Abstract

We report on soliton-fission mediated infrared supercontinuum generation in liquid-core step-index fibers using highly transparent carbon chlorides (CCl4, C2Cl4). By developing models for the refractive index dispersions and nonlinear response functions, dispersion engineering and pumping with an ultrafast thulium fiber laser (300 fs) at 1.92 μm, distinct soliton fission and dispersive wave generation was observed, particularly in the case of tetrachloroethylene (C2Cl4). The measured results match simulations of both the generalized and a hybrid nonlinear Schrödinger equation, with the latter resembling the characteristics of non-instantaneous medium via a static potential term and representing a simulation tool with substantially reduced complexity. We show that C2Cl4 has the potential for observing non-instantaneous soliton dynamics along meters of liquid-core fiber opening a feasible route for directly observing hybrid soliton dynamics.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

19 March 2018: Typographical corrections were made to the body text and Ref. 22.


OSA Recommended Articles
Thermodynamic control of soliton dynamics in liquid-core fibers

Mario Chemnitz, Ramona Scheibinger, Christian Gaida, Martin Gebhardt, Fabian Stutzki, Sebastian Pumpe, Jens Kobelke, Andreas Tünnermann, Jens Limpert, and Markus A. Schmidt
Optica 5(6) 695-703 (2018)

Supercontinuum generation in an all-normal dispersion large core photonic crystal fiber infiltrated with carbon tetrachloride

Van Thuy Hoang, Rafal Kasztelanic, Adam Filipkowski, Grzegorz Stępniewski, Dariusz Pysz, Mariusz Klimczak, Sławomir Ertman, Van Cao Long, Tomasz R. Woliński, Marek Trippenbach, Khoa Dinh Xuan, Mateusz Śmietana, and Ryszard Buczyński
Opt. Mater. Express 9(5) 2264-2278 (2019)

Optimization of optical properties of photonic crystal fibers infiltrated with carbon tetrachloride for supercontinuum generation with subnanojoule femtosecond pulses

Quang Ho Dinh, Jacek Pniewski, Hieu Le Van, Aleksandr Ramaniuk, Van Cao Long, Krzysztof Borzycki, Khoa Dinh Xuan, Mariusz Klimczak, and Ryszard Buczyński
Appl. Opt. 57(14) 3738-3746 (2018)

References

  • View by:
  • |
  • |
  • |

  1. U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Laser Eng. 44, 699–710 (2006).
    [Crossref]
  2. A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
    [Crossref]
  3. M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid Optical Fibers - An Innovative Platform for In-Fiber Photonic Devices,” Adv. Opt. Mater. 4, 13–36 (2016).
    [Crossref]
  4. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
    [Crossref]
  5. S. Xie, F. Tani, J. C. Travers, P. Uebel, C. Caillaud, J. Troles, M. A. Schmidt, and P. S. Russell, “As2S3-silica double-nanospike waveguide for mid-infrared supercontinuum generation,” Opt. Lett. 39, 5216–5219 (2014).
    [Crossref] [PubMed]
  6. K. F. Mak, J. C. Travers, P. Holzer, N. Y. Joly, and P. S. Russell, “Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled Kagome-PCF,” Opt. Express 21, 10942–10953 (2013).
    [Crossref] [PubMed]
  7. M. Gebhardt, C. Gaida, F. Stutzki, S. Hädrich, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power nonlinear compression to 4GW, sub-50fs pulses at 2μm wavelength,” Opt. Lett. 42, 747–750 (2017).
    [Crossref] [PubMed]
  8. R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light: Sci. Appl. 6, e17124 (2017).
    [Crossref]
  9. F. Tani, J. C. Travers, and P. S. J. Russell, “PHz-wide Supercontinua of Nondispersing Subcycle Pulses Generated by Extreme Modulational Instability,” Phys. Rev. Lett. 111, 033902 (2013).
    [Crossref] [PubMed]
  10. F. Belli, A. Abdolvand, W. Chang, J. C. Travers, and P. S. J. Russell, “Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber,” Optica 2, 292–300 (2015).
    [Crossref]
  11. M. I. Hasan, N. Akhmediev, and W. Chang, “Mid-infrared supercontinuum generation in supercritical xenon-filled hollow-core negative curvature fibers,” Opt. Lett. 41, 5122–5125 (2016).
    [Crossref] [PubMed]
  12. S. Kedenburg, M. Vieweg, T. Gissibl, and H. Giessen, “Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region,” Opt. Mat. Express 2, 1588–1611 (2012).
    [Crossref]
  13. M. Plidschun, M. Chemnitz, and M. A. Schmidt, “Low-loss deuterated organic solvents for visible and near-infrared photonics,” Opt. Mat. Express 7, 1122–1130 (2017).
    [Crossref]
  14. P. P. Ho and R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20, 2170–2187 (1979).
    [Crossref]
  15. F. I. Mopsik, “Dielectric Properties of Slightly Polar Organic Liquids as a Function of Pressure, Volume, and Temperature,” J. Chem. Phys. 50, 2559–2569 (1969).
    [Crossref]
  16. L. Velázquez-Ibarra, A. Díez, E. Silvestre, and M. V. Andrés, “Wideband tuning of four-wave mixing in solid-core liquid-filled photonic crystal fibers,” Opt. Lett. 41, 2600–2603 (2016).
    [Crossref] [PubMed]
  17. S. Pumpe, M. Chemnitz, J. Kobelke, and M. A. Schmidt, “Monolithic optofluidic mode coupler for broadband thermo- and piezo-optical characterization of liquids,” Opt. Express 25, 22932–22946 (2017).
    [Crossref] [PubMed]
  18. G. S. He, M. Casstevens, R. Burzynski, and X. Li, “Broadband, multiwavelength stimulated-emission source based on stimulated Kerr and Raman scattering in a liquid-core fiber system,” Appl. Optics 34, 444–454 (1995).
    [Crossref]
  19. S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, G. Roosen, P. Viale, S. Février, P. Roy, J.-L. Auguste, and J.-M. Blondy, “Stimulated Raman scattering in an ethanol core microstructured optical fiber,” Opt. Express 13, 4786–4791 (2005).
    [Crossref] [PubMed]
  20. F. Dai, Y. Xu, and X. Chen, “Enhanced and broadened SRS spectra of toluene mixed with chloroform in liquid-core fiber,” Opt. Express 17, 19882–19886 (2009).
    [Crossref] [PubMed]
  21. G. Fanjoux, A. Sudirman, J.-C. Beugnot, L. Furfaro, W. Margulis, and T. Sylvestre, “Stimulated Raman-Kerr scattering in an integrated nonlinear optofluidic fiber arrangement,” Opt. Lett. 39, 5407–5410 (2014).
    [Crossref]
  22. D. Churin, T. Nguyen, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Mid-IR supercontinuum generation in an integrated liquid-core optical fiber filled with CS2,” Opt. Mat. Express 3, 1358–1364 (2013).
    [Crossref]
  23. S. Kedenburg, T. Gissibl, T. Steinle, A. Steinmann, and H. Giessen, “Towards integration of a liquid-filled fiber capillary for supercontinuum generation in the 1.2–2.4μm range,” Opt. Express 23, 8281–8289 (2015).
    [Crossref] [PubMed]
  24. A. Bozolan, C. J. de Matos, C. M. Cordeiro, E. M. Dos Santos, and J. Travers, “Supercontinuum generation in a water-core photonic crystal fiber,” Opt. Express 16, 9671–9676 (2008).
    [Crossref] [PubMed]
  25. J. Bethge, A. Husakou, F. Mitschke, F. Noack, U. Griebner, G. Steinmeyer, and J. Herrmann, “Two-octave supercontinuum generation in a water-filled photonic crystal fiber,” Opt. Express 18, 6230–6240 (2010).
    [Crossref] [PubMed]
  26. M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8, 42 (2017).
    [Crossref] [PubMed]
  27. D. McMorrow, W. Lotshaw, and G. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Elect. 24, 443–454 (1988).
    [Crossref]
  28. M. Reichert, H. Hu, M. R. Ferdinandus, M. Seidel, P. Zhao, T. R. Ensley, D. Peceli, J. M. Reed, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. Van Stryland, “Temporal, spectral, and polarization dependence of the nonlinear optical response of carbon disulfide,” Optica 1, 436–445 (2014).
    [Crossref]
  29. C. Conti, M. A. Schmidt, P. S. J. Russell, and F. Biancalana, “Highly Noninstantaneous Solitons in Liquid-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 105, 263902 (2010).
    [Crossref]
  30. M. C. Braidotti, A. Mecozzi, and C. Conti, “Squeezing in a nonlocal photon fluid,” Phys. Rev. A 96, 043823 (2017).
    [Crossref]
  31. M. Vieweg, T. Gissibl, S. Pricking, B. T. Kuhlmey, D. C. Wu, B. J. Eggleton, and H. Giessen, “Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers,” Opt. Express 18, 25232–25240 (2010).
    [Crossref] [PubMed]
  32. M. Vieweg, T. Gissibl, Y. V. Kartashov, L. Torner, and H. Giessen, “Spatial solitons in optofluidic waveguide arrays with focusing ultrafast Kerr nonlinearity,” Opt. Lett. 37, 2454–2456 (2012).
    [Crossref] [PubMed]
  33. M. Vieweg, S. Pricking, T. Gissibl, Y. Kartashov, L. Torner, and H. Giessen, “Tunable ultrafast nonlinear optofluidic coupler,” Opt. Lett. 37, 1058–1060 (2012).
    [Crossref] [PubMed]
  34. A. Majumdar, D. Hinkley, and R. Menzies, “Infrared transmission at the 3.39 μm helium-neon laser wavelength in liquid-core quartz fibers,” IEEE J. Quantum Elect. 15, 408–410 (1979).
    [Crossref]
  35. S. Diemer, J. Meister, R. Jung, S. Klein, M. Haisch, W. Fuss, and P. Hering, “Liquid-core light guides for near-infrared applications,” Appl. Optics 36, 9075–9082 (1997).
    [Crossref]
  36. J. Meister, R. Franzen, G. Eyrich, J. Bongartz, N. Gutknecht, and P. Hering, “First clinical application of a liquid-core light guide connected to an Er:YAG laser for oral treatment of leukoplakia,” Laser Med. Sci. 25, 669–673 (2010).
    [Crossref]
  37. D. Mann, N. Acquista, and E. Plyler, “Vibrational spectra of tetrafluoroethylene and tetrachloroethylene,” J. Res. Nat. Bur. Stand. 52, 67–72 (1954).
    [Crossref]
  38. N. Thantu and R. S. Schley, “Ultrafast third-order nonlinear optical spectroscopy of chlorinated hydrocarbons,” Vib. Spectroscopy 32, 215–223 (2003).
    [Crossref]
  39. D. Lopez-Cortes, O. Tarasenko, and W. Margulis, “All-fiber Kerr cell,” Opt. Lett. 37, 3288–3290 (2012).
    [Crossref] [PubMed]
  40. A. H. Pfund, “The Dispersion of CS2 and CCl4 in the Infrared,” J. Opt. Soc. Am. 25, 351–354 (1935).
    [Crossref]
  41. S. Ghosal, J. L. Ebert, and S. A. Self, “The infrared refractive indices of CHBr3, CCl4 and CS2,” Infrared Phys. 34, 621–628 (1993).
    [Crossref]
  42. R. E. Kagarise, “Infrared Dispersion of Some Organic Liquids,” J. Opt. Soc. Am. 50, 36–39 (1960).
    [Crossref]
  43. J. Vincent-Geisse, “Dispersion de quelques liquides organiques dans l’infrarouge. détermination des intensités de bandes et des polarisations,” J. Phys. France 26, 289–296 (1965).
    [Crossref]
  44. J. Yarwood and W. J. Orville-Thomas, “Infra-red dispersion studies. Part 7 Band intensities and atomic polarizations of CX2 = CCl2(X = H, F, Cl) molecules,” T. Faraday Soc. 62, 3294–3309 (1966).
    [Crossref]
  45. K. Spaeth, G. Kraus, and G. Gauglitz, “In-situ characterization of thin polymer films for applications in chemical sensing of volatile organic compounds by spectroscopic ellipsometry,” Fresen. J. Anal. Chem. 357, 292–296 (1997).
    [Crossref]
  46. B. Wilhelmi, “Über die Anwendung von Dispersionsrelationen zur Bestimmung optischer Konstanten,” Ann. Phys. 474, 244–252 (1967).
    [Crossref]
  47. A. Samoc, “Dispersion of refractive properties of solvents: Chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared,” J. Appl. Phys. 94, 6167–6174 (2003).
    [Crossref]
  48. R. H. Stolen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22, 276–278 (1973).
    [Crossref]
  49. D. Hollenbeck and C. Cantrell, “Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function,” J. Opt. Soc. Am. B 19, 2886–2892 (2002).
    [Crossref]
  50. M. J. Weber, Handbook of Optical Materials (CRC, 2003).
  51. P. Zhao, M. Reichert, T. R. Ensley, W. M. Shensky, A. G. Mott, D. J. Hagan, and E. W. Van Stryland, “Nonlinear refraction dynamics of solvents and gases,” Proc. SPIE 9731 “Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XV,” 97310F (2016).
    [Crossref]
  52. G. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).
  53. M. Chemnitz and M. A. Schmidt, “Single mode criterion - a benchmark figure to optimize the performance of nonlinear fibers,” Opt. Express 24, 16191–16205 (2016).
    [Crossref] [PubMed]
  54. N. An, B. Zhuang, M. Li, Y. Lu, and Z.-G. Wang, “Combined Theoretical and Experimental Study of Refractive Indices of Water-Acetonitrile-Salt Systems,” J. Phys. Chem. B 119, 10701–10709 (2015).
    [Crossref] [PubMed]
  55. J. Laegsgaard, “Mode profile dispersion in the generalized nonlinear Schrödinger equation,” Opt. Express 15, 16110–16123 (2007).
    [Crossref] [PubMed]
  56. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [Crossref]

2017 (6)

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light: Sci. Appl. 6, e17124 (2017).
[Crossref]

M. Plidschun, M. Chemnitz, and M. A. Schmidt, “Low-loss deuterated organic solvents for visible and near-infrared photonics,” Opt. Mat. Express 7, 1122–1130 (2017).
[Crossref]

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8, 42 (2017).
[Crossref] [PubMed]

M. C. Braidotti, A. Mecozzi, and C. Conti, “Squeezing in a nonlocal photon fluid,” Phys. Rev. A 96, 043823 (2017).
[Crossref]

M. Gebhardt, C. Gaida, F. Stutzki, S. Hädrich, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power nonlinear compression to 4GW, sub-50fs pulses at 2μm wavelength,” Opt. Lett. 42, 747–750 (2017).
[Crossref] [PubMed]

S. Pumpe, M. Chemnitz, J. Kobelke, and M. A. Schmidt, “Monolithic optofluidic mode coupler for broadband thermo- and piezo-optical characterization of liquids,” Opt. Express 25, 22932–22946 (2017).
[Crossref] [PubMed]

2016 (5)

L. Velázquez-Ibarra, A. Díez, E. Silvestre, and M. V. Andrés, “Wideband tuning of four-wave mixing in solid-core liquid-filled photonic crystal fibers,” Opt. Lett. 41, 2600–2603 (2016).
[Crossref] [PubMed]

M. Chemnitz and M. A. Schmidt, “Single mode criterion - a benchmark figure to optimize the performance of nonlinear fibers,” Opt. Express 24, 16191–16205 (2016).
[Crossref] [PubMed]

M. I. Hasan, N. Akhmediev, and W. Chang, “Mid-infrared supercontinuum generation in supercritical xenon-filled hollow-core negative curvature fibers,” Opt. Lett. 41, 5122–5125 (2016).
[Crossref] [PubMed]

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid Optical Fibers - An Innovative Platform for In-Fiber Photonic Devices,” Adv. Opt. Mater. 4, 13–36 (2016).
[Crossref]

P. Zhao, M. Reichert, T. R. Ensley, W. M. Shensky, A. G. Mott, D. J. Hagan, and E. W. Van Stryland, “Nonlinear refraction dynamics of solvents and gases,” Proc. SPIE 9731 “Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XV,” 97310F (2016).
[Crossref]

2015 (3)

2014 (4)

2013 (3)

F. Tani, J. C. Travers, and P. S. J. Russell, “PHz-wide Supercontinua of Nondispersing Subcycle Pulses Generated by Extreme Modulational Instability,” Phys. Rev. Lett. 111, 033902 (2013).
[Crossref] [PubMed]

D. Churin, T. Nguyen, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Mid-IR supercontinuum generation in an integrated liquid-core optical fiber filled with CS2,” Opt. Mat. Express 3, 1358–1364 (2013).
[Crossref]

K. F. Mak, J. C. Travers, P. Holzer, N. Y. Joly, and P. S. Russell, “Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled Kagome-PCF,” Opt. Express 21, 10942–10953 (2013).
[Crossref] [PubMed]

2012 (5)

2010 (4)

C. Conti, M. A. Schmidt, P. S. J. Russell, and F. Biancalana, “Highly Noninstantaneous Solitons in Liquid-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 105, 263902 (2010).
[Crossref]

J. Meister, R. Franzen, G. Eyrich, J. Bongartz, N. Gutknecht, and P. Hering, “First clinical application of a liquid-core light guide connected to an Er:YAG laser for oral treatment of leukoplakia,” Laser Med. Sci. 25, 669–673 (2010).
[Crossref]

J. Bethge, A. Husakou, F. Mitschke, F. Noack, U. Griebner, G. Steinmeyer, and J. Herrmann, “Two-octave supercontinuum generation in a water-filled photonic crystal fiber,” Opt. Express 18, 6230–6240 (2010).
[Crossref] [PubMed]

M. Vieweg, T. Gissibl, S. Pricking, B. T. Kuhlmey, D. C. Wu, B. J. Eggleton, and H. Giessen, “Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers,” Opt. Express 18, 25232–25240 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (1)

2007 (1)

2006 (2)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Laser Eng. 44, 699–710 (2006).
[Crossref]

2005 (1)

2003 (2)

N. Thantu and R. S. Schley, “Ultrafast third-order nonlinear optical spectroscopy of chlorinated hydrocarbons,” Vib. Spectroscopy 32, 215–223 (2003).
[Crossref]

A. Samoc, “Dispersion of refractive properties of solvents: Chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared,” J. Appl. Phys. 94, 6167–6174 (2003).
[Crossref]

2002 (1)

1997 (2)

K. Spaeth, G. Kraus, and G. Gauglitz, “In-situ characterization of thin polymer films for applications in chemical sensing of volatile organic compounds by spectroscopic ellipsometry,” Fresen. J. Anal. Chem. 357, 292–296 (1997).
[Crossref]

S. Diemer, J. Meister, R. Jung, S. Klein, M. Haisch, W. Fuss, and P. Hering, “Liquid-core light guides for near-infrared applications,” Appl. Optics 36, 9075–9082 (1997).
[Crossref]

1995 (1)

G. S. He, M. Casstevens, R. Burzynski, and X. Li, “Broadband, multiwavelength stimulated-emission source based on stimulated Kerr and Raman scattering in a liquid-core fiber system,” Appl. Optics 34, 444–454 (1995).
[Crossref]

1993 (1)

S. Ghosal, J. L. Ebert, and S. A. Self, “The infrared refractive indices of CHBr3, CCl4 and CS2,” Infrared Phys. 34, 621–628 (1993).
[Crossref]

1988 (1)

D. McMorrow, W. Lotshaw, and G. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Elect. 24, 443–454 (1988).
[Crossref]

1979 (2)

A. Majumdar, D. Hinkley, and R. Menzies, “Infrared transmission at the 3.39 μm helium-neon laser wavelength in liquid-core quartz fibers,” IEEE J. Quantum Elect. 15, 408–410 (1979).
[Crossref]

P. P. Ho and R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20, 2170–2187 (1979).
[Crossref]

1973 (1)

R. H. Stolen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22, 276–278 (1973).
[Crossref]

1969 (1)

F. I. Mopsik, “Dielectric Properties of Slightly Polar Organic Liquids as a Function of Pressure, Volume, and Temperature,” J. Chem. Phys. 50, 2559–2569 (1969).
[Crossref]

1967 (1)

B. Wilhelmi, “Über die Anwendung von Dispersionsrelationen zur Bestimmung optischer Konstanten,” Ann. Phys. 474, 244–252 (1967).
[Crossref]

1966 (1)

J. Yarwood and W. J. Orville-Thomas, “Infra-red dispersion studies. Part 7 Band intensities and atomic polarizations of CX2 = CCl2(X = H, F, Cl) molecules,” T. Faraday Soc. 62, 3294–3309 (1966).
[Crossref]

1965 (1)

J. Vincent-Geisse, “Dispersion de quelques liquides organiques dans l’infrarouge. détermination des intensités de bandes et des polarisations,” J. Phys. France 26, 289–296 (1965).
[Crossref]

1960 (1)

1954 (1)

D. Mann, N. Acquista, and E. Plyler, “Vibrational spectra of tetrafluoroethylene and tetrachloroethylene,” J. Res. Nat. Bur. Stand. 52, 67–72 (1954).
[Crossref]

1935 (1)

Abdel-Moneim, N.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Abdolvand, A.

Acquista, N.

D. Mann, N. Acquista, and E. Plyler, “Vibrational spectra of tetrafluoroethylene and tetrachloroethylene,” J. Res. Nat. Bur. Stand. 52, 67–72 (1954).
[Crossref]

Agrawal, G.

G. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).

Akhmediev, N.

Alfano, R. R.

P. P. Ho and R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20, 2170–2187 (1979).
[Crossref]

An, N.

N. An, B. Zhuang, M. Li, Y. Lu, and Z.-G. Wang, “Combined Theoretical and Experimental Study of Refractive Indices of Water-Acetonitrile-Salt Systems,” J. Phys. Chem. B 119, 10701–10709 (2015).
[Crossref] [PubMed]

Andrés, M. V.

Argyros, A.

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid Optical Fibers - An Innovative Platform for In-Fiber Photonic Devices,” Adv. Opt. Mater. 4, 13–36 (2016).
[Crossref]

Auguste, J.-L.

Bang, O.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Belli, F.

Benson, T.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Bethge, J.

Beugnot, J.-C.

Biancalana, F.

C. Conti, M. A. Schmidt, P. S. J. Russell, and F. Biancalana, “Highly Noninstantaneous Solitons in Liquid-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 105, 263902 (2010).
[Crossref]

Bierlich, J.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light: Sci. Appl. 6, e17124 (2017).
[Crossref]

Blondy, J.-M.

Bongartz, J.

J. Meister, R. Franzen, G. Eyrich, J. Bongartz, N. Gutknecht, and P. Hering, “First clinical application of a liquid-core light guide connected to an Er:YAG laser for oral treatment of leukoplakia,” Laser Med. Sci. 25, 669–673 (2010).
[Crossref]

Bozolan, A.

Braidotti, M. C.

M. C. Braidotti, A. Mecozzi, and C. Conti, “Squeezing in a nonlocal photon fluid,” Phys. Rev. A 96, 043823 (2017).
[Crossref]

Burzynski, R.

G. S. He, M. Casstevens, R. Burzynski, and X. Li, “Broadband, multiwavelength stimulated-emission source based on stimulated Kerr and Raman scattering in a liquid-core fiber system,” Appl. Optics 34, 444–454 (1995).
[Crossref]

Caillaud, C.

Cantrell, C.

Casstevens, M.

G. S. He, M. Casstevens, R. Burzynski, and X. Li, “Broadband, multiwavelength stimulated-emission source based on stimulated Kerr and Raman scattering in a liquid-core fiber system,” Appl. Optics 34, 444–454 (1995).
[Crossref]

Chang, W.

Chemnitz, M.

S. Pumpe, M. Chemnitz, J. Kobelke, and M. A. Schmidt, “Monolithic optofluidic mode coupler for broadband thermo- and piezo-optical characterization of liquids,” Opt. Express 25, 22932–22946 (2017).
[Crossref] [PubMed]

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8, 42 (2017).
[Crossref] [PubMed]

M. Plidschun, M. Chemnitz, and M. A. Schmidt, “Low-loss deuterated organic solvents for visible and near-infrared photonics,” Opt. Mat. Express 7, 1122–1130 (2017).
[Crossref]

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light: Sci. Appl. 6, e17124 (2017).
[Crossref]

M. Chemnitz and M. A. Schmidt, “Single mode criterion - a benchmark figure to optimize the performance of nonlinear fibers,” Opt. Express 24, 16191–16205 (2016).
[Crossref] [PubMed]

Chen, X.

Chinaud, J.

Churin, D.

D. Churin, T. Nguyen, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Mid-IR supercontinuum generation in an integrated liquid-core optical fiber filled with CS2,” Opt. Mat. Express 3, 1358–1364 (2013).
[Crossref]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Conti, C.

M. C. Braidotti, A. Mecozzi, and C. Conti, “Squeezing in a nonlocal photon fluid,” Phys. Rev. A 96, 043823 (2017).
[Crossref]

C. Conti, M. A. Schmidt, P. S. J. Russell, and F. Biancalana, “Highly Noninstantaneous Solitons in Liquid-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 105, 263902 (2010).
[Crossref]

Cordeiro, C. M.

Dai, F.

de Matos, C. J.

Delaye, P.

Diemer, S.

S. Diemer, J. Meister, R. Jung, S. Klein, M. Haisch, W. Fuss, and P. Hering, “Liquid-core light guides for near-infrared applications,” Appl. Optics 36, 9075–9082 (1997).
[Crossref]

Díez, A.

Dos Santos, E. M.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Dupont, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Ebert, J. L.

S. Ghosal, J. L. Ebert, and S. A. Self, “The infrared refractive indices of CHBr3, CCl4 and CS2,” Infrared Phys. 34, 621–628 (1993).
[Crossref]

Eggleton, B. J.

Ensley, T. R.

P. Zhao, M. Reichert, T. R. Ensley, W. M. Shensky, A. G. Mott, D. J. Hagan, and E. W. Van Stryland, “Nonlinear refraction dynamics of solvents and gases,” Proc. SPIE 9731 “Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XV,” 97310F (2016).
[Crossref]

M. Reichert, H. Hu, M. R. Ferdinandus, M. Seidel, P. Zhao, T. R. Ensley, D. Peceli, J. M. Reed, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. Van Stryland, “Temporal, spectral, and polarization dependence of the nonlinear optical response of carbon disulfide,” Optica 1, 436–445 (2014).
[Crossref]

Eyrich, G.

J. Meister, R. Franzen, G. Eyrich, J. Bongartz, N. Gutknecht, and P. Hering, “First clinical application of a liquid-core light guide connected to an Er:YAG laser for oral treatment of leukoplakia,” Laser Med. Sci. 25, 669–673 (2010).
[Crossref]

Fanjoux, G.

Ferdinandus, M. R.

Février, S.

Fishman, D. A.

Franzen, R.

J. Meister, R. Franzen, G. Eyrich, J. Bongartz, N. Gutknecht, and P. Hering, “First clinical application of a liquid-core light guide connected to an Er:YAG laser for oral treatment of leukoplakia,” Laser Med. Sci. 25, 669–673 (2010).
[Crossref]

Frey, R.

Furfaro, L.

Furniss, D.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Fuss, W.

S. Diemer, J. Meister, R. Jung, S. Klein, M. Haisch, W. Fuss, and P. Hering, “Liquid-core light guides for near-infrared applications,” Appl. Optics 36, 9075–9082 (1997).
[Crossref]

Gaida, C.

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8, 42 (2017).
[Crossref] [PubMed]

M. Gebhardt, C. Gaida, F. Stutzki, S. Hädrich, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power nonlinear compression to 4GW, sub-50fs pulses at 2μm wavelength,” Opt. Lett. 42, 747–750 (2017).
[Crossref] [PubMed]

Gauglitz, G.

K. Spaeth, G. Kraus, and G. Gauglitz, “In-situ characterization of thin polymer films for applications in chemical sensing of volatile organic compounds by spectroscopic ellipsometry,” Fresen. J. Anal. Chem. 357, 292–296 (1997).
[Crossref]

Gebhardt, M.

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8, 42 (2017).
[Crossref] [PubMed]

M. Gebhardt, C. Gaida, F. Stutzki, S. Hädrich, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power nonlinear compression to 4GW, sub-50fs pulses at 2μm wavelength,” Opt. Lett. 42, 747–750 (2017).
[Crossref] [PubMed]

Geiser, P.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Laser Eng. 44, 699–710 (2006).
[Crossref]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Ghosal, S.

S. Ghosal, J. L. Ebert, and S. A. Self, “The infrared refractive indices of CHBr3, CCl4 and CS2,” Infrared Phys. 34, 621–628 (1993).
[Crossref]

Giessen, H.

Gissibl, T.

Griebner, U.

Grigorova, T.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light: Sci. Appl. 6, e17124 (2017).
[Crossref]

Gutknecht, N.

J. Meister, R. Franzen, G. Eyrich, J. Bongartz, N. Gutknecht, and P. Hering, “First clinical application of a liquid-core light guide connected to an Er:YAG laser for oral treatment of leukoplakia,” Laser Med. Sci. 25, 669–673 (2010).
[Crossref]

Hädrich, S.

Hagan, D. J.

P. Zhao, M. Reichert, T. R. Ensley, W. M. Shensky, A. G. Mott, D. J. Hagan, and E. W. Van Stryland, “Nonlinear refraction dynamics of solvents and gases,” Proc. SPIE 9731 “Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XV,” 97310F (2016).
[Crossref]

M. Reichert, H. Hu, M. R. Ferdinandus, M. Seidel, P. Zhao, T. R. Ensley, D. Peceli, J. M. Reed, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. Van Stryland, “Temporal, spectral, and polarization dependence of the nonlinear optical response of carbon disulfide,” Optica 1, 436–445 (2014).
[Crossref]

Haisch, M.

S. Diemer, J. Meister, R. Jung, S. Klein, M. Haisch, W. Fuss, and P. Hering, “Liquid-core light guides for near-infrared applications,” Appl. Optics 36, 9075–9082 (1997).
[Crossref]

Hänsch, T. W.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Hartung, A.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light: Sci. Appl. 6, e17124 (2017).
[Crossref]

Hasan, M. I.

He, G. S.

G. S. He, M. Casstevens, R. Burzynski, and X. Li, “Broadband, multiwavelength stimulated-emission source based on stimulated Kerr and Raman scattering in a liquid-core fiber system,” Appl. Optics 34, 444–454 (1995).
[Crossref]

Hering, P.

J. Meister, R. Franzen, G. Eyrich, J. Bongartz, N. Gutknecht, and P. Hering, “First clinical application of a liquid-core light guide connected to an Er:YAG laser for oral treatment of leukoplakia,” Laser Med. Sci. 25, 669–673 (2010).
[Crossref]

S. Diemer, J. Meister, R. Jung, S. Klein, M. Haisch, W. Fuss, and P. Hering, “Liquid-core light guides for near-infrared applications,” Appl. Optics 36, 9075–9082 (1997).
[Crossref]

Herrmann, J.

Hinkley, D.

A. Majumdar, D. Hinkley, and R. Menzies, “Infrared transmission at the 3.39 μm helium-neon laser wavelength in liquid-core quartz fibers,” IEEE J. Quantum Elect. 15, 408–410 (1979).
[Crossref]

Ho, P. P.

P. P. Ho and R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20, 2170–2187 (1979).
[Crossref]

Hoffmann, A.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light: Sci. Appl. 6, e17124 (2017).
[Crossref]

Hollenbeck, D.

Holzer, P.

Hu, H.

Husakou, A.

Jauregui, C.

Joly, N. Y.

Jung, R.

S. Diemer, J. Meister, R. Jung, S. Klein, M. Haisch, W. Fuss, and P. Hering, “Liquid-core light guides for near-infrared applications,” Appl. Optics 36, 9075–9082 (1997).
[Crossref]

Kagarise, R. E.

Kartashov, D.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light: Sci. Appl. 6, e17124 (2017).
[Crossref]

Kartashov, Y.

Kartashov, Y. V.

Kedenburg, S.

S. Kedenburg, T. Gissibl, T. Steinle, A. Steinmann, and H. Giessen, “Towards integration of a liquid-filled fiber capillary for supercontinuum generation in the 1.2–2.4μm range,” Opt. Express 23, 8281–8289 (2015).
[Crossref] [PubMed]

S. Kedenburg, M. Vieweg, T. Gissibl, and H. Giessen, “Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region,” Opt. Mat. Express 2, 1588–1611 (2012).
[Crossref]

Kenney-Wallace, G.

D. McMorrow, W. Lotshaw, and G. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Elect. 24, 443–454 (1988).
[Crossref]

Khorsandi, A.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Laser Eng. 44, 699–710 (2006).
[Crossref]

Kieu, K.

D. Churin, T. Nguyen, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Mid-IR supercontinuum generation in an integrated liquid-core optical fiber filled with CS2,” Opt. Mat. Express 3, 1358–1364 (2013).
[Crossref]

Klein, S.

S. Diemer, J. Meister, R. Jung, S. Klein, M. Haisch, W. Fuss, and P. Hering, “Liquid-core light guides for near-infrared applications,” Appl. Optics 36, 9075–9082 (1997).
[Crossref]

Kobelke, J.

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8, 42 (2017).
[Crossref] [PubMed]

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light: Sci. Appl. 6, e17124 (2017).
[Crossref]

S. Pumpe, M. Chemnitz, J. Kobelke, and M. A. Schmidt, “Monolithic optofluidic mode coupler for broadband thermo- and piezo-optical characterization of liquids,” Opt. Express 25, 22932–22946 (2017).
[Crossref] [PubMed]

Kraus, G.

K. Spaeth, G. Kraus, and G. Gauglitz, “In-situ characterization of thin polymer films for applications in chemical sensing of volatile organic compounds by spectroscopic ellipsometry,” Fresen. J. Anal. Chem. 357, 292–296 (1997).
[Crossref]

Kubat, I.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Kuhlmey, B. T.

Laegsgaard, J.

Li, M.

N. An, B. Zhuang, M. Li, Y. Lu, and Z.-G. Wang, “Combined Theoretical and Experimental Study of Refractive Indices of Water-Acetonitrile-Salt Systems,” J. Phys. Chem. B 119, 10701–10709 (2015).
[Crossref] [PubMed]

Li, X.

G. S. He, M. Casstevens, R. Burzynski, and X. Li, “Broadband, multiwavelength stimulated-emission source based on stimulated Kerr and Raman scattering in a liquid-core fiber system,” Appl. Optics 34, 444–454 (1995).
[Crossref]

Limpert, J.

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8, 42 (2017).
[Crossref] [PubMed]

M. Gebhardt, C. Gaida, F. Stutzki, S. Hädrich, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power nonlinear compression to 4GW, sub-50fs pulses at 2μm wavelength,” Opt. Lett. 42, 747–750 (2017).
[Crossref] [PubMed]

Lopez-Cortes, D.

Lotshaw, W.

D. McMorrow, W. Lotshaw, and G. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Elect. 24, 443–454 (1988).
[Crossref]

Lu, Y.

N. An, B. Zhuang, M. Li, Y. Lu, and Z.-G. Wang, “Combined Theoretical and Experimental Study of Refractive Indices of Water-Acetonitrile-Salt Systems,” J. Phys. Chem. B 119, 10701–10709 (2015).
[Crossref] [PubMed]

Majumdar, A.

A. Majumdar, D. Hinkley, and R. Menzies, “Infrared transmission at the 3.39 μm helium-neon laser wavelength in liquid-core quartz fibers,” IEEE J. Quantum Elect. 15, 408–410 (1979).
[Crossref]

Mak, K. F.

Mann, D.

D. Mann, N. Acquista, and E. Plyler, “Vibrational spectra of tetrafluoroethylene and tetrachloroethylene,” J. Res. Nat. Bur. Stand. 52, 67–72 (1954).
[Crossref]

Margulis, W.

McMorrow, D.

D. McMorrow, W. Lotshaw, and G. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Elect. 24, 443–454 (1988).
[Crossref]

Mecozzi, A.

M. C. Braidotti, A. Mecozzi, and C. Conti, “Squeezing in a nonlocal photon fluid,” Phys. Rev. A 96, 043823 (2017).
[Crossref]

Meister, J.

J. Meister, R. Franzen, G. Eyrich, J. Bongartz, N. Gutknecht, and P. Hering, “First clinical application of a liquid-core light guide connected to an Er:YAG laser for oral treatment of leukoplakia,” Laser Med. Sci. 25, 669–673 (2010).
[Crossref]

S. Diemer, J. Meister, R. Jung, S. Klein, M. Haisch, W. Fuss, and P. Hering, “Liquid-core light guides for near-infrared applications,” Appl. Optics 36, 9075–9082 (1997).
[Crossref]

Menzies, R.

A. Majumdar, D. Hinkley, and R. Menzies, “Infrared transmission at the 3.39 μm helium-neon laser wavelength in liquid-core quartz fibers,” IEEE J. Quantum Elect. 15, 408–410 (1979).
[Crossref]

Mitschke, F.

Møller, U.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Mopsik, F. I.

F. I. Mopsik, “Dielectric Properties of Slightly Polar Organic Liquids as a Function of Pressure, Volume, and Temperature,” J. Chem. Phys. 50, 2559–2569 (1969).
[Crossref]

Mott, A. G.

P. Zhao, M. Reichert, T. R. Ensley, W. M. Shensky, A. G. Mott, D. J. Hagan, and E. W. Van Stryland, “Nonlinear refraction dynamics of solvents and gases,” Proc. SPIE 9731 “Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XV,” 97310F (2016).
[Crossref]

Nguyen, T.

D. Churin, T. Nguyen, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Mid-IR supercontinuum generation in an integrated liquid-core optical fiber filled with CS2,” Opt. Mat. Express 3, 1358–1364 (2013).
[Crossref]

Noack, F.

Norwood, R. A.

D. Churin, T. Nguyen, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Mid-IR supercontinuum generation in an integrated liquid-core optical fiber filled with CS2,” Opt. Mat. Express 3, 1358–1364 (2013).
[Crossref]

Orville-Thomas, W. J.

J. Yarwood and W. J. Orville-Thomas, “Infra-red dispersion studies. Part 7 Band intensities and atomic polarizations of CX2 = CCl2(X = H, F, Cl) molecules,” T. Faraday Soc. 62, 3294–3309 (1966).
[Crossref]

Peceli, D.

Petersen, C. R.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Peyghambarian, N.

D. Churin, T. Nguyen, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Mid-IR supercontinuum generation in an integrated liquid-core optical fiber filled with CS2,” Opt. Mat. Express 3, 1358–1364 (2013).
[Crossref]

Pfund, A. H.

Picqué, N.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Plidschun, M.

M. Plidschun, M. Chemnitz, and M. A. Schmidt, “Low-loss deuterated organic solvents for visible and near-infrared photonics,” Opt. Mat. Express 7, 1122–1130 (2017).
[Crossref]

Plyler, E.

D. Mann, N. Acquista, and E. Plyler, “Vibrational spectra of tetrafluoroethylene and tetrachloroethylene,” J. Res. Nat. Bur. Stand. 52, 67–72 (1954).
[Crossref]

Pricking, S.

Pumpe, S.

Ramsay, J.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Reed, J. M.

Reichert, M.

P. Zhao, M. Reichert, T. R. Ensley, W. M. Shensky, A. G. Mott, D. J. Hagan, and E. W. Van Stryland, “Nonlinear refraction dynamics of solvents and gases,” Proc. SPIE 9731 “Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XV,” 97310F (2016).
[Crossref]

M. Reichert, H. Hu, M. R. Ferdinandus, M. Seidel, P. Zhao, T. R. Ensley, D. Peceli, J. M. Reed, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. Van Stryland, “Temporal, spectral, and polarization dependence of the nonlinear optical response of carbon disulfide,” Optica 1, 436–445 (2014).
[Crossref]

Roosen, G.

Rouvie, A.

Roy, P.

Russell, P. S.

Russell, P. S. J.

F. Belli, A. Abdolvand, W. Chang, J. C. Travers, and P. S. J. Russell, “Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber,” Optica 2, 292–300 (2015).
[Crossref]

F. Tani, J. C. Travers, and P. S. J. Russell, “PHz-wide Supercontinua of Nondispersing Subcycle Pulses Generated by Extreme Modulational Instability,” Phys. Rev. Lett. 111, 033902 (2013).
[Crossref] [PubMed]

C. Conti, M. A. Schmidt, P. S. J. Russell, and F. Biancalana, “Highly Noninstantaneous Solitons in Liquid-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 105, 263902 (2010).
[Crossref]

Samoc, A.

A. Samoc, “Dispersion of refractive properties of solvents: Chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared,” J. Appl. Phys. 94, 6167–6174 (2003).
[Crossref]

Saraji, M.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Laser Eng. 44, 699–710 (2006).
[Crossref]

Sauer, G.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light: Sci. Appl. 6, e17124 (2017).
[Crossref]

Schade, W.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Laser Eng. 44, 699–710 (2006).
[Crossref]

Schley, R. S.

N. Thantu and R. S. Schley, “Ultrafast third-order nonlinear optical spectroscopy of chlorinated hydrocarbons,” Vib. Spectroscopy 32, 215–223 (2003).
[Crossref]

Schliesser, A.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Schmidt, M. A.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light: Sci. Appl. 6, e17124 (2017).
[Crossref]

M. Plidschun, M. Chemnitz, and M. A. Schmidt, “Low-loss deuterated organic solvents for visible and near-infrared photonics,” Opt. Mat. Express 7, 1122–1130 (2017).
[Crossref]

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8, 42 (2017).
[Crossref] [PubMed]

S. Pumpe, M. Chemnitz, J. Kobelke, and M. A. Schmidt, “Monolithic optofluidic mode coupler for broadband thermo- and piezo-optical characterization of liquids,” Opt. Express 25, 22932–22946 (2017).
[Crossref] [PubMed]

M. Chemnitz and M. A. Schmidt, “Single mode criterion - a benchmark figure to optimize the performance of nonlinear fibers,” Opt. Express 24, 16191–16205 (2016).
[Crossref] [PubMed]

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid Optical Fibers - An Innovative Platform for In-Fiber Photonic Devices,” Adv. Opt. Mater. 4, 13–36 (2016).
[Crossref]

S. Xie, F. Tani, J. C. Travers, P. Uebel, C. Caillaud, J. Troles, M. A. Schmidt, and P. S. Russell, “As2S3-silica double-nanospike waveguide for mid-infrared supercontinuum generation,” Opt. Lett. 39, 5216–5219 (2014).
[Crossref] [PubMed]

C. Conti, M. A. Schmidt, P. S. J. Russell, and F. Biancalana, “Highly Noninstantaneous Solitons in Liquid-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 105, 263902 (2010).
[Crossref]

Schwuchow, A.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light: Sci. Appl. 6, e17124 (2017).
[Crossref]

Seddon, A.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Seidel, M.

Self, S. A.

S. Ghosal, J. L. Ebert, and S. A. Self, “The infrared refractive indices of CHBr3, CCl4 and CS2,” Infrared Phys. 34, 621–628 (1993).
[Crossref]

Shensky, W. M.

P. Zhao, M. Reichert, T. R. Ensley, W. M. Shensky, A. G. Mott, D. J. Hagan, and E. W. Van Stryland, “Nonlinear refraction dynamics of solvents and gases,” Proc. SPIE 9731 “Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XV,” 97310F (2016).
[Crossref]

Silvestre, E.

Sollapur, R.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light: Sci. Appl. 6, e17124 (2017).
[Crossref]

Sorin, F.

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid Optical Fibers - An Innovative Platform for In-Fiber Photonic Devices,” Adv. Opt. Mater. 4, 13–36 (2016).
[Crossref]

Spaeth, K.

K. Spaeth, G. Kraus, and G. Gauglitz, “In-situ characterization of thin polymer films for applications in chemical sensing of volatile organic compounds by spectroscopic ellipsometry,” Fresen. J. Anal. Chem. 357, 292–296 (1997).
[Crossref]

Spielmann, C.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light: Sci. Appl. 6, e17124 (2017).
[Crossref]

Steinle, T.

Steinmann, A.

Steinmeyer, G.

Stolen, R. H.

R. H. Stolen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22, 276–278 (1973).
[Crossref]

Stutzki, F.

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8, 42 (2017).
[Crossref] [PubMed]

M. Gebhardt, C. Gaida, F. Stutzki, S. Hädrich, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power nonlinear compression to 4GW, sub-50fs pulses at 2μm wavelength,” Opt. Lett. 42, 747–750 (2017).
[Crossref] [PubMed]

Sudirman, A.

Sujecki, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Sylvestre, T.

Tang, Z.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Tani, F.

S. Xie, F. Tani, J. C. Travers, P. Uebel, C. Caillaud, J. Troles, M. A. Schmidt, and P. S. Russell, “As2S3-silica double-nanospike waveguide for mid-infrared supercontinuum generation,” Opt. Lett. 39, 5216–5219 (2014).
[Crossref] [PubMed]

F. Tani, J. C. Travers, and P. S. J. Russell, “PHz-wide Supercontinua of Nondispersing Subcycle Pulses Generated by Extreme Modulational Instability,” Phys. Rev. Lett. 111, 033902 (2013).
[Crossref] [PubMed]

Tarasenko, O.

Thantu, N.

N. Thantu and R. S. Schley, “Ultrafast third-order nonlinear optical spectroscopy of chlorinated hydrocarbons,” Vib. Spectroscopy 32, 215–223 (2003).
[Crossref]

Torner, L.

Travers, J.

Travers, J. C.

Troles, J.

Tünnermann, A.

M. Gebhardt, C. Gaida, F. Stutzki, S. Hädrich, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power nonlinear compression to 4GW, sub-50fs pulses at 2μm wavelength,” Opt. Lett. 42, 747–750 (2017).
[Crossref] [PubMed]

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8, 42 (2017).
[Crossref] [PubMed]

Uebel, P.

Van Stryland, E. W.

P. Zhao, M. Reichert, T. R. Ensley, W. M. Shensky, A. G. Mott, D. J. Hagan, and E. W. Van Stryland, “Nonlinear refraction dynamics of solvents and gases,” Proc. SPIE 9731 “Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XV,” 97310F (2016).
[Crossref]

M. Reichert, H. Hu, M. R. Ferdinandus, M. Seidel, P. Zhao, T. R. Ensley, D. Peceli, J. M. Reed, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. Van Stryland, “Temporal, spectral, and polarization dependence of the nonlinear optical response of carbon disulfide,” Optica 1, 436–445 (2014).
[Crossref]

Velázquez-Ibarra, L.

Viale, P.

Vieweg, M.

Vincent-Geisse, J.

J. Vincent-Geisse, “Dispersion de quelques liquides organiques dans l’infrarouge. détermination des intensités de bandes et des polarisations,” J. Phys. France 26, 289–296 (1965).
[Crossref]

Wang, Z.-G.

N. An, B. Zhuang, M. Li, Y. Lu, and Z.-G. Wang, “Combined Theoretical and Experimental Study of Refractive Indices of Water-Acetonitrile-Salt Systems,” J. Phys. Chem. B 119, 10701–10709 (2015).
[Crossref] [PubMed]

Weber, M. J.

M. J. Weber, Handbook of Optical Materials (CRC, 2003).

Webster, S.

Wilhelmi, B.

B. Wilhelmi, “Über die Anwendung von Dispersionsrelationen zur Bestimmung optischer Konstanten,” Ann. Phys. 474, 244–252 (1967).
[Crossref]

Willer, U.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Laser Eng. 44, 699–710 (2006).
[Crossref]

Wu, D. C.

Xie, S.

Xu, Y.

Yarwood, J.

J. Yarwood and W. J. Orville-Thomas, “Infra-red dispersion studies. Part 7 Band intensities and atomic polarizations of CX2 = CCl2(X = H, F, Cl) molecules,” T. Faraday Soc. 62, 3294–3309 (1966).
[Crossref]

Yiou, S.

Zhao, P.

P. Zhao, M. Reichert, T. R. Ensley, W. M. Shensky, A. G. Mott, D. J. Hagan, and E. W. Van Stryland, “Nonlinear refraction dynamics of solvents and gases,” Proc. SPIE 9731 “Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XV,” 97310F (2016).
[Crossref]

M. Reichert, H. Hu, M. R. Ferdinandus, M. Seidel, P. Zhao, T. R. Ensley, D. Peceli, J. M. Reed, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. Van Stryland, “Temporal, spectral, and polarization dependence of the nonlinear optical response of carbon disulfide,” Optica 1, 436–445 (2014).
[Crossref]

Zhou, B.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Zhuang, B.

N. An, B. Zhuang, M. Li, Y. Lu, and Z.-G. Wang, “Combined Theoretical and Experimental Study of Refractive Indices of Water-Acetonitrile-Salt Systems,” J. Phys. Chem. B 119, 10701–10709 (2015).
[Crossref] [PubMed]

Zürch, M.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light: Sci. Appl. 6, e17124 (2017).
[Crossref]

Adv. Opt. Mater. (1)

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid Optical Fibers - An Innovative Platform for In-Fiber Photonic Devices,” Adv. Opt. Mater. 4, 13–36 (2016).
[Crossref]

Ann. Phys. (1)

B. Wilhelmi, “Über die Anwendung von Dispersionsrelationen zur Bestimmung optischer Konstanten,” Ann. Phys. 474, 244–252 (1967).
[Crossref]

Appl. Optics (2)

G. S. He, M. Casstevens, R. Burzynski, and X. Li, “Broadband, multiwavelength stimulated-emission source based on stimulated Kerr and Raman scattering in a liquid-core fiber system,” Appl. Optics 34, 444–454 (1995).
[Crossref]

S. Diemer, J. Meister, R. Jung, S. Klein, M. Haisch, W. Fuss, and P. Hering, “Liquid-core light guides for near-infrared applications,” Appl. Optics 36, 9075–9082 (1997).
[Crossref]

Appl. Phys. Lett. (1)

R. H. Stolen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22, 276–278 (1973).
[Crossref]

Fresen. J. Anal. Chem. (1)

K. Spaeth, G. Kraus, and G. Gauglitz, “In-situ characterization of thin polymer films for applications in chemical sensing of volatile organic compounds by spectroscopic ellipsometry,” Fresen. J. Anal. Chem. 357, 292–296 (1997).
[Crossref]

IEEE J. Quantum Elect. (2)

A. Majumdar, D. Hinkley, and R. Menzies, “Infrared transmission at the 3.39 μm helium-neon laser wavelength in liquid-core quartz fibers,” IEEE J. Quantum Elect. 15, 408–410 (1979).
[Crossref]

D. McMorrow, W. Lotshaw, and G. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Elect. 24, 443–454 (1988).
[Crossref]

Infrared Phys. (1)

S. Ghosal, J. L. Ebert, and S. A. Self, “The infrared refractive indices of CHBr3, CCl4 and CS2,” Infrared Phys. 34, 621–628 (1993).
[Crossref]

J. Appl. Phys. (1)

A. Samoc, “Dispersion of refractive properties of solvents: Chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared,” J. Appl. Phys. 94, 6167–6174 (2003).
[Crossref]

J. Chem. Phys. (1)

F. I. Mopsik, “Dielectric Properties of Slightly Polar Organic Liquids as a Function of Pressure, Volume, and Temperature,” J. Chem. Phys. 50, 2559–2569 (1969).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

N. An, B. Zhuang, M. Li, Y. Lu, and Z.-G. Wang, “Combined Theoretical and Experimental Study of Refractive Indices of Water-Acetonitrile-Salt Systems,” J. Phys. Chem. B 119, 10701–10709 (2015).
[Crossref] [PubMed]

J. Phys. France (1)

J. Vincent-Geisse, “Dispersion de quelques liquides organiques dans l’infrarouge. détermination des intensités de bandes et des polarisations,” J. Phys. France 26, 289–296 (1965).
[Crossref]

J. Res. Nat. Bur. Stand. (1)

D. Mann, N. Acquista, and E. Plyler, “Vibrational spectra of tetrafluoroethylene and tetrachloroethylene,” J. Res. Nat. Bur. Stand. 52, 67–72 (1954).
[Crossref]

Laser Med. Sci. (1)

J. Meister, R. Franzen, G. Eyrich, J. Bongartz, N. Gutknecht, and P. Hering, “First clinical application of a liquid-core light guide connected to an Er:YAG laser for oral treatment of leukoplakia,” Laser Med. Sci. 25, 669–673 (2010).
[Crossref]

Light: Sci. Appl. (1)

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light: Sci. Appl. 6, e17124 (2017).
[Crossref]

Nat. Commun. (1)

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8, 42 (2017).
[Crossref] [PubMed]

Nat. Photonics (2)

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Opt. Express (10)

K. F. Mak, J. C. Travers, P. Holzer, N. Y. Joly, and P. S. Russell, “Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled Kagome-PCF,” Opt. Express 21, 10942–10953 (2013).
[Crossref] [PubMed]

S. Pumpe, M. Chemnitz, J. Kobelke, and M. A. Schmidt, “Monolithic optofluidic mode coupler for broadband thermo- and piezo-optical characterization of liquids,” Opt. Express 25, 22932–22946 (2017).
[Crossref] [PubMed]

M. Vieweg, T. Gissibl, S. Pricking, B. T. Kuhlmey, D. C. Wu, B. J. Eggleton, and H. Giessen, “Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers,” Opt. Express 18, 25232–25240 (2010).
[Crossref] [PubMed]

S. Kedenburg, T. Gissibl, T. Steinle, A. Steinmann, and H. Giessen, “Towards integration of a liquid-filled fiber capillary for supercontinuum generation in the 1.2–2.4μm range,” Opt. Express 23, 8281–8289 (2015).
[Crossref] [PubMed]

A. Bozolan, C. J. de Matos, C. M. Cordeiro, E. M. Dos Santos, and J. Travers, “Supercontinuum generation in a water-core photonic crystal fiber,” Opt. Express 16, 9671–9676 (2008).
[Crossref] [PubMed]

J. Bethge, A. Husakou, F. Mitschke, F. Noack, U. Griebner, G. Steinmeyer, and J. Herrmann, “Two-octave supercontinuum generation in a water-filled photonic crystal fiber,” Opt. Express 18, 6230–6240 (2010).
[Crossref] [PubMed]

S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, G. Roosen, P. Viale, S. Février, P. Roy, J.-L. Auguste, and J.-M. Blondy, “Stimulated Raman scattering in an ethanol core microstructured optical fiber,” Opt. Express 13, 4786–4791 (2005).
[Crossref] [PubMed]

F. Dai, Y. Xu, and X. Chen, “Enhanced and broadened SRS spectra of toluene mixed with chloroform in liquid-core fiber,” Opt. Express 17, 19882–19886 (2009).
[Crossref] [PubMed]

J. Laegsgaard, “Mode profile dispersion in the generalized nonlinear Schrödinger equation,” Opt. Express 15, 16110–16123 (2007).
[Crossref] [PubMed]

M. Chemnitz and M. A. Schmidt, “Single mode criterion - a benchmark figure to optimize the performance of nonlinear fibers,” Opt. Express 24, 16191–16205 (2016).
[Crossref] [PubMed]

Opt. Laser Eng. (1)

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Laser Eng. 44, 699–710 (2006).
[Crossref]

Opt. Lett. (8)

S. Xie, F. Tani, J. C. Travers, P. Uebel, C. Caillaud, J. Troles, M. A. Schmidt, and P. S. Russell, “As2S3-silica double-nanospike waveguide for mid-infrared supercontinuum generation,” Opt. Lett. 39, 5216–5219 (2014).
[Crossref] [PubMed]

M. Gebhardt, C. Gaida, F. Stutzki, S. Hädrich, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power nonlinear compression to 4GW, sub-50fs pulses at 2μm wavelength,” Opt. Lett. 42, 747–750 (2017).
[Crossref] [PubMed]

L. Velázquez-Ibarra, A. Díez, E. Silvestre, and M. V. Andrés, “Wideband tuning of four-wave mixing in solid-core liquid-filled photonic crystal fibers,” Opt. Lett. 41, 2600–2603 (2016).
[Crossref] [PubMed]

M. I. Hasan, N. Akhmediev, and W. Chang, “Mid-infrared supercontinuum generation in supercritical xenon-filled hollow-core negative curvature fibers,” Opt. Lett. 41, 5122–5125 (2016).
[Crossref] [PubMed]

G. Fanjoux, A. Sudirman, J.-C. Beugnot, L. Furfaro, W. Margulis, and T. Sylvestre, “Stimulated Raman-Kerr scattering in an integrated nonlinear optofluidic fiber arrangement,” Opt. Lett. 39, 5407–5410 (2014).
[Crossref]

M. Vieweg, T. Gissibl, Y. V. Kartashov, L. Torner, and H. Giessen, “Spatial solitons in optofluidic waveguide arrays with focusing ultrafast Kerr nonlinearity,” Opt. Lett. 37, 2454–2456 (2012).
[Crossref] [PubMed]

M. Vieweg, S. Pricking, T. Gissibl, Y. Kartashov, L. Torner, and H. Giessen, “Tunable ultrafast nonlinear optofluidic coupler,” Opt. Lett. 37, 1058–1060 (2012).
[Crossref] [PubMed]

D. Lopez-Cortes, O. Tarasenko, and W. Margulis, “All-fiber Kerr cell,” Opt. Lett. 37, 3288–3290 (2012).
[Crossref] [PubMed]

Opt. Mat. Express (3)

D. Churin, T. Nguyen, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Mid-IR supercontinuum generation in an integrated liquid-core optical fiber filled with CS2,” Opt. Mat. Express 3, 1358–1364 (2013).
[Crossref]

S. Kedenburg, M. Vieweg, T. Gissibl, and H. Giessen, “Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region,” Opt. Mat. Express 2, 1588–1611 (2012).
[Crossref]

M. Plidschun, M. Chemnitz, and M. A. Schmidt, “Low-loss deuterated organic solvents for visible and near-infrared photonics,” Opt. Mat. Express 7, 1122–1130 (2017).
[Crossref]

Optica (2)

Phys. Rev. A (2)

M. C. Braidotti, A. Mecozzi, and C. Conti, “Squeezing in a nonlocal photon fluid,” Phys. Rev. A 96, 043823 (2017).
[Crossref]

P. P. Ho and R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20, 2170–2187 (1979).
[Crossref]

Phys. Rev. Lett. (2)

F. Tani, J. C. Travers, and P. S. J. Russell, “PHz-wide Supercontinua of Nondispersing Subcycle Pulses Generated by Extreme Modulational Instability,” Phys. Rev. Lett. 111, 033902 (2013).
[Crossref] [PubMed]

C. Conti, M. A. Schmidt, P. S. J. Russell, and F. Biancalana, “Highly Noninstantaneous Solitons in Liquid-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 105, 263902 (2010).
[Crossref]

Proc. SPIE (1)

P. Zhao, M. Reichert, T. R. Ensley, W. M. Shensky, A. G. Mott, D. J. Hagan, and E. W. Van Stryland, “Nonlinear refraction dynamics of solvents and gases,” Proc. SPIE 9731 “Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XV,” 97310F (2016).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

T. Faraday Soc. (1)

J. Yarwood and W. J. Orville-Thomas, “Infra-red dispersion studies. Part 7 Band intensities and atomic polarizations of CX2 = CCl2(X = H, F, Cl) molecules,” T. Faraday Soc. 62, 3294–3309 (1966).
[Crossref]

Vib. Spectroscopy (1)

N. Thantu and R. S. Schley, “Ultrafast third-order nonlinear optical spectroscopy of chlorinated hydrocarbons,” Vib. Spectroscopy 32, 215–223 (2003).
[Crossref]

Other (2)

G. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).

M. J. Weber, Handbook of Optical Materials (CRC, 2003).

Supplementary Material (2)

NameDescription
» Data File 1       Measured Raman signal of C2Cl4 versus frequency (in THz). The Raman signal is normalized to the maximum peak of the Raman spectrum of silica measured under identical conditions (i.e., same pump power, same sample lengths).
» Data File 2       Measured Raman signal of CCl4 versus frequency (in THz). The Raman signal is normalized to the maximum peak of the Raman spectrum of silica measured under identical conditions (i.e., same pump power, same sample lengths).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Illustration of the nonlinear interaction of an ultrashort optical pulses and the generation of new frequencies inside a liquid-core optical fiber. (b) Cross section of the liquid-core fiber type used in this work. The curve above the cross section illustrates the transversal refractive index distribution n(x) of the step-index geometry. OD and ID stand for outer and inner diameter.
Fig. 2
Fig. 2 (a–c) Measured absorption, (d) refractive index dispersion, and (e) nonlinear optical response of CS2 (black), C2Cl4 (blue), and CCl4 (green). The legend above the three plots applies to all diagrams. The absorption of CCl4 in (c) is taken from Ref. [12], whereas no data are available within the crosshatched green area. The refractive index data in (d) are taken from multiple sources: CCl4 from [12, 40–42], C2Cl4 from [42–45], CS2 from [12,40,42,46,47]. The nonlinear responses in (e) do not contain the ultrafast Raman oscillations and are normalized to the respective electronic nonlinear refractive index n2,el at 1.92 μm wavelength. The inset shows the measured Raman spectrum S(ω) of CCl4 and C2Cl4 normalized to the maximum gain peak of fused silica [48,49]. The Raman data can be found in Data File 1 and Data File 2.
Fig. 3
Fig. 3 Design maps of silica-cladding LCFs filled with (a) a 10 vol% CS2 / 90 vol% CCl4 mixture or (b) TCE. The contour plots show the decadic logarithm of the nonlinear coefficient as functions of wavelength and core diameter. The purple marks label the experimental configurations used in this work. Red line: zero-dispersion wavelength (ZDW); black dashed line: single-mode criterion (SMC); dotted black line: critical waveguide parameter (Vcrit = 1.2). AD and ND refers to anomalous and normal dispersion, respectively.
Fig. 4
Fig. 4 Scheme of the laser setup and the optofluidic supercontinuum generation setup. The reference output (ref-out) are two reflexes from a wedge coupled into spectrometer and auto-correlator (AC). One measured AC traces is exemplarily shown in the inset (gray marks) and compared to the calculated AC of the pulse reconstructed from the measured spectrum (red line). PC: polarization control, PD: pump (laser) diode, OFM: optofluidic mount, LCF: liquid-core fiber, MMF: multimode fiber. The inset on the right-handed side shows a near-field image of the output fundamental mode at 1.9 μm wavelength.
Fig. 5
Fig. 5 Measured (left column) and simulated (right column) power spectral distribution of supercontinua generated in two CCl4-filled LCFs with different core diameter and slightly different length ((a, c) 4.6 μm, 25 cm, (b, d) 8.1 μm, 20 cm). The color scale is identical for all panels and refers to the normalized decadic logarithm of the intensity in dB.
Fig. 6
Fig. 6 (a) Measured spectral distribution of supercontinuum generation after 21 cm C2Cl4-LCF for increasing pulse energy. (b) Corresponding simulated spectral power evolution obtained by solving (b) the GNLSE and (c) the HNLSE assuming a 270 fs sech2 input pulse (details can be found in main text). (d) Comparison of the 20 dB bandwidth of the generated supercontinua between measurement and the two numerical solvers.
Fig. 7
Fig. 7 (a) Noninstantaneous contribution to the total nonlinearity and (b) maximum of the noninstantaneous phase from Eq. (4) normalized to the maximum of the Kerr phase φIK = (1 − fm)γ0P0 as function of temporal input pulse width for the three solvents. The marks highlight the working points of previous work in CS_2 [26] and this work. (c–d) Spatial-spectral evolution of a strongly chirped 1.9 ps pulse with 500 W peak power numerically calculated on basis of the GNLSE (c) without and (d) with noninstantaneous phase (the color scale refers to the normalized decadic spectral intensity in dB). The spectral modulations in (c) clearly indicate modulations instabilities (MI) as the dominant broadening process, whereas the C2Cl4-LCF system in (d) shows clean soliton fission and dispersive wave generation. The inset in (d) shows the pulse power (normalized to the input peak power) over time (normalized to the FWHM width of the input pulse) at the maximum compression point.

Tables (1)

Tables Icon

Table 1 Sellmeier coefficients (B1, B2, C1, C2), fit coefficient of determination (R2), and nonlinear refractive indices (n2,el : electronic nonlinear index, n2,m: molecular nonlinear index (without Raman)) of CTC and TCE at 1.9 μm wavelength and FWHM pulse width of 300 fs.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n 2 = n 2 , el + n 2 , m = n 2 , el + I ( t ) I ( t τ ) R ( τ ) d τ d t I 2 ( t ) d t ,
R ( t ) = k n 2 , k r k ( t ) + n 2 , L C L e t / τ d , L Θ ( t ) 0 sin ( ω t ) ω g ( ω ) d ω normalization : d t = 1 ,
z A ˜ ( z ; ω ) i [ β ( ω ) β 0 ω β 1 ] A ˜ = i γ ˜ ( ω ) { A ( z , t ) h ( t ) | A ( z , t t ) | 2 d t } ,
z A ˜ ( z ; ω ) i β ¯ ( ω ) A ˜ = i γ ˜ ( ω ) { [ ( 1 f m ) | A ( t ) | 2 + f m V 0 ( t ) ] A ( z ; t ) }

Metrics