Abstract

In this paper, we introduce and demonstrate a novel optical fiber extrinsic Fabry-Perot interferometer (EFPI) for tilt measurements with 20 nrad resolution. Compared with in-line optical fiber inclinometers, an extrinsic sensing structure is used in the inclinometer reported herein. Our design greatly improves on the tilt angle resolution, the temperature stability, and the mechanical robustness of inclinometers with advanced designs. An EFPI cavity, which is formed between endfaces of a suspended rectangular mass block and a fixed optical fiber, is packaged inside a rectangular container box with an oscillation dampening mechanism. Importantly, the two reflectors of the EFPI sensor remain parallel while the cavity length of the EFPI sensor meters a change in tilt. According to the Fabry-Perot principle, the change in the cavity length can be determined, and the tilt angle of the inclinometer can be calculated. The sensor design and the measurement principle are discussed. An experiment based on measuring the tilt angle of a simply-supported 70-cm beam induced by a small load is presented to verify the resolution of our prototype inclinometer. The experimental results demonstrate significantly higher resolution (ca. 20 nrad) compared to commercial devices. The temperature cross-talk of the inclinometer was also investigated in a separate experiment and found to be 0.0041 μrad /°C. Our inclinometer was also employed for monitoring the daily periodic variations in the tilt angle of a windowsill in a cement building caused by local temperature changes during a five-day period. The multi-day study demonstrated excellent stability and practicability for the novel device. The significant inclinometer improvements in differential tilt angle resolution, temperature compensation, and mechanical robustness also provide unique opportunities for investigating spatial-temporal modulations of gravitational fields.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

29 January 2018: A typographical correction was made to Ref. 17.


OSA Recommended Articles
Development of a parallel demodulation system used for extrinsic Fabry-Perot interferometer and fiber Bragg grating sensors

Junfeng Jiang, Tiegen Liu, Yimo Zhang, Lina Liu, Ying Zha, Fan Zhang, Yunxin Wang, and Pin Long
Appl. Opt. 45(3) 528-535 (2006)

Fiber-optic extrinsic Fabry–Perot interferometer sensors with three-wavelength digital phase demodulation

Markus Schmidt and Norbert Fürstenau
Opt. Lett. 24(9) 599-601 (1999)

References

  • View by:
  • |
  • |
  • |

  1. Y.-T. Ho, A.-B. Huang, and J.-T. Lee, “Development of a fibre Bragg grating sensored ground movement monitoring system,” Meas. Sci. Technol. 17(7), 1733–1740 (2006).
    [Crossref]
  2. H.-F. Pei, J.-H. Yin, H.-H. Zhu, C.-Y. Hong, W. Jin, and D.-S. Xu, “Monitoring of lateral displacements of a slope using a series of special fibre Bragg grating-based in-place inclinometers,” Meas. Sci. Technol. 23(2), 025007 (2012).
    [Crossref]
  3. S. Vurpillot, G. Krueger, D. Benouaich, D. Clément, and D. Inaudi, “Vertical deflection of a pre-stressed concrete bridge obtained using deformation sensors and inclinometer measurements,” ACI Struct. J. 95(5), 518–526 (1998).
  4. D. W. Ha, H. S. Park, S. W. Choi, and Y. Kim, “A wireless MEMS-based inclinometer sensor node for structural health monitoring,” Sensors (Basel) 13(12), 16090–16104 (2013).
    [Crossref] [PubMed]
  5. Y.-G. Lee, H.-K. Jang, D.-H. Kim, and C.-G. Kim, “Development of a mirror mounted fiber optic inclinometer,” Sensor Actuat, A-Phys. 184, 46–52 (2012).
  6. H.-N. Li, D.-S. Li, and G.-B. Song, “Recent applications of fiber optic sensors to health monitoring in civil engineering,” Eng. Struct. 26(11), 1647–1657 (2004).
    [Crossref]
  7. L.-Y. Shao and J. Albert, “Compact fiber-optic vector inclinometer,” Opt. Lett. 35(7), 1034–1036 (2010).
    [Crossref] [PubMed]
  8. O. Frazão, R. Falate, J. L. Fabris, J. L. Santos, L. A. Ferreira, and F. M. Araújo, “Optical inclinometer based on a single long-period fiber grating combined with a fused taper,” Opt. Lett. 31(20), 2960–2962 (2006).
    [Crossref] [PubMed]
  9. L. Amaral, O. Frazão, J. Santos, and A. L. Ribeiro, “Fiber-optic inclinometer based on taper Michelson interferometer,” IEEE Sens. J. 11(9), 1811–1814 (2011).
    [Crossref]
  10. T. Osuch, K. Markowski, A. Manujło, and K. Jędrzejewski, “Coupling independent fiber optic tilt and temperature sensor based on chirped tapered fiber Bragg grating in double-pass configuration,” Sensor Actuat. A-Phys. 252, 76–81 (2016).
  11. C.-L. Lee, W.-C. Shih, J.-M. Hsu, and J.-S. Horng, “Asymmetrical dual tapered fiber Mach-Zehnder interferometer for fiber-optic directional tilt sensor,” Opt. Express 22(20), 24646–24654 (2014).
    [Crossref] [PubMed]
  12. H. Bao, X. Dong, L.-Y. Shao, C.-L. Zhao, C. Chan, and P. Shum, “Temperature-insensitive 2-D pendulum clinometer using two fiber Bragg gratings,” IEEE Photonics Technol. Lett. 22(12), 863–865 (2010).
    [Crossref]
  13. H. Bao, X. Dong, C. Zhao, L.-Y. Shao, C. C. Chan, and P. Shum, “Temperature-insensitive FBG tilt sensor with a large measurement range,” Opt. Commun. 283(6), 968–970 (2010).
    [Crossref]
  14. B.-J. Peng, Y. Zhao, Y. Zhao, and J. Yang, “Tilt sensor with FBG technology and matched FBG demodulating method,” IEEE Sens. J. 6(1), 63–66 (2006).
    [Crossref]
  15. S. Liu, N. Liu, M. Hou, J. Guo, Z. Li, and P. Lu, “Direction-independent fiber inclinometer based on simplified hollow core photonic crystal fiber,” Opt. Lett. 38(4), 449–451 (2013).
    [Crossref] [PubMed]
  16. Q. Rong, X. Qiao, T. Guo, H. Yang, Y. Du, D. Su, R. Wang, D. Feng, M. Hu, and Z. Feng, “Orientation-dependant inclinometer based on intermodal coupling of two-LP-modes in a polarization-maintaining photonic crystal fiber,” Opt. Express 21(15), 17576–17585 (2013).
    [Crossref] [PubMed]
  17. LIGO Scientific Collaboration and Virgo Collaboration, “Observation of gravitational waves from a binary black hole merger,” Phys. Rev. Lett. 116(6), 061102 (2016).
    [Crossref] [PubMed]
  18. M. Schmidt, B. Werther, N. Fuerstenau, M. Matthias, and T. Melz, “Fiber-Optic Extrinsic Fabry-Perot Interferometer Strain Sensor with <50 pm displacement resolution using three-wavelength digital phase demodulation,” Opt. Express 8(8), 475–480 (2001).
    [Crossref] [PubMed]
  19. Y. Huang, T. Wei, Z. Zhou, Y. Zhang, G. Chen, and H. Xiao, “An extrinsic Fabry–Perot interferometer-based large strain sensor with high resolution,” Meas. Sci. Technol. 21(10), 105308 (2010).
    [Crossref]
  20. B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
    [Crossref] [PubMed]
  21. C. Zhu, Y. Chen, Y. Du, Y. Zhuang, F. Liu, R. E. Gerald, and J. Huang, “A displacement sensor with centimeter dynamic range and submicrometer resolution based on an optical interferometer,” IEEE Sens. J. 17(17), 5523–5528 (2017).
  22. Y. Du, Y. Chen, C. Zhu, Y. Zhuang, and J. Huang, “An embeddable optical strain gauge based on a buckled beam,” Rev. Sci. Instrum. 88(11), 115002 (2017).
    [Crossref] [PubMed]
  23. C. Zhu, Y. Chen, Y. Zhuang, Y. Du, R. E. Gerald, Y. Tang, and J. Huang, “An optical interferometric triaxial displacement sensor for structural health monitoring: characterization of sliding and debonding for a delamination process,” Sensors (Basel) 17(11), 2696 (2017).
    [Crossref] [PubMed]
  24. Y. Du, Y. Chen, Y. Zhuang, C. Zhu, F. Tang, and J. Huang, “Probing nanostrain via a mechanically designed optical fiber interferometer,” IEEE Photonics Technol. Lett. 29(16), 1348–1351 (2017).
    [Crossref]
  25. Wunderground.com, “Rolla, MO Forecast | weather underground “, retrieved October 25th, 2017, https://www.wunderground.com/weather/us/mo/rolla/65401 .

2017 (4)

C. Zhu, Y. Chen, Y. Du, Y. Zhuang, F. Liu, R. E. Gerald, and J. Huang, “A displacement sensor with centimeter dynamic range and submicrometer resolution based on an optical interferometer,” IEEE Sens. J. 17(17), 5523–5528 (2017).

Y. Du, Y. Chen, C. Zhu, Y. Zhuang, and J. Huang, “An embeddable optical strain gauge based on a buckled beam,” Rev. Sci. Instrum. 88(11), 115002 (2017).
[Crossref] [PubMed]

C. Zhu, Y. Chen, Y. Zhuang, Y. Du, R. E. Gerald, Y. Tang, and J. Huang, “An optical interferometric triaxial displacement sensor for structural health monitoring: characterization of sliding and debonding for a delamination process,” Sensors (Basel) 17(11), 2696 (2017).
[Crossref] [PubMed]

Y. Du, Y. Chen, Y. Zhuang, C. Zhu, F. Tang, and J. Huang, “Probing nanostrain via a mechanically designed optical fiber interferometer,” IEEE Photonics Technol. Lett. 29(16), 1348–1351 (2017).
[Crossref]

2016 (2)

T. Osuch, K. Markowski, A. Manujło, and K. Jędrzejewski, “Coupling independent fiber optic tilt and temperature sensor based on chirped tapered fiber Bragg grating in double-pass configuration,” Sensor Actuat. A-Phys. 252, 76–81 (2016).

LIGO Scientific Collaboration and Virgo Collaboration, “Observation of gravitational waves from a binary black hole merger,” Phys. Rev. Lett. 116(6), 061102 (2016).
[Crossref] [PubMed]

2014 (1)

2013 (3)

2012 (3)

Y.-G. Lee, H.-K. Jang, D.-H. Kim, and C.-G. Kim, “Development of a mirror mounted fiber optic inclinometer,” Sensor Actuat, A-Phys. 184, 46–52 (2012).

H.-F. Pei, J.-H. Yin, H.-H. Zhu, C.-Y. Hong, W. Jin, and D.-S. Xu, “Monitoring of lateral displacements of a slope using a series of special fibre Bragg grating-based in-place inclinometers,” Meas. Sci. Technol. 23(2), 025007 (2012).
[Crossref]

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
[Crossref] [PubMed]

2011 (1)

L. Amaral, O. Frazão, J. Santos, and A. L. Ribeiro, “Fiber-optic inclinometer based on taper Michelson interferometer,” IEEE Sens. J. 11(9), 1811–1814 (2011).
[Crossref]

2010 (4)

H. Bao, X. Dong, L.-Y. Shao, C.-L. Zhao, C. Chan, and P. Shum, “Temperature-insensitive 2-D pendulum clinometer using two fiber Bragg gratings,” IEEE Photonics Technol. Lett. 22(12), 863–865 (2010).
[Crossref]

H. Bao, X. Dong, C. Zhao, L.-Y. Shao, C. C. Chan, and P. Shum, “Temperature-insensitive FBG tilt sensor with a large measurement range,” Opt. Commun. 283(6), 968–970 (2010).
[Crossref]

Y. Huang, T. Wei, Z. Zhou, Y. Zhang, G. Chen, and H. Xiao, “An extrinsic Fabry–Perot interferometer-based large strain sensor with high resolution,” Meas. Sci. Technol. 21(10), 105308 (2010).
[Crossref]

L.-Y. Shao and J. Albert, “Compact fiber-optic vector inclinometer,” Opt. Lett. 35(7), 1034–1036 (2010).
[Crossref] [PubMed]

2006 (3)

O. Frazão, R. Falate, J. L. Fabris, J. L. Santos, L. A. Ferreira, and F. M. Araújo, “Optical inclinometer based on a single long-period fiber grating combined with a fused taper,” Opt. Lett. 31(20), 2960–2962 (2006).
[Crossref] [PubMed]

B.-J. Peng, Y. Zhao, Y. Zhao, and J. Yang, “Tilt sensor with FBG technology and matched FBG demodulating method,” IEEE Sens. J. 6(1), 63–66 (2006).
[Crossref]

Y.-T. Ho, A.-B. Huang, and J.-T. Lee, “Development of a fibre Bragg grating sensored ground movement monitoring system,” Meas. Sci. Technol. 17(7), 1733–1740 (2006).
[Crossref]

2004 (1)

H.-N. Li, D.-S. Li, and G.-B. Song, “Recent applications of fiber optic sensors to health monitoring in civil engineering,” Eng. Struct. 26(11), 1647–1657 (2004).
[Crossref]

2001 (1)

1998 (1)

S. Vurpillot, G. Krueger, D. Benouaich, D. Clément, and D. Inaudi, “Vertical deflection of a pre-stressed concrete bridge obtained using deformation sensors and inclinometer measurements,” ACI Struct. J. 95(5), 518–526 (1998).

Albert, J.

Amaral, L.

L. Amaral, O. Frazão, J. Santos, and A. L. Ribeiro, “Fiber-optic inclinometer based on taper Michelson interferometer,” IEEE Sens. J. 11(9), 1811–1814 (2011).
[Crossref]

Araújo, F. M.

Bao, H.

H. Bao, X. Dong, L.-Y. Shao, C.-L. Zhao, C. Chan, and P. Shum, “Temperature-insensitive 2-D pendulum clinometer using two fiber Bragg gratings,” IEEE Photonics Technol. Lett. 22(12), 863–865 (2010).
[Crossref]

H. Bao, X. Dong, C. Zhao, L.-Y. Shao, C. C. Chan, and P. Shum, “Temperature-insensitive FBG tilt sensor with a large measurement range,” Opt. Commun. 283(6), 968–970 (2010).
[Crossref]

Benouaich, D.

S. Vurpillot, G. Krueger, D. Benouaich, D. Clément, and D. Inaudi, “Vertical deflection of a pre-stressed concrete bridge obtained using deformation sensors and inclinometer measurements,” ACI Struct. J. 95(5), 518–526 (1998).

Chan, C.

H. Bao, X. Dong, L.-Y. Shao, C.-L. Zhao, C. Chan, and P. Shum, “Temperature-insensitive 2-D pendulum clinometer using two fiber Bragg gratings,” IEEE Photonics Technol. Lett. 22(12), 863–865 (2010).
[Crossref]

Chan, C. C.

H. Bao, X. Dong, C. Zhao, L.-Y. Shao, C. C. Chan, and P. Shum, “Temperature-insensitive FBG tilt sensor with a large measurement range,” Opt. Commun. 283(6), 968–970 (2010).
[Crossref]

Chen, G.

Y. Huang, T. Wei, Z. Zhou, Y. Zhang, G. Chen, and H. Xiao, “An extrinsic Fabry–Perot interferometer-based large strain sensor with high resolution,” Meas. Sci. Technol. 21(10), 105308 (2010).
[Crossref]

Chen, Y.

C. Zhu, Y. Chen, Y. Du, Y. Zhuang, F. Liu, R. E. Gerald, and J. Huang, “A displacement sensor with centimeter dynamic range and submicrometer resolution based on an optical interferometer,” IEEE Sens. J. 17(17), 5523–5528 (2017).

Y. Du, Y. Chen, C. Zhu, Y. Zhuang, and J. Huang, “An embeddable optical strain gauge based on a buckled beam,” Rev. Sci. Instrum. 88(11), 115002 (2017).
[Crossref] [PubMed]

C. Zhu, Y. Chen, Y. Zhuang, Y. Du, R. E. Gerald, Y. Tang, and J. Huang, “An optical interferometric triaxial displacement sensor for structural health monitoring: characterization of sliding and debonding for a delamination process,” Sensors (Basel) 17(11), 2696 (2017).
[Crossref] [PubMed]

Y. Du, Y. Chen, Y. Zhuang, C. Zhu, F. Tang, and J. Huang, “Probing nanostrain via a mechanically designed optical fiber interferometer,” IEEE Photonics Technol. Lett. 29(16), 1348–1351 (2017).
[Crossref]

Choi, H. Y.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
[Crossref] [PubMed]

Choi, S. W.

D. W. Ha, H. S. Park, S. W. Choi, and Y. Kim, “A wireless MEMS-based inclinometer sensor node for structural health monitoring,” Sensors (Basel) 13(12), 16090–16104 (2013).
[Crossref] [PubMed]

Clément, D.

S. Vurpillot, G. Krueger, D. Benouaich, D. Clément, and D. Inaudi, “Vertical deflection of a pre-stressed concrete bridge obtained using deformation sensors and inclinometer measurements,” ACI Struct. J. 95(5), 518–526 (1998).

Dong, X.

H. Bao, X. Dong, C. Zhao, L.-Y. Shao, C. C. Chan, and P. Shum, “Temperature-insensitive FBG tilt sensor with a large measurement range,” Opt. Commun. 283(6), 968–970 (2010).
[Crossref]

H. Bao, X. Dong, L.-Y. Shao, C.-L. Zhao, C. Chan, and P. Shum, “Temperature-insensitive 2-D pendulum clinometer using two fiber Bragg gratings,” IEEE Photonics Technol. Lett. 22(12), 863–865 (2010).
[Crossref]

Du, Y.

C. Zhu, Y. Chen, Y. Du, Y. Zhuang, F. Liu, R. E. Gerald, and J. Huang, “A displacement sensor with centimeter dynamic range and submicrometer resolution based on an optical interferometer,” IEEE Sens. J. 17(17), 5523–5528 (2017).

Y. Du, Y. Chen, Y. Zhuang, C. Zhu, F. Tang, and J. Huang, “Probing nanostrain via a mechanically designed optical fiber interferometer,” IEEE Photonics Technol. Lett. 29(16), 1348–1351 (2017).
[Crossref]

C. Zhu, Y. Chen, Y. Zhuang, Y. Du, R. E. Gerald, Y. Tang, and J. Huang, “An optical interferometric triaxial displacement sensor for structural health monitoring: characterization of sliding and debonding for a delamination process,” Sensors (Basel) 17(11), 2696 (2017).
[Crossref] [PubMed]

Y. Du, Y. Chen, C. Zhu, Y. Zhuang, and J. Huang, “An embeddable optical strain gauge based on a buckled beam,” Rev. Sci. Instrum. 88(11), 115002 (2017).
[Crossref] [PubMed]

Q. Rong, X. Qiao, T. Guo, H. Yang, Y. Du, D. Su, R. Wang, D. Feng, M. Hu, and Z. Feng, “Orientation-dependant inclinometer based on intermodal coupling of two-LP-modes in a polarization-maintaining photonic crystal fiber,” Opt. Express 21(15), 17576–17585 (2013).
[Crossref] [PubMed]

Eom, J. B.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
[Crossref] [PubMed]

Fabris, J. L.

Falate, R.

Feng, D.

Feng, Z.

Ferreira, L. A.

Frazão, O.

Fuerstenau, N.

Gerald, R. E.

C. Zhu, Y. Chen, Y. Zhuang, Y. Du, R. E. Gerald, Y. Tang, and J. Huang, “An optical interferometric triaxial displacement sensor for structural health monitoring: characterization of sliding and debonding for a delamination process,” Sensors (Basel) 17(11), 2696 (2017).
[Crossref] [PubMed]

C. Zhu, Y. Chen, Y. Du, Y. Zhuang, F. Liu, R. E. Gerald, and J. Huang, “A displacement sensor with centimeter dynamic range and submicrometer resolution based on an optical interferometer,” IEEE Sens. J. 17(17), 5523–5528 (2017).

Guo, J.

Guo, T.

Ha, D. W.

D. W. Ha, H. S. Park, S. W. Choi, and Y. Kim, “A wireless MEMS-based inclinometer sensor node for structural health monitoring,” Sensors (Basel) 13(12), 16090–16104 (2013).
[Crossref] [PubMed]

Ho, Y.-T.

Y.-T. Ho, A.-B. Huang, and J.-T. Lee, “Development of a fibre Bragg grating sensored ground movement monitoring system,” Meas. Sci. Technol. 17(7), 1733–1740 (2006).
[Crossref]

Hong, C.-Y.

H.-F. Pei, J.-H. Yin, H.-H. Zhu, C.-Y. Hong, W. Jin, and D.-S. Xu, “Monitoring of lateral displacements of a slope using a series of special fibre Bragg grating-based in-place inclinometers,” Meas. Sci. Technol. 23(2), 025007 (2012).
[Crossref]

Horng, J.-S.

Hou, M.

Hsu, J.-M.

Hu, M.

Huang, A.-B.

Y.-T. Ho, A.-B. Huang, and J.-T. Lee, “Development of a fibre Bragg grating sensored ground movement monitoring system,” Meas. Sci. Technol. 17(7), 1733–1740 (2006).
[Crossref]

Huang, J.

C. Zhu, Y. Chen, Y. Du, Y. Zhuang, F. Liu, R. E. Gerald, and J. Huang, “A displacement sensor with centimeter dynamic range and submicrometer resolution based on an optical interferometer,” IEEE Sens. J. 17(17), 5523–5528 (2017).

Y. Du, Y. Chen, C. Zhu, Y. Zhuang, and J. Huang, “An embeddable optical strain gauge based on a buckled beam,” Rev. Sci. Instrum. 88(11), 115002 (2017).
[Crossref] [PubMed]

C. Zhu, Y. Chen, Y. Zhuang, Y. Du, R. E. Gerald, Y. Tang, and J. Huang, “An optical interferometric triaxial displacement sensor for structural health monitoring: characterization of sliding and debonding for a delamination process,” Sensors (Basel) 17(11), 2696 (2017).
[Crossref] [PubMed]

Y. Du, Y. Chen, Y. Zhuang, C. Zhu, F. Tang, and J. Huang, “Probing nanostrain via a mechanically designed optical fiber interferometer,” IEEE Photonics Technol. Lett. 29(16), 1348–1351 (2017).
[Crossref]

Huang, Y.

Y. Huang, T. Wei, Z. Zhou, Y. Zhang, G. Chen, and H. Xiao, “An extrinsic Fabry–Perot interferometer-based large strain sensor with high resolution,” Meas. Sci. Technol. 21(10), 105308 (2010).
[Crossref]

Inaudi, D.

S. Vurpillot, G. Krueger, D. Benouaich, D. Clément, and D. Inaudi, “Vertical deflection of a pre-stressed concrete bridge obtained using deformation sensors and inclinometer measurements,” ACI Struct. J. 95(5), 518–526 (1998).

Jang, H.-K.

Y.-G. Lee, H.-K. Jang, D.-H. Kim, and C.-G. Kim, “Development of a mirror mounted fiber optic inclinometer,” Sensor Actuat, A-Phys. 184, 46–52 (2012).

Jedrzejewski, K.

T. Osuch, K. Markowski, A. Manujło, and K. Jędrzejewski, “Coupling independent fiber optic tilt and temperature sensor based on chirped tapered fiber Bragg grating in double-pass configuration,” Sensor Actuat. A-Phys. 252, 76–81 (2016).

Jin, W.

H.-F. Pei, J.-H. Yin, H.-H. Zhu, C.-Y. Hong, W. Jin, and D.-S. Xu, “Monitoring of lateral displacements of a slope using a series of special fibre Bragg grating-based in-place inclinometers,” Meas. Sci. Technol. 23(2), 025007 (2012).
[Crossref]

Kim, C.-G.

Y.-G. Lee, H.-K. Jang, D.-H. Kim, and C.-G. Kim, “Development of a mirror mounted fiber optic inclinometer,” Sensor Actuat, A-Phys. 184, 46–52 (2012).

Kim, D.-H.

Y.-G. Lee, H.-K. Jang, D.-H. Kim, and C.-G. Kim, “Development of a mirror mounted fiber optic inclinometer,” Sensor Actuat, A-Phys. 184, 46–52 (2012).

Kim, M. J.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
[Crossref] [PubMed]

Kim, Y.

D. W. Ha, H. S. Park, S. W. Choi, and Y. Kim, “A wireless MEMS-based inclinometer sensor node for structural health monitoring,” Sensors (Basel) 13(12), 16090–16104 (2013).
[Crossref] [PubMed]

Kim, Y. H.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
[Crossref] [PubMed]

Krueger, G.

S. Vurpillot, G. Krueger, D. Benouaich, D. Clément, and D. Inaudi, “Vertical deflection of a pre-stressed concrete bridge obtained using deformation sensors and inclinometer measurements,” ACI Struct. J. 95(5), 518–526 (1998).

Lee, B. H.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
[Crossref] [PubMed]

Lee, C.-L.

Lee, J.-T.

Y.-T. Ho, A.-B. Huang, and J.-T. Lee, “Development of a fibre Bragg grating sensored ground movement monitoring system,” Meas. Sci. Technol. 17(7), 1733–1740 (2006).
[Crossref]

Lee, Y.-G.

Y.-G. Lee, H.-K. Jang, D.-H. Kim, and C.-G. Kim, “Development of a mirror mounted fiber optic inclinometer,” Sensor Actuat, A-Phys. 184, 46–52 (2012).

Li, D.-S.

H.-N. Li, D.-S. Li, and G.-B. Song, “Recent applications of fiber optic sensors to health monitoring in civil engineering,” Eng. Struct. 26(11), 1647–1657 (2004).
[Crossref]

Li, H.-N.

H.-N. Li, D.-S. Li, and G.-B. Song, “Recent applications of fiber optic sensors to health monitoring in civil engineering,” Eng. Struct. 26(11), 1647–1657 (2004).
[Crossref]

Li, Z.

Liu, F.

C. Zhu, Y. Chen, Y. Du, Y. Zhuang, F. Liu, R. E. Gerald, and J. Huang, “A displacement sensor with centimeter dynamic range and submicrometer resolution based on an optical interferometer,” IEEE Sens. J. 17(17), 5523–5528 (2017).

Liu, N.

Liu, S.

Lu, P.

Manujlo, A.

T. Osuch, K. Markowski, A. Manujło, and K. Jędrzejewski, “Coupling independent fiber optic tilt and temperature sensor based on chirped tapered fiber Bragg grating in double-pass configuration,” Sensor Actuat. A-Phys. 252, 76–81 (2016).

Markowski, K.

T. Osuch, K. Markowski, A. Manujło, and K. Jędrzejewski, “Coupling independent fiber optic tilt and temperature sensor based on chirped tapered fiber Bragg grating in double-pass configuration,” Sensor Actuat. A-Phys. 252, 76–81 (2016).

Matthias, M.

Melz, T.

Osuch, T.

T. Osuch, K. Markowski, A. Manujło, and K. Jędrzejewski, “Coupling independent fiber optic tilt and temperature sensor based on chirped tapered fiber Bragg grating in double-pass configuration,” Sensor Actuat. A-Phys. 252, 76–81 (2016).

Park, H. S.

D. W. Ha, H. S. Park, S. W. Choi, and Y. Kim, “A wireless MEMS-based inclinometer sensor node for structural health monitoring,” Sensors (Basel) 13(12), 16090–16104 (2013).
[Crossref] [PubMed]

Park, K. S.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
[Crossref] [PubMed]

Pei, H.-F.

H.-F. Pei, J.-H. Yin, H.-H. Zhu, C.-Y. Hong, W. Jin, and D.-S. Xu, “Monitoring of lateral displacements of a slope using a series of special fibre Bragg grating-based in-place inclinometers,” Meas. Sci. Technol. 23(2), 025007 (2012).
[Crossref]

Peng, B.-J.

B.-J. Peng, Y. Zhao, Y. Zhao, and J. Yang, “Tilt sensor with FBG technology and matched FBG demodulating method,” IEEE Sens. J. 6(1), 63–66 (2006).
[Crossref]

Qiao, X.

Rho, B. S.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
[Crossref] [PubMed]

Ribeiro, A. L.

L. Amaral, O. Frazão, J. Santos, and A. L. Ribeiro, “Fiber-optic inclinometer based on taper Michelson interferometer,” IEEE Sens. J. 11(9), 1811–1814 (2011).
[Crossref]

Rong, Q.

Santos, J.

L. Amaral, O. Frazão, J. Santos, and A. L. Ribeiro, “Fiber-optic inclinometer based on taper Michelson interferometer,” IEEE Sens. J. 11(9), 1811–1814 (2011).
[Crossref]

Santos, J. L.

Schmidt, M.

Shao, L.-Y.

L.-Y. Shao and J. Albert, “Compact fiber-optic vector inclinometer,” Opt. Lett. 35(7), 1034–1036 (2010).
[Crossref] [PubMed]

H. Bao, X. Dong, L.-Y. Shao, C.-L. Zhao, C. Chan, and P. Shum, “Temperature-insensitive 2-D pendulum clinometer using two fiber Bragg gratings,” IEEE Photonics Technol. Lett. 22(12), 863–865 (2010).
[Crossref]

H. Bao, X. Dong, C. Zhao, L.-Y. Shao, C. C. Chan, and P. Shum, “Temperature-insensitive FBG tilt sensor with a large measurement range,” Opt. Commun. 283(6), 968–970 (2010).
[Crossref]

Shih, W.-C.

Shum, P.

H. Bao, X. Dong, L.-Y. Shao, C.-L. Zhao, C. Chan, and P. Shum, “Temperature-insensitive 2-D pendulum clinometer using two fiber Bragg gratings,” IEEE Photonics Technol. Lett. 22(12), 863–865 (2010).
[Crossref]

H. Bao, X. Dong, C. Zhao, L.-Y. Shao, C. C. Chan, and P. Shum, “Temperature-insensitive FBG tilt sensor with a large measurement range,” Opt. Commun. 283(6), 968–970 (2010).
[Crossref]

Song, G.-B.

H.-N. Li, D.-S. Li, and G.-B. Song, “Recent applications of fiber optic sensors to health monitoring in civil engineering,” Eng. Struct. 26(11), 1647–1657 (2004).
[Crossref]

Su, D.

Tang, F.

Y. Du, Y. Chen, Y. Zhuang, C. Zhu, F. Tang, and J. Huang, “Probing nanostrain via a mechanically designed optical fiber interferometer,” IEEE Photonics Technol. Lett. 29(16), 1348–1351 (2017).
[Crossref]

Tang, Y.

C. Zhu, Y. Chen, Y. Zhuang, Y. Du, R. E. Gerald, Y. Tang, and J. Huang, “An optical interferometric triaxial displacement sensor for structural health monitoring: characterization of sliding and debonding for a delamination process,” Sensors (Basel) 17(11), 2696 (2017).
[Crossref] [PubMed]

Vurpillot, S.

S. Vurpillot, G. Krueger, D. Benouaich, D. Clément, and D. Inaudi, “Vertical deflection of a pre-stressed concrete bridge obtained using deformation sensors and inclinometer measurements,” ACI Struct. J. 95(5), 518–526 (1998).

Wang, R.

Wei, T.

Y. Huang, T. Wei, Z. Zhou, Y. Zhang, G. Chen, and H. Xiao, “An extrinsic Fabry–Perot interferometer-based large strain sensor with high resolution,” Meas. Sci. Technol. 21(10), 105308 (2010).
[Crossref]

Werther, B.

Xiao, H.

Y. Huang, T. Wei, Z. Zhou, Y. Zhang, G. Chen, and H. Xiao, “An extrinsic Fabry–Perot interferometer-based large strain sensor with high resolution,” Meas. Sci. Technol. 21(10), 105308 (2010).
[Crossref]

Xu, D.-S.

H.-F. Pei, J.-H. Yin, H.-H. Zhu, C.-Y. Hong, W. Jin, and D.-S. Xu, “Monitoring of lateral displacements of a slope using a series of special fibre Bragg grating-based in-place inclinometers,” Meas. Sci. Technol. 23(2), 025007 (2012).
[Crossref]

Yang, H.

Yang, J.

B.-J. Peng, Y. Zhao, Y. Zhao, and J. Yang, “Tilt sensor with FBG technology and matched FBG demodulating method,” IEEE Sens. J. 6(1), 63–66 (2006).
[Crossref]

Yin, J.-H.

H.-F. Pei, J.-H. Yin, H.-H. Zhu, C.-Y. Hong, W. Jin, and D.-S. Xu, “Monitoring of lateral displacements of a slope using a series of special fibre Bragg grating-based in-place inclinometers,” Meas. Sci. Technol. 23(2), 025007 (2012).
[Crossref]

Zhang, Y.

Y. Huang, T. Wei, Z. Zhou, Y. Zhang, G. Chen, and H. Xiao, “An extrinsic Fabry–Perot interferometer-based large strain sensor with high resolution,” Meas. Sci. Technol. 21(10), 105308 (2010).
[Crossref]

Zhao, C.

H. Bao, X. Dong, C. Zhao, L.-Y. Shao, C. C. Chan, and P. Shum, “Temperature-insensitive FBG tilt sensor with a large measurement range,” Opt. Commun. 283(6), 968–970 (2010).
[Crossref]

Zhao, C.-L.

H. Bao, X. Dong, L.-Y. Shao, C.-L. Zhao, C. Chan, and P. Shum, “Temperature-insensitive 2-D pendulum clinometer using two fiber Bragg gratings,” IEEE Photonics Technol. Lett. 22(12), 863–865 (2010).
[Crossref]

Zhao, Y.

B.-J. Peng, Y. Zhao, Y. Zhao, and J. Yang, “Tilt sensor with FBG technology and matched FBG demodulating method,” IEEE Sens. J. 6(1), 63–66 (2006).
[Crossref]

B.-J. Peng, Y. Zhao, Y. Zhao, and J. Yang, “Tilt sensor with FBG technology and matched FBG demodulating method,” IEEE Sens. J. 6(1), 63–66 (2006).
[Crossref]

Zhou, Z.

Y. Huang, T. Wei, Z. Zhou, Y. Zhang, G. Chen, and H. Xiao, “An extrinsic Fabry–Perot interferometer-based large strain sensor with high resolution,” Meas. Sci. Technol. 21(10), 105308 (2010).
[Crossref]

Zhu, C.

C. Zhu, Y. Chen, Y. Du, Y. Zhuang, F. Liu, R. E. Gerald, and J. Huang, “A displacement sensor with centimeter dynamic range and submicrometer resolution based on an optical interferometer,” IEEE Sens. J. 17(17), 5523–5528 (2017).

C. Zhu, Y. Chen, Y. Zhuang, Y. Du, R. E. Gerald, Y. Tang, and J. Huang, “An optical interferometric triaxial displacement sensor for structural health monitoring: characterization of sliding and debonding for a delamination process,” Sensors (Basel) 17(11), 2696 (2017).
[Crossref] [PubMed]

Y. Du, Y. Chen, C. Zhu, Y. Zhuang, and J. Huang, “An embeddable optical strain gauge based on a buckled beam,” Rev. Sci. Instrum. 88(11), 115002 (2017).
[Crossref] [PubMed]

Y. Du, Y. Chen, Y. Zhuang, C. Zhu, F. Tang, and J. Huang, “Probing nanostrain via a mechanically designed optical fiber interferometer,” IEEE Photonics Technol. Lett. 29(16), 1348–1351 (2017).
[Crossref]

Zhu, H.-H.

H.-F. Pei, J.-H. Yin, H.-H. Zhu, C.-Y. Hong, W. Jin, and D.-S. Xu, “Monitoring of lateral displacements of a slope using a series of special fibre Bragg grating-based in-place inclinometers,” Meas. Sci. Technol. 23(2), 025007 (2012).
[Crossref]

Zhuang, Y.

Y. Du, Y. Chen, C. Zhu, Y. Zhuang, and J. Huang, “An embeddable optical strain gauge based on a buckled beam,” Rev. Sci. Instrum. 88(11), 115002 (2017).
[Crossref] [PubMed]

C. Zhu, Y. Chen, Y. Zhuang, Y. Du, R. E. Gerald, Y. Tang, and J. Huang, “An optical interferometric triaxial displacement sensor for structural health monitoring: characterization of sliding and debonding for a delamination process,” Sensors (Basel) 17(11), 2696 (2017).
[Crossref] [PubMed]

C. Zhu, Y. Chen, Y. Du, Y. Zhuang, F. Liu, R. E. Gerald, and J. Huang, “A displacement sensor with centimeter dynamic range and submicrometer resolution based on an optical interferometer,” IEEE Sens. J. 17(17), 5523–5528 (2017).

Y. Du, Y. Chen, Y. Zhuang, C. Zhu, F. Tang, and J. Huang, “Probing nanostrain via a mechanically designed optical fiber interferometer,” IEEE Photonics Technol. Lett. 29(16), 1348–1351 (2017).
[Crossref]

ACI Struct. J. (1)

S. Vurpillot, G. Krueger, D. Benouaich, D. Clément, and D. Inaudi, “Vertical deflection of a pre-stressed concrete bridge obtained using deformation sensors and inclinometer measurements,” ACI Struct. J. 95(5), 518–526 (1998).

Eng. Struct. (1)

H.-N. Li, D.-S. Li, and G.-B. Song, “Recent applications of fiber optic sensors to health monitoring in civil engineering,” Eng. Struct. 26(11), 1647–1657 (2004).
[Crossref]

IEEE Photonics Technol. Lett. (2)

H. Bao, X. Dong, L.-Y. Shao, C.-L. Zhao, C. Chan, and P. Shum, “Temperature-insensitive 2-D pendulum clinometer using two fiber Bragg gratings,” IEEE Photonics Technol. Lett. 22(12), 863–865 (2010).
[Crossref]

Y. Du, Y. Chen, Y. Zhuang, C. Zhu, F. Tang, and J. Huang, “Probing nanostrain via a mechanically designed optical fiber interferometer,” IEEE Photonics Technol. Lett. 29(16), 1348–1351 (2017).
[Crossref]

IEEE Sens. J. (3)

C. Zhu, Y. Chen, Y. Du, Y. Zhuang, F. Liu, R. E. Gerald, and J. Huang, “A displacement sensor with centimeter dynamic range and submicrometer resolution based on an optical interferometer,” IEEE Sens. J. 17(17), 5523–5528 (2017).

B.-J. Peng, Y. Zhao, Y. Zhao, and J. Yang, “Tilt sensor with FBG technology and matched FBG demodulating method,” IEEE Sens. J. 6(1), 63–66 (2006).
[Crossref]

L. Amaral, O. Frazão, J. Santos, and A. L. Ribeiro, “Fiber-optic inclinometer based on taper Michelson interferometer,” IEEE Sens. J. 11(9), 1811–1814 (2011).
[Crossref]

Meas. Sci. Technol. (3)

Y.-T. Ho, A.-B. Huang, and J.-T. Lee, “Development of a fibre Bragg grating sensored ground movement monitoring system,” Meas. Sci. Technol. 17(7), 1733–1740 (2006).
[Crossref]

H.-F. Pei, J.-H. Yin, H.-H. Zhu, C.-Y. Hong, W. Jin, and D.-S. Xu, “Monitoring of lateral displacements of a slope using a series of special fibre Bragg grating-based in-place inclinometers,” Meas. Sci. Technol. 23(2), 025007 (2012).
[Crossref]

Y. Huang, T. Wei, Z. Zhou, Y. Zhang, G. Chen, and H. Xiao, “An extrinsic Fabry–Perot interferometer-based large strain sensor with high resolution,” Meas. Sci. Technol. 21(10), 105308 (2010).
[Crossref]

Opt. Commun. (1)

H. Bao, X. Dong, C. Zhao, L.-Y. Shao, C. C. Chan, and P. Shum, “Temperature-insensitive FBG tilt sensor with a large measurement range,” Opt. Commun. 283(6), 968–970 (2010).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

LIGO Scientific Collaboration and Virgo Collaboration, “Observation of gravitational waves from a binary black hole merger,” Phys. Rev. Lett. 116(6), 061102 (2016).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

Y. Du, Y. Chen, C. Zhu, Y. Zhuang, and J. Huang, “An embeddable optical strain gauge based on a buckled beam,” Rev. Sci. Instrum. 88(11), 115002 (2017).
[Crossref] [PubMed]

Sensor Actuat, A-Phys. (1)

Y.-G. Lee, H.-K. Jang, D.-H. Kim, and C.-G. Kim, “Development of a mirror mounted fiber optic inclinometer,” Sensor Actuat, A-Phys. 184, 46–52 (2012).

Sensor Actuat. A-Phys. (1)

T. Osuch, K. Markowski, A. Manujło, and K. Jędrzejewski, “Coupling independent fiber optic tilt and temperature sensor based on chirped tapered fiber Bragg grating in double-pass configuration,” Sensor Actuat. A-Phys. 252, 76–81 (2016).

Sensors (Basel) (3)

D. W. Ha, H. S. Park, S. W. Choi, and Y. Kim, “A wireless MEMS-based inclinometer sensor node for structural health monitoring,” Sensors (Basel) 13(12), 16090–16104 (2013).
[Crossref] [PubMed]

C. Zhu, Y. Chen, Y. Zhuang, Y. Du, R. E. Gerald, Y. Tang, and J. Huang, “An optical interferometric triaxial displacement sensor for structural health monitoring: characterization of sliding and debonding for a delamination process,” Sensors (Basel) 17(11), 2696 (2017).
[Crossref] [PubMed]

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
[Crossref] [PubMed]

Other (1)

Wunderground.com, “Rolla, MO Forecast | weather underground “, retrieved October 25th, 2017, https://www.wunderground.com/weather/us/mo/rolla/65401 .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic diagrams and photograph of novel inclinometer. (a) Partial schematic diagram of the inclinometer. A rectangular mass block is flexibly connected to the top plate of the rectangular metal container box by two ropes with the same length. An optical fiber is rigidly connected to the top plate of the container box using a supporting rod. The EFPI sensor is formed by the combined endface of the optical fiber and the adjacent endface of the mass block. The endface of the mass block is sputtered with gold to form a highly reflective mirror surface. (b) Partial schematic diagram of the inclinometer tilted to an angle θ. The two endface reflectors of the EFPI sensor always maintain a mutual parallel disposition. (c) Partial schematic diagram of the inclinometer including an oscillation dampening device. The mass block is connected to a cross paddle which is immersed into a damping fluid. (d) Photograph of a prototype inclinometer. The inclinometer is made of Invar to reduce the temperature cross-sensitivity.
Fig. 2
Fig. 2 Experimental apparatus for verifying the inclinometer using a simply-supported beam. (a) Schematic cross-section diagram of the tilt angle verification experiment based on a simply-supported beam. The inclinometer is placed at the location of a support point. Copper washers were used to provide the load for tilting the beam. (b) A photograph of the experimental test setup and the inclinometer. Schematic diagram of the test measurement setup that is coupled to the inclinometer. A Micron Optics SM125 was used as the source and demodulation device. A personal computer was used to analyze the interference spectra.
Fig. 3
Fig. 3 Experimental data for verifying the inclinometer using a simply-supported beam. (a) Interference spectrum of the EFPI-based inclinometer without a load applied to the beam. The spectrum was recorded from 1510 nm to 1590 nm. (b)The verification result of the EFPI-based inclinometer. The measured change in the cavity length and the calculated tilt angle are shown as a function of time. Every five minutes, the load was increased by 2.000 g, and every minute the interference spectrum was recorded. The inset shows the change in the cavity length and the measured tilt angle from 41 to 45 minutes. (c) The average calculated tilt angle correlated to the calculated applied tilt angle and a linear fit was the result. The equation for the linear fit is y = 1.03495 × x-0.00107, where y represents average calculated tilt angle and x represents calculated applied tilt angle.
Fig. 4
Fig. 4 Experimental setup and results for quantifying the effects of temperature on the inclinometer. Note that the inclinometer is suspended inside the oven by resting on a cylindrical rod of fused silica that is in direct contact with the floor of the laboratory and has no contact with the oven. (a) Experimental setup for testing the response of the prototype inclinometer to variations in temperature. The inclinometer was placed inside a temperature-controlled box filling with insulating foam. The inclinometer was placed on a solid cylindrical rod base of fused silica positioned at the bottom of the box. (b) EFPI cavity length change derived from all of the recorded interference signals as a function of temperature. The temperature in the temperature-controlled box was increased from 0 to 50 °C with a step size of 10 °C. (c) Average equivalent tilt angle change as a function of temperature. The linear fit result is shown as a red line. The slope of the linear fit result indicates that the temperature cross-talk for tilt angle measurements is 0.0041 μrad/°C.
Fig. 5
Fig. 5 A real-world application for the use of the reported inclinometer. (a) The experimental setup for monitoring variations in the tilt angle of a windowsill caused by periodic changes in the incident radiation from the sun. The inclinometer was placed on a marble windowsill, and it was sealed in a foam box, which kept the temperature inside constant and reduced the influence of temperature on the inclinometer. The window is facing south. (b) The measured tilt angle of a windowsill and local temperature change as a function of time during a five-day measurement period (from 8:00 AM on March 8th, 2017 to 8:00 AM on March 13th, 2017). An interference spectrum was recorded every ten minutes, and the cavity length was measured to calculate the tilt angle. The measured tilt angle and the published local area temperature curve follow a similar trend, showing that they are correlated. Five peaks and five valleys can be observed in both curves, corresponding approximately to 2 PM and 3 AM every day, respectively.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ θ = arc sin ( Δ d l )
Δ θ = arc sin ( Δ d l ) Δ d l
Δ d t = ( d α C T E 1 + l θ α C T E 2 ) Δ T
I 0 = I 1 + I 2 + 2 I 1 I 2 cos ( 4 π n d λ + φ )
F S R = λ c 2 2 d
Δ d = λ c 2 Δ F S R 2 F S R 0 F S R 1
θ = F l s 2 16 E I

Metrics