Abstract

This paper proposes a novel 3-D surface profile measurement scheme by only a single-shot color binary speckle pattern (CBSP) and a temporal–spatial correlation matching algorithm, which can be applied to measurements of dynamic and static objects. R/G/B channels of CBSP are coupled with three carefully designed black and white binary speckle patterns (BWBSPs), whose physical features are associated with the system configuration parameters. We mathematically deduce the concrete details of how to design such a pattern and its relationship with the system parameters selected in the experiment. During 3-D reconstruction, we develop an extended temporal-spatial correlation framework to determine the correspondence between two stereo images sequences that are composed of R/G/B images separated from a captured color stereo image pair. Comparative experiments and analysis are implemented to assess the measurement accuracy using standard workpieces (dumbbell and optical flat). The results indicate that the proposed approach enjoys better performance than the conventional BWBSP-based method in terms of spatial resolution, accuracy, and efficient reconstructed points. An experiment of applying CBSP to measuring a moving A4 paper is also presented, demonstrating the success of our computational framework. Finally discussions concerning the limitations of this method are implemented.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
3-D face registration solution with speckle encoding based spatial-temporal logical correlation algorithm

Pei Zhou, Jiangping Zhu, and Zhisheng You
Opt. Express 27(15) 21004-21019 (2019)

Accurate and fast 3D surface measurement with temporal-spatial binary encoding structured illumination

Jiangping Zhu, Pei Zhou, Xianyu Su, and Zhisheng You
Opt. Express 24(25) 28549-28560 (2016)

Motion-oriented high speed 3-D measurements by binocular fringe projection using binary aperiodic patterns

Shijie Feng, Qian Chen, Chao Zuo, Tianyang Tao, Yan Hu, and Anand Asundi
Opt. Express 25(2) 540-559 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Geng, “Structured-light 3D surface imaging: a tutorial,” Adv. Opt. Photonics 3(2), 128–160 (2011).
    [Crossref]
  2. J. Salvi, J. Pagès, and J. Batlle, “Pattern codification strategies in structured light systems,” Pattern Recognit. 37(4), 827–849 (2004).
    [Crossref]
  3. Z. Y. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000).
    [Crossref]
  4. J. Heikkila and O. Silven, “A four-step camera calibration Procedure with implicit image correction,” Proc. IEEE Comput. Soc. Conf. Comput. Vision Pattern Recognition, 1106–1112 (1997).
  5. Z. Jia, J. Yang, W. Liu, F. Wang, Y. Liu, L. Wang, C. Fan, and K. Zhao, “Improved camera calibration method based on perpendicularity compensation for binocular stereo vision measurement system,” Opt. Express 23(12), 15205–15223 (2015).
    [Crossref] [PubMed]
  6. Z. Zhang, S. Huang, S. Meng, F. Gao, and X. Jiang, “A simple, flexible and automatic 3D calibration method for a phase calculation-based fringe projection imaging system,” Opt. Express 21(10), 12218–12227 (2013).
    [Crossref] [PubMed]
  7. S. Zhang, Handbook of 3-D Machine Vision: Optical Metrology and Imaging (CRC Press, Taylor & Francis Group, 2013).
  8. J. Dai, Y. An, and S. Zhang, “Absolute three-dimensional shape measurement with a known object,” Opt. Express 25(9), 10384–10396 (2017).
    [Crossref] [PubMed]
  9. Y. Wang, J. I. Laughner, I. R. Efimov, and S. Zhang, “3D absolute shape measurement of live rabbit hearts with a superfast two-frequency phase-shifting technique,” Opt. Express 21(5), 5822–5832 (2013).
    [Crossref] [PubMed]
  10. C. Jiang, T. Bell, and S. Zhang, “High dynamic range real-time 3D shape measurement,” Opt. Express 24(7), 7337–7346 (2016).
    [Crossref] [PubMed]
  11. B. Salahieh, Z. Chen, J. J. Rodriguez, and R. Liang, “Multi-polarization fringe projection imaging for high dynamic range objects,” Opt. Express 22(8), 10064–10071 (2014).
    [Crossref] [PubMed]
  12. X. Huang, J. Bai, K. Wang, Q. Liu, Y. Luo, K. Yang, and X. Zhang, “Target enhanced 3D reconstruction based on polarization-coded structured light,” Opt. Express 25(2), 1173–1184 (2017).
    [Crossref] [PubMed]
  13. S. Zhang, D. Van Der Weide, and J. Oliver, “Superfast phase-shifting method for 3-D shape measurement,” Opt. Express 18(9), 9684–9689 (2010).
    [Crossref] [PubMed]
  14. M. Takeda and K. Mutoh, “Fourier transform profilometry for the automatic measurement of 3-D object shapes,” Appl. Opt. 22(24), 3977–3982 (1983).
    [Crossref] [PubMed]
  15. Z. H. Zhang, “Review of single-shot 3D shape measurement by phase calculation-based fringe projection techniques,” Opt. Lasers Eng. 50(8), 1097–1106 (2012).
    [Crossref]
  16. S. Ettl, O. Arold, Z. Yang, and G. Häusler, “Flying triangulation--an optical 3D sensor for the motion-robust acquisition of complex objects,” Appl. Opt. 51(2), 281–289 (2012).
    [Crossref] [PubMed]
  17. J. García, Z. Zalevsky, P. García-Martínez, C. Ferreira, M. Teicher, and Y. Beiderman, “Three-dimensional mapping and range measurement by means of projected speckle patterns,” Appl. Opt. 47(16), 3032–3040 (2008).
    [Crossref] [PubMed]
  18. T. Fricke-Begemann, “Three-dimensional deformation field measurement with digital speckle correlation,” Appl. Opt. 42(34), 6783–6796 (2003).
    [Crossref] [PubMed]
  19. Z. Chen, X. Zhang, and S. Fatikow, “3D robust digital image correlation for vibration measurement,” Appl. Opt. 55(7), 1641–1648 (2016).
    [Crossref] [PubMed]
  20. M. A. Sutton, J. J. Orteu, and H. Schreier, Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications (Springer US, 2009).
  21. B. Pan, H. Xie, and Z. Wang, “Equivalence of digital image correlation criteria for pattern matching,” Appl. Opt. 49(28), 5501–5509 (2010).
    [Crossref] [PubMed]
  22. B. Pan, H. Xie, Z. Wang, K. Qian, and Z. Wang, “Study on subset size selection in digital image correlation for speckle patterns,” Opt. Express 16(10), 7037–7048 (2008).
    [Crossref] [PubMed]
  23. A. Wiegmann, H. Wagner, and R. Kowarschik, “Human face measurement by projecting bandlimited random patterns,” Opt. Express 14(17), 7692–7698 (2006).
    [Crossref] [PubMed]
  24. M. Schaffer, M. Grosse, B. Harendt, and R. Kowarschik, “High-speed three-dimensional shape measurements of objects with laser speckles and acousto-optical deflection,” Opt. Lett. 36(16), 3097–3099 (2011).
    [Crossref] [PubMed]
  25. M. Schaffer, M. Grosse, and R. Kowarschik, “High-speed pattern projection for three-dimensional shape measurement using laser speckles,” Appl. Opt. 49(18), 3622–3629 (2010).
    [Crossref] [PubMed]
  26. B. Harendt, M. Grosse, M. Schaffer, and R. Kowarschik, “3D shape measurement of static and moving objects with adaptive spatiotemporal correlation,” Appl. Opt. 53(31), 7507–7515 (2014).
    [Crossref] [PubMed]
  27. https://en.wikipedia.org/wiki/PrimeSense .
  28. https://developer.microsoft.com/en-us/windows/kinect .
  29. https://www.apple.com/cn/iphone-x/ .
  30. https://realsenseapp.intel.com/ .
  31. G. Lionello and L. Cristofolini, “A practical approach to optimizing the preparation of speckle patterns for digital-image correlation,” Meas. Sci. Technol. 25(10), 107001 (2014).
    [Crossref]
  32. M. Sjödahl and P. Synnergren, “Measurement of shape by using projected random patterns and temporal digital speckle photography,” Appl. Opt. 38(10), 1990–1997 (1999).
    [Crossref] [PubMed]
  33. VDI/VDE 2634 Blatt 2: 2002–08 Optische 3D-Messsysteme; Systeme mit flachenhafter Antastung. Berlin: Beuth Verlag.
  34. M. Sjödahl, “Accuracy in electronic speckle photography,” Appl. Opt. 36(13), 2875–2885 (1997).
    [Crossref] [PubMed]
  35. P. Lutzke, M. Schaffer, P. Kühmstedt, R. Kowarschik, and G. Notni, “Experimental comparison of phase-shifting fringe projection and statistical pattern projection for active triangulation systems,” Proc. SPIE 8788, 878813 (2013).
    [Crossref]
  36. P. Zhou, J. P. Zhu, X. Y. Su, H. L. Jing, and X. Zhang, “Three-dimensional shape measurement using color random binary encoding pattern projection,” Opt. Eng. 56(10), 104102 (2017).
    [Crossref]
  37. P. S. Huang, Q. Hu, F. Jin, and F. P. Chiang, “Color-encoded digital fringe projection technique for high-speed 3-D surface contours,” Opt. Eng. 38(6), 1065–1071 (1999).
    [Crossref]
  38. L. Yu and B. Pan, “Full-frame, high-speed 3-D shape and deformation measurements using stereo-digital image correlation and a single color high-speed camera,” Opt. Lasers Eng. 95, 17–25 (2017).
    [Crossref]

2017 (4)

J. Dai, Y. An, and S. Zhang, “Absolute three-dimensional shape measurement with a known object,” Opt. Express 25(9), 10384–10396 (2017).
[Crossref] [PubMed]

X. Huang, J. Bai, K. Wang, Q. Liu, Y. Luo, K. Yang, and X. Zhang, “Target enhanced 3D reconstruction based on polarization-coded structured light,” Opt. Express 25(2), 1173–1184 (2017).
[Crossref] [PubMed]

P. Zhou, J. P. Zhu, X. Y. Su, H. L. Jing, and X. Zhang, “Three-dimensional shape measurement using color random binary encoding pattern projection,” Opt. Eng. 56(10), 104102 (2017).
[Crossref]

L. Yu and B. Pan, “Full-frame, high-speed 3-D shape and deformation measurements using stereo-digital image correlation and a single color high-speed camera,” Opt. Lasers Eng. 95, 17–25 (2017).
[Crossref]

2016 (2)

2015 (1)

2014 (3)

2013 (3)

2012 (2)

Z. H. Zhang, “Review of single-shot 3D shape measurement by phase calculation-based fringe projection techniques,” Opt. Lasers Eng. 50(8), 1097–1106 (2012).
[Crossref]

S. Ettl, O. Arold, Z. Yang, and G. Häusler, “Flying triangulation--an optical 3D sensor for the motion-robust acquisition of complex objects,” Appl. Opt. 51(2), 281–289 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (3)

2008 (2)

2006 (1)

2004 (1)

J. Salvi, J. Pagès, and J. Batlle, “Pattern codification strategies in structured light systems,” Pattern Recognit. 37(4), 827–849 (2004).
[Crossref]

2003 (1)

2000 (1)

Z. Y. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000).
[Crossref]

1999 (2)

M. Sjödahl and P. Synnergren, “Measurement of shape by using projected random patterns and temporal digital speckle photography,” Appl. Opt. 38(10), 1990–1997 (1999).
[Crossref] [PubMed]

P. S. Huang, Q. Hu, F. Jin, and F. P. Chiang, “Color-encoded digital fringe projection technique for high-speed 3-D surface contours,” Opt. Eng. 38(6), 1065–1071 (1999).
[Crossref]

1997 (1)

1983 (1)

An, Y.

Arold, O.

Bai, J.

Batlle, J.

J. Salvi, J. Pagès, and J. Batlle, “Pattern codification strategies in structured light systems,” Pattern Recognit. 37(4), 827–849 (2004).
[Crossref]

Beiderman, Y.

Bell, T.

Chen, Z.

Chiang, F. P.

P. S. Huang, Q. Hu, F. Jin, and F. P. Chiang, “Color-encoded digital fringe projection technique for high-speed 3-D surface contours,” Opt. Eng. 38(6), 1065–1071 (1999).
[Crossref]

Cristofolini, L.

G. Lionello and L. Cristofolini, “A practical approach to optimizing the preparation of speckle patterns for digital-image correlation,” Meas. Sci. Technol. 25(10), 107001 (2014).
[Crossref]

Dai, J.

Efimov, I. R.

Ettl, S.

Fan, C.

Fatikow, S.

Ferreira, C.

Fricke-Begemann, T.

Gao, F.

García, J.

García-Martínez, P.

Geng, J.

J. Geng, “Structured-light 3D surface imaging: a tutorial,” Adv. Opt. Photonics 3(2), 128–160 (2011).
[Crossref]

Grosse, M.

Harendt, B.

Häusler, G.

Heikkila, J.

J. Heikkila and O. Silven, “A four-step camera calibration Procedure with implicit image correction,” Proc. IEEE Comput. Soc. Conf. Comput. Vision Pattern Recognition, 1106–1112 (1997).

Hu, Q.

P. S. Huang, Q. Hu, F. Jin, and F. P. Chiang, “Color-encoded digital fringe projection technique for high-speed 3-D surface contours,” Opt. Eng. 38(6), 1065–1071 (1999).
[Crossref]

Huang, P. S.

P. S. Huang, Q. Hu, F. Jin, and F. P. Chiang, “Color-encoded digital fringe projection technique for high-speed 3-D surface contours,” Opt. Eng. 38(6), 1065–1071 (1999).
[Crossref]

Huang, S.

Huang, X.

Jia, Z.

Jiang, C.

Jiang, X.

Jin, F.

P. S. Huang, Q. Hu, F. Jin, and F. P. Chiang, “Color-encoded digital fringe projection technique for high-speed 3-D surface contours,” Opt. Eng. 38(6), 1065–1071 (1999).
[Crossref]

Jing, H. L.

P. Zhou, J. P. Zhu, X. Y. Su, H. L. Jing, and X. Zhang, “Three-dimensional shape measurement using color random binary encoding pattern projection,” Opt. Eng. 56(10), 104102 (2017).
[Crossref]

Kowarschik, R.

Kühmstedt, P.

P. Lutzke, M. Schaffer, P. Kühmstedt, R. Kowarschik, and G. Notni, “Experimental comparison of phase-shifting fringe projection and statistical pattern projection for active triangulation systems,” Proc. SPIE 8788, 878813 (2013).
[Crossref]

Laughner, J. I.

Liang, R.

Lionello, G.

G. Lionello and L. Cristofolini, “A practical approach to optimizing the preparation of speckle patterns for digital-image correlation,” Meas. Sci. Technol. 25(10), 107001 (2014).
[Crossref]

Liu, Q.

Liu, W.

Liu, Y.

Luo, Y.

Lutzke, P.

P. Lutzke, M. Schaffer, P. Kühmstedt, R. Kowarschik, and G. Notni, “Experimental comparison of phase-shifting fringe projection and statistical pattern projection for active triangulation systems,” Proc. SPIE 8788, 878813 (2013).
[Crossref]

Meng, S.

Mutoh, K.

Notni, G.

P. Lutzke, M. Schaffer, P. Kühmstedt, R. Kowarschik, and G. Notni, “Experimental comparison of phase-shifting fringe projection and statistical pattern projection for active triangulation systems,” Proc. SPIE 8788, 878813 (2013).
[Crossref]

Oliver, J.

Pagès, J.

J. Salvi, J. Pagès, and J. Batlle, “Pattern codification strategies in structured light systems,” Pattern Recognit. 37(4), 827–849 (2004).
[Crossref]

Pan, B.

Qian, K.

Rodriguez, J. J.

Salahieh, B.

Salvi, J.

J. Salvi, J. Pagès, and J. Batlle, “Pattern codification strategies in structured light systems,” Pattern Recognit. 37(4), 827–849 (2004).
[Crossref]

Schaffer, M.

Silven, O.

J. Heikkila and O. Silven, “A four-step camera calibration Procedure with implicit image correction,” Proc. IEEE Comput. Soc. Conf. Comput. Vision Pattern Recognition, 1106–1112 (1997).

Sjödahl, M.

Su, X. Y.

P. Zhou, J. P. Zhu, X. Y. Su, H. L. Jing, and X. Zhang, “Three-dimensional shape measurement using color random binary encoding pattern projection,” Opt. Eng. 56(10), 104102 (2017).
[Crossref]

Synnergren, P.

Takeda, M.

Teicher, M.

Van Der Weide, D.

Wagner, H.

Wang, F.

Wang, K.

Wang, L.

Wang, Y.

Wang, Z.

Wiegmann, A.

Xie, H.

Yang, J.

Yang, K.

Yang, Z.

Yu, L.

L. Yu and B. Pan, “Full-frame, high-speed 3-D shape and deformation measurements using stereo-digital image correlation and a single color high-speed camera,” Opt. Lasers Eng. 95, 17–25 (2017).
[Crossref]

Zalevsky, Z.

Zhang, S.

Zhang, X.

Zhang, Z.

Zhang, Z. H.

Z. H. Zhang, “Review of single-shot 3D shape measurement by phase calculation-based fringe projection techniques,” Opt. Lasers Eng. 50(8), 1097–1106 (2012).
[Crossref]

Zhang, Z. Y.

Z. Y. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000).
[Crossref]

Zhao, K.

Zhou, P.

P. Zhou, J. P. Zhu, X. Y. Su, H. L. Jing, and X. Zhang, “Three-dimensional shape measurement using color random binary encoding pattern projection,” Opt. Eng. 56(10), 104102 (2017).
[Crossref]

Zhu, J. P.

P. Zhou, J. P. Zhu, X. Y. Su, H. L. Jing, and X. Zhang, “Three-dimensional shape measurement using color random binary encoding pattern projection,” Opt. Eng. 56(10), 104102 (2017).
[Crossref]

Adv. Opt. Photonics (1)

J. Geng, “Structured-light 3D surface imaging: a tutorial,” Adv. Opt. Photonics 3(2), 128–160 (2011).
[Crossref]

Appl. Opt. (10)

T. Fricke-Begemann, “Three-dimensional deformation field measurement with digital speckle correlation,” Appl. Opt. 42(34), 6783–6796 (2003).
[Crossref] [PubMed]

S. Ettl, O. Arold, Z. Yang, and G. Häusler, “Flying triangulation--an optical 3D sensor for the motion-robust acquisition of complex objects,” Appl. Opt. 51(2), 281–289 (2012).
[Crossref] [PubMed]

Z. Chen, X. Zhang, and S. Fatikow, “3D robust digital image correlation for vibration measurement,” Appl. Opt. 55(7), 1641–1648 (2016).
[Crossref] [PubMed]

B. Pan, H. Xie, and Z. Wang, “Equivalence of digital image correlation criteria for pattern matching,” Appl. Opt. 49(28), 5501–5509 (2010).
[Crossref] [PubMed]

B. Harendt, M. Grosse, M. Schaffer, and R. Kowarschik, “3D shape measurement of static and moving objects with adaptive spatiotemporal correlation,” Appl. Opt. 53(31), 7507–7515 (2014).
[Crossref] [PubMed]

M. Takeda and K. Mutoh, “Fourier transform profilometry for the automatic measurement of 3-D object shapes,” Appl. Opt. 22(24), 3977–3982 (1983).
[Crossref] [PubMed]

M. Sjödahl, “Accuracy in electronic speckle photography,” Appl. Opt. 36(13), 2875–2885 (1997).
[Crossref] [PubMed]

M. Schaffer, M. Grosse, and R. Kowarschik, “High-speed pattern projection for three-dimensional shape measurement using laser speckles,” Appl. Opt. 49(18), 3622–3629 (2010).
[Crossref] [PubMed]

M. Sjödahl and P. Synnergren, “Measurement of shape by using projected random patterns and temporal digital speckle photography,” Appl. Opt. 38(10), 1990–1997 (1999).
[Crossref] [PubMed]

J. García, Z. Zalevsky, P. García-Martínez, C. Ferreira, M. Teicher, and Y. Beiderman, “Three-dimensional mapping and range measurement by means of projected speckle patterns,” Appl. Opt. 47(16), 3032–3040 (2008).
[Crossref] [PubMed]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

Z. Y. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000).
[Crossref]

Meas. Sci. Technol. (1)

G. Lionello and L. Cristofolini, “A practical approach to optimizing the preparation of speckle patterns for digital-image correlation,” Meas. Sci. Technol. 25(10), 107001 (2014).
[Crossref]

Opt. Eng. (2)

P. Zhou, J. P. Zhu, X. Y. Su, H. L. Jing, and X. Zhang, “Three-dimensional shape measurement using color random binary encoding pattern projection,” Opt. Eng. 56(10), 104102 (2017).
[Crossref]

P. S. Huang, Q. Hu, F. Jin, and F. P. Chiang, “Color-encoded digital fringe projection technique for high-speed 3-D surface contours,” Opt. Eng. 38(6), 1065–1071 (1999).
[Crossref]

Opt. Express (10)

S. Zhang, D. Van Der Weide, and J. Oliver, “Superfast phase-shifting method for 3-D shape measurement,” Opt. Express 18(9), 9684–9689 (2010).
[Crossref] [PubMed]

C. Jiang, T. Bell, and S. Zhang, “High dynamic range real-time 3D shape measurement,” Opt. Express 24(7), 7337–7346 (2016).
[Crossref] [PubMed]

X. Huang, J. Bai, K. Wang, Q. Liu, Y. Luo, K. Yang, and X. Zhang, “Target enhanced 3D reconstruction based on polarization-coded structured light,” Opt. Express 25(2), 1173–1184 (2017).
[Crossref] [PubMed]

B. Salahieh, Z. Chen, J. J. Rodriguez, and R. Liang, “Multi-polarization fringe projection imaging for high dynamic range objects,” Opt. Express 22(8), 10064–10071 (2014).
[Crossref] [PubMed]

Z. Jia, J. Yang, W. Liu, F. Wang, Y. Liu, L. Wang, C. Fan, and K. Zhao, “Improved camera calibration method based on perpendicularity compensation for binocular stereo vision measurement system,” Opt. Express 23(12), 15205–15223 (2015).
[Crossref] [PubMed]

Y. Wang, J. I. Laughner, I. R. Efimov, and S. Zhang, “3D absolute shape measurement of live rabbit hearts with a superfast two-frequency phase-shifting technique,” Opt. Express 21(5), 5822–5832 (2013).
[Crossref] [PubMed]

B. Pan, H. Xie, Z. Wang, K. Qian, and Z. Wang, “Study on subset size selection in digital image correlation for speckle patterns,” Opt. Express 16(10), 7037–7048 (2008).
[Crossref] [PubMed]

A. Wiegmann, H. Wagner, and R. Kowarschik, “Human face measurement by projecting bandlimited random patterns,” Opt. Express 14(17), 7692–7698 (2006).
[Crossref] [PubMed]

Z. Zhang, S. Huang, S. Meng, F. Gao, and X. Jiang, “A simple, flexible and automatic 3D calibration method for a phase calculation-based fringe projection imaging system,” Opt. Express 21(10), 12218–12227 (2013).
[Crossref] [PubMed]

J. Dai, Y. An, and S. Zhang, “Absolute three-dimensional shape measurement with a known object,” Opt. Express 25(9), 10384–10396 (2017).
[Crossref] [PubMed]

Opt. Lasers Eng. (2)

L. Yu and B. Pan, “Full-frame, high-speed 3-D shape and deformation measurements using stereo-digital image correlation and a single color high-speed camera,” Opt. Lasers Eng. 95, 17–25 (2017).
[Crossref]

Z. H. Zhang, “Review of single-shot 3D shape measurement by phase calculation-based fringe projection techniques,” Opt. Lasers Eng. 50(8), 1097–1106 (2012).
[Crossref]

Opt. Lett. (1)

Pattern Recognit. (1)

J. Salvi, J. Pagès, and J. Batlle, “Pattern codification strategies in structured light systems,” Pattern Recognit. 37(4), 827–849 (2004).
[Crossref]

Proc. SPIE (1)

P. Lutzke, M. Schaffer, P. Kühmstedt, R. Kowarschik, and G. Notni, “Experimental comparison of phase-shifting fringe projection and statistical pattern projection for active triangulation systems,” Proc. SPIE 8788, 878813 (2013).
[Crossref]

Other (8)

J. Heikkila and O. Silven, “A four-step camera calibration Procedure with implicit image correction,” Proc. IEEE Comput. Soc. Conf. Comput. Vision Pattern Recognition, 1106–1112 (1997).

S. Zhang, Handbook of 3-D Machine Vision: Optical Metrology and Imaging (CRC Press, Taylor & Francis Group, 2013).

https://en.wikipedia.org/wiki/PrimeSense .

https://developer.microsoft.com/en-us/windows/kinect .

https://www.apple.com/cn/iphone-x/ .

https://realsenseapp.intel.com/ .

VDI/VDE 2634 Blatt 2: 2002–08 Optische 3D-Messsysteme; Systeme mit flachenhafter Antastung. Berlin: Beuth Verlag.

M. A. Sutton, J. J. Orteu, and H. Schreier, Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications (Springer US, 2009).

Supplementary Material (1)

NameDescription
» Visualization 1       3-D imaging of a moving paper

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Relationship between designs of BWBSP and system parameters. (a) Schematic of binocular stereo measurement system; (b) Geometrical relationships amongst system parameters during imaging.
Fig. 2
Fig. 2 Creation of CBSP. (a)-(c) three temporally and spatially independent BWBSPs; (d) CBSP.
Fig. 3
Fig. 3 3-D reconstruction framework based on CBSP projection.
Fig. 4
Fig. 4 (a) Captured object (mask) image; (b) ROI (template) for 3-D reconstruction.
Fig. 5
Fig. 5 (a) Ceramic standard plate and (b) Gauge.
Fig. 6
Fig. 6 Fitting error maps respectively using (a) CBSP; (b) TBWBSP; (c) BWBSP. Units: mm.
Fig. 7
Fig. 7 3-D reconstruction results (left bottom) and fitting derivation maps of a dumbbell gauge (D1 and D2), (a) CBSP; (b) TBWBSP and (c) BWBSP.
Fig. 8
Fig. 8 (a) photo of tested mask; (b) with CBSP illumination; (c)-(e) 3-D reconstruction results (point cloud) of mask using CBSP, TBWBSP and BWBSP and (e*)-(g*) their partly enlarged views.
Fig. 9
Fig. 9 3-D Reconstructions as a function of projected pattern number N. (a) CBSP; (b) BWBSP.
Fig. 10
Fig. 10 3-D reconstructions of shaking paper (associated video Visualization 1). (a)-(c) captured pattern images (right view) respectively at t = 0, 1/20, 1s/10 and corresponding point clouds (a*)-(c*) rendered by reseda and illumination for purpose of better visualization.

Tables (2)

Tables Icon

Table 1 Error statistics of measuring a ceramic plate (Unit: mm)

Tables Icon

Table 2 Error statistics of measuring a dumbbell gauge. (Unit: mm)

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

Δ x p s = m p Δ δ p ,
Δ X p Δ x p s D p f p ,
Δ X p cos θ Δ X p D p D c = Δ X c ,
Δ X c Δ x c D c f c = D c f c ( m c Δ δ c ) .
Δ x p s D c 2 f p D p 2 f c Δ x c ,
m p Δ δ p D c 2 f p D p 2 f c ( m c Δ δ c ) .
R ( B W B S P ) G ( B W B S P ) B ( B W B S P ) } RGB : C B S P ( B W B S P ) .
C c o r r ( i , j , i , j + Δ d , N ) = t = 1 N h = w y / 2 w y / 2 l = w x / 2 w x / 2 I S L I S R t = 1 N h = w y / 2 w y / 2 l = w x / 2 w x / 2 ( I S L ) 2 t = 1 N h = w y / 2 w y / 2 l = w x / 2 w x / 2 ( I S R ) 2 ,
I S L = I L ( i + l , j + h , t ) I m L ,
I S R = I R ( i + l , j + Δ d + h , t ) I m R ,
I m L = t = 1 N h = w y / 2 w y / 2 l = w x / 2 w x / 2 I ( i + l , j + h , t ) N ( w y + 1 ) ( w x + 1 ) ,
I m R = t = 1 N h = w y / 2 w y / 2 l = w x / 2 w x / 2 I R ( i + l , j + Δ d + h , t ) N ( w y + 1 ) ( w x + 1 ) .
C c o r r ( i , j , i , j + Δ d , N ) = a ( j j s u b p x ) 2 + c , j [ j max 2 , j max + 2 ] ,
Δ d s u b p x = Δ d + j s u b p x INT ( j s u b p x ) .
Δ x p s = 1 × Δ δ p D c 2 f p D p 2 f c ( 3 × Δ δ c ) .
I T h A v g ( i , j ) = c h { R , G , B } I ( i , j , c h ) N , N = 3.
T e m p l a t e ( i , j , c h ) c h { R , G , B } = { 1 , i f I ( i . j , c h ) I T h A v g ( i , j ) 0 , i f I ( i . j , c h ) < I T h A v g ( i , j ) .
T e m p l a t e ( i , j ) = c h { R , G , B } T e m p l a t e ( i , j , c h ) .
e s t d = a σ 2 ( w + 1 ) N 1 C c o r r C c o r r

Metrics