wang, C. A. Feild, C. A. Chess, and A. M. Guloy, “Conducting layered organic-inorganic halides containing <110>-oriented perovskite sheets,” Science 267(5203), 1473–1476 (1995).
[Crossref] [PubMed]

Miyasaka, T.

A. Kojima, M. Ikegami, K. Teshima, and T. Miyasaka, “Highly luminescent lead bromide perovskite nanoparticles synthesized with porous alumina media,” Chem. Lett. 41(4), 397–399 (2012).
[Crossref]

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[Crossref] [PubMed]

Mohammed, O. F.

A. L. Abdelhady, M. I. Saidaminov, B. Murali, V. Adinolfi, O. Voznyy, K. Katsiev, E. Alarousu, R. Comin, I. Dursun, L. Sinatra, E. H. Sargent, O. F. Mohammed, and O. M. Bakr, “Heterovalent dopant incorporation for bandgap and type engineering of perovskite crystals,” J. Phys. Chem. Lett. 7(2), 295–301 (2016).
[Crossref] [PubMed]

Mohanta, N.

C.-M. Tsai, G.-W. Wu, S. Narra, H.-M. Chang, N. Mohanta, H.-P. Wu, C.-L. Wang, and E. W.-G. Diau, “Control of preferred orientation with slow crystallization for carbon-based mesoscopic perovskite solar cells attaining efficiency 15%,” J. Mater. Chem. A Mater. Energy Sustain. 5(2), 739–747 (2017).
[Crossref]

Morita, A.

Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, N. Fujikawa, Q. Shen, T. Toyoda, K. Yoshino, S. S. Pandey, T. Ma, and S. Hayase, “CH3NH3SnxPb(1-x)I3 Perovskite Solar Cells Covering up to 1060 nm,” J. Phys. Chem. Lett. 5(6), 1004–1011 (2014).
[Crossref] [PubMed]

Murali, B.

A. L. Abdelhady, M. I. Saidaminov, B. Murali, V. Adinolfi, O. Voznyy, K. Katsiev, E. Alarousu, R. Comin, I. Dursun, L. Sinatra, E. H. Sargent, O. F. Mohammed, and O. M. Bakr, “Heterovalent dopant incorporation for bandgap and type engineering of perovskite crystals,” J. Phys. Chem. Lett. 7(2), 295–301 (2016).
[Crossref] [PubMed]

Na, H.

N. J. Jeon, H. Na, E. H. Jung, T.-Y. Yang, Y. G. Lee, G. Kim, H.-W. Shin, S. Il Seok, J. Lee, and J. Seo, “A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells,” Nat. Energy 3(8), 682–689 (2018).
[Crossref]

Nakazaki, J.

Z. Tang, S. Uchida, T. Bessho, T. Kinoshita, H. Wang, F. Awai, R. Jono, M. M. Maitani, J. Nakazaki, T. Kubo, and H. Segawa, “Modulations of various alkali metal cations on organometal halide perovskites and their influence on photovoltaic performance,” Nano Energy 45, 184–192 (2018).
[Crossref]

Narra, S.

C.-M. Tsai, G.-W. Wu, S. Narra, H.-M. Chang, N. Mohanta, H.-P. Wu, C.-L. Wang, and E. W.-G. Diau, “Control of preferred orientation with slow crystallization for carbon-based mesoscopic perovskite solar cells attaining efficiency 15%,” J. Mater. Chem. A Mater. Energy Sustain. 5(2), 739–747 (2017).
[Crossref]

Noel, N. K.

N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A. A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz, and H. J. Snaith, “Lead-free organic-inorganic tin halide perovskites for photovoltaic applications,” Energy Environ. Sci. 7(9), 3061–3068 (2014).
[Crossref]

Ogomi, Y.

Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, N. Fujikawa, Q. Shen, T. Toyoda, K. Yoshino, S. S. Pandey, T. Ma, and S. Hayase, “CH3NH3SnxPb(1-x)I3 Perovskite Solar Cells Covering up to 1060 nm,” J. Phys. Chem. Lett. 5(6), 1004–1011 (2014).
[Crossref] [PubMed]

Osherov, A.

M. T. Klug, A. Osherov, A. A. Haghighirad, S. D. Stranks, P. R. Brown, S. Bai, J. T.-W. Wang, X. Dang, V. Bulovic, H. J. Snaith, and A. M. Belcher, “Tailoring metal halide perovskites through metal substitution: influence on photovoltaic and material properties,” Energy Environ. Sci. 10(1), 236–246 (2017).
[Crossref]

Pandey, S. S.

Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, N. Fujikawa, Q. Shen, T. Toyoda, K. Yoshino, S. S. Pandey, T. Ma, and S. Hayase, “CH3NH3SnxPb(1-x)I3 Perovskite Solar Cells Covering up to 1060 nm,” J. Phys. Chem. Lett. 5(6), 1004–1011 (2014).
[Crossref] [PubMed]

Park, N.-G.

J.-W. Lee, H.-S. Kim, and N.-G. Park, “Lewis acid–base adduct approach for high efficiency perovskite solar cells,” Acc. Chem. Res. 49(2), 311–319 (2016).
[Crossref] [PubMed]

D.-Y. Son, J.-W. Lee, Y. J. Choi, I.-H. Jang, S. Lee, P. J. Yoo, H. Shin, N. Ahn, M. Choi, D. Kim, and N.-G. Park, “Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells,” Nat. Energy 1(7), 16081 (2016).
[Crossref]

N. Ahn, D.-Y. Son, I.-H. Jang, S. M. Kang, M. Choi, and N.-G. Park, “Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide,” J. Am. Chem. Soc. 137(27), 8696–8699 (2015).
[Crossref] [PubMed]

Pathak, S. K.

N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A. A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz, and H. J. Snaith, “Lead-free organic-inorganic tin halide perovskites for photovoltaic applications,” Energy Environ. Sci. 7(9), 3061–3068 (2014).
[Crossref]

Petrozza, A.

N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A. A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz, and H. J. Snaith, “Lead-free organic-inorganic tin halide perovskites for photovoltaic applications,” Energy Environ. Sci. 7(9), 3061–3068 (2014).
[Crossref]

Prabhakar, R. R.

M. H. Kumar, S. Dharani, W. L. Leong, P. P. Boix, R. R. Prabhakar, T. Baikie, C. Shi, H. Ding, R. Ramesh, M. Asta, M. Graetzel, S. G. Mhaisalkar, and N. Mathews, “Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation,” Adv. Mater. 26(41), 7122–7127 (2014).
[Crossref] [PubMed]

Pu, Y.

Z. Xu, X. Yin, Y. Guo, Y. Pu, and M. He, “Ru-Doping in TiO2 electron transport layers of planar heterojunction perovskite solar cells for enhanced performance,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(17), 4746–4752 (2018).
[Crossref]

Qiao, Y.

S. Li, X. Zhu, B. Wang, Y. Qiao, W. Liu, H. Yang, N. Liu, M. Chen, H. Lu, and Y. Yang, “Influence of Ag nanoparticles with different sizes and concentrations embedded in a TiO2 compact layer on the conversion efficiency of perovskite solar cells,” Nanoscale Res. Lett. 13(1), 210 (2018).
[Crossref] [PubMed]

J. Hu, Y. Qiao, Y. Yang, L. Zhao, W. Liu, S. Li, P. Liu, and M. Chen, “Enhanced performance of hole-conductor-free perovskite solar cells by utilization of core/shell-structured β-NaYF4:Yb3+,Er3+@SiO2 nanoparticles in ambient air,” IEEE J. Photovolt. 8(1), 132–136 (2018).
[Crossref]

Y. Qiao, S. Li, W. Liu, M. Ran, H. Lu, and Y. Yang, “Recent advances of rare-earth ion doped luminescent nanomaterials in perovskite solar cells,” Nanomaterials (Basel) 8(1), 43 (2018).
[Crossref] [PubMed]

J. H. Hu, W. H. Liu, Y. P. Yang, L. Zhao, Y. Qiao, S. H. Li, P. H. Liu, and M. W. Chen, “TiO2 nanotube/TiO2 nanoparticle hybrid photoanode for hole-conductor-free perovskite solar cells based on carbon counter electrodes,” Opt. Mater. Express 7(9), 3322–3331 (2017).
[Crossref]

S. Li, J. Hu, Y. Yang, L. Zhao, Y. Qiao, W. Liu, P. Liu, and M. Chen, “Ag/nano-TiO2 composite compact film for enhanced performance of perovskite solar cells based on carbon counter electrodes,” Appl. Phys., A Mater. Sci. Process. 123(10), 628 (2017).
[Crossref]

Qin, F.

C. Tian, A. Mei, S. Zhang, H. Tian, S. Liu, F. Qin, Y. Xiong, Y. Rong, Y. Hu, Y. Zhou, S. Xie, and H. Han, “Oxygen management in carbon electrode for high-performance printable perovskite solar cells,” Nano Energy 53, 160–167 (2018).
[Crossref]

Rajagopal, A.

Q. Chen, L. Chen, F. Ye, T. Zhao, F. Tang, A. Rajagopal, Z. Jiang, S. Jiang, A. K.-Y. Jen, Y. Xie, J. Cai, and L. Chen, “Ag-incorporated organic–inorganic perovskite films and planar heterojunction solar cells,” Nano Lett. 17(5), 3231–3237 (2017).
[Crossref] [PubMed]

Ramesh, R.

M. H. Kumar, S. Dharani, W. L. Leong, P. P. Boix, R. R. Prabhakar, T. Baikie, C. Shi, H. Ding, R. Ramesh, M. Asta, M. Graetzel, S. G. Mhaisalkar, and N. Mathews, “Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation,” Adv. Mater. 26(41), 7122–7127 (2014).
[Crossref] [PubMed]

Ran, M.

Y. Qiao, S. Li, W. Liu, M. Ran, H. Lu, and Y. Yang, “Recent advances of rare-earth ion doped luminescent nanomaterials in perovskite solar cells,” Nanomaterials (Basel) 8(1), 43 (2018).
[Crossref] [PubMed]

Rashad, M. M.

A. M. Elseman, A. E. Shalan, S. Sajid, M. M. Rashad, A. M. Hassan, and M. Li, “Copper-substituted lead perovskite materials constructed with different halides for working (CH3NH3)2CuX4-based perovskite solar cells from experimental and theoretical view,” ACS Appl. Mater. Interfaces 10(14), 11699–11707 (2018).
[Crossref] [PubMed]

Rong, Y.

Y. Hu, Z. Zhang, A. Mei, Y. Jiang, X. Hou, Q. Wang, K. Du, Y. Rong, Y. Zhou, G. Xu, and H. Han, “Improved performance of printable perovskite solar cells with bifunctional conjugated organic molecule,” Adv. Mater. 30(11), 1705786 (2018).
[Crossref] [PubMed]

Y. Rong, Y. Hu, A. Mei, H. Tan, M. I. Saidaminov, S. I. Seok, M. D. McGehee, E. H. Sargent, and H. Han, “Challenges for commercializing perovskite solar cells,” Science 361(6408), 8235 (2018).
[Crossref] [PubMed]

C. Tian, A. Mei, S. Zhang, H. Tian, S. Liu, F. Qin, Y. Xiong, Y. Rong, Y. Hu, Y. Zhou, S. Xie, and H. Han, “Oxygen management in carbon electrode for high-performance printable perovskite solar cells,” Nano Energy 53, 160–167 (2018).
[Crossref]

L. Xu, Y. Xiong, A. Mei, Y. Hu, Y. Rong, Y. Zhou, B. Hu, and H. Han, “Efficient perovskite photovoltaic-thermoelectric hybrid device,” Adv. Energy Mater. 8(13), 1702937 (2018).
[Crossref]

Z. Ku, Y. Rong, M. Xu, T. Liu, and H. Han, “Full printable processed mesoscopic CH₃NH₃PbI₃/TiO₂ heterojunction solar cells with carbon counter electrode,” Sci. Rep. 3(1), 3132 (2013).
[Crossref] [PubMed]

Sadhanala, A.

N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A. A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz, and H. J. Snaith, “Lead-free organic-inorganic tin halide perovskites for photovoltaic applications,” Energy Environ. Sci. 7(9), 3061–3068 (2014).
[Crossref]

Saidaminov, M. I.

Y. Rong, Y. Hu, A. Mei, H. Tan, M. I. Saidaminov, S. I. Seok, M. D. McGehee, E. H. Sargent, and H. Han, “Challenges for commercializing perovskite solar cells,” Science 361(6408), 8235 (2018).
[Crossref] [PubMed]

A. L. Abdelhady, M. I. Saidaminov, B. Murali, V. Adinolfi, O. Voznyy, K. Katsiev, E. Alarousu, R. Comin, I. Dursun, L. Sinatra, E. H. Sargent, O. F. Mohammed, and O. M. Bakr, “Heterovalent dopant incorporation for bandgap and type engineering of perovskite crystals,” J. Phys. Chem. Lett. 7(2), 295–301 (2016).
[Crossref] [PubMed]

Saitho, T.

Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, N. Fujikawa, Q. Shen, T. Toyoda, K. Yoshino, S. S. Pandey, T. Ma, and S. Hayase, “CH3NH3SnxPb(1-x)I3 Perovskite Solar Cells Covering up to 1060 nm,” J. Phys. Chem. Lett. 5(6), 1004–1011 (2014).
[Crossref] [PubMed]

Sajid, S.

A. M. Elseman, A. E. Shalan, S. Sajid, M. M. Rashad, A. M. Hassan, and M. Li, “Copper-substituted lead perovskite materials constructed with different halides for working (CH3NH3)2CuX4-based perovskite solar cells from experimental and theoretical view,” ACS Appl. Mater. Interfaces 10(14), 11699–11707 (2018).
[Crossref] [PubMed]

Saliba, M.

J.-P. Correa-Baena, A. Abate, M. Saliba, W. Tress, T. Jesper Jacobsson, M. Grätzel, and A. Hagfeldt, “The rapid evolution of highly efficient perovskite solar cells,” Energy Environ. Sci. 10(3), 710–727 (2017).
[Crossref]

Sargent, E. H.

Y. Rong, Y. Hu, A. Mei, H. Tan, M. I. Saidaminov, S. I. Seok, M. D. McGehee, E. H. Sargent, and H. Han, “Challenges for commercializing perovskite solar cells,” Science 361(6408), 8235 (2018).
[Crossref] [PubMed]

A. L. Abdelhady, M. I. Saidaminov, B. Murali, V. Adinolfi, O. Voznyy, K. Katsiev, E. Alarousu, R. Comin, I. Dursun, L. Sinatra, E. H. Sargent, O. F. Mohammed, and O. M. Bakr, “Heterovalent dopant incorporation for bandgap and type engineering of perovskite crystals,” J. Phys. Chem. Lett. 7(2), 295–301 (2016).
[Crossref] [PubMed]

Segawa, H.

Z. Tang, S. Uchida, T. Bessho, T. Kinoshita, H. Wang, F. Awai, R. Jono, M. M. Maitani, J. Nakazaki, T. Kubo, and H. Segawa, “Modulations of various alkali metal cations on organometal halide perovskites and their influence on photovoltaic performance,” Nano Energy 45, 184–192 (2018).
[Crossref]

Seo, J.

N. J. Jeon, H. Na, E. H. Jung, T.-Y. Yang, Y. G. Lee, G. Kim, H.-W. Shin, S. Il Seok, J. Lee, and J. Seo, “A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells,” Nat. Energy 3(8), 682–689 (2018).
[Crossref]

Seok, S. I.

Y. Rong, Y. Hu, A. Mei, H. Tan, M. I. Saidaminov, S. I. Seok, M. D. McGehee, E. H. Sargent, and H. Han, “Challenges for commercializing perovskite solar cells,” Science 361(6408), 8235 (2018).
[Crossref] [PubMed]

Shalan, A. E.

A. M. Elseman, A. E. Shalan, S. Sajid, M. M. Rashad, A. M. Hassan, and M. Li, “Copper-substituted lead perovskite materials constructed with different halides for working (CH3NH3)2CuX4-based perovskite solar cells from experimental and theoretical view,” ACS Appl. Mater. Interfaces 10(14), 11699–11707 (2018).
[Crossref] [PubMed]

Shang, M.

H. Zhang, M. Shang, X. Zheng, Z. Zeng, R. Chen, Y. Zhang, J. Zhang, and Y. Zhu, “Ba2+ doped CH3NH3PbI3 to tune the energy state and improve the performance of perovskite solar cells,” Electrochim. Acta 254, 165–171 (2017).
[Crossref]

J. Zhang, M. Shang, P. Wang, X. Huang, J. Xu, Z. Hu, Y. Zhu, and L. Han, “N-type doping and energy states tuning in CH3NH3Pb1–xSb2x/3I3 perovskite solar cells,” ACS Energy Lett. 1(3), 535–541 (2016).
[Crossref]

Shen, Q.

Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, N. Fujikawa, Q. Shen, T. Toyoda, K. Yoshino, S. S. Pandey, T. Ma, and S. Hayase, “CH3NH3SnxPb(1-x)I3 Perovskite Solar Cells Covering up to 1060 nm,” J. Phys. Chem. Lett. 5(6), 1004–1011 (2014).
[Crossref] [PubMed]

Sheng, Y.

G. Tong, Z. Song, C. Li, Y. Zhao, L. Yu, J. Xu, Y. Jiang, Y. Sheng, Y. Shi, and K. Chen, “Cadmium-doped flexible perovskite solar cells with a low-cost and low-temperature-processed CdS electron transport layer,” RSC Advances 7(32), 19457–19463 (2017).
[Crossref]

Shi, C.

M. H. Kumar, S. Dharani, W. L. Leong, P. P. Boix, R. R. Prabhakar, T. Baikie, C. Shi, H. Ding, R. Ramesh, M. Asta, M. Graetzel, S. G. Mhaisalkar, and N. Mathews, “Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation,” Adv. Mater. 26(41), 7122–7127 (2014).
[Crossref] [PubMed]

Shi, Y.

G. Tong, Z. Song, C. Li, Y. Zhao, L. Yu, J. Xu, Y. Jiang, Y. Sheng, Y. Shi, and K. Chen, “Cadmium-doped flexible perovskite solar cells with a low-cost and low-temperature-processed CdS electron transport layer,” RSC Advances 7(32), 19457–19463 (2017).
[Crossref]

Shimazaki, A.

T. Handa, D. M. Tex, A. Shimazaki, T. Aharen, A. Wakamiya, and Y. Kanemitsu, “Optical characterization of voltage-accelerated degradation in CH3NH3PbI3 perovskite solar cells,” Opt. Express 24(10), 917–924 (2016).
[Crossref] [PubMed]

Shin, H.

D.-Y. Son, J.-W. Lee, Y. J. Choi, I.-H. Jang, S. Lee, P. J. Yoo, H. Shin, N. Ahn, M. Choi, D. Kim, and N.-G. Park, “Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells,” Nat. Energy 1(7), 16081 (2016).
[Crossref]

Shin, H.-W.

N. J. Jeon, H. Na, E. H. Jung, T.-Y. Yang, Y. G. Lee, G. Kim, H.-W. Shin, S. Il Seok, J. Lee, and J. Seo, “A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells,” Nat. Energy 3(8), 682–689 (2018).
[Crossref]

Shirai, Y.

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[Crossref] [PubMed]

Sinatra, L.

A. L. Abdelhady, M. I. Saidaminov, B. Murali, V. Adinolfi, O. Voznyy, K. Katsiev, E. Alarousu, R. Comin, I. Dursun, L. Sinatra, E. H. Sargent, O. F. Mohammed, and O. M. Bakr, “Heterovalent dopant incorporation for bandgap and type engineering of perovskite crystals,” J. Phys. Chem. Lett. 7(2), 295–301 (2016).
[Crossref] [PubMed]

Snaith, H. J.

M. T. Klug, A. Osherov, A. A. Haghighirad, S. D. Stranks, P. R. Brown, S. Bai, J. T.-W. Wang, X. Dang, V. Bulovic, H. J. Snaith, and A. M. Belcher, “Tailoring metal halide perovskites through metal substitution: influence on photovoltaic and material properties,” Energy Environ. Sci. 10(1), 236–246 (2017).
[Crossref]

C. Wehrenfennig, M. Liu, H. J. Snaith, M. B. Johnston, and L. M. Herz, “Charge-carrier dynamics in vapour-deposited films of the organolead halide perovskite CH3NH3PbI3−xClx,” Energy Environ. Sci. 7(7), 2269–2275 (2014).
[Crossref]

G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells,” Energy Environ. Sci. 7(3), 982–988 (2014).
[Crossref]

C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High charge carrier mobilities and lifetimes in organolead trihalide perovskites,” Adv. Mater. 26(10), 1584–1589 (2014).
[Crossref] [PubMed]

N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A. A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz, and H. J. Snaith, “Lead-free organic-inorganic tin halide perovskites for photovoltaic applications,” Energy Environ. Sci. 7(9), 3061–3068 (2014).
[Crossref]

Son, D.-Y.

D.-Y. Son, J.-W. Lee, Y. J. Choi, I.-H. Jang, S. Lee, P. J. Yoo, H. Shin, N. Ahn, M. Choi, D. Kim, and N.-G. Park, “Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells,” Nat. Energy 1(7), 16081 (2016).
[Crossref]

N. Ahn, D.-Y. Son, I.-H. Jang, S. M. Kang, M. Choi, and N.-G. Park, “Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide,” J. Am. Chem. Soc. 137(27), 8696–8699 (2015).
[Crossref] [PubMed]

Song, J.-Z.

J.-S. Yao, J. Ge, B.-N. Han, K.-H. Wang, H.-B. Yao, H.-L. Yu, J.-H. Li, B.-S. Zhu, J.-Z. Song, C. Chen, Q. Zhang, H.-B. Zeng, Y. Luo, and S.-H. Yu, “Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes,” J. Am. Chem. Soc. 140(10), 3626–3634 (2018).
[Crossref] [PubMed]

Song, Z.

G. Tong, Z. Song, C. Li, Y. Zhao, L. Yu, J. Xu, Y. Jiang, Y. Sheng, Y. Shi, and K. Chen, “Cadmium-doped flexible perovskite solar cells with a low-cost and low-temperature-processed CdS electron transport layer,” RSC Advances 7(32), 19457–19463 (2017).
[Crossref]

Stranks, S. D.

M. T. Klug, A. Osherov, A. A. Haghighirad, S. D. Stranks, P. R. Brown, S. Bai, J. T.-W. Wang, X. Dang, V. Bulovic, H. J. Snaith, and A. M. Belcher, “Tailoring metal halide perovskites through metal substitution: influence on photovoltaic and material properties,” Energy Environ. Sci. 10(1), 236–246 (2017).
[Crossref]

N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A. A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz, and H. J. Snaith, “Lead-free organic-inorganic tin halide perovskites for photovoltaic applications,” Energy Environ. Sci. 7(9), 3061–3068 (2014).
[Crossref]

G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells,” Energy Environ. Sci. 7(3), 982–988 (2014).
[Crossref]

Su, W.-F.

M.-C. Wu, W.-C. Chen, S.-H. Chan, and W.-F. Su, “The effect of strontium and barium doping on perovskite-structured energy materials for photovoltaic applications,” Appl. Surf. Sci. 429, 9–15 (2018).
[Crossref]

S.-H. Chan, M.-C. Wu, K.-M. Lee, W.-C. Chen, T.-H. Lin, and W.-F. Su, “Enhancing perovskite solar cell performance and stability by doping barium in methylammonium lead halide,” J. Mater. Chem. A Mater. Energy Sustain. 5(34), 18044–18052 (2017).
[Crossref]

Sum, T. C.

T. M. Koh, K. Fu, Y. Fang, S. Chen, T. C. Sum, N. Mathews, S. G. Mhaisalkar, P. P. Boix, and T. Baikie, “Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells,” J. Phys. Chem. C 118(30), 16458–16462 (2014).
[Crossref]

Sun, H. T.

Tan, H.

Y. Rong, Y. Hu, A. Mei, H. Tan, M. I. Saidaminov, S. I. Seok, M. D. McGehee, E. H. Sargent, and H. Han, “Challenges for commercializing perovskite solar cells,” Science 361(6408), 8235 (2018).
[Crossref] [PubMed]

Tang, F.

Q. Chen, L. Chen, F. Ye, T. Zhao, F. Tang, A. Rajagopal, Z. Jiang, S. Jiang, A. K.-Y. Jen, Y. Xie, J. Cai, and L. Chen, “Ag-incorporated organic–inorganic perovskite films and planar heterojunction solar cells,” Nano Lett. 17(5), 3231–3237 (2017).
[Crossref] [PubMed]

Tang, Z.

Z. Tang, S. Uchida, T. Bessho, T. Kinoshita, H. Wang, F. Awai, R. Jono, M. M. Maitani, J. Nakazaki, T. Kubo, and H. Segawa, “Modulations of various alkali metal cations on organometal halide perovskites and their influence on photovoltaic performance,” Nano Energy 45, 184–192 (2018).
[Crossref]

Teshima, K.

A. Kojima, M. Ikegami, K. Teshima, and T. Miyasaka, “Highly luminescent lead bromide perovskite nanoparticles synthesized with porous alumina media,” Chem. Lett. 41(4), 397–399 (2012).
[Crossref]

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[Crossref] [PubMed]

Tex, D. M.

T. Handa, D. M. Tex, A. Shimazaki, T. Aharen, A. Wakamiya, and Y. Kanemitsu, “Optical characterization of voltage-accelerated degradation in CH3NH3PbI3 perovskite solar cells,” Opt. Express 24(10), 917–924 (2016).
[Crossref] [PubMed]

Tian, C.

C. Tian, A. Mei, S. Zhang, H. Tian, S. Liu, F. Qin, Y. Xiong, Y. Rong, Y. Hu, Y. Zhou, S. Xie, and H. Han, “Oxygen management in carbon electrode for high-performance printable perovskite solar cells,” Nano Energy 53, 160–167 (2018).
[Crossref]

Tian, H.

C. Tian, A. Mei, S. Zhang, H. Tian, S. Liu, F. Qin, Y. Xiong, Y. Rong, Y. Hu, Y. Zhou, S. Xie, and H. Han, “Oxygen management in carbon electrode for high-performance printable perovskite solar cells,” Nano Energy 53, 160–167 (2018).
[Crossref]

R. Chen, D. Hou, C. Lu, J. Zhang, P. Liu, H. Tian, Z. Zeng, Q. Xiong, Z. Hu, Y. Zhu, and L. Han, “Zinc ion as effective film morphology controller in perovskite solar cells,” Sust. Energy Fuels 2(5), 1093–1100 (2018).
[Crossref]

Tong, G.

G. Tong, Z. Song, C. Li, Y. Zhao, L. Yu, J. Xu, Y. Jiang, Y. Sheng, Y. Shi, and K. Chen, “Cadmium-doped flexible perovskite solar cells with a low-cost and low-temperature-processed CdS electron transport layer,” RSC Advances 7(32), 19457–19463 (2017).
[Crossref]

Tong, S.

J. Hu, J. Cheng, S. Tong, L. Zhao, J. Duan, and Y. Yang, “Dye-sensitized solar cells based on P25 nanoparticles/TiO2 nanotube arrays/hollow TiO2 boxes three-layer composite film,” J. Mater. Sci. 27(5), 5362–5370 (2016).

Toyoda, T.

Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, N. Fujikawa, Q. Shen, T. Toyoda, K. Yoshino, S. S. Pandey, T. Ma, and S. Hayase, “CH3NH3SnxPb(1-x)I3 Perovskite Solar Cells Covering up to 1060 nm,” J. Phys. Chem. Lett. 5(6), 1004–1011 (2014).
[Crossref] [PubMed]

Tress, W.

J.-P. Correa-Baena, A. Abate, M. Saliba, W. Tress, T. Jesper Jacobsson, M. Grätzel, and A. Hagfeldt, “The rapid evolution of highly efficient perovskite solar cells,” Energy Environ. Sci. 10(3), 710–727 (2017).
[Crossref]

Troshin, P. A.

L. A. Frolova, D. V. Anokhin, K. L. Gerasimov, N. N. Dremova, and P. A. Troshin, “Exploring the effects of the Pb2+ substitution in MAPbI3 on the photovoltaic performance of the hybrid perovskite solar cells,” J. Phys. Chem. Lett. 7(21), 4353–4357 (2016).
[Crossref] [PubMed]

Tsai, C.-M.

C.-M. Tsai, G.-W. Wu, S. Narra, H.-M. Chang, N. Mohanta, H.-P. Wu, C.-L. Wang, and E. W.-G. Diau, “Control of preferred orientation with slow crystallization for carbon-based mesoscopic perovskite solar cells attaining efficiency 15%,” J. Mater. Chem. A Mater. Energy Sustain. 5(2), 739–747 (2017).
[Crossref]

Tsukamoto, S.

Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, N. Fujikawa, Q. Shen, T. Toyoda, K. Yoshino, S. S. Pandey, T. Ma, and S. Hayase, “CH3NH3SnxPb(1-x)I3 Perovskite Solar Cells Covering up to 1060 nm,” J. Phys. Chem. Lett. 5(6), 1004–1011 (2014).
[Crossref] [PubMed]

Uchida, S.

Z. Tang, S. Uchida, T. Bessho, T. Kinoshita, H. Wang, F. Awai, R. Jono, M. M. Maitani, J. Nakazaki, T. Kubo, and H. Segawa, “Modulations of various alkali metal cations on organometal halide perovskites and their influence on photovoltaic performance,” Nano Energy 45, 184–192 (2018).
[Crossref]

Voznyy, O.

A. L. Abdelhady, M. I. Saidaminov, B. Murali, V. Adinolfi, O. Voznyy, K. Katsiev, E. Alarousu, R. Comin, I. Dursun, L. Sinatra, E. H. Sargent, O. F. Mohammed, and O. M. Bakr, “Heterovalent dopant incorporation for bandgap and type engineering of perovskite crystals,” J. Phys. Chem. Lett. 7(2), 295–301 (2016).
[Crossref] [PubMed]

Wakamiya, A.

T. Handa, D. M. Tex, A. Shimazaki, T. Aharen, A. Wakamiya, and Y. Kanemitsu, “Optical characterization of voltage-accelerated degradation in CH3NH3PbI3 perovskite solar cells,” Opt. Express 24(10), 917–924 (2016).
[Crossref] [PubMed]

Wang, B.

S. Li, X. Zhu, B. Wang, Y. Qiao, W. Liu, H. Yang, N. Liu, M. Chen, H. Lu, and Y. Yang, “Influence of Ag nanoparticles with different sizes and concentrations embedded in a TiO2 compact layer on the conversion efficiency of perovskite solar cells,” Nanoscale Res. Lett. 13(1), 210 (2018).
[Crossref] [PubMed]

Wang, C.-L.

C.-M. Tsai, G.-W. Wu, S. Narra, H.-M. Chang, N. Mohanta, H.-P. Wu, C.-L. Wang, and E. W.-G. Diau, “Control of preferred orientation with slow crystallization for carbon-based mesoscopic perovskite solar cells attaining efficiency 15%,” J. Mater. Chem. A Mater. Energy Sustain. 5(2), 739–747 (2017).
[Crossref]

Wang, H.

D. Bai, J. Zhang, Z. Jin, H. Bian, K. Wang, H. Wang, L. Liang, Q. Wang, and S. Liu, “Interstitial Mn2+-driven high-aspect-ratio grain growth for low-trap-density microcrystalline films for record efficiency inorganic CsPbI2Br solar cells,” ACS Energy Lett. 3(4), 970–978 (2018).
[Crossref]

Z. Tang, S. Uchida, T. Bessho, T. Kinoshita, H. Wang, F. Awai, R. Jono, M. M. Maitani, J. Nakazaki, T. Kubo, and H. Segawa, “Modulations of various alkali metal cations on organometal halide perovskites and their influence on photovoltaic performance,” Nano Energy 45, 184–192 (2018).
[Crossref]

Wang, J. T.-W.

M. T. Klug, A. Osherov, A. A. Haghighirad, S. D. Stranks, P. R. Brown, S. Bai, J. T.-W. Wang, X. Dang, V. Bulovic, H. J. Snaith, and A. M. Belcher, “Tailoring metal halide perovskites through metal substitution: influence on photovoltaic and material properties,” Energy Environ. Sci. 10(1), 236–246 (2017).
[Crossref]

Wang, K.

D. Bai, J. Zhang, Z. Jin, H. Bian, K. Wang, H. Wang, L. Liang, Q. Wang, and S. Liu, “Interstitial Mn2+-driven high-aspect-ratio grain growth for low-trap-density microcrystalline films for record efficiency inorganic CsPbI2Br solar cells,” ACS Energy Lett. 3(4), 970–978 (2018).
[Crossref]

Wang, K.-H.

J.-S. Yao, J. Ge, B.-N. Han, K.-H. Wang, H.-B. Yao, H.-L. Yu, J.-H. Li, B.-S. Zhu, J.-Z. Song, C. Chen, Q. Zhang, H.-B. Zeng, Y. Luo, and S.-H. Yu, “Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes,” J. Am. Chem. Soc. 140(10), 3626–3634 (2018).
[Crossref] [PubMed]

Wang, L.

W. Lu, R. Jiang, X. Yin, and L. Wang, “Porous N-doped-carbon coated CoSe2 anchored on carbon cloth as 3D photocathode for dye-sensitized solar cell with efficiency and stability outperforming Pt,” Nano Res. 12(1), 159–163 (2018).

Wang, P.

J. Zhang, M. Shang, P. Wang, X. Huang, J. Xu, Z. Hu, Y. Zhu, and L. Han, “N-type doping and energy states tuning in CH3NH3Pb1–xSb2x/3I3 perovskite solar cells,” ACS Energy Lett. 1(3), 535–541 (2016).
[Crossref]

Wang, Q.

Y. Hu, Z. Zhang, A. Mei, Y. Jiang, X. Hou, Q. Wang, K. Du, Y. Rong, Y. Zhou, G. Xu, and H. Han, “Improved performance of printable perovskite solar cells with bifunctional conjugated organic molecule,” Adv. Mater. 30(11), 1705786 (2018).
[Crossref] [PubMed]

D. Bai, J. Zhang, Z. Jin, H. Bian, K. Wang, H. Wang, L. Liang, Q. Wang, and S. Liu, “Interstitial Mn2+-driven high-aspect-ratio grain growth for low-trap-density microcrystalline films for record efficiency inorganic CsPbI2Br solar cells,” ACS Energy Lett. 3(4), 970–978 (2018).
[Crossref]

Wang, S.

D. B. Mitzi, S. Wang, C. A. Feild, C. A. Chess, and A. M. Guloy, “Conducting layered organic-inorganic halides containing <110>-oriented perovskite sheets,” Science 267(5203), 1473–1476 (1995).
[Crossref] [PubMed]

Wang, Z.-K.

Z.-K. Wang, M. Li, Y.-G. Yang, Y. Hu, H. Ma, X.-Y. Gao, and L.-S. Liao, “High efficiency Pb-In binary metal perovskite solar cells,” Adv. Mater. 28(31), 6695–6703 (2016).
[Crossref] [PubMed]

Wehrenfennig, C.

C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High charge carrier mobilities and lifetimes in organolead trihalide perovskites,” Adv. Mater. 26(10), 1584–1589 (2014).
[Crossref] [PubMed]

C. Wehrenfennig, M. Liu, H. J. Snaith, M. B. Johnston, and L. M. Herz, “Charge-carrier dynamics in vapour-deposited films of the organolead halide perovskite CH3NH3PbI3−xClx,” Energy Environ. Sci. 7(7), 2269–2275 (2014).
[Crossref]

N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A. A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz, and H. J. Snaith, “Lead-free organic-inorganic tin halide perovskites for photovoltaic applications,” Energy Environ. Sci. 7(9), 3061–3068 (2014).
[Crossref]

Wu, G.-W.

C.-M. Tsai, G.-W. Wu, S. Narra, H.-M. Chang, N. Mohanta, H.-P. Wu, C.-L. Wang, and E. W.-G. Diau, “Control of preferred orientation with slow crystallization for carbon-based mesoscopic perovskite solar cells attaining efficiency 15%,” J. Mater. Chem. A Mater. Energy Sustain. 5(2), 739–747 (2017).
[Crossref]

Wu, H.-P.

C.-M. Tsai, G.-W. Wu, S. Narra, H.-M. Chang, N. Mohanta, H.-P. Wu, C.-L. Wang, and E. W.-G. Diau, “Control of preferred orientation with slow crystallization for carbon-based mesoscopic perovskite solar cells attaining efficiency 15%,” J. Mater. Chem. A Mater. Energy Sustain. 5(2), 739–747 (2017).
[Crossref]

Wu, M.-C.

M.-C. Wu, W.-C. Chen, S.-H. Chan, and W.-F. Su, “The effect of strontium and barium doping on perovskite-structured energy materials for photovoltaic applications,” Appl. Surf. Sci. 429, 9–15 (2018).
[Crossref]

S.-H. Chan, M.-C. Wu, K.-M. Lee, W.-C. Chen, T.-H. Lin, and W.-F. Su, “Enhancing perovskite solar cell performance and stability by doping barium in methylammonium lead halide,” J. Mater. Chem. A Mater. Energy Sustain. 5(34), 18044–18052 (2017).
[Crossref]

Wu, S.

C. Chen, Y. Xu, S. Wu, S. Zhang, Z. Yang, W. Zhang, H. Zhu, Z. Xiong, W. Chen, and W. Chen, “CaI2: a more effective passivator of perovskite films than PbI2 for high efficiency and long-term stability of perovskite solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 6(17), 7903–7912 (2018).
[Crossref]

Xie, S.

C. Tian, A. Mei, S. Zhang, H. Tian, S. Liu, F. Qin, Y. Xiong, Y. Rong, Y. Hu, Y. Zhou, S. Xie, and H. Han, “Oxygen management in carbon electrode for high-performance printable perovskite solar cells,” Nano Energy 53, 160–167 (2018).
[Crossref]

Xie, Y.

Q. Chen, L. Chen, F. Ye, T. Zhao, F. Tang, A. Rajagopal, Z. Jiang, S. Jiang, A. K.-Y. Jen, Y. Xie, J. Cai, and L. Chen, “Ag-incorporated organic–inorganic perovskite films and planar heterojunction solar cells,” Nano Lett. 17(5), 3231–3237 (2017).
[Crossref] [PubMed]

Xiong, Q.

R. Chen, D. Hou, C. Lu, J. Zhang, P. Liu, H. Tian, Z. Zeng, Q. Xiong, Z. Hu, Y. Zhu, and L. Han, “Zinc ion as effective film morphology controller in perovskite solar cells,” Sust. Energy Fuels 2(5), 1093–1100 (2018).
[Crossref]

Xiong, Y.

C. Tian, A. Mei, S. Zhang, H. Tian, S. Liu, F. Qin, Y. Xiong, Y. Rong, Y. Hu, Y. Zhou, S. Xie, and H. Han, “Oxygen management in carbon electrode for high-performance printable perovskite solar cells,” Nano Energy 53, 160–167 (2018).
[Crossref]

L. Xu, Y. Xiong, A. Mei, Y. Hu, Y. Rong, Y. Zhou, B. Hu, and H. Han, “Efficient perovskite photovoltaic-thermoelectric hybrid device,” Adv. Energy Mater. 8(13), 1702937 (2018).
[Crossref]

Xiong, Z.

C. Chen, Y. Xu, S. Wu, S. Zhang, Z. Yang, W. Zhang, H. Zhu, Z. Xiong, W. Chen, and W. Chen, “CaI2: a more effective passivator of perovskite films than PbI2 for high efficiency and long-term stability of perovskite solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 6(17), 7903–7912 (2018).
[Crossref]

Xu, G.

Y. Hu, Z. Zhang, A. Mei, Y. Jiang, X. Hou, Q. Wang, K. Du, Y. Rong, Y. Zhou, G. Xu, and H. Han, “Improved performance of printable perovskite solar cells with bifunctional conjugated organic molecule,” Adv. Mater. 30(11), 1705786 (2018).
[Crossref] [PubMed]

Xu, J.

G. Tong, Z. Song, C. Li, Y. Zhao, L. Yu, J. Xu, Y. Jiang, Y. Sheng, Y. Shi, and K. Chen, “Cadmium-doped flexible perovskite solar cells with a low-cost and low-temperature-processed CdS electron transport layer,” RSC Advances 7(32), 19457–19463 (2017).
[Crossref]

J. Zhang, M. Shang, P. Wang, X. Huang, J. Xu, Z. Hu, Y. Zhu, and L. Han, “N-type doping and energy states tuning in CH3NH3Pb1–xSb2x/3I3 perovskite solar cells,” ACS Energy Lett. 1(3), 535–541 (2016).
[Crossref]

Xu, L.

L. Xu, Y. Xiong, A. Mei, Y. Hu, Y. Rong, Y. Zhou, B. Hu, and H. Han, “Efficient perovskite photovoltaic-thermoelectric hybrid device,” Adv. Energy Mater. 8(13), 1702937 (2018).
[Crossref]

Xu, M.

Z. Ku, Y. Rong, M. Xu, T. Liu, and H. Han, “Full printable processed mesoscopic CH₃NH₃PbI₃/TiO₂ heterojunction solar cells with carbon counter electrode,” Sci. Rep. 3(1), 3132 (2013).
[Crossref] [PubMed]

Xu, P.

F. Dong, Y. Guo, P. Xu, X. Yin, Y. Li, and M. He, “Hydrothermal growth of MoS2/Co3S4 composites as efficient Pt-free counter electrodes for dye-sensitized solar cells,” Sci. China Mater. 60(4), 295–303 (2017).
[Crossref]

Xu, Y.

C. Chen, Y. Xu, S. Wu, S. Zhang, Z. Yang, W. Zhang, H. Zhu, Z. Xiong, W. Chen, and W. Chen, “CaI2: a more effective passivator of perovskite films than PbI2 for high efficiency and long-term stability of perovskite solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 6(17), 7903–7912 (2018).
[Crossref]

Xu, Z.

Z. Xu, X. Yin, Y. Guo, Y. Pu, and M. He, “Ru-Doping in TiO2 electron transport layers of planar heterojunction perovskite solar cells for enhanced performance,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(17), 4746–4752 (2018).
[Crossref]

Yang, D.

W. Zhao, D. Yang, Z. Yang, and S. Liu, “Zn-doping for reduced hysteresis and improved performance of methylammonium lead iodide perovskite hybrid solar cells,” Mater. Today Energy 5, 205–213 (2017).
[Crossref]

Yang, H.

S. Li, X. Zhu, B. Wang, Y. Qiao, W. Liu, H. Yang, N. Liu, M. Chen, H. Lu, and Y. Yang, “Influence of Ag nanoparticles with different sizes and concentrations embedded in a TiO2 compact layer on the conversion efficiency of perovskite solar cells,” Nanoscale Res. Lett. 13(1), 210 (2018).
[Crossref] [PubMed]

Yang, S.

H. Chen and S. Yang, “Carbon-based perovskite solar cells without hole transport materials: the front runner to the market?” Adv. Mater. 29(24), 1603994 (2017).
[Crossref] [PubMed]

Yang, T.-Y.

N. J. Jeon, H. Na, E. H. Jung, T.-Y. Yang, Y. G. Lee, G. Kim, H.-W. Shin, S. Il Seok, J. Lee, and J. Seo, “A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells,” Nat. Energy 3(8), 682–689 (2018).
[Crossref]

Yang, Y.

Y. Qiao, S. Li, W. Liu, M. Ran, H. Lu, and Y. Yang, “Recent advances of rare-earth ion doped luminescent nanomaterials in perovskite solar cells,” Nanomaterials (Basel) 8(1), 43 (2018).
[Crossref] [PubMed]

S. Li, X. Zhu, B. Wang, Y. Qiao, W. Liu, H. Yang, N. Liu, M. Chen, H. Lu, and Y. Yang, “Influence of Ag nanoparticles with different sizes and concentrations embedded in a TiO2 compact layer on the conversion efficiency of perovskite solar cells,” Nanoscale Res. Lett. 13(1), 210 (2018).
[Crossref] [PubMed]

J. Hu, Y. Qiao, Y. Yang, L. Zhao, W. Liu, S. Li, P. Liu, and M. Chen, “Enhanced performance of hole-conductor-free perovskite solar cells by utilization of core/shell-structured β-NaYF4:Yb3+,Er3+@SiO2 nanoparticles in ambient air,” IEEE J. Photovolt. 8(1), 132–136 (2018).
[Crossref]

S. Li, J. Hu, Y. Yang, L. Zhao, Y. Qiao, W. Liu, P. Liu, and M. Chen, “Ag/nano-TiO2 composite compact film for enhanced performance of perovskite solar cells based on carbon counter electrodes,” Appl. Phys., A Mater. Sci. Process. 123(10), 628 (2017).
[Crossref]

J. Hu, J. Cheng, S. Tong, L. Zhao, J. Duan, and Y. Yang, “Dye-sensitized solar cells based on P25 nanoparticles/TiO2 nanotube arrays/hollow TiO2 boxes three-layer composite film,” J. Mater. Sci. 27(5), 5362–5370 (2016).

Yang, Y. P.

Yang, Y.-G.

Z.-K. Wang, M. Li, Y.-G. Yang, Y. Hu, H. Ma, X.-Y. Gao, and L.-S. Liao, “High efficiency Pb-In binary metal perovskite solar cells,” Adv. Mater. 28(31), 6695–6703 (2016).
[Crossref] [PubMed]

Yang, Z.

C. Chen, Y. Xu, S. Wu, S. Zhang, Z. Yang, W. Zhang, H. Zhu, Z. Xiong, W. Chen, and W. Chen, “CaI2: a more effective passivator of perovskite films than PbI2 for high efficiency and long-term stability of perovskite solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 6(17), 7903–7912 (2018).
[Crossref]

W. Zhao, D. Yang, Z. Yang, and S. Liu, “Zn-doping for reduced hysteresis and improved performance of methylammonium lead iodide perovskite hybrid solar cells,” Mater. Today Energy 5, 205–213 (2017).
[Crossref]

Yao, H.-B.

J.-S. Yao, J. Ge, B.-N. Han, K.-H. Wang, H.-B. Yao, H.-L. Yu, J.-H. Li, B.-S. Zhu, J.-Z. Song, C. Chen, Q. Zhang, H.-B. Zeng, Y. Luo, and S.-H. Yu, “Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes,” J. Am. Chem. Soc. 140(10), 3626–3634 (2018).
[Crossref] [PubMed]

Yao, J.-S.

J.-S. Yao, J. Ge, B.-N. Han, K.-H. Wang, H.-B. Yao, H.-L. Yu, J.-H. Li, B.-S. Zhu, J.-Z. Song, C. Chen, Q. Zhang, H.-B. Zeng, Y. Luo, and S.-H. Yu, “Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes,” J. Am. Chem. Soc. 140(10), 3626–3634 (2018).
[Crossref] [PubMed]

Ye, F.

Q. Chen, L. Chen, F. Ye, T. Zhao, F. Tang, A. Rajagopal, Z. Jiang, S. Jiang, A. K.-Y. Jen, Y. Xie, J. Cai, and L. Chen, “Ag-incorporated organic–inorganic perovskite films and planar heterojunction solar cells,” Nano Lett. 17(5), 3231–3237 (2017).
[Crossref] [PubMed]

Yin, X.

Z. Xu, X. Yin, Y. Guo, Y. Pu, and M. He, “Ru-Doping in TiO2 electron transport layers of planar heterojunction perovskite solar cells for enhanced performance,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(17), 4746–4752 (2018).
[Crossref]

W. Lu, R. Jiang, X. Yin, and L. Wang, “Porous N-doped-carbon coated CoSe2 anchored on carbon cloth as 3D photocathode for dye-sensitized solar cell with efficiency and stability outperforming Pt,” Nano Res. 12(1), 159–163 (2018).

F. Dong, Y. Guo, P. Xu, X. Yin, Y. Li, and M. He, “Hydrothermal growth of MoS2/Co3S4 composites as efficient Pt-free counter electrodes for dye-sensitized solar cells,” Sci. China Mater. 60(4), 295–303 (2017).
[Crossref]

Yong, Z. J.

Yoo, P. J.

D.-Y. Son, J.-W. Lee, Y. J. Choi, I.-H. Jang, S. Lee, P. J. Yoo, H. Shin, N. Ahn, M. Choi, D. Kim, and N.-G. Park, “Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells,” Nat. Energy 1(7), 16081 (2016).
[Crossref]

Yoshino, K.

Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, N. Fujikawa, Q. Shen, T. Toyoda, K. Yoshino, S. S. Pandey, T. Ma, and S. Hayase, “CH3NH3SnxPb(1-x)I3 Perovskite Solar Cells Covering up to 1060 nm,” J. Phys. Chem. Lett. 5(6), 1004–1011 (2014).
[Crossref] [PubMed]

Yu, H.-L.

J.-S. Yao, J. Ge, B.-N. Han, K.-H. Wang, H.-B. Yao, H.-L. Yu, J.-H. Li, B.-S. Zhu, J.-Z. Song, C. Chen, Q. Zhang, H.-B. Zeng, Y. Luo, and S.-H. Yu, “Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes,” J. Am. Chem. Soc. 140(10), 3626–3634 (2018).
[Crossref] [PubMed]

Yu, L.

G. Tong, Z. Song, C. Li, Y. Zhao, L. Yu, J. Xu, Y. Jiang, Y. Sheng, Y. Shi, and K. Chen, “Cadmium-doped flexible perovskite solar cells with a low-cost and low-temperature-processed CdS electron transport layer,” RSC Advances 7(32), 19457–19463 (2017).
[Crossref]

Yu, S.-H.

J.-S. Yao, J. Ge, B.-N. Han, K.-H. Wang, H.-B. Yao, H.-L. Yu, J.-H. Li, B.-S. Zhu, J.-Z. Song, C. Chen, Q. Zhang, H.-B. Zeng, Y. Luo, and S.-H. Yu, “Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes,” J. Am. Chem. Soc. 140(10), 3626–3634 (2018).
[Crossref] [PubMed]

Zeng, H.-B.

J.-S. Yao, J. Ge, B.-N. Han, K.-H. Wang, H.-B. Yao, H.-L. Yu, J.-H. Li, B.-S. Zhu, J.-Z. Song, C. Chen, Q. Zhang, H.-B. Zeng, Y. Luo, and S.-H. Yu, “Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes,” J. Am. Chem. Soc. 140(10), 3626–3634 (2018).
[Crossref] [PubMed]

Zeng, Z.

R. Chen, D. Hou, C. Lu, J. Zhang, P. Liu, H. Tian, Z. Zeng, Q. Xiong, Z. Hu, Y. Zhu, and L. Han, “Zinc ion as effective film morphology controller in perovskite solar cells,” Sust. Energy Fuels 2(5), 1093–1100 (2018).
[Crossref]

H. Zhang, M. Shang, X. Zheng, Z. Zeng, R. Chen, Y. Zhang, J. Zhang, and Y. Zhu, “Ba2+ doped CH3NH3PbI3 to tune the energy state and improve the performance of perovskite solar cells,” Electrochim. Acta 254, 165–171 (2017).
[Crossref]

Zhang, C.

L. Zhou, J. Chang, Z. Lin, C. Zhang, D. Chen, J. Zhang, and Y. Hao, “Investigation of Fe2+-incorporating organic–inorganic hybrid perovskites from first principles and experiments,” RSC Advances 7(86), 54586–54593 (2017).
[Crossref]

Zhang, H.

H. Zhang, R. Li, M. Zhang, and M. Guo, “The effect of SrI2 substitution on perovskite film formation and its photovoltaic properties via two different deposition methods,” Inorg. Chem. Front. 5(6), 1354–1364 (2018).
[Crossref]

H. Zhang, M. Shang, X. Zheng, Z. Zeng, R. Chen, Y. Zhang, J. Zhang, and Y. Zhu, “Ba2+ doped CH3NH3PbI3 to tune the energy state and improve the performance of perovskite solar cells,” Electrochim. Acta 254, 165–171 (2017).
[Crossref]

Zhang, J.

R. Chen, D. Hou, C. Lu, J. Zhang, P. Liu, H. Tian, Z. Zeng, Q. Xiong, Z. Hu, Y. Zhu, and L. Han, “Zinc ion as effective film morphology controller in perovskite solar cells,” Sust. Energy Fuels 2(5), 1093–1100 (2018).
[Crossref]

D. Bai, J. Zhang, Z. Jin, H. Bian, K. Wang, H. Wang, L. Liang, Q. Wang, and S. Liu, “Interstitial Mn2+-driven high-aspect-ratio grain growth for low-trap-density microcrystalline films for record efficiency inorganic CsPbI2Br solar cells,” ACS Energy Lett. 3(4), 970–978 (2018).
[Crossref]

L. Zhou, J. Chang, Z. Lin, C. Zhang, D. Chen, J. Zhang, and Y. Hao, “Investigation of Fe2+-incorporating organic–inorganic hybrid perovskites from first principles and experiments,” RSC Advances 7(86), 54586–54593 (2017).
[Crossref]

H. Zhang, M. Shang, X. Zheng, Z. Zeng, R. Chen, Y. Zhang, J. Zhang, and Y. Zhu, “Ba2+ doped CH3NH3PbI3 to tune the energy state and improve the performance of perovskite solar cells,” Electrochim. Acta 254, 165–171 (2017).
[Crossref]

J. Zhang, M. Shang, P. Wang, X. Huang, J. Xu, Z. Hu, Y. Zhu, and L. Han, “N-type doping and energy states tuning in CH3NH3Pb1–xSb2x/3I3 perovskite solar cells,” ACS Energy Lett. 1(3), 535–541 (2016).
[Crossref]

Zhang, M.

H. Zhang, R. Li, M. Zhang, and M. Guo, “The effect of SrI2 substitution on perovskite film formation and its photovoltaic properties via two different deposition methods,” Inorg. Chem. Front. 5(6), 1354–1364 (2018).
[Crossref]

Zhang, Q.

J.-S. Yao, J. Ge, B.-N. Han, K.-H. Wang, H.-B. Yao, H.-L. Yu, J.-H. Li, B.-S. Zhu, J.-Z. Song, C. Chen, Q. Zhang, H.-B. Zeng, Y. Luo, and S.-H. Yu, “Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes,” J. Am. Chem. Soc. 140(10), 3626–3634 (2018).
[Crossref] [PubMed]

Zhang, S.

C. Chen, Y. Xu, S. Wu, S. Zhang, Z. Yang, W. Zhang, H. Zhu, Z. Xiong, W. Chen, and W. Chen, “CaI2: a more effective passivator of perovskite films than PbI2 for high efficiency and long-term stability of perovskite solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 6(17), 7903–7912 (2018).
[Crossref]

C. Tian, A. Mei, S. Zhang, H. Tian, S. Liu, F. Qin, Y. Xiong, Y. Rong, Y. Hu, Y. Zhou, S. Xie, and H. Han, “Oxygen management in carbon electrode for high-performance printable perovskite solar cells,” Nano Energy 53, 160–167 (2018).
[Crossref]

Zhang, W.

C. Chen, Y. Xu, S. Wu, S. Zhang, Z. Yang, W. Zhang, H. Zhu, Z. Xiong, W. Chen, and W. Chen, “CaI2: a more effective passivator of perovskite films than PbI2 for high efficiency and long-term stability of perovskite solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 6(17), 7903–7912 (2018).
[Crossref]

Zhang, Y.

H. Zhang, M. Shang, X. Zheng, Z. Zeng, R. Chen, Y. Zhang, J. Zhang, and Y. Zhu, “Ba2+ doped CH3NH3PbI3 to tune the energy state and improve the performance of perovskite solar cells,” Electrochim. Acta 254, 165–171 (2017).
[Crossref]

Zhang, Z.

Y. Hu, Z. Zhang, A. Mei, Y. Jiang, X. Hou, Q. Wang, K. Du, Y. Rong, Y. Zhou, G. Xu, and H. Han, “Improved performance of printable perovskite solar cells with bifunctional conjugated organic molecule,” Adv. Mater. 30(11), 1705786 (2018).
[Crossref] [PubMed]

Zhao, L.

J. Hu, Y. Qiao, Y. Yang, L. Zhao, W. Liu, S. Li, P. Liu, and M. Chen, “Enhanced performance of hole-conductor-free perovskite solar cells by utilization of core/shell-structured β-NaYF4:Yb3+,Er3+@SiO2 nanoparticles in ambient air,” IEEE J. Photovolt. 8(1), 132–136 (2018).
[Crossref]

J. H. Hu, W. H. Liu, Y. P. Yang, L. Zhao, Y. Qiao, S. H. Li, P. H. Liu, and M. W. Chen, “TiO2 nanotube/TiO2 nanoparticle hybrid photoanode for hole-conductor-free perovskite solar cells based on carbon counter electrodes,” Opt. Mater. Express 7(9), 3322–3331 (2017).
[Crossref]

S. Li, J. Hu, Y. Yang, L. Zhao, Y. Qiao, W. Liu, P. Liu, and M. Chen, “Ag/nano-TiO2 composite compact film for enhanced performance of perovskite solar cells based on carbon counter electrodes,” Appl. Phys., A Mater. Sci. Process. 123(10), 628 (2017).
[Crossref]

J. Hu, J. Cheng, S. Tong, L. Zhao, J. Duan, and Y. Yang, “Dye-sensitized solar cells based on P25 nanoparticles/TiO2 nanotube arrays/hollow TiO2 boxes three-layer composite film,” J. Mater. Sci. 27(5), 5362–5370 (2016).

Zhao, T.

Q. Chen, L. Chen, F. Ye, T. Zhao, F. Tang, A. Rajagopal, Z. Jiang, S. Jiang, A. K.-Y. Jen, Y. Xie, J. Cai, and L. Chen, “Ag-incorporated organic–inorganic perovskite films and planar heterojunction solar cells,” Nano Lett. 17(5), 3231–3237 (2017).
[Crossref] [PubMed]

Zhao, W.

W. Zhao, D. Yang, Z. Yang, and S. Liu, “Zn-doping for reduced hysteresis and improved performance of methylammonium lead iodide perovskite hybrid solar cells,” Mater. Today Energy 5, 205–213 (2017).
[Crossref]

Zhao, Y.

G. Tong, Z. Song, C. Li, Y. Zhao, L. Yu, J. Xu, Y. Jiang, Y. Sheng, Y. Shi, and K. Chen, “Cadmium-doped flexible perovskite solar cells with a low-cost and low-temperature-processed CdS electron transport layer,” RSC Advances 7(32), 19457–19463 (2017).
[Crossref]

Zheng, X.

H. Zhang, M. Shang, X. Zheng, Z. Zeng, R. Chen, Y. Zhang, J. Zhang, and Y. Zhu, “Ba2+ doped CH3NH3PbI3 to tune the energy state and improve the performance of perovskite solar cells,” Electrochim. Acta 254, 165–171 (2017).
[Crossref]

Zhou, L.

L. Zhou, J. Chang, Z. Lin, C. Zhang, D. Chen, J. Zhang, and Y. Hao, “Investigation of Fe2+-incorporating organic–inorganic hybrid perovskites from first principles and experiments,” RSC Advances 7(86), 54586–54593 (2017).
[Crossref]

Zhou, Y.

Y. Hu, Z. Zhang, A. Mei, Y. Jiang, X. Hou, Q. Wang, K. Du, Y. Rong, Y. Zhou, G. Xu, and H. Han, “Improved performance of printable perovskite solar cells with bifunctional conjugated organic molecule,” Adv. Mater. 30(11), 1705786 (2018).
[Crossref] [PubMed]

C. Tian, A. Mei, S. Zhang, H. Tian, S. Liu, F. Qin, Y. Xiong, Y. Rong, Y. Hu, Y. Zhou, S. Xie, and H. Han, “Oxygen management in carbon electrode for high-performance printable perovskite solar cells,” Nano Energy 53, 160–167 (2018).
[Crossref]

L. Xu, Y. Xiong, A. Mei, Y. Hu, Y. Rong, Y. Zhou, B. Hu, and H. Han, “Efficient perovskite photovoltaic-thermoelectric hybrid device,” Adv. Energy Mater. 8(13), 1702937 (2018).
[Crossref]

F. P. Zhu, Z. J. Yong, B. M. Liu, Y. M. Chen, Y. Zhou, J. P. Ma, H. T. Sun, and Y. Z. Fang, “Superbroad near-infrared photoluminescence from bismuth-doped CsPbI3 perovskite nanocrystals,” Opt. Express 25(26), 33283–33289 (2017).
[Crossref]

Zhu, B.-S.

J.-S. Yao, J. Ge, B.-N. Han, K.-H. Wang, H.-B. Yao, H.-L. Yu, J.-H. Li, B.-S. Zhu, J.-Z. Song, C. Chen, Q. Zhang, H.-B. Zeng, Y. Luo, and S.-H. Yu, “Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes,” J. Am. Chem. Soc. 140(10), 3626–3634 (2018).
[Crossref] [PubMed]

Zhu, F. P.

Zhu, H.

C. Chen, Y. Xu, S. Wu, S. Zhang, Z. Yang, W. Zhang, H. Zhu, Z. Xiong, W. Chen, and W. Chen, “CaI2: a more effective passivator of perovskite films than PbI2 for high efficiency and long-term stability of perovskite solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 6(17), 7903–7912 (2018).
[Crossref]

Zhu, X.

S. Li, X. Zhu, B. Wang, Y. Qiao, W. Liu, H. Yang, N. Liu, M. Chen, H. Lu, and Y. Yang, “Influence of Ag nanoparticles with different sizes and concentrations embedded in a TiO2 compact layer on the conversion efficiency of perovskite solar cells,” Nanoscale Res. Lett. 13(1), 210 (2018).
[Crossref] [PubMed]

Zhu, Y.

R. Chen, D. Hou, C. Lu, J. Zhang, P. Liu, H. Tian, Z. Zeng, Q. Xiong, Z. Hu, Y. Zhu, and L. Han, “Zinc ion as effective film morphology controller in perovskite solar cells,” Sust. Energy Fuels 2(5), 1093–1100 (2018).
[Crossref]

H. Zhang, M. Shang, X. Zheng, Z. Zeng, R. Chen, Y. Zhang, J. Zhang, and Y. Zhu, “Ba2+ doped CH3NH3PbI3 to tune the energy state and improve the performance of perovskite solar cells,” Electrochim. Acta 254, 165–171 (2017).
[Crossref]

J. Zhang, M. Shang, P. Wang, X. Huang, J. Xu, Z. Hu, Y. Zhu, and L. Han, “N-type doping and energy states tuning in CH3NH3Pb1–xSb2x/3I3 perovskite solar cells,” ACS Energy Lett. 1(3), 535–541 (2016).
[Crossref]

Acc. Chem. Res. (1)

J.-W. Lee, H.-S. Kim, and N.-G. Park, “Lewis acid–base adduct approach for high efficiency perovskite solar cells,” Acc. Chem. Res. 49(2), 311–319 (2016).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

A. M. Elseman, A. E. Shalan, S. Sajid, M. M. Rashad, A. M. Hassan, and M. Li, “Copper-substituted lead perovskite materials constructed with different halides for working (CH3NH3)2CuX4-based perovskite solar cells from experimental and theoretical view,” ACS Appl. Mater. Interfaces 10(14), 11699–11707 (2018).
[Crossref] [PubMed]

ACS Energy Lett. (2)

D. Bai, J. Zhang, Z. Jin, H. Bian, K. Wang, H. Wang, L. Liang, Q. Wang, and S. Liu, “Interstitial Mn2+-driven high-aspect-ratio grain growth for low-trap-density microcrystalline films for record efficiency inorganic CsPbI2Br solar cells,” ACS Energy Lett. 3(4), 970–978 (2018).
[Crossref]

J. Zhang, M. Shang, P. Wang, X. Huang, J. Xu, Z. Hu, Y. Zhu, and L. Han, “N-type doping and energy states tuning in CH3NH3Pb1–xSb2x/3I3 perovskite solar cells,” ACS Energy Lett. 1(3), 535–541 (2016).
[Crossref]

Adv. Energy Mater. (1)

L. Xu, Y. Xiong, A. Mei, Y. Hu, Y. Rong, Y. Zhou, B. Hu, and H. Han, “Efficient perovskite photovoltaic-thermoelectric hybrid device,” Adv. Energy Mater. 8(13), 1702937 (2018).
[Crossref]

Adv. Mater. (5)

Z.-K. Wang, M. Li, Y.-G. Yang, Y. Hu, H. Ma, X.-Y. Gao, and L.-S. Liao, “High efficiency Pb-In binary metal perovskite solar cells,” Adv. Mater. 28(31), 6695–6703 (2016).
[Crossref] [PubMed]

Y. Hu, Z. Zhang, A. Mei, Y. Jiang, X. Hou, Q. Wang, K. Du, Y. Rong, Y. Zhou, G. Xu, and H. Han, “Improved performance of printable perovskite solar cells with bifunctional conjugated organic molecule,” Adv. Mater. 30(11), 1705786 (2018).
[Crossref] [PubMed]

H. Chen and S. Yang, “Carbon-based perovskite solar cells without hole transport materials: the front runner to the market?” Adv. Mater. 29(24), 1603994 (2017).
[Crossref] [PubMed]

C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High charge carrier mobilities and lifetimes in organolead trihalide perovskites,” Adv. Mater. 26(10), 1584–1589 (2014).
[Crossref] [PubMed]

M. H. Kumar, S. Dharani, W. L. Leong, P. P. Boix, R. R. Prabhakar, T. Baikie, C. Shi, H. Ding, R. Ramesh, M. Asta, M. Graetzel, S. G. Mhaisalkar, and N. Mathews, “Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation,” Adv. Mater. 26(41), 7122–7127 (2014).
[Crossref] [PubMed]

Appl. Phys., A Mater. Sci. Process. (1)

S. Li, J. Hu, Y. Yang, L. Zhao, Y. Qiao, W. Liu, P. Liu, and M. Chen, “Ag/nano-TiO2 composite compact film for enhanced performance of perovskite solar cells based on carbon counter electrodes,” Appl. Phys., A Mater. Sci. Process. 123(10), 628 (2017).
[Crossref]

Appl. Surf. Sci. (1)

M.-C. Wu, W.-C. Chen, S.-H. Chan, and W.-F. Su, “The effect of strontium and barium doping on perovskite-structured energy materials for photovoltaic applications,” Appl. Surf. Sci. 429, 9–15 (2018).
[Crossref]

Chem. Lett. (1)

A. Kojima, M. Ikegami, K. Teshima, and T. Miyasaka, “Highly luminescent lead bromide perovskite nanoparticles synthesized with porous alumina media,” Chem. Lett. 41(4), 397–399 (2012).
[Crossref]

Electrochim. Acta (1)

H. Zhang, M. Shang, X. Zheng, Z. Zeng, R. Chen, Y. Zhang, J. Zhang, and Y. Zhu, “Ba2+ doped CH3NH3PbI3 to tune the energy state and improve the performance of perovskite solar cells,” Electrochim. Acta 254, 165–171 (2017).
[Crossref]

Energy Environ. Sci. (5)

G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells,” Energy Environ. Sci. 7(3), 982–988 (2014).
[Crossref]

C. Wehrenfennig, M. Liu, H. J. Snaith, M. B. Johnston, and L. M. Herz, “Charge-carrier dynamics in vapour-deposited films of the organolead halide perovskite CH3NH3PbI3−xClx,” Energy Environ. Sci. 7(7), 2269–2275 (2014).
[Crossref]

N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A. A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz, and H. J. Snaith, “Lead-free organic-inorganic tin halide perovskites for photovoltaic applications,” Energy Environ. Sci. 7(9), 3061–3068 (2014).
[Crossref]

J.-P. Correa-Baena, A. Abate, M. Saliba, W. Tress, T. Jesper Jacobsson, M. Grätzel, and A. Hagfeldt, “The rapid evolution of highly efficient perovskite solar cells,” Energy Environ. Sci. 10(3), 710–727 (2017).
[Crossref]

M. T. Klug, A. Osherov, A. A. Haghighirad, S. D. Stranks, P. R. Brown, S. Bai, J. T.-W. Wang, X. Dang, V. Bulovic, H. J. Snaith, and A. M. Belcher, “Tailoring metal halide perovskites through metal substitution: influence on photovoltaic and material properties,” Energy Environ. Sci. 10(1), 236–246 (2017).
[Crossref]

IEEE J. Photovolt. (1)

J. Hu, Y. Qiao, Y. Yang, L. Zhao, W. Liu, S. Li, P. Liu, and M. Chen, “Enhanced performance of hole-conductor-free perovskite solar cells by utilization of core/shell-structured β-NaYF4:Yb3+,Er3+@SiO2 nanoparticles in ambient air,” IEEE J. Photovolt. 8(1), 132–136 (2018).
[Crossref]

Inorg. Chem. (1)

J. L. Knutson, J. D. Martin, and D. B. Mitzi, “Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating,” Inorg. Chem. 44(13), 4699–4705 (2005).
[Crossref] [PubMed]

Inorg. Chem. Front. (1)

H. Zhang, R. Li, M. Zhang, and M. Guo, “The effect of SrI2 substitution on perovskite film formation and its photovoltaic properties via two different deposition methods,” Inorg. Chem. Front. 5(6), 1354–1364 (2018).
[Crossref]

J. Am. Chem. Soc. (3)

J.-S. Yao, J. Ge, B.-N. Han, K.-H. Wang, H.-B. Yao, H.-L. Yu, J.-H. Li, B.-S. Zhu, J.-Z. Song, C. Chen, Q. Zhang, H.-B. Zeng, Y. Luo, and S.-H. Yu, “Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes,” J. Am. Chem. Soc. 140(10), 3626–3634 (2018).
[Crossref] [PubMed]

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[Crossref] [PubMed]

N. Ahn, D.-Y. Son, I.-H. Jang, S. M. Kang, M. Choi, and N.-G. Park, “Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide,” J. Am. Chem. Soc. 137(27), 8696–8699 (2015).
[Crossref] [PubMed]

J. Mater. Chem. A Mater. Energy Sustain. (4)

M. Acik and S. B. Darling, “Graphene in perovskite solar cells: device design, characterization and implementation,” J. Mater. Chem. A Mater. Energy Sustain. 4(17), 6185–6235 (2016).
[Crossref]

C.-M. Tsai, G.-W. Wu, S. Narra, H.-M. Chang, N. Mohanta, H.-P. Wu, C.-L. Wang, and E. W.-G. Diau, “Control of preferred orientation with slow crystallization for carbon-based mesoscopic perovskite solar cells attaining efficiency 15%,” J. Mater. Chem. A Mater. Energy Sustain. 5(2), 739–747 (2017).
[Crossref]

S.-H. Chan, M.-C. Wu, K.-M. Lee, W.-C. Chen, T.-H. Lin, and W.-F. Su, “Enhancing perovskite solar cell performance and stability by doping barium in methylammonium lead halide,” J. Mater. Chem. A Mater. Energy Sustain. 5(34), 18044–18052 (2017).
[Crossref]

C. Chen, Y. Xu, S. Wu, S. Zhang, Z. Yang, W. Zhang, H. Zhu, Z. Xiong, W. Chen, and W. Chen, “CaI2: a more effective passivator of perovskite films than PbI2 for high efficiency and long-term stability of perovskite solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 6(17), 7903–7912 (2018).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

Z. Xu, X. Yin, Y. Guo, Y. Pu, and M. He, “Ru-Doping in TiO2 electron transport layers of planar heterojunction perovskite solar cells for enhanced performance,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(17), 4746–4752 (2018).
[Crossref]

J. Mater. Sci. (1)

J. Hu, J. Cheng, S. Tong, L. Zhao, J. Duan, and Y. Yang, “Dye-sensitized solar cells based on P25 nanoparticles/TiO2 nanotube arrays/hollow TiO2 boxes three-layer composite film,” J. Mater. Sci. 27(5), 5362–5370 (2016).

J. Phys. Chem. C (1)

T. M. Koh, K. Fu, Y. Fang, S. Chen, T. C. Sum, N. Mathews, S. G. Mhaisalkar, P. P. Boix, and T. Baikie, “Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells,” J. Phys. Chem. C 118(30), 16458–16462 (2014).
[Crossref]

J. Phys. Chem. Lett. (3)

Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, N. Fujikawa, Q. Shen, T. Toyoda, K. Yoshino, S. S. Pandey, T. Ma, and S. Hayase, “CH3NH3SnxPb(1-x)I3 Perovskite Solar Cells Covering up to 1060 nm,” J. Phys. Chem. Lett. 5(6), 1004–1011 (2014).
[Crossref] [PubMed]

A. L. Abdelhady, M. I. Saidaminov, B. Murali, V. Adinolfi, O. Voznyy, K. Katsiev, E. Alarousu, R. Comin, I. Dursun, L. Sinatra, E. H. Sargent, O. F. Mohammed, and O. M. Bakr, “Heterovalent dopant incorporation for bandgap and type engineering of perovskite crystals,” J. Phys. Chem. Lett. 7(2), 295–301 (2016).
[Crossref] [PubMed]

L. A. Frolova, D. V. Anokhin, K. L. Gerasimov, N. N. Dremova, and P. A. Troshin, “Exploring the effects of the Pb2+ substitution in MAPbI3 on the photovoltaic performance of the hybrid perovskite solar cells,” J. Phys. Chem. Lett. 7(21), 4353–4357 (2016).
[Crossref] [PubMed]

Mater. Today Energy (1)

W. Zhao, D. Yang, Z. Yang, and S. Liu, “Zn-doping for reduced hysteresis and improved performance of methylammonium lead iodide perovskite hybrid solar cells,” Mater. Today Energy 5, 205–213 (2017).
[Crossref]

Nano Energy (2)

Z. Tang, S. Uchida, T. Bessho, T. Kinoshita, H. Wang, F. Awai, R. Jono, M. M. Maitani, J. Nakazaki, T. Kubo, and H. Segawa, “Modulations of various alkali metal cations on organometal halide perovskites and their influence on photovoltaic performance,” Nano Energy 45, 184–192 (2018).
[Crossref]

C. Tian, A. Mei, S. Zhang, H. Tian, S. Liu, F. Qin, Y. Xiong, Y. Rong, Y. Hu, Y. Zhou, S. Xie, and H. Han, “Oxygen management in carbon electrode for high-performance printable perovskite solar cells,” Nano Energy 53, 160–167 (2018).
[Crossref]

Nano Lett. (1)

Q. Chen, L. Chen, F. Ye, T. Zhao, F. Tang, A. Rajagopal, Z. Jiang, S. Jiang, A. K.-Y. Jen, Y. Xie, J. Cai, and L. Chen, “Ag-incorporated organic–inorganic perovskite films and planar heterojunction solar cells,” Nano Lett. 17(5), 3231–3237 (2017).
[Crossref] [PubMed]

Nano Res. (1)

W. Lu, R. Jiang, X. Yin, and L. Wang, “Porous N-doped-carbon coated CoSe2 anchored on carbon cloth as 3D photocathode for dye-sensitized solar cell with efficiency and stability outperforming Pt,” Nano Res. 12(1), 159–163 (2018).

Nanomaterials (Basel) (1)

Y. Qiao, S. Li, W. Liu, M. Ran, H. Lu, and Y. Yang, “Recent advances of rare-earth ion doped luminescent nanomaterials in perovskite solar cells,” Nanomaterials (Basel) 8(1), 43 (2018).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

S. Li, X. Zhu, B. Wang, Y. Qiao, W. Liu, H. Yang, N. Liu, M. Chen, H. Lu, and Y. Yang, “Influence of Ag nanoparticles with different sizes and concentrations embedded in a TiO2 compact layer on the conversion efficiency of perovskite solar cells,” Nanoscale Res. Lett. 13(1), 210 (2018).
[Crossref] [PubMed]

Nat. Energy (2)

D.-Y. Son, J.-W. Lee, Y. J. Choi, I.-H. Jang, S. Lee, P. J. Yoo, H. Shin, N. Ahn, M. Choi, D. Kim, and N.-G. Park, “Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells,” Nat. Energy 1(7), 16081 (2016).
[Crossref]

N. J. Jeon, H. Na, E. H. Jung, T.-Y. Yang, Y. G. Lee, G. Kim, H.-W. Shin, S. Il Seok, J. Lee, and J. Seo, “A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells,” Nat. Energy 3(8), 682–689 (2018).
[Crossref]

Opt. Express (2)

T. Handa, D. M. Tex, A. Shimazaki, T. Aharen, A. Wakamiya, and Y. Kanemitsu, “Optical characterization of voltage-accelerated degradation in CH3NH3PbI3 perovskite solar cells,” Opt. Express 24(10), 917–924 (2016).
[Crossref] [PubMed]

F. P. Zhu, Z. J. Yong, B. M. Liu, Y. M. Chen, Y. Zhou, J. P. Ma, H. T. Sun, and Y. Z. Fang, “Superbroad near-infrared photoluminescence from bismuth-doped CsPbI3 perovskite nanocrystals,” Opt. Express 25(26), 33283–33289 (2017).
[Crossref]

Opt. Mater. Express (1)

RSC Advances (2)

G. Tong, Z. Song, C. Li, Y. Zhao, L. Yu, J. Xu, Y. Jiang, Y. Sheng, Y. Shi, and K. Chen, “Cadmium-doped flexible perovskite solar cells with a low-cost and low-temperature-processed CdS electron transport layer,” RSC Advances 7(32), 19457–19463 (2017).
[Crossref]

L. Zhou, J. Chang, Z. Lin, C. Zhang, D. Chen, J. Zhang, and Y. Hao, “Investigation of Fe2+-incorporating organic–inorganic hybrid perovskites from first principles and experiments,” RSC Advances 7(86), 54586–54593 (2017).
[Crossref]

Sci. China Mater. (1)

F. Dong, Y. Guo, P. Xu, X. Yin, Y. Li, and M. He, “Hydrothermal growth of MoS2/Co3S4 composites as efficient Pt-free counter electrodes for dye-sensitized solar cells,” Sci. China Mater. 60(4), 295–303 (2017).
[Crossref]

Sci. Rep. (1)

Z. Ku, Y. Rong, M. Xu, T. Liu, and H. Han, “Full printable processed mesoscopic CH₃NH₃PbI₃/TiO₂ heterojunction solar cells with carbon counter electrode,” Sci. Rep. 3(1), 3132 (2013).
[Crossref] [PubMed]

Science (2)

Y. Rong, Y. Hu, A. Mei, H. Tan, M. I. Saidaminov, S. I. Seok, M. D. McGehee, E. H. Sargent, and H. Han, “Challenges for commercializing perovskite solar cells,” Science 361(6408), 8235 (2018).
[Crossref] [PubMed]

D. B. Mitzi, S. Wang, C. A. Feild, C. A. Chess, and A. M. Guloy, “Conducting layered organic-inorganic halides containing <110>-oriented perovskite sheets,” Science 267(5203), 1473–1476 (1995).
[Crossref] [PubMed]

Sust. Energy Fuels (1)

R. Chen, D. Hou, C. Lu, J. Zhang, P. Liu, H. Tian, Z. Zeng, Q. Xiong, Z. Hu, Y. Zhu, and L. Han, “Zinc ion as effective film morphology controller in perovskite solar cells,” Sust. Energy Fuels 2(5), 1093–1100 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic structure of the fabricated perovskite solar cells and (b) cross-sectional SEM image of the PSC.
Fig. 2
Fig. 2 SEM images of perovskite films with different Zn doping concentrations.
Fig. 3
Fig. 3 (a) XRD patterns of perovskite films with different Zn doping concentrations and (b) detailed view of the (110) diffraction peak ranging from 13.75° to 14.75°.
Fig. 4
Fig. 4 (a) XPS spectra of perovskite films with and without Zn doping, and XPS core level spectra of (b) Zn 2p, (c) I 3d, and (d) Pb 4f.
Fig. 5
Fig. 5 (a) UV-vis absorption spectra of perovskite films with different Zn doping concentrations and (b) steady-state PL spectra of perovskite films with different Zn doping concentrations on glass substrates.
Fig. 6
Fig. 6 (a) J-V characteristics of PSCs with different Zn doping concentrations, (b) the J-V curves under forward and reverse scan, based on 1 mol% Zn doping and the pristine PSCs, and (c) ten sets of photovoltaic parameters based on 1 mol% Zn doping and the pristine PSCs.
Fig. 7
Fig. 7 EQE spectra and the corresponding integrated currents based on 1 mol% Zn doping and the pristine PSCs.

Tables (2)

Tables Icon

Table 1 Relevant information of the representative diffraction peak at the (110) facet.

Tables Icon

Table 2 Relevant photovoltaic parameters corresponding to Fig. 6(a)a.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

t = r A + r X 2 ( r B + r X ) , μ = r B r X
2 d sin θ = n λ
τ = K λ β cos θ

Metrics