Abstract

The high-resolution microwave (MW) spectroscopy is employed to measure the rotational structures of ultracold 85Rb133Cs molecules prepared in the X1Σ+ (v = 0) ground state. These ground-state molecules are created using short-range photoassociation (PA) followed by the spontaneous emission. Using a combination of continuous-wave (CW) depletion spectroscopy and photoionization (PI) technique, we obtain the MW spectroscopy by coupling the neighboring rotational levels of ground-state molecules. Based on the frequency spacing obtained from the MW spectroscopy, the rotational constant of X1Σ+ (v = 0) can be accurately determined with the rigid rotor model. The precision of the measurement by MW spectroscopy is found to be 3 orders of magnitude higher than the CW depletion spectroscopy. Our scheme provides a simple and highly accurate method for the measurement of molecular structure.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photoassociative spectroscopy of ultracold argon and krypton

M. K. Omar, W. D. Williams, and C. I. Sukenik
J. Opt. Soc. Am. B 33(11) 2302-2307 (2016)

Luminorefrigeration: vibrational cooling of NaCs

A. Wakim, P. Zabawa, M. Haruza, and N. P. Bigelow
Opt. Express 20(14) 16083-16091 (2012)

References

  • View by:
  • |
  • |
  • |

  1. T. Zelevinsky, S. Kotochigova, and J. Ye, “Precision test of mass-ratio variations with lattice-confined ultracold molecules,” Phys. Rev. Lett. 100(4), 043201 (2008).
    [Crossref] [PubMed]
  2. S. Schiller, “Hydrogenlike highly charged ions for tests of the time independence of fundamental constants,” Phys. Rev. Lett. 98(18), 180801 (2007).
    [Crossref] [PubMed]
  3. D. DeMille, S. B. Cahn, D. Murphree, D. A. Rahmlow, and M. G. Kozlov, “Using molecules to measure nuclear spin-dependent parity violation,” Phys. Rev. Lett. 100(2), 023003 (2008).
    [Crossref] [PubMed]
  4. J. Rui, H. Yang, L. Liu, D. Zhang, Y. Liu, J. Nan, Y. Chen, B. Zhao, and J. Pan, “Controlled state-to-state atom-exchange reaction in an ultracold atom–dimer mixture,” Nat. Phys. 13(7), 699–703 (2017).
    [Crossref]
  5. S. Ospelkaus, K.-K. Ni, D. Wang, M. H. G. de Miranda, B. Neyenhuis, G. Quéméner, P. S. Julienne, J. L. Bohn, D. S. Jin, and J. Ye, “Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules,” Science 327(5967), 853–857 (2010).
    [Crossref] [PubMed]
  6. D. DeMille, “Quantum computation with trapped polar molecules,” Phys. Rev. Lett. 88(6), 067901 (2002).
    [Crossref] [PubMed]
  7. C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, “Feshbach resonances in ultracold gases,” Rev. Mod. Phys. 82(2), 1225–1286 (2010).
    [Crossref]
  8. J. Ulmanis, J. Deiglmayr, M. Repp, R. Wester, and M. Weidemüller, “Ultracold molecules formed by photoassociation: heteronuclear dimers, inelastic collisions, and interactions with ultrashort laser pulses,” Chem. Rev. 112(9), 4890–4927 (2012).
    [Crossref] [PubMed]
  9. C. R. Menegatti, B. S. Marangoni, N. Bouloufa-Maafa, O. Dulieu, and L. G. Marcassa, “Trap loss in a rubidium crossed dipole trap by short-range photoassociation,” Phys. Rev. A 87(5), 053404 (2013).
    [Crossref]
  10. M. A. Bellos, D. Rahmlow, R. Carollo, J. Banerjee, O. Dulieu, A. Gerdes, E. E. Eyler, P. L. Gould, and W. C. Stwalley, “Formation of ultracold Rb2 molecules in the v′' = 0 level of the a3Σ+u state via blue-detuned photoassociation to the 13Πg state,” Phys. Chem. Chem. Phys. 13(42), 18880–18886 (2011).
    [Crossref] [PubMed]
  11. J. Deiglmayr, A. Grochola, M. Repp, K. Mörtlbauer, C. Glück, J. Lange, O. Dulieu, R. Wester, and M. Weidemüller, “Formation of ultracold polar molecules in the rovibrational ground state,” Phys. Rev. Lett. 101(13), 133004 (2008).
    [Crossref] [PubMed]
  12. J. Banerjee, D. Rahmlow, R. Carollo, M. Bellos, E. E. Eyler, P. L. Gould, and W. C. Stwalley, “Direct photoassociative formation of ultracold KRb molecules in the lowest vibrational levels of the electronic ground state,” Phys. Rev. A 86(5), 053428 (2012).
    [Crossref]
  13. P. Zabawa, A. Wakim, M. Haruza, and N. P. Bigelow, “Formation of ultracold X1Σ+ (v” = 0) NaCs molecules via coupled photoassociation channels,” Phys. Rev. A 84(6), 061401 (2011).
    [Crossref]
  14. C. Gabbanini and O. Dulieu, “Formation of ultracold metastable RbCs molecules by short-range photoassociation,” Phys. Chem. Chem. Phys. 13(42), 18905–18909 (2011).
    [Crossref] [PubMed]
  15. N. Bouloufa-Maafa, M. Aymar, O. Dulieu, and C. Gabbanini, “Formation of ultracold RbCs molecules by photoassociation,” Laser Phys. 22(10), 1502–1512 (2012).
    [Crossref]
  16. Z. Ji, H. Zhang, J. Wu, J. Yuan, Y. Yang, Y. Zhao, J. Ma, L. Wang, L. Xiao, and S. Jia, “Photoassociative formation of ultracold RbCs molecules in the (2)3Π state,” Phys. Rev. A 85(1), 013401 (2012).
    [Crossref]
  17. A. Fioretti and C. Gabbanini, “Experimental study of the formation of ultracold RbCs molecules by short-range photoassociation,” Phys. Rev. A 87(5), 054701 (2013).
    [Crossref]
  18. C. D. Bruzewicz, M. Gustavsson, T. Shimasaki, and D. DeMille, “Continuous formation of vibronic ground state RbCs molecules via photoassociation,” New J. Phys. 16(2), 023018 (2014).
    [Crossref]
  19. D. B. Blasing, I. C. Stevenson, J. Pérez-Ríos, D. S. Elliott, and Y. P. Chen, “Short-range photoassociation of LiRb,” Phys. Rev. A 94(6), 062504 (2016).
    [Crossref]
  20. D. Wang, J. T. Kim, C. Ashbaugh, E. E. Eyler, P. L. Gould, and W. C. Stwalley, “Rotationally resolved depletion spectroscopy of ultracold KRb molecules,” Phys. Rev. A 75(3), 032511 (2007).
    [Crossref]
  21. K. Aikawa, D. Akamatsu, J. Kobayashi, M. Ueda, T. Kishimoto, and S. Inouye, “Toward the production of quantum degenerate bosonic polar molecules, 41K87Rb,” New J. Phys. 11(5), 055035 (2009).
    [Crossref]
  22. T. Shimasaki, M. Bellos, C. D. Bruzewicz, Z. Lasner, and D. DeMille, “Production of rovibronic-ground-state RbCs molecules via two-photon-cascade decay,” Phys. Rev. A 91(2), 021401 (2015).
    [Crossref]
  23. I. C. Stevenson, D. B. Blasing, Y. P. Chen, and D. S. Elliott, “Production of ultracold ground-state LiRb molecules by photoassociation through a resonantly coupled state,” Phys. Rev. A 94(6), 062510 (2016).
    [Crossref]
  24. Z. Ji, Z. Li, T. Gong, Y. Zhao, L. Xiao, and S. Jia, “Rotational population measurement of ultracold 85Rb 133Cs molecules in the lowest vibrational ground state,” Chin. Phys. Lett. 34(10), 103301 (2017).
    [Crossref]
  25. J. Yuan, Y. Zhao, Z. Ji, Z. Li, J. T. Kim, L. Xiao, and S. Jia, “The determination of potential energy curve and dipole moment of the (5)0+ electronic state of 85Rb133Cs molecule by high resolution photoassociation spectroscopy,” J. Chem. Phys. 143(22), 224312 (2015).
    [Crossref] [PubMed]
  26. W. Ketterle, K. B. Davis, M. A. Joffe, A. Martin, and D. E. Pritchard, “High densities of cold atoms in a dark spontaneous-force optical trap,” Phys. Rev. Lett. 70(15), 2253–2256 (1993).
    [Crossref] [PubMed]
  27. A. R. Allouche, M. Korek, K. Fakherddin, A. Chaalan, M. Dagher, F. Taher, and M. Aubert-Frécon, “Theoretical electronic structure of RbCs revisited,” J. Phys. At. Mol. Opt. Phys. 33(12), 2307–2316 (2000).
    [Crossref]
  28. H. Fahs, A. R. Allouche, M. Korek, and M. Aubert-Frécon, “The theoretical spin–orbit structure of the RbCs molecule,” J. Phys. At. Mol. Opt. Phys. 35(6), 1501–1508 (2002).
    [Crossref]
  29. Z. Ji, J. Yuan, Y. Yang, Y. Zhao, L. Xiao, and S. Jia, “Photoionization spectrum of 85RbCs molecules produced by short range photoassociation,” J. Quant. Spectrosc. Radiat. Transf. 166, 36–41 (2015).
    [Crossref]
  30. Y. Lee, Y. Yoon, S. Lee, J. T. Kim, and B. Kim, “Parallel and coupled perpendicular transitions of RbCs 640 nm system: Mass-resolved resonance enhanced two-photon ionization in a cold molecular beam,” J. Phys. Chem. A 112(31), 7214–7221 (2008).
    [Crossref] [PubMed]
  31. J. Aldegunde, B. A. Rivington, P. S. Żuchowski, and J. M. Hutson, “Hyperfine energy levels of alkali-metal dimers: Ground-state polar molecules in electric and magnetic fields,” Phys. Rev. A 78(3), 033434 (2008).
    [Crossref]
  32. M. Lysebo and L. Veseth, “Cold collisions between atoms and diatomic molecules,” Phys. Rev. A 77(3), 032721 (2008).
    [Crossref]
  33. C. E. Fellows, R. F. Gutterres, A. P. Campos, J. Vergès, and C. Amiot, “The RbCs X1Σ+ ground electronic state: New spectroscopic study,” J. Mol. Spectrosc. 197(1), 19–27 (1999).
    [Crossref] [PubMed]

2017 (2)

J. Rui, H. Yang, L. Liu, D. Zhang, Y. Liu, J. Nan, Y. Chen, B. Zhao, and J. Pan, “Controlled state-to-state atom-exchange reaction in an ultracold atom–dimer mixture,” Nat. Phys. 13(7), 699–703 (2017).
[Crossref]

Z. Ji, Z. Li, T. Gong, Y. Zhao, L. Xiao, and S. Jia, “Rotational population measurement of ultracold 85Rb 133Cs molecules in the lowest vibrational ground state,” Chin. Phys. Lett. 34(10), 103301 (2017).
[Crossref]

2016 (2)

I. C. Stevenson, D. B. Blasing, Y. P. Chen, and D. S. Elliott, “Production of ultracold ground-state LiRb molecules by photoassociation through a resonantly coupled state,” Phys. Rev. A 94(6), 062510 (2016).
[Crossref]

D. B. Blasing, I. C. Stevenson, J. Pérez-Ríos, D. S. Elliott, and Y. P. Chen, “Short-range photoassociation of LiRb,” Phys. Rev. A 94(6), 062504 (2016).
[Crossref]

2015 (3)

T. Shimasaki, M. Bellos, C. D. Bruzewicz, Z. Lasner, and D. DeMille, “Production of rovibronic-ground-state RbCs molecules via two-photon-cascade decay,” Phys. Rev. A 91(2), 021401 (2015).
[Crossref]

J. Yuan, Y. Zhao, Z. Ji, Z. Li, J. T. Kim, L. Xiao, and S. Jia, “The determination of potential energy curve and dipole moment of the (5)0+ electronic state of 85Rb133Cs molecule by high resolution photoassociation spectroscopy,” J. Chem. Phys. 143(22), 224312 (2015).
[Crossref] [PubMed]

Z. Ji, J. Yuan, Y. Yang, Y. Zhao, L. Xiao, and S. Jia, “Photoionization spectrum of 85RbCs molecules produced by short range photoassociation,” J. Quant. Spectrosc. Radiat. Transf. 166, 36–41 (2015).
[Crossref]

2014 (1)

C. D. Bruzewicz, M. Gustavsson, T. Shimasaki, and D. DeMille, “Continuous formation of vibronic ground state RbCs molecules via photoassociation,” New J. Phys. 16(2), 023018 (2014).
[Crossref]

2013 (2)

A. Fioretti and C. Gabbanini, “Experimental study of the formation of ultracold RbCs molecules by short-range photoassociation,” Phys. Rev. A 87(5), 054701 (2013).
[Crossref]

C. R. Menegatti, B. S. Marangoni, N. Bouloufa-Maafa, O. Dulieu, and L. G. Marcassa, “Trap loss in a rubidium crossed dipole trap by short-range photoassociation,” Phys. Rev. A 87(5), 053404 (2013).
[Crossref]

2012 (4)

J. Ulmanis, J. Deiglmayr, M. Repp, R. Wester, and M. Weidemüller, “Ultracold molecules formed by photoassociation: heteronuclear dimers, inelastic collisions, and interactions with ultrashort laser pulses,” Chem. Rev. 112(9), 4890–4927 (2012).
[Crossref] [PubMed]

J. Banerjee, D. Rahmlow, R. Carollo, M. Bellos, E. E. Eyler, P. L. Gould, and W. C. Stwalley, “Direct photoassociative formation of ultracold KRb molecules in the lowest vibrational levels of the electronic ground state,” Phys. Rev. A 86(5), 053428 (2012).
[Crossref]

N. Bouloufa-Maafa, M. Aymar, O. Dulieu, and C. Gabbanini, “Formation of ultracold RbCs molecules by photoassociation,” Laser Phys. 22(10), 1502–1512 (2012).
[Crossref]

Z. Ji, H. Zhang, J. Wu, J. Yuan, Y. Yang, Y. Zhao, J. Ma, L. Wang, L. Xiao, and S. Jia, “Photoassociative formation of ultracold RbCs molecules in the (2)3Π state,” Phys. Rev. A 85(1), 013401 (2012).
[Crossref]

2011 (3)

P. Zabawa, A. Wakim, M. Haruza, and N. P. Bigelow, “Formation of ultracold X1Σ+ (v” = 0) NaCs molecules via coupled photoassociation channels,” Phys. Rev. A 84(6), 061401 (2011).
[Crossref]

C. Gabbanini and O. Dulieu, “Formation of ultracold metastable RbCs molecules by short-range photoassociation,” Phys. Chem. Chem. Phys. 13(42), 18905–18909 (2011).
[Crossref] [PubMed]

M. A. Bellos, D. Rahmlow, R. Carollo, J. Banerjee, O. Dulieu, A. Gerdes, E. E. Eyler, P. L. Gould, and W. C. Stwalley, “Formation of ultracold Rb2 molecules in the v′' = 0 level of the a3Σ+u state via blue-detuned photoassociation to the 13Πg state,” Phys. Chem. Chem. Phys. 13(42), 18880–18886 (2011).
[Crossref] [PubMed]

2010 (2)

C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, “Feshbach resonances in ultracold gases,” Rev. Mod. Phys. 82(2), 1225–1286 (2010).
[Crossref]

S. Ospelkaus, K.-K. Ni, D. Wang, M. H. G. de Miranda, B. Neyenhuis, G. Quéméner, P. S. Julienne, J. L. Bohn, D. S. Jin, and J. Ye, “Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules,” Science 327(5967), 853–857 (2010).
[Crossref] [PubMed]

2009 (1)

K. Aikawa, D. Akamatsu, J. Kobayashi, M. Ueda, T. Kishimoto, and S. Inouye, “Toward the production of quantum degenerate bosonic polar molecules, 41K87Rb,” New J. Phys. 11(5), 055035 (2009).
[Crossref]

2008 (6)

Y. Lee, Y. Yoon, S. Lee, J. T. Kim, and B. Kim, “Parallel and coupled perpendicular transitions of RbCs 640 nm system: Mass-resolved resonance enhanced two-photon ionization in a cold molecular beam,” J. Phys. Chem. A 112(31), 7214–7221 (2008).
[Crossref] [PubMed]

J. Aldegunde, B. A. Rivington, P. S. Żuchowski, and J. M. Hutson, “Hyperfine energy levels of alkali-metal dimers: Ground-state polar molecules in electric and magnetic fields,” Phys. Rev. A 78(3), 033434 (2008).
[Crossref]

M. Lysebo and L. Veseth, “Cold collisions between atoms and diatomic molecules,” Phys. Rev. A 77(3), 032721 (2008).
[Crossref]

T. Zelevinsky, S. Kotochigova, and J. Ye, “Precision test of mass-ratio variations with lattice-confined ultracold molecules,” Phys. Rev. Lett. 100(4), 043201 (2008).
[Crossref] [PubMed]

D. DeMille, S. B. Cahn, D. Murphree, D. A. Rahmlow, and M. G. Kozlov, “Using molecules to measure nuclear spin-dependent parity violation,” Phys. Rev. Lett. 100(2), 023003 (2008).
[Crossref] [PubMed]

J. Deiglmayr, A. Grochola, M. Repp, K. Mörtlbauer, C. Glück, J. Lange, O. Dulieu, R. Wester, and M. Weidemüller, “Formation of ultracold polar molecules in the rovibrational ground state,” Phys. Rev. Lett. 101(13), 133004 (2008).
[Crossref] [PubMed]

2007 (2)

S. Schiller, “Hydrogenlike highly charged ions for tests of the time independence of fundamental constants,” Phys. Rev. Lett. 98(18), 180801 (2007).
[Crossref] [PubMed]

D. Wang, J. T. Kim, C. Ashbaugh, E. E. Eyler, P. L. Gould, and W. C. Stwalley, “Rotationally resolved depletion spectroscopy of ultracold KRb molecules,” Phys. Rev. A 75(3), 032511 (2007).
[Crossref]

2002 (2)

D. DeMille, “Quantum computation with trapped polar molecules,” Phys. Rev. Lett. 88(6), 067901 (2002).
[Crossref] [PubMed]

H. Fahs, A. R. Allouche, M. Korek, and M. Aubert-Frécon, “The theoretical spin–orbit structure of the RbCs molecule,” J. Phys. At. Mol. Opt. Phys. 35(6), 1501–1508 (2002).
[Crossref]

2000 (1)

A. R. Allouche, M. Korek, K. Fakherddin, A. Chaalan, M. Dagher, F. Taher, and M. Aubert-Frécon, “Theoretical electronic structure of RbCs revisited,” J. Phys. At. Mol. Opt. Phys. 33(12), 2307–2316 (2000).
[Crossref]

1999 (1)

C. E. Fellows, R. F. Gutterres, A. P. Campos, J. Vergès, and C. Amiot, “The RbCs X1Σ+ ground electronic state: New spectroscopic study,” J. Mol. Spectrosc. 197(1), 19–27 (1999).
[Crossref] [PubMed]

1993 (1)

W. Ketterle, K. B. Davis, M. A. Joffe, A. Martin, and D. E. Pritchard, “High densities of cold atoms in a dark spontaneous-force optical trap,” Phys. Rev. Lett. 70(15), 2253–2256 (1993).
[Crossref] [PubMed]

Aikawa, K.

K. Aikawa, D. Akamatsu, J. Kobayashi, M. Ueda, T. Kishimoto, and S. Inouye, “Toward the production of quantum degenerate bosonic polar molecules, 41K87Rb,” New J. Phys. 11(5), 055035 (2009).
[Crossref]

Akamatsu, D.

K. Aikawa, D. Akamatsu, J. Kobayashi, M. Ueda, T. Kishimoto, and S. Inouye, “Toward the production of quantum degenerate bosonic polar molecules, 41K87Rb,” New J. Phys. 11(5), 055035 (2009).
[Crossref]

Aldegunde, J.

J. Aldegunde, B. A. Rivington, P. S. Żuchowski, and J. M. Hutson, “Hyperfine energy levels of alkali-metal dimers: Ground-state polar molecules in electric and magnetic fields,” Phys. Rev. A 78(3), 033434 (2008).
[Crossref]

Allouche, A. R.

H. Fahs, A. R. Allouche, M. Korek, and M. Aubert-Frécon, “The theoretical spin–orbit structure of the RbCs molecule,” J. Phys. At. Mol. Opt. Phys. 35(6), 1501–1508 (2002).
[Crossref]

A. R. Allouche, M. Korek, K. Fakherddin, A. Chaalan, M. Dagher, F. Taher, and M. Aubert-Frécon, “Theoretical electronic structure of RbCs revisited,” J. Phys. At. Mol. Opt. Phys. 33(12), 2307–2316 (2000).
[Crossref]

Amiot, C.

C. E. Fellows, R. F. Gutterres, A. P. Campos, J. Vergès, and C. Amiot, “The RbCs X1Σ+ ground electronic state: New spectroscopic study,” J. Mol. Spectrosc. 197(1), 19–27 (1999).
[Crossref] [PubMed]

Ashbaugh, C.

D. Wang, J. T. Kim, C. Ashbaugh, E. E. Eyler, P. L. Gould, and W. C. Stwalley, “Rotationally resolved depletion spectroscopy of ultracold KRb molecules,” Phys. Rev. A 75(3), 032511 (2007).
[Crossref]

Aubert-Frécon, M.

H. Fahs, A. R. Allouche, M. Korek, and M. Aubert-Frécon, “The theoretical spin–orbit structure of the RbCs molecule,” J. Phys. At. Mol. Opt. Phys. 35(6), 1501–1508 (2002).
[Crossref]

A. R. Allouche, M. Korek, K. Fakherddin, A. Chaalan, M. Dagher, F. Taher, and M. Aubert-Frécon, “Theoretical electronic structure of RbCs revisited,” J. Phys. At. Mol. Opt. Phys. 33(12), 2307–2316 (2000).
[Crossref]

Aymar, M.

N. Bouloufa-Maafa, M. Aymar, O. Dulieu, and C. Gabbanini, “Formation of ultracold RbCs molecules by photoassociation,” Laser Phys. 22(10), 1502–1512 (2012).
[Crossref]

Banerjee, J.

J. Banerjee, D. Rahmlow, R. Carollo, M. Bellos, E. E. Eyler, P. L. Gould, and W. C. Stwalley, “Direct photoassociative formation of ultracold KRb molecules in the lowest vibrational levels of the electronic ground state,” Phys. Rev. A 86(5), 053428 (2012).
[Crossref]

M. A. Bellos, D. Rahmlow, R. Carollo, J. Banerjee, O. Dulieu, A. Gerdes, E. E. Eyler, P. L. Gould, and W. C. Stwalley, “Formation of ultracold Rb2 molecules in the v′' = 0 level of the a3Σ+u state via blue-detuned photoassociation to the 13Πg state,” Phys. Chem. Chem. Phys. 13(42), 18880–18886 (2011).
[Crossref] [PubMed]

Bellos, M.

T. Shimasaki, M. Bellos, C. D. Bruzewicz, Z. Lasner, and D. DeMille, “Production of rovibronic-ground-state RbCs molecules via two-photon-cascade decay,” Phys. Rev. A 91(2), 021401 (2015).
[Crossref]

J. Banerjee, D. Rahmlow, R. Carollo, M. Bellos, E. E. Eyler, P. L. Gould, and W. C. Stwalley, “Direct photoassociative formation of ultracold KRb molecules in the lowest vibrational levels of the electronic ground state,” Phys. Rev. A 86(5), 053428 (2012).
[Crossref]

Bellos, M. A.

M. A. Bellos, D. Rahmlow, R. Carollo, J. Banerjee, O. Dulieu, A. Gerdes, E. E. Eyler, P. L. Gould, and W. C. Stwalley, “Formation of ultracold Rb2 molecules in the v′' = 0 level of the a3Σ+u state via blue-detuned photoassociation to the 13Πg state,” Phys. Chem. Chem. Phys. 13(42), 18880–18886 (2011).
[Crossref] [PubMed]

Bigelow, N. P.

P. Zabawa, A. Wakim, M. Haruza, and N. P. Bigelow, “Formation of ultracold X1Σ+ (v” = 0) NaCs molecules via coupled photoassociation channels,” Phys. Rev. A 84(6), 061401 (2011).
[Crossref]

Blasing, D. B.

I. C. Stevenson, D. B. Blasing, Y. P. Chen, and D. S. Elliott, “Production of ultracold ground-state LiRb molecules by photoassociation through a resonantly coupled state,” Phys. Rev. A 94(6), 062510 (2016).
[Crossref]

D. B. Blasing, I. C. Stevenson, J. Pérez-Ríos, D. S. Elliott, and Y. P. Chen, “Short-range photoassociation of LiRb,” Phys. Rev. A 94(6), 062504 (2016).
[Crossref]

Bohn, J. L.

S. Ospelkaus, K.-K. Ni, D. Wang, M. H. G. de Miranda, B. Neyenhuis, G. Quéméner, P. S. Julienne, J. L. Bohn, D. S. Jin, and J. Ye, “Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules,” Science 327(5967), 853–857 (2010).
[Crossref] [PubMed]

Bouloufa-Maafa, N.

C. R. Menegatti, B. S. Marangoni, N. Bouloufa-Maafa, O. Dulieu, and L. G. Marcassa, “Trap loss in a rubidium crossed dipole trap by short-range photoassociation,” Phys. Rev. A 87(5), 053404 (2013).
[Crossref]

N. Bouloufa-Maafa, M. Aymar, O. Dulieu, and C. Gabbanini, “Formation of ultracold RbCs molecules by photoassociation,” Laser Phys. 22(10), 1502–1512 (2012).
[Crossref]

Bruzewicz, C. D.

T. Shimasaki, M. Bellos, C. D. Bruzewicz, Z. Lasner, and D. DeMille, “Production of rovibronic-ground-state RbCs molecules via two-photon-cascade decay,” Phys. Rev. A 91(2), 021401 (2015).
[Crossref]

C. D. Bruzewicz, M. Gustavsson, T. Shimasaki, and D. DeMille, “Continuous formation of vibronic ground state RbCs molecules via photoassociation,” New J. Phys. 16(2), 023018 (2014).
[Crossref]

Cahn, S. B.

D. DeMille, S. B. Cahn, D. Murphree, D. A. Rahmlow, and M. G. Kozlov, “Using molecules to measure nuclear spin-dependent parity violation,” Phys. Rev. Lett. 100(2), 023003 (2008).
[Crossref] [PubMed]

Campos, A. P.

C. E. Fellows, R. F. Gutterres, A. P. Campos, J. Vergès, and C. Amiot, “The RbCs X1Σ+ ground electronic state: New spectroscopic study,” J. Mol. Spectrosc. 197(1), 19–27 (1999).
[Crossref] [PubMed]

Carollo, R.

J. Banerjee, D. Rahmlow, R. Carollo, M. Bellos, E. E. Eyler, P. L. Gould, and W. C. Stwalley, “Direct photoassociative formation of ultracold KRb molecules in the lowest vibrational levels of the electronic ground state,” Phys. Rev. A 86(5), 053428 (2012).
[Crossref]

M. A. Bellos, D. Rahmlow, R. Carollo, J. Banerjee, O. Dulieu, A. Gerdes, E. E. Eyler, P. L. Gould, and W. C. Stwalley, “Formation of ultracold Rb2 molecules in the v′' = 0 level of the a3Σ+u state via blue-detuned photoassociation to the 13Πg state,” Phys. Chem. Chem. Phys. 13(42), 18880–18886 (2011).
[Crossref] [PubMed]

Chaalan, A.

A. R. Allouche, M. Korek, K. Fakherddin, A. Chaalan, M. Dagher, F. Taher, and M. Aubert-Frécon, “Theoretical electronic structure of RbCs revisited,” J. Phys. At. Mol. Opt. Phys. 33(12), 2307–2316 (2000).
[Crossref]

Chen, Y.

J. Rui, H. Yang, L. Liu, D. Zhang, Y. Liu, J. Nan, Y. Chen, B. Zhao, and J. Pan, “Controlled state-to-state atom-exchange reaction in an ultracold atom–dimer mixture,” Nat. Phys. 13(7), 699–703 (2017).
[Crossref]

Chen, Y. P.

I. C. Stevenson, D. B. Blasing, Y. P. Chen, and D. S. Elliott, “Production of ultracold ground-state LiRb molecules by photoassociation through a resonantly coupled state,” Phys. Rev. A 94(6), 062510 (2016).
[Crossref]

D. B. Blasing, I. C. Stevenson, J. Pérez-Ríos, D. S. Elliott, and Y. P. Chen, “Short-range photoassociation of LiRb,” Phys. Rev. A 94(6), 062504 (2016).
[Crossref]

Chin, C.

C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, “Feshbach resonances in ultracold gases,” Rev. Mod. Phys. 82(2), 1225–1286 (2010).
[Crossref]

Dagher, M.

A. R. Allouche, M. Korek, K. Fakherddin, A. Chaalan, M. Dagher, F. Taher, and M. Aubert-Frécon, “Theoretical electronic structure of RbCs revisited,” J. Phys. At. Mol. Opt. Phys. 33(12), 2307–2316 (2000).
[Crossref]

Davis, K. B.

W. Ketterle, K. B. Davis, M. A. Joffe, A. Martin, and D. E. Pritchard, “High densities of cold atoms in a dark spontaneous-force optical trap,” Phys. Rev. Lett. 70(15), 2253–2256 (1993).
[Crossref] [PubMed]

de Miranda, M. H. G.

S. Ospelkaus, K.-K. Ni, D. Wang, M. H. G. de Miranda, B. Neyenhuis, G. Quéméner, P. S. Julienne, J. L. Bohn, D. S. Jin, and J. Ye, “Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules,” Science 327(5967), 853–857 (2010).
[Crossref] [PubMed]

Deiglmayr, J.

J. Ulmanis, J. Deiglmayr, M. Repp, R. Wester, and M. Weidemüller, “Ultracold molecules formed by photoassociation: heteronuclear dimers, inelastic collisions, and interactions with ultrashort laser pulses,” Chem. Rev. 112(9), 4890–4927 (2012).
[Crossref] [PubMed]

J. Deiglmayr, A. Grochola, M. Repp, K. Mörtlbauer, C. Glück, J. Lange, O. Dulieu, R. Wester, and M. Weidemüller, “Formation of ultracold polar molecules in the rovibrational ground state,” Phys. Rev. Lett. 101(13), 133004 (2008).
[Crossref] [PubMed]

DeMille, D.

T. Shimasaki, M. Bellos, C. D. Bruzewicz, Z. Lasner, and D. DeMille, “Production of rovibronic-ground-state RbCs molecules via two-photon-cascade decay,” Phys. Rev. A 91(2), 021401 (2015).
[Crossref]

C. D. Bruzewicz, M. Gustavsson, T. Shimasaki, and D. DeMille, “Continuous formation of vibronic ground state RbCs molecules via photoassociation,” New J. Phys. 16(2), 023018 (2014).
[Crossref]

D. DeMille, S. B. Cahn, D. Murphree, D. A. Rahmlow, and M. G. Kozlov, “Using molecules to measure nuclear spin-dependent parity violation,” Phys. Rev. Lett. 100(2), 023003 (2008).
[Crossref] [PubMed]

D. DeMille, “Quantum computation with trapped polar molecules,” Phys. Rev. Lett. 88(6), 067901 (2002).
[Crossref] [PubMed]

Dulieu, O.

C. R. Menegatti, B. S. Marangoni, N. Bouloufa-Maafa, O. Dulieu, and L. G. Marcassa, “Trap loss in a rubidium crossed dipole trap by short-range photoassociation,” Phys. Rev. A 87(5), 053404 (2013).
[Crossref]

N. Bouloufa-Maafa, M. Aymar, O. Dulieu, and C. Gabbanini, “Formation of ultracold RbCs molecules by photoassociation,” Laser Phys. 22(10), 1502–1512 (2012).
[Crossref]

M. A. Bellos, D. Rahmlow, R. Carollo, J. Banerjee, O. Dulieu, A. Gerdes, E. E. Eyler, P. L. Gould, and W. C. Stwalley, “Formation of ultracold Rb2 molecules in the v′' = 0 level of the a3Σ+u state via blue-detuned photoassociation to the 13Πg state,” Phys. Chem. Chem. Phys. 13(42), 18880–18886 (2011).
[Crossref] [PubMed]

C. Gabbanini and O. Dulieu, “Formation of ultracold metastable RbCs molecules by short-range photoassociation,” Phys. Chem. Chem. Phys. 13(42), 18905–18909 (2011).
[Crossref] [PubMed]

J. Deiglmayr, A. Grochola, M. Repp, K. Mörtlbauer, C. Glück, J. Lange, O. Dulieu, R. Wester, and M. Weidemüller, “Formation of ultracold polar molecules in the rovibrational ground state,” Phys. Rev. Lett. 101(13), 133004 (2008).
[Crossref] [PubMed]

Elliott, D. S.

D. B. Blasing, I. C. Stevenson, J. Pérez-Ríos, D. S. Elliott, and Y. P. Chen, “Short-range photoassociation of LiRb,” Phys. Rev. A 94(6), 062504 (2016).
[Crossref]

I. C. Stevenson, D. B. Blasing, Y. P. Chen, and D. S. Elliott, “Production of ultracold ground-state LiRb molecules by photoassociation through a resonantly coupled state,” Phys. Rev. A 94(6), 062510 (2016).
[Crossref]

Eyler, E. E.

J. Banerjee, D. Rahmlow, R. Carollo, M. Bellos, E. E. Eyler, P. L. Gould, and W. C. Stwalley, “Direct photoassociative formation of ultracold KRb molecules in the lowest vibrational levels of the electronic ground state,” Phys. Rev. A 86(5), 053428 (2012).
[Crossref]

M. A. Bellos, D. Rahmlow, R. Carollo, J. Banerjee, O. Dulieu, A. Gerdes, E. E. Eyler, P. L. Gould, and W. C. Stwalley, “Formation of ultracold Rb2 molecules in the v′' = 0 level of the a3Σ+u state via blue-detuned photoassociation to the 13Πg state,” Phys. Chem. Chem. Phys. 13(42), 18880–18886 (2011).
[Crossref] [PubMed]

D. Wang, J. T. Kim, C. Ashbaugh, E. E. Eyler, P. L. Gould, and W. C. Stwalley, “Rotationally resolved depletion spectroscopy of ultracold KRb molecules,” Phys. Rev. A 75(3), 032511 (2007).
[Crossref]

Fahs, H.

H. Fahs, A. R. Allouche, M. Korek, and M. Aubert-Frécon, “The theoretical spin–orbit structure of the RbCs molecule,” J. Phys. At. Mol. Opt. Phys. 35(6), 1501–1508 (2002).
[Crossref]

Fakherddin, K.

A. R. Allouche, M. Korek, K. Fakherddin, A. Chaalan, M. Dagher, F. Taher, and M. Aubert-Frécon, “Theoretical electronic structure of RbCs revisited,” J. Phys. At. Mol. Opt. Phys. 33(12), 2307–2316 (2000).
[Crossref]

Fellows, C. E.

C. E. Fellows, R. F. Gutterres, A. P. Campos, J. Vergès, and C. Amiot, “The RbCs X1Σ+ ground electronic state: New spectroscopic study,” J. Mol. Spectrosc. 197(1), 19–27 (1999).
[Crossref] [PubMed]

Fioretti, A.

A. Fioretti and C. Gabbanini, “Experimental study of the formation of ultracold RbCs molecules by short-range photoassociation,” Phys. Rev. A 87(5), 054701 (2013).
[Crossref]

Gabbanini, C.

A. Fioretti and C. Gabbanini, “Experimental study of the formation of ultracold RbCs molecules by short-range photoassociation,” Phys. Rev. A 87(5), 054701 (2013).
[Crossref]

N. Bouloufa-Maafa, M. Aymar, O. Dulieu, and C. Gabbanini, “Formation of ultracold RbCs molecules by photoassociation,” Laser Phys. 22(10), 1502–1512 (2012).
[Crossref]

C. Gabbanini and O. Dulieu, “Formation of ultracold metastable RbCs molecules by short-range photoassociation,” Phys. Chem. Chem. Phys. 13(42), 18905–18909 (2011).
[Crossref] [PubMed]

Gerdes, A.

M. A. Bellos, D. Rahmlow, R. Carollo, J. Banerjee, O. Dulieu, A. Gerdes, E. E. Eyler, P. L. Gould, and W. C. Stwalley, “Formation of ultracold Rb2 molecules in the v′' = 0 level of the a3Σ+u state via blue-detuned photoassociation to the 13Πg state,” Phys. Chem. Chem. Phys. 13(42), 18880–18886 (2011).
[Crossref] [PubMed]

Glück, C.

J. Deiglmayr, A. Grochola, M. Repp, K. Mörtlbauer, C. Glück, J. Lange, O. Dulieu, R. Wester, and M. Weidemüller, “Formation of ultracold polar molecules in the rovibrational ground state,” Phys. Rev. Lett. 101(13), 133004 (2008).
[Crossref] [PubMed]

Gong, T.

Z. Ji, Z. Li, T. Gong, Y. Zhao, L. Xiao, and S. Jia, “Rotational population measurement of ultracold 85Rb 133Cs molecules in the lowest vibrational ground state,” Chin. Phys. Lett. 34(10), 103301 (2017).
[Crossref]

Gould, P. L.

J. Banerjee, D. Rahmlow, R. Carollo, M. Bellos, E. E. Eyler, P. L. Gould, and W. C. Stwalley, “Direct photoassociative formation of ultracold KRb molecules in the lowest vibrational levels of the electronic ground state,” Phys. Rev. A 86(5), 053428 (2012).
[Crossref]

M. A. Bellos, D. Rahmlow, R. Carollo, J. Banerjee, O. Dulieu, A. Gerdes, E. E. Eyler, P. L. Gould, and W. C. Stwalley, “Formation of ultracold Rb2 molecules in the v′' = 0 level of the a3Σ+u state via blue-detuned photoassociation to the 13Πg state,” Phys. Chem. Chem. Phys. 13(42), 18880–18886 (2011).
[Crossref] [PubMed]

D. Wang, J. T. Kim, C. Ashbaugh, E. E. Eyler, P. L. Gould, and W. C. Stwalley, “Rotationally resolved depletion spectroscopy of ultracold KRb molecules,” Phys. Rev. A 75(3), 032511 (2007).
[Crossref]

Grimm, R.

C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, “Feshbach resonances in ultracold gases,” Rev. Mod. Phys. 82(2), 1225–1286 (2010).
[Crossref]

Grochola, A.

J. Deiglmayr, A. Grochola, M. Repp, K. Mörtlbauer, C. Glück, J. Lange, O. Dulieu, R. Wester, and M. Weidemüller, “Formation of ultracold polar molecules in the rovibrational ground state,” Phys. Rev. Lett. 101(13), 133004 (2008).
[Crossref] [PubMed]

Gustavsson, M.

C. D. Bruzewicz, M. Gustavsson, T. Shimasaki, and D. DeMille, “Continuous formation of vibronic ground state RbCs molecules via photoassociation,” New J. Phys. 16(2), 023018 (2014).
[Crossref]

Gutterres, R. F.

C. E. Fellows, R. F. Gutterres, A. P. Campos, J. Vergès, and C. Amiot, “The RbCs X1Σ+ ground electronic state: New spectroscopic study,” J. Mol. Spectrosc. 197(1), 19–27 (1999).
[Crossref] [PubMed]

Haruza, M.

P. Zabawa, A. Wakim, M. Haruza, and N. P. Bigelow, “Formation of ultracold X1Σ+ (v” = 0) NaCs molecules via coupled photoassociation channels,” Phys. Rev. A 84(6), 061401 (2011).
[Crossref]

Hutson, J. M.

J. Aldegunde, B. A. Rivington, P. S. Żuchowski, and J. M. Hutson, “Hyperfine energy levels of alkali-metal dimers: Ground-state polar molecules in electric and magnetic fields,” Phys. Rev. A 78(3), 033434 (2008).
[Crossref]

Inouye, S.

K. Aikawa, D. Akamatsu, J. Kobayashi, M. Ueda, T. Kishimoto, and S. Inouye, “Toward the production of quantum degenerate bosonic polar molecules, 41K87Rb,” New J. Phys. 11(5), 055035 (2009).
[Crossref]

Ji, Z.

Z. Ji, Z. Li, T. Gong, Y. Zhao, L. Xiao, and S. Jia, “Rotational population measurement of ultracold 85Rb 133Cs molecules in the lowest vibrational ground state,” Chin. Phys. Lett. 34(10), 103301 (2017).
[Crossref]

J. Yuan, Y. Zhao, Z. Ji, Z. Li, J. T. Kim, L. Xiao, and S. Jia, “The determination of potential energy curve and dipole moment of the (5)0+ electronic state of 85Rb133Cs molecule by high resolution photoassociation spectroscopy,” J. Chem. Phys. 143(22), 224312 (2015).
[Crossref] [PubMed]

Z. Ji, J. Yuan, Y. Yang, Y. Zhao, L. Xiao, and S. Jia, “Photoionization spectrum of 85RbCs molecules produced by short range photoassociation,” J. Quant. Spectrosc. Radiat. Transf. 166, 36–41 (2015).
[Crossref]

Z. Ji, H. Zhang, J. Wu, J. Yuan, Y. Yang, Y. Zhao, J. Ma, L. Wang, L. Xiao, and S. Jia, “Photoassociative formation of ultracold RbCs molecules in the (2)3Π state,” Phys. Rev. A 85(1), 013401 (2012).
[Crossref]

Jia, S.

Z. Ji, Z. Li, T. Gong, Y. Zhao, L. Xiao, and S. Jia, “Rotational population measurement of ultracold 85Rb 133Cs molecules in the lowest vibrational ground state,” Chin. Phys. Lett. 34(10), 103301 (2017).
[Crossref]

J. Yuan, Y. Zhao, Z. Ji, Z. Li, J. T. Kim, L. Xiao, and S. Jia, “The determination of potential energy curve and dipole moment of the (5)0+ electronic state of 85Rb133Cs molecule by high resolution photoassociation spectroscopy,” J. Chem. Phys. 143(22), 224312 (2015).
[Crossref] [PubMed]

Z. Ji, J. Yuan, Y. Yang, Y. Zhao, L. Xiao, and S. Jia, “Photoionization spectrum of 85RbCs molecules produced by short range photoassociation,” J. Quant. Spectrosc. Radiat. Transf. 166, 36–41 (2015).
[Crossref]

Z. Ji, H. Zhang, J. Wu, J. Yuan, Y. Yang, Y. Zhao, J. Ma, L. Wang, L. Xiao, and S. Jia, “Photoassociative formation of ultracold RbCs molecules in the (2)3Π state,” Phys. Rev. A 85(1), 013401 (2012).
[Crossref]

Jin, D. S.

S. Ospelkaus, K.-K. Ni, D. Wang, M. H. G. de Miranda, B. Neyenhuis, G. Quéméner, P. S. Julienne, J. L. Bohn, D. S. Jin, and J. Ye, “Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules,” Science 327(5967), 853–857 (2010).
[Crossref] [PubMed]

Joffe, M. A.

W. Ketterle, K. B. Davis, M. A. Joffe, A. Martin, and D. E. Pritchard, “High densities of cold atoms in a dark spontaneous-force optical trap,” Phys. Rev. Lett. 70(15), 2253–2256 (1993).
[Crossref] [PubMed]

Julienne, P.

C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, “Feshbach resonances in ultracold gases,” Rev. Mod. Phys. 82(2), 1225–1286 (2010).
[Crossref]

Julienne, P. S.

S. Ospelkaus, K.-K. Ni, D. Wang, M. H. G. de Miranda, B. Neyenhuis, G. Quéméner, P. S. Julienne, J. L. Bohn, D. S. Jin, and J. Ye, “Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules,” Science 327(5967), 853–857 (2010).
[Crossref] [PubMed]

Ketterle, W.

W. Ketterle, K. B. Davis, M. A. Joffe, A. Martin, and D. E. Pritchard, “High densities of cold atoms in a dark spontaneous-force optical trap,” Phys. Rev. Lett. 70(15), 2253–2256 (1993).
[Crossref] [PubMed]

Kim, B.

Y. Lee, Y. Yoon, S. Lee, J. T. Kim, and B. Kim, “Parallel and coupled perpendicular transitions of RbCs 640 nm system: Mass-resolved resonance enhanced two-photon ionization in a cold molecular beam,” J. Phys. Chem. A 112(31), 7214–7221 (2008).
[Crossref] [PubMed]

Kim, J. T.

J. Yuan, Y. Zhao, Z. Ji, Z. Li, J. T. Kim, L. Xiao, and S. Jia, “The determination of potential energy curve and dipole moment of the (5)0+ electronic state of 85Rb133Cs molecule by high resolution photoassociation spectroscopy,” J. Chem. Phys. 143(22), 224312 (2015).
[Crossref] [PubMed]

Y. Lee, Y. Yoon, S. Lee, J. T. Kim, and B. Kim, “Parallel and coupled perpendicular transitions of RbCs 640 nm system: Mass-resolved resonance enhanced two-photon ionization in a cold molecular beam,” J. Phys. Chem. A 112(31), 7214–7221 (2008).
[Crossref] [PubMed]

D. Wang, J. T. Kim, C. Ashbaugh, E. E. Eyler, P. L. Gould, and W. C. Stwalley, “Rotationally resolved depletion spectroscopy of ultracold KRb molecules,” Phys. Rev. A 75(3), 032511 (2007).
[Crossref]

Kishimoto, T.

K. Aikawa, D. Akamatsu, J. Kobayashi, M. Ueda, T. Kishimoto, and S. Inouye, “Toward the production of quantum degenerate bosonic polar molecules, 41K87Rb,” New J. Phys. 11(5), 055035 (2009).
[Crossref]

Kobayashi, J.

K. Aikawa, D. Akamatsu, J. Kobayashi, M. Ueda, T. Kishimoto, and S. Inouye, “Toward the production of quantum degenerate bosonic polar molecules, 41K87Rb,” New J. Phys. 11(5), 055035 (2009).
[Crossref]

Korek, M.

H. Fahs, A. R. Allouche, M. Korek, and M. Aubert-Frécon, “The theoretical spin–orbit structure of the RbCs molecule,” J. Phys. At. Mol. Opt. Phys. 35(6), 1501–1508 (2002).
[Crossref]

A. R. Allouche, M. Korek, K. Fakherddin, A. Chaalan, M. Dagher, F. Taher, and M. Aubert-Frécon, “Theoretical electronic structure of RbCs revisited,” J. Phys. At. Mol. Opt. Phys. 33(12), 2307–2316 (2000).
[Crossref]

Kotochigova, S.

T. Zelevinsky, S. Kotochigova, and J. Ye, “Precision test of mass-ratio variations with lattice-confined ultracold molecules,” Phys. Rev. Lett. 100(4), 043201 (2008).
[Crossref] [PubMed]

Kozlov, M. G.

D. DeMille, S. B. Cahn, D. Murphree, D. A. Rahmlow, and M. G. Kozlov, “Using molecules to measure nuclear spin-dependent parity violation,” Phys. Rev. Lett. 100(2), 023003 (2008).
[Crossref] [PubMed]

Lange, J.

J. Deiglmayr, A. Grochola, M. Repp, K. Mörtlbauer, C. Glück, J. Lange, O. Dulieu, R. Wester, and M. Weidemüller, “Formation of ultracold polar molecules in the rovibrational ground state,” Phys. Rev. Lett. 101(13), 133004 (2008).
[Crossref] [PubMed]

Lasner, Z.

T. Shimasaki, M. Bellos, C. D. Bruzewicz, Z. Lasner, and D. DeMille, “Production of rovibronic-ground-state RbCs molecules via two-photon-cascade decay,” Phys. Rev. A 91(2), 021401 (2015).
[Crossref]

Lee, S.

Y. Lee, Y. Yoon, S. Lee, J. T. Kim, and B. Kim, “Parallel and coupled perpendicular transitions of RbCs 640 nm system: Mass-resolved resonance enhanced two-photon ionization in a cold molecular beam,” J. Phys. Chem. A 112(31), 7214–7221 (2008).
[Crossref] [PubMed]

Lee, Y.

Y. Lee, Y. Yoon, S. Lee, J. T. Kim, and B. Kim, “Parallel and coupled perpendicular transitions of RbCs 640 nm system: Mass-resolved resonance enhanced two-photon ionization in a cold molecular beam,” J. Phys. Chem. A 112(31), 7214–7221 (2008).
[Crossref] [PubMed]

Li, Z.

Z. Ji, Z. Li, T. Gong, Y. Zhao, L. Xiao, and S. Jia, “Rotational population measurement of ultracold 85Rb 133Cs molecules in the lowest vibrational ground state,” Chin. Phys. Lett. 34(10), 103301 (2017).
[Crossref]

J. Yuan, Y. Zhao, Z. Ji, Z. Li, J. T. Kim, L. Xiao, and S. Jia, “The determination of potential energy curve and dipole moment of the (5)0+ electronic state of 85Rb133Cs molecule by high resolution photoassociation spectroscopy,” J. Chem. Phys. 143(22), 224312 (2015).
[Crossref] [PubMed]

Liu, L.

J. Rui, H. Yang, L. Liu, D. Zhang, Y. Liu, J. Nan, Y. Chen, B. Zhao, and J. Pan, “Controlled state-to-state atom-exchange reaction in an ultracold atom–dimer mixture,” Nat. Phys. 13(7), 699–703 (2017).
[Crossref]

Liu, Y.

J. Rui, H. Yang, L. Liu, D. Zhang, Y. Liu, J. Nan, Y. Chen, B. Zhao, and J. Pan, “Controlled state-to-state atom-exchange reaction in an ultracold atom–dimer mixture,” Nat. Phys. 13(7), 699–703 (2017).
[Crossref]

Lysebo, M.

M. Lysebo and L. Veseth, “Cold collisions between atoms and diatomic molecules,” Phys. Rev. A 77(3), 032721 (2008).
[Crossref]

Ma, J.

Z. Ji, H. Zhang, J. Wu, J. Yuan, Y. Yang, Y. Zhao, J. Ma, L. Wang, L. Xiao, and S. Jia, “Photoassociative formation of ultracold RbCs molecules in the (2)3Π state,” Phys. Rev. A 85(1), 013401 (2012).
[Crossref]

Marangoni, B. S.

C. R. Menegatti, B. S. Marangoni, N. Bouloufa-Maafa, O. Dulieu, and L. G. Marcassa, “Trap loss in a rubidium crossed dipole trap by short-range photoassociation,” Phys. Rev. A 87(5), 053404 (2013).
[Crossref]

Marcassa, L. G.

C. R. Menegatti, B. S. Marangoni, N. Bouloufa-Maafa, O. Dulieu, and L. G. Marcassa, “Trap loss in a rubidium crossed dipole trap by short-range photoassociation,” Phys. Rev. A 87(5), 053404 (2013).
[Crossref]

Martin, A.

W. Ketterle, K. B. Davis, M. A. Joffe, A. Martin, and D. E. Pritchard, “High densities of cold atoms in a dark spontaneous-force optical trap,” Phys. Rev. Lett. 70(15), 2253–2256 (1993).
[Crossref] [PubMed]

Menegatti, C. R.

C. R. Menegatti, B. S. Marangoni, N. Bouloufa-Maafa, O. Dulieu, and L. G. Marcassa, “Trap loss in a rubidium crossed dipole trap by short-range photoassociation,” Phys. Rev. A 87(5), 053404 (2013).
[Crossref]

Mörtlbauer, K.

J. Deiglmayr, A. Grochola, M. Repp, K. Mörtlbauer, C. Glück, J. Lange, O. Dulieu, R. Wester, and M. Weidemüller, “Formation of ultracold polar molecules in the rovibrational ground state,” Phys. Rev. Lett. 101(13), 133004 (2008).
[Crossref] [PubMed]

Murphree, D.

D. DeMille, S. B. Cahn, D. Murphree, D. A. Rahmlow, and M. G. Kozlov, “Using molecules to measure nuclear spin-dependent parity violation,” Phys. Rev. Lett. 100(2), 023003 (2008).
[Crossref] [PubMed]

Nan, J.

J. Rui, H. Yang, L. Liu, D. Zhang, Y. Liu, J. Nan, Y. Chen, B. Zhao, and J. Pan, “Controlled state-to-state atom-exchange reaction in an ultracold atom–dimer mixture,” Nat. Phys. 13(7), 699–703 (2017).
[Crossref]

Neyenhuis, B.

S. Ospelkaus, K.-K. Ni, D. Wang, M. H. G. de Miranda, B. Neyenhuis, G. Quéméner, P. S. Julienne, J. L. Bohn, D. S. Jin, and J. Ye, “Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules,” Science 327(5967), 853–857 (2010).
[Crossref] [PubMed]

Ni, K.-K.

S. Ospelkaus, K.-K. Ni, D. Wang, M. H. G. de Miranda, B. Neyenhuis, G. Quéméner, P. S. Julienne, J. L. Bohn, D. S. Jin, and J. Ye, “Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules,” Science 327(5967), 853–857 (2010).
[Crossref] [PubMed]

Ospelkaus, S.

S. Ospelkaus, K.-K. Ni, D. Wang, M. H. G. de Miranda, B. Neyenhuis, G. Quéméner, P. S. Julienne, J. L. Bohn, D. S. Jin, and J. Ye, “Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules,” Science 327(5967), 853–857 (2010).
[Crossref] [PubMed]

Pan, J.

J. Rui, H. Yang, L. Liu, D. Zhang, Y. Liu, J. Nan, Y. Chen, B. Zhao, and J. Pan, “Controlled state-to-state atom-exchange reaction in an ultracold atom–dimer mixture,” Nat. Phys. 13(7), 699–703 (2017).
[Crossref]

Pérez-Ríos, J.

D. B. Blasing, I. C. Stevenson, J. Pérez-Ríos, D. S. Elliott, and Y. P. Chen, “Short-range photoassociation of LiRb,” Phys. Rev. A 94(6), 062504 (2016).
[Crossref]

Pritchard, D. E.

W. Ketterle, K. B. Davis, M. A. Joffe, A. Martin, and D. E. Pritchard, “High densities of cold atoms in a dark spontaneous-force optical trap,” Phys. Rev. Lett. 70(15), 2253–2256 (1993).
[Crossref] [PubMed]

Quéméner, G.

S. Ospelkaus, K.-K. Ni, D. Wang, M. H. G. de Miranda, B. Neyenhuis, G. Quéméner, P. S. Julienne, J. L. Bohn, D. S. Jin, and J. Ye, “Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules,” Science 327(5967), 853–857 (2010).
[Crossref] [PubMed]

Rahmlow, D.

J. Banerjee, D. Rahmlow, R. Carollo, M. Bellos, E. E. Eyler, P. L. Gould, and W. C. Stwalley, “Direct photoassociative formation of ultracold KRb molecules in the lowest vibrational levels of the electronic ground state,” Phys. Rev. A 86(5), 053428 (2012).
[Crossref]

M. A. Bellos, D. Rahmlow, R. Carollo, J. Banerjee, O. Dulieu, A. Gerdes, E. E. Eyler, P. L. Gould, and W. C. Stwalley, “Formation of ultracold Rb2 molecules in the v′' = 0 level of the a3Σ+u state via blue-detuned photoassociation to the 13Πg state,” Phys. Chem. Chem. Phys. 13(42), 18880–18886 (2011).
[Crossref] [PubMed]

Rahmlow, D. A.

D. DeMille, S. B. Cahn, D. Murphree, D. A. Rahmlow, and M. G. Kozlov, “Using molecules to measure nuclear spin-dependent parity violation,” Phys. Rev. Lett. 100(2), 023003 (2008).
[Crossref] [PubMed]

Repp, M.

J. Ulmanis, J. Deiglmayr, M. Repp, R. Wester, and M. Weidemüller, “Ultracold molecules formed by photoassociation: heteronuclear dimers, inelastic collisions, and interactions with ultrashort laser pulses,” Chem. Rev. 112(9), 4890–4927 (2012).
[Crossref] [PubMed]

J. Deiglmayr, A. Grochola, M. Repp, K. Mörtlbauer, C. Glück, J. Lange, O. Dulieu, R. Wester, and M. Weidemüller, “Formation of ultracold polar molecules in the rovibrational ground state,” Phys. Rev. Lett. 101(13), 133004 (2008).
[Crossref] [PubMed]

Rivington, B. A.

J. Aldegunde, B. A. Rivington, P. S. Żuchowski, and J. M. Hutson, “Hyperfine energy levels of alkali-metal dimers: Ground-state polar molecules in electric and magnetic fields,” Phys. Rev. A 78(3), 033434 (2008).
[Crossref]

Rui, J.

J. Rui, H. Yang, L. Liu, D. Zhang, Y. Liu, J. Nan, Y. Chen, B. Zhao, and J. Pan, “Controlled state-to-state atom-exchange reaction in an ultracold atom–dimer mixture,” Nat. Phys. 13(7), 699–703 (2017).
[Crossref]

Schiller, S.

S. Schiller, “Hydrogenlike highly charged ions for tests of the time independence of fundamental constants,” Phys. Rev. Lett. 98(18), 180801 (2007).
[Crossref] [PubMed]

Shimasaki, T.

T. Shimasaki, M. Bellos, C. D. Bruzewicz, Z. Lasner, and D. DeMille, “Production of rovibronic-ground-state RbCs molecules via two-photon-cascade decay,” Phys. Rev. A 91(2), 021401 (2015).
[Crossref]

C. D. Bruzewicz, M. Gustavsson, T. Shimasaki, and D. DeMille, “Continuous formation of vibronic ground state RbCs molecules via photoassociation,” New J. Phys. 16(2), 023018 (2014).
[Crossref]

Stevenson, I. C.

D. B. Blasing, I. C. Stevenson, J. Pérez-Ríos, D. S. Elliott, and Y. P. Chen, “Short-range photoassociation of LiRb,” Phys. Rev. A 94(6), 062504 (2016).
[Crossref]

I. C. Stevenson, D. B. Blasing, Y. P. Chen, and D. S. Elliott, “Production of ultracold ground-state LiRb molecules by photoassociation through a resonantly coupled state,” Phys. Rev. A 94(6), 062510 (2016).
[Crossref]

Stwalley, W. C.

J. Banerjee, D. Rahmlow, R. Carollo, M. Bellos, E. E. Eyler, P. L. Gould, and W. C. Stwalley, “Direct photoassociative formation of ultracold KRb molecules in the lowest vibrational levels of the electronic ground state,” Phys. Rev. A 86(5), 053428 (2012).
[Crossref]

M. A. Bellos, D. Rahmlow, R. Carollo, J. Banerjee, O. Dulieu, A. Gerdes, E. E. Eyler, P. L. Gould, and W. C. Stwalley, “Formation of ultracold Rb2 molecules in the v′' = 0 level of the a3Σ+u state via blue-detuned photoassociation to the 13Πg state,” Phys. Chem. Chem. Phys. 13(42), 18880–18886 (2011).
[Crossref] [PubMed]

D. Wang, J. T. Kim, C. Ashbaugh, E. E. Eyler, P. L. Gould, and W. C. Stwalley, “Rotationally resolved depletion spectroscopy of ultracold KRb molecules,” Phys. Rev. A 75(3), 032511 (2007).
[Crossref]

Taher, F.

A. R. Allouche, M. Korek, K. Fakherddin, A. Chaalan, M. Dagher, F. Taher, and M. Aubert-Frécon, “Theoretical electronic structure of RbCs revisited,” J. Phys. At. Mol. Opt. Phys. 33(12), 2307–2316 (2000).
[Crossref]

Tiesinga, E.

C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, “Feshbach resonances in ultracold gases,” Rev. Mod. Phys. 82(2), 1225–1286 (2010).
[Crossref]

Ueda, M.

K. Aikawa, D. Akamatsu, J. Kobayashi, M. Ueda, T. Kishimoto, and S. Inouye, “Toward the production of quantum degenerate bosonic polar molecules, 41K87Rb,” New J. Phys. 11(5), 055035 (2009).
[Crossref]

Ulmanis, J.

J. Ulmanis, J. Deiglmayr, M. Repp, R. Wester, and M. Weidemüller, “Ultracold molecules formed by photoassociation: heteronuclear dimers, inelastic collisions, and interactions with ultrashort laser pulses,” Chem. Rev. 112(9), 4890–4927 (2012).
[Crossref] [PubMed]

Vergès, J.

C. E. Fellows, R. F. Gutterres, A. P. Campos, J. Vergès, and C. Amiot, “The RbCs X1Σ+ ground electronic state: New spectroscopic study,” J. Mol. Spectrosc. 197(1), 19–27 (1999).
[Crossref] [PubMed]

Veseth, L.

M. Lysebo and L. Veseth, “Cold collisions between atoms and diatomic molecules,” Phys. Rev. A 77(3), 032721 (2008).
[Crossref]

Wakim, A.

P. Zabawa, A. Wakim, M. Haruza, and N. P. Bigelow, “Formation of ultracold X1Σ+ (v” = 0) NaCs molecules via coupled photoassociation channels,” Phys. Rev. A 84(6), 061401 (2011).
[Crossref]

Wang, D.

S. Ospelkaus, K.-K. Ni, D. Wang, M. H. G. de Miranda, B. Neyenhuis, G. Quéméner, P. S. Julienne, J. L. Bohn, D. S. Jin, and J. Ye, “Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules,” Science 327(5967), 853–857 (2010).
[Crossref] [PubMed]

D. Wang, J. T. Kim, C. Ashbaugh, E. E. Eyler, P. L. Gould, and W. C. Stwalley, “Rotationally resolved depletion spectroscopy of ultracold KRb molecules,” Phys. Rev. A 75(3), 032511 (2007).
[Crossref]

Wang, L.

Z. Ji, H. Zhang, J. Wu, J. Yuan, Y. Yang, Y. Zhao, J. Ma, L. Wang, L. Xiao, and S. Jia, “Photoassociative formation of ultracold RbCs molecules in the (2)3Π state,” Phys. Rev. A 85(1), 013401 (2012).
[Crossref]

Weidemüller, M.

J. Ulmanis, J. Deiglmayr, M. Repp, R. Wester, and M. Weidemüller, “Ultracold molecules formed by photoassociation: heteronuclear dimers, inelastic collisions, and interactions with ultrashort laser pulses,” Chem. Rev. 112(9), 4890–4927 (2012).
[Crossref] [PubMed]

J. Deiglmayr, A. Grochola, M. Repp, K. Mörtlbauer, C. Glück, J. Lange, O. Dulieu, R. Wester, and M. Weidemüller, “Formation of ultracold polar molecules in the rovibrational ground state,” Phys. Rev. Lett. 101(13), 133004 (2008).
[Crossref] [PubMed]

Wester, R.

J. Ulmanis, J. Deiglmayr, M. Repp, R. Wester, and M. Weidemüller, “Ultracold molecules formed by photoassociation: heteronuclear dimers, inelastic collisions, and interactions with ultrashort laser pulses,” Chem. Rev. 112(9), 4890–4927 (2012).
[Crossref] [PubMed]

J. Deiglmayr, A. Grochola, M. Repp, K. Mörtlbauer, C. Glück, J. Lange, O. Dulieu, R. Wester, and M. Weidemüller, “Formation of ultracold polar molecules in the rovibrational ground state,” Phys. Rev. Lett. 101(13), 133004 (2008).
[Crossref] [PubMed]

Wu, J.

Z. Ji, H. Zhang, J. Wu, J. Yuan, Y. Yang, Y. Zhao, J. Ma, L. Wang, L. Xiao, and S. Jia, “Photoassociative formation of ultracold RbCs molecules in the (2)3Π state,” Phys. Rev. A 85(1), 013401 (2012).
[Crossref]

Xiao, L.

Z. Ji, Z. Li, T. Gong, Y. Zhao, L. Xiao, and S. Jia, “Rotational population measurement of ultracold 85Rb 133Cs molecules in the lowest vibrational ground state,” Chin. Phys. Lett. 34(10), 103301 (2017).
[Crossref]

J. Yuan, Y. Zhao, Z. Ji, Z. Li, J. T. Kim, L. Xiao, and S. Jia, “The determination of potential energy curve and dipole moment of the (5)0+ electronic state of 85Rb133Cs molecule by high resolution photoassociation spectroscopy,” J. Chem. Phys. 143(22), 224312 (2015).
[Crossref] [PubMed]

Z. Ji, J. Yuan, Y. Yang, Y. Zhao, L. Xiao, and S. Jia, “Photoionization spectrum of 85RbCs molecules produced by short range photoassociation,” J. Quant. Spectrosc. Radiat. Transf. 166, 36–41 (2015).
[Crossref]

Z. Ji, H. Zhang, J. Wu, J. Yuan, Y. Yang, Y. Zhao, J. Ma, L. Wang, L. Xiao, and S. Jia, “Photoassociative formation of ultracold RbCs molecules in the (2)3Π state,” Phys. Rev. A 85(1), 013401 (2012).
[Crossref]

Yang, H.

J. Rui, H. Yang, L. Liu, D. Zhang, Y. Liu, J. Nan, Y. Chen, B. Zhao, and J. Pan, “Controlled state-to-state atom-exchange reaction in an ultracold atom–dimer mixture,” Nat. Phys. 13(7), 699–703 (2017).
[Crossref]

Yang, Y.

Z. Ji, J. Yuan, Y. Yang, Y. Zhao, L. Xiao, and S. Jia, “Photoionization spectrum of 85RbCs molecules produced by short range photoassociation,” J. Quant. Spectrosc. Radiat. Transf. 166, 36–41 (2015).
[Crossref]

Z. Ji, H. Zhang, J. Wu, J. Yuan, Y. Yang, Y. Zhao, J. Ma, L. Wang, L. Xiao, and S. Jia, “Photoassociative formation of ultracold RbCs molecules in the (2)3Π state,” Phys. Rev. A 85(1), 013401 (2012).
[Crossref]

Ye, J.

S. Ospelkaus, K.-K. Ni, D. Wang, M. H. G. de Miranda, B. Neyenhuis, G. Quéméner, P. S. Julienne, J. L. Bohn, D. S. Jin, and J. Ye, “Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules,” Science 327(5967), 853–857 (2010).
[Crossref] [PubMed]

T. Zelevinsky, S. Kotochigova, and J. Ye, “Precision test of mass-ratio variations with lattice-confined ultracold molecules,” Phys. Rev. Lett. 100(4), 043201 (2008).
[Crossref] [PubMed]

Yoon, Y.

Y. Lee, Y. Yoon, S. Lee, J. T. Kim, and B. Kim, “Parallel and coupled perpendicular transitions of RbCs 640 nm system: Mass-resolved resonance enhanced two-photon ionization in a cold molecular beam,” J. Phys. Chem. A 112(31), 7214–7221 (2008).
[Crossref] [PubMed]

Yuan, J.

Z. Ji, J. Yuan, Y. Yang, Y. Zhao, L. Xiao, and S. Jia, “Photoionization spectrum of 85RbCs molecules produced by short range photoassociation,” J. Quant. Spectrosc. Radiat. Transf. 166, 36–41 (2015).
[Crossref]

J. Yuan, Y. Zhao, Z. Ji, Z. Li, J. T. Kim, L. Xiao, and S. Jia, “The determination of potential energy curve and dipole moment of the (5)0+ electronic state of 85Rb133Cs molecule by high resolution photoassociation spectroscopy,” J. Chem. Phys. 143(22), 224312 (2015).
[Crossref] [PubMed]

Z. Ji, H. Zhang, J. Wu, J. Yuan, Y. Yang, Y. Zhao, J. Ma, L. Wang, L. Xiao, and S. Jia, “Photoassociative formation of ultracold RbCs molecules in the (2)3Π state,” Phys. Rev. A 85(1), 013401 (2012).
[Crossref]

Zabawa, P.

P. Zabawa, A. Wakim, M. Haruza, and N. P. Bigelow, “Formation of ultracold X1Σ+ (v” = 0) NaCs molecules via coupled photoassociation channels,” Phys. Rev. A 84(6), 061401 (2011).
[Crossref]

Zelevinsky, T.

T. Zelevinsky, S. Kotochigova, and J. Ye, “Precision test of mass-ratio variations with lattice-confined ultracold molecules,” Phys. Rev. Lett. 100(4), 043201 (2008).
[Crossref] [PubMed]

Zhang, D.

J. Rui, H. Yang, L. Liu, D. Zhang, Y. Liu, J. Nan, Y. Chen, B. Zhao, and J. Pan, “Controlled state-to-state atom-exchange reaction in an ultracold atom–dimer mixture,” Nat. Phys. 13(7), 699–703 (2017).
[Crossref]

Zhang, H.

Z. Ji, H. Zhang, J. Wu, J. Yuan, Y. Yang, Y. Zhao, J. Ma, L. Wang, L. Xiao, and S. Jia, “Photoassociative formation of ultracold RbCs molecules in the (2)3Π state,” Phys. Rev. A 85(1), 013401 (2012).
[Crossref]

Zhao, B.

J. Rui, H. Yang, L. Liu, D. Zhang, Y. Liu, J. Nan, Y. Chen, B. Zhao, and J. Pan, “Controlled state-to-state atom-exchange reaction in an ultracold atom–dimer mixture,” Nat. Phys. 13(7), 699–703 (2017).
[Crossref]

Zhao, Y.

Z. Ji, Z. Li, T. Gong, Y. Zhao, L. Xiao, and S. Jia, “Rotational population measurement of ultracold 85Rb 133Cs molecules in the lowest vibrational ground state,” Chin. Phys. Lett. 34(10), 103301 (2017).
[Crossref]

J. Yuan, Y. Zhao, Z. Ji, Z. Li, J. T. Kim, L. Xiao, and S. Jia, “The determination of potential energy curve and dipole moment of the (5)0+ electronic state of 85Rb133Cs molecule by high resolution photoassociation spectroscopy,” J. Chem. Phys. 143(22), 224312 (2015).
[Crossref] [PubMed]

Z. Ji, J. Yuan, Y. Yang, Y. Zhao, L. Xiao, and S. Jia, “Photoionization spectrum of 85RbCs molecules produced by short range photoassociation,” J. Quant. Spectrosc. Radiat. Transf. 166, 36–41 (2015).
[Crossref]

Z. Ji, H. Zhang, J. Wu, J. Yuan, Y. Yang, Y. Zhao, J. Ma, L. Wang, L. Xiao, and S. Jia, “Photoassociative formation of ultracold RbCs molecules in the (2)3Π state,” Phys. Rev. A 85(1), 013401 (2012).
[Crossref]

Zuchowski, P. S.

J. Aldegunde, B. A. Rivington, P. S. Żuchowski, and J. M. Hutson, “Hyperfine energy levels of alkali-metal dimers: Ground-state polar molecules in electric and magnetic fields,” Phys. Rev. A 78(3), 033434 (2008).
[Crossref]

Chem. Rev. (1)

J. Ulmanis, J. Deiglmayr, M. Repp, R. Wester, and M. Weidemüller, “Ultracold molecules formed by photoassociation: heteronuclear dimers, inelastic collisions, and interactions with ultrashort laser pulses,” Chem. Rev. 112(9), 4890–4927 (2012).
[Crossref] [PubMed]

Chin. Phys. Lett. (1)

Z. Ji, Z. Li, T. Gong, Y. Zhao, L. Xiao, and S. Jia, “Rotational population measurement of ultracold 85Rb 133Cs molecules in the lowest vibrational ground state,” Chin. Phys. Lett. 34(10), 103301 (2017).
[Crossref]

J. Chem. Phys. (1)

J. Yuan, Y. Zhao, Z. Ji, Z. Li, J. T. Kim, L. Xiao, and S. Jia, “The determination of potential energy curve and dipole moment of the (5)0+ electronic state of 85Rb133Cs molecule by high resolution photoassociation spectroscopy,” J. Chem. Phys. 143(22), 224312 (2015).
[Crossref] [PubMed]

J. Mol. Spectrosc. (1)

C. E. Fellows, R. F. Gutterres, A. P. Campos, J. Vergès, and C. Amiot, “The RbCs X1Σ+ ground electronic state: New spectroscopic study,” J. Mol. Spectrosc. 197(1), 19–27 (1999).
[Crossref] [PubMed]

J. Phys. At. Mol. Opt. Phys. (2)

A. R. Allouche, M. Korek, K. Fakherddin, A. Chaalan, M. Dagher, F. Taher, and M. Aubert-Frécon, “Theoretical electronic structure of RbCs revisited,” J. Phys. At. Mol. Opt. Phys. 33(12), 2307–2316 (2000).
[Crossref]

H. Fahs, A. R. Allouche, M. Korek, and M. Aubert-Frécon, “The theoretical spin–orbit structure of the RbCs molecule,” J. Phys. At. Mol. Opt. Phys. 35(6), 1501–1508 (2002).
[Crossref]

J. Phys. Chem. A (1)

Y. Lee, Y. Yoon, S. Lee, J. T. Kim, and B. Kim, “Parallel and coupled perpendicular transitions of RbCs 640 nm system: Mass-resolved resonance enhanced two-photon ionization in a cold molecular beam,” J. Phys. Chem. A 112(31), 7214–7221 (2008).
[Crossref] [PubMed]

J. Quant. Spectrosc. Radiat. Transf. (1)

Z. Ji, J. Yuan, Y. Yang, Y. Zhao, L. Xiao, and S. Jia, “Photoionization spectrum of 85RbCs molecules produced by short range photoassociation,” J. Quant. Spectrosc. Radiat. Transf. 166, 36–41 (2015).
[Crossref]

Laser Phys. (1)

N. Bouloufa-Maafa, M. Aymar, O. Dulieu, and C. Gabbanini, “Formation of ultracold RbCs molecules by photoassociation,” Laser Phys. 22(10), 1502–1512 (2012).
[Crossref]

Nat. Phys. (1)

J. Rui, H. Yang, L. Liu, D. Zhang, Y. Liu, J. Nan, Y. Chen, B. Zhao, and J. Pan, “Controlled state-to-state atom-exchange reaction in an ultracold atom–dimer mixture,” Nat. Phys. 13(7), 699–703 (2017).
[Crossref]

New J. Phys. (2)

C. D. Bruzewicz, M. Gustavsson, T. Shimasaki, and D. DeMille, “Continuous formation of vibronic ground state RbCs molecules via photoassociation,” New J. Phys. 16(2), 023018 (2014).
[Crossref]

K. Aikawa, D. Akamatsu, J. Kobayashi, M. Ueda, T. Kishimoto, and S. Inouye, “Toward the production of quantum degenerate bosonic polar molecules, 41K87Rb,” New J. Phys. 11(5), 055035 (2009).
[Crossref]

Phys. Chem. Chem. Phys. (2)

C. Gabbanini and O. Dulieu, “Formation of ultracold metastable RbCs molecules by short-range photoassociation,” Phys. Chem. Chem. Phys. 13(42), 18905–18909 (2011).
[Crossref] [PubMed]

M. A. Bellos, D. Rahmlow, R. Carollo, J. Banerjee, O. Dulieu, A. Gerdes, E. E. Eyler, P. L. Gould, and W. C. Stwalley, “Formation of ultracold Rb2 molecules in the v′' = 0 level of the a3Σ+u state via blue-detuned photoassociation to the 13Πg state,” Phys. Chem. Chem. Phys. 13(42), 18880–18886 (2011).
[Crossref] [PubMed]

Phys. Rev. A (11)

J. Banerjee, D. Rahmlow, R. Carollo, M. Bellos, E. E. Eyler, P. L. Gould, and W. C. Stwalley, “Direct photoassociative formation of ultracold KRb molecules in the lowest vibrational levels of the electronic ground state,” Phys. Rev. A 86(5), 053428 (2012).
[Crossref]

P. Zabawa, A. Wakim, M. Haruza, and N. P. Bigelow, “Formation of ultracold X1Σ+ (v” = 0) NaCs molecules via coupled photoassociation channels,” Phys. Rev. A 84(6), 061401 (2011).
[Crossref]

D. B. Blasing, I. C. Stevenson, J. Pérez-Ríos, D. S. Elliott, and Y. P. Chen, “Short-range photoassociation of LiRb,” Phys. Rev. A 94(6), 062504 (2016).
[Crossref]

D. Wang, J. T. Kim, C. Ashbaugh, E. E. Eyler, P. L. Gould, and W. C. Stwalley, “Rotationally resolved depletion spectroscopy of ultracold KRb molecules,” Phys. Rev. A 75(3), 032511 (2007).
[Crossref]

Z. Ji, H. Zhang, J. Wu, J. Yuan, Y. Yang, Y. Zhao, J. Ma, L. Wang, L. Xiao, and S. Jia, “Photoassociative formation of ultracold RbCs molecules in the (2)3Π state,” Phys. Rev. A 85(1), 013401 (2012).
[Crossref]

A. Fioretti and C. Gabbanini, “Experimental study of the formation of ultracold RbCs molecules by short-range photoassociation,” Phys. Rev. A 87(5), 054701 (2013).
[Crossref]

C. R. Menegatti, B. S. Marangoni, N. Bouloufa-Maafa, O. Dulieu, and L. G. Marcassa, “Trap loss in a rubidium crossed dipole trap by short-range photoassociation,” Phys. Rev. A 87(5), 053404 (2013).
[Crossref]

T. Shimasaki, M. Bellos, C. D. Bruzewicz, Z. Lasner, and D. DeMille, “Production of rovibronic-ground-state RbCs molecules via two-photon-cascade decay,” Phys. Rev. A 91(2), 021401 (2015).
[Crossref]

I. C. Stevenson, D. B. Blasing, Y. P. Chen, and D. S. Elliott, “Production of ultracold ground-state LiRb molecules by photoassociation through a resonantly coupled state,” Phys. Rev. A 94(6), 062510 (2016).
[Crossref]

J. Aldegunde, B. A. Rivington, P. S. Żuchowski, and J. M. Hutson, “Hyperfine energy levels of alkali-metal dimers: Ground-state polar molecules in electric and magnetic fields,” Phys. Rev. A 78(3), 033434 (2008).
[Crossref]

M. Lysebo and L. Veseth, “Cold collisions between atoms and diatomic molecules,” Phys. Rev. A 77(3), 032721 (2008).
[Crossref]

Phys. Rev. Lett. (6)

W. Ketterle, K. B. Davis, M. A. Joffe, A. Martin, and D. E. Pritchard, “High densities of cold atoms in a dark spontaneous-force optical trap,” Phys. Rev. Lett. 70(15), 2253–2256 (1993).
[Crossref] [PubMed]

D. DeMille, “Quantum computation with trapped polar molecules,” Phys. Rev. Lett. 88(6), 067901 (2002).
[Crossref] [PubMed]

T. Zelevinsky, S. Kotochigova, and J. Ye, “Precision test of mass-ratio variations with lattice-confined ultracold molecules,” Phys. Rev. Lett. 100(4), 043201 (2008).
[Crossref] [PubMed]

S. Schiller, “Hydrogenlike highly charged ions for tests of the time independence of fundamental constants,” Phys. Rev. Lett. 98(18), 180801 (2007).
[Crossref] [PubMed]

D. DeMille, S. B. Cahn, D. Murphree, D. A. Rahmlow, and M. G. Kozlov, “Using molecules to measure nuclear spin-dependent parity violation,” Phys. Rev. Lett. 100(2), 023003 (2008).
[Crossref] [PubMed]

J. Deiglmayr, A. Grochola, M. Repp, K. Mörtlbauer, C. Glück, J. Lange, O. Dulieu, R. Wester, and M. Weidemüller, “Formation of ultracold polar molecules in the rovibrational ground state,” Phys. Rev. Lett. 101(13), 133004 (2008).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, “Feshbach resonances in ultracold gases,” Rev. Mod. Phys. 82(2), 1225–1286 (2010).
[Crossref]

Science (1)

S. Ospelkaus, K.-K. Ni, D. Wang, M. H. G. de Miranda, B. Neyenhuis, G. Quéméner, P. S. Julienne, J. L. Bohn, D. S. Jin, and J. Ye, “Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules,” Science 327(5967), 853–857 (2010).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Formation and detection mechanism for ultracold 85Rb133Cs molecules in the X1Σ+ (v = 0) state. The potential energy curves are based on the data [27,28]. The partial enlarged detail shows the related energy levels in the measurement of depletion and MW spectroscopy. (b) The time sequence in our experiment. The shadow with different color means “on”, the blank means “off”, and the “oblique line” means the MW can be “selectively on or off” for different measurement.
Fig. 2
Fig. 2 (a) PA spectrum of 23Π0 + (v = 10) state, which is the intermediate state for the preparation of 85Rb133Cs molecules in the X1Σ+ (v = 0) state. Inset: PI spectrum of 85Rb133Cs molecules in the X1Σ+ (v = 0) state. (b) Depletion spectrum of molecules in the X1Σ+ (v = 0) state: (I) The frequency of PA laser is fixed at 23Π0 + (v = 10, J = 0), (II) The frequency of PA laser is fixed at 23Π0 + (v = 10, J = 1). The sum of depletion depths is over 90%, which indicates that the ion signal is produced through resonance excitation in our PI spectrum.
Fig. 3
Fig. 3 MW spectrum of 85Rb133Cs molecules in the X1Σ+ (v = 0) state. (a) The MW transition of J = 1 → J = 0. The frequency of PA laser is fixed at 23Π0 + (v = 10, J = 1), the depletion laser is fixed at X1Σ+ (v = 0, J = 0) → 23Π0 + (v = 8, J’ = 1). (b) The MW transition of J = 1 → J = 2. The frequency of PA laser is fixed at 23Π0 + (v = 10, J = 1), the depletion laser is fixed at X1Σ+ (v = 0, J = 2) → 23Π0 + (v = 8, J’ = 3). (c) The MW transition of J = 2 → J = 3. The frequency of PA laser is fixed at 23Π0 + (v = 10, J = 0), the frequency of depletion laser is fixed at X1Σ+ (v = 0, J = 3) → 23Π0 + (v = 8, J’ = 4).
Fig. 4
Fig. 4 (a) Dependence of the frequency spacing ∆v on J for 85Rb133Cs in X1Σ+ (v = 0) state. The experimental data are deduced with the depletion and MW spectroscopy, while the lines are the fits to the rigid rotor model. (b) The difference of frequency spacing ∆v between the fitting value and the experimental value.

Metrics