Abstract

We investigate the fluorescence from submonolayer porphyrin molecules near silver-polymer core-shell nanoparticles (NPs) at a well-controlled separation distance of about 1 nm – 5 nm. When porphyrin molecules are deposited on silver NPs with the plasmonic resonance peak at about 410 nm, which matches very closely with the 405-nm excitation laser and the absorption band of porphyrin molecules, their emission intensity is found to be enhanced due to the plasmonic resonant excitation enhancement, and shows a decline as the increasing polymer shell thickness. Meanwhile, the lifetime results demonstrate that there exists the fluorescence quenching due to the charge transfer and nonradiative energy transfer losses, which is also the main reason that the maximum enhancement factor obtained in experiment is only about 2.3, although the theoretical one is above 60 according to the electric field distribution near silver NPs calculated by finite-difference time-domain method.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fluorescence plasmonic enhancement of FITC labeled PS nanoparticles coupled to silver island films

Huixia Yang, Xiaoqiong Qi, Banghong Zhang, Hui Wang, and Liang Xie
Appl. Opt. 55(20) 5387-5392 (2016)

Modification on populating paths of β-NaYF4:Nd/Yb/Ho@SiO2@Ag core/double-shell nanocomposites with plasmon enhanced upconversion emission

Yi Qin, Zhiliang Dong, Dacheng Zhou, Yong Yang, Xuhui Xu, and Jianbei Qiu
Opt. Mater. Express 6(6) 1942-1955 (2016)

Silver nanoparticle enhanced 2.7 µm luminescence in Er3+-doped bismuth germanate glasses

Xiaomeng Jia, Mengling Xia, Yinsheng Xu, Lei Yang, Yan Zhang, Mingming Li, and Shixun Dai
Opt. Mater. Express 8(6) 1625-1632 (2018)

References

  • View by:
  • |
  • |
  • |

  1. X. S. Xie and R. C. Dunn, “Probing single molecule dynamics,” Science 265(5170), 361–364 (1994).
    [Crossref] [PubMed]
  2. P. Avouris and B. N. J. Persson, “Excited states at metal surfaces and their non-radiative relaxation,” J. Phys. Chem. 88(5), 837–848 (1984).
    [Crossref]
  3. E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
    [Crossref] [PubMed]
  4. W. Gebauer, A. Langner, M. Schneider, M. Sokolowski, and E. Umbach, “Luminescence quenching of ordered π-conjugated molecules near a metal surface: Quaterthiophene and PTCDA on Ag(111),” Phys. Rev. B 69(15), 155431 (2004).
    [Crossref]
  5. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
    [Crossref] [PubMed]
  6. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
    [Crossref]
  7. K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89(11), 117401 (2002).
    [Crossref] [PubMed]
  8. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
    [Crossref] [PubMed]
  9. Y. Chen, K. Munechika, and D. S. Ginger, “Dependence of Fluorescence Intensity on the Spectral Overlap between Fluorophores and Plasmon Resonant Single Silver Nanoparticles,” Nano Lett. 7(3), 690–696 (2007).
    [Crossref] [PubMed]
  10. F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
    [Crossref] [PubMed]
  11. A. M. Kern and O. J. F. Martin, “Excitation and reemission of molecules near realistic plasmonic nanostructures,” Nano Lett. 11(2), 482–487 (2011).
    [Crossref] [PubMed]
  12. S. W. Verbruggen, M. Keulemans, M. Filippousi, D. Flahaut, G. V. Tendeloo, S. Lacombe, J. A. Martens, and S. Lenaerts, “Plasmonic gold–silver alloy on TiO2 photocatalysts with tunable visible light activity,” Appl. Catal. B 156–157, 116–121 (2014).
    [Crossref]
  13. S. W. Verbruggen, M. Keulemans, J. A. Martens, and S. Lenaerts, “Predicting the Surface Plasmon Resonance Wavelength of Gold–Silver Alloy Nanoparticles,” J. Phys. Chem. C 117(37), 19142–19145 (2013).
    [Crossref]
  14. D. Conklin, S. Nanayakkara, T. H. Park, M. F. Lagadec, J. T. Stecher, X. Chen, M. J. Therien, and D. A. Bonnell, “Exploiting plasmon-induced hot electrons in molecular electronic devices,” ACS Nano 7(5), 4479–4486 (2013).
    [Crossref] [PubMed]
  15. P. Banerjee, D. Conklin, S. Nanayakkara, T. H. Park, M. J. Therien, and D. A. Bonnell, “Plasmon-induced electrical conduction in molecular devices,” ACS Nano 4(2), 1019–1025 (2010).
    [Crossref] [PubMed]
  16. M. C. Chen, Y. L. Yang, S. W. Chen, J. H. Li, M. Aklilu, and Y. Tai, “Self-assembled monolayer immobilized gold nanoparticles for plasmonic effects in small molecule organic photovoltaic,” ACS Appl. Mater. Interfaces 5(3), 511–517 (2013).
    [Crossref] [PubMed]
  17. T. Fukuura, “Plasmons excited in a large dense silver nanoparticle layer enhancethe luminescence intensity of organic light emitting diodes,” Appl. Surf. Sci. 346, 451–457 (2015).
    [Crossref]
  18. P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
    [Crossref] [PubMed]
  19. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
    [Crossref]
  20. H. Yu, Y. Luo, K. Beverly, J. F. Stoddart, H. R. Tseng, and J. R. Heath, “The molecule-electrode interface in single-molecule transistors,” Angew. Chem. Int. Ed. Engl. 42(46), 5706–5711 (2003).
    [Crossref] [PubMed]
  21. D. K. James and J. M. Tour, “Electrical Measurements in Molecular Electronics,” Chem. Mater. 16(23), 4423–4435 (2004).
    [Crossref]
  22. Y. Xue, C. Ding, Y. Rong, Q. Ma, C. Pan, E. Wu, B. Wu, and H. Zeng, “Tuning Plasmonic Enhancement of Single Nanocrystal Upconversion Luminescence by Varying Gold Nanorod Diameter,” Small 13(36), 1701155 (2017).
    [Crossref] [PubMed]
  23. R. Bonnett, “Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy,” Chem. Soc. Rev. 26(1), 19–33 (1995).
    [Crossref]
  24. Z. C. Dong, X. L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, and S. Mashiko, “Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope,” Phys. Rev. Lett. 92(8), 086801 (2004).
    [Crossref] [PubMed]
  25. Y. Wakayama, J. P. Hill, and K. Ariga, “Real-time STM observation of molecular dynamics on a metal surface,” Surf. Sci. 601(18), 3984–3987 (2007).
    [Crossref]
  26. Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nat. Photonics 4(1), 50–54 (2010).
    [Crossref]
  27. N. G. Bastús, F. Merkoçi, J. Piella, and V. Puntes, “Synthesis of Highly Monodisperse Citrate-Stabilized Silver Nanoparticles of up to 200 nm: Kinetic Control and Catalytic Properties,” Chem. Mater. 26(9), 2836–2846 (2014).
    [Crossref]
  28. R. Asapu, N. Claes, S. Bals, S. Denys, C. Detavernier, S. Lenaerts, and S. W. Verbruggen, “Silver-polymer core-shell nanoparticles for ultrastable plasmon-enhanced photocatalysis,” Appl. Catal. B 200, 31–38 (2017).
    [Crossref]
  29. D. W. Lynch and W. R. Hunter, “Silver (Ag),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985).
  30. L. Moroni, C. Gellini, P. R. Salvi, A. Marcelli, and P. Foggi, “Excited states of Porphyrin Macrocycles,” J. Phys. Chem. A 112(44), 11044–11051 (2008).
    [Crossref] [PubMed]
  31. S. Berner, M. Brunner, L. Ramoino, H. Suzuki, H. J. Güntherodt, and T. A. Jung, “Time evolution analysis of a 2D solid-gas equilibrium: a model system for molecular adsorption and diffusion,” Chem. Phys. Lett. 348(3-4), 175–181 (2001).
    [Crossref]
  32. S. Suto, W. Uchida, M. Yashima, and T. Goto, “Luminescence quenching of an ultrathin tetraphenylporphyrin film on a conductive SnO2 substrate,” Phys. Rev. B Condens. Matter 35(9), 4393–4397 (1987).
    [Crossref] [PubMed]
  33. S. Hamai, N. Tamai, and H. Masuhata, “Excimer Formation of Pyrene in a Solid/Polymer Solution Interface Layer. A Time-Resolved Total Internal Reflection Fluorescence Study,” J. Phys. Chem. 99(14), 4980–4985 (1995).
    [Crossref]
  34. X. L. Zhang, L. G. Chen, P. Lv, H. Y. Gao, S. J. Wei, Z. C. Dong, and J. G. Hou, “Fluorescence decay of quasimonolayered porphyrins near a metal surface separated by short-chain alkanethiols,” Appl. Phys. Lett. 92(22), 223118 (2008).
    [Crossref]
  35. P. Reineck, D. Gómez, S. H. Ng, M. Karg, T. Bell, P. Mulvaney, and U. Bach, “Distance and wavelength dependent quenching of molecular fluorescence by Au@SiO2 core-shell nanoparticles,” ACS Nano 7(8), 6636–6648 (2013).
    [Crossref] [PubMed]

2017 (2)

Y. Xue, C. Ding, Y. Rong, Q. Ma, C. Pan, E. Wu, B. Wu, and H. Zeng, “Tuning Plasmonic Enhancement of Single Nanocrystal Upconversion Luminescence by Varying Gold Nanorod Diameter,” Small 13(36), 1701155 (2017).
[Crossref] [PubMed]

R. Asapu, N. Claes, S. Bals, S. Denys, C. Detavernier, S. Lenaerts, and S. W. Verbruggen, “Silver-polymer core-shell nanoparticles for ultrastable plasmon-enhanced photocatalysis,” Appl. Catal. B 200, 31–38 (2017).
[Crossref]

2015 (1)

T. Fukuura, “Plasmons excited in a large dense silver nanoparticle layer enhancethe luminescence intensity of organic light emitting diodes,” Appl. Surf. Sci. 346, 451–457 (2015).
[Crossref]

2014 (2)

N. G. Bastús, F. Merkoçi, J. Piella, and V. Puntes, “Synthesis of Highly Monodisperse Citrate-Stabilized Silver Nanoparticles of up to 200 nm: Kinetic Control and Catalytic Properties,” Chem. Mater. 26(9), 2836–2846 (2014).
[Crossref]

S. W. Verbruggen, M. Keulemans, M. Filippousi, D. Flahaut, G. V. Tendeloo, S. Lacombe, J. A. Martens, and S. Lenaerts, “Plasmonic gold–silver alloy on TiO2 photocatalysts with tunable visible light activity,” Appl. Catal. B 156–157, 116–121 (2014).
[Crossref]

2013 (4)

S. W. Verbruggen, M. Keulemans, J. A. Martens, and S. Lenaerts, “Predicting the Surface Plasmon Resonance Wavelength of Gold–Silver Alloy Nanoparticles,” J. Phys. Chem. C 117(37), 19142–19145 (2013).
[Crossref]

D. Conklin, S. Nanayakkara, T. H. Park, M. F. Lagadec, J. T. Stecher, X. Chen, M. J. Therien, and D. A. Bonnell, “Exploiting plasmon-induced hot electrons in molecular electronic devices,” ACS Nano 7(5), 4479–4486 (2013).
[Crossref] [PubMed]

M. C. Chen, Y. L. Yang, S. W. Chen, J. H. Li, M. Aklilu, and Y. Tai, “Self-assembled monolayer immobilized gold nanoparticles for plasmonic effects in small molecule organic photovoltaic,” ACS Appl. Mater. Interfaces 5(3), 511–517 (2013).
[Crossref] [PubMed]

P. Reineck, D. Gómez, S. H. Ng, M. Karg, T. Bell, P. Mulvaney, and U. Bach, “Distance and wavelength dependent quenching of molecular fluorescence by Au@SiO2 core-shell nanoparticles,” ACS Nano 7(8), 6636–6648 (2013).
[Crossref] [PubMed]

2011 (1)

A. M. Kern and O. J. F. Martin, “Excitation and reemission of molecules near realistic plasmonic nanostructures,” Nano Lett. 11(2), 482–487 (2011).
[Crossref] [PubMed]

2010 (2)

P. Banerjee, D. Conklin, S. Nanayakkara, T. H. Park, M. J. Therien, and D. A. Bonnell, “Plasmon-induced electrical conduction in molecular devices,” ACS Nano 4(2), 1019–1025 (2010).
[Crossref] [PubMed]

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nat. Photonics 4(1), 50–54 (2010).
[Crossref]

2009 (1)

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

2008 (3)

L. Moroni, C. Gellini, P. R. Salvi, A. Marcelli, and P. Foggi, “Excited states of Porphyrin Macrocycles,” J. Phys. Chem. A 112(44), 11044–11051 (2008).
[Crossref] [PubMed]

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref] [PubMed]

X. L. Zhang, L. G. Chen, P. Lv, H. Y. Gao, S. J. Wei, Z. C. Dong, and J. G. Hou, “Fluorescence decay of quasimonolayered porphyrins near a metal surface separated by short-chain alkanethiols,” Appl. Phys. Lett. 92(22), 223118 (2008).
[Crossref]

2007 (4)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

Y. Wakayama, J. P. Hill, and K. Ariga, “Real-time STM observation of molecular dynamics on a metal surface,” Surf. Sci. 601(18), 3984–3987 (2007).
[Crossref]

Y. Chen, K. Munechika, and D. S. Ginger, “Dependence of Fluorescence Intensity on the Spectral Overlap between Fluorophores and Plasmon Resonant Single Silver Nanoparticles,” Nano Lett. 7(3), 690–696 (2007).
[Crossref] [PubMed]

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[Crossref] [PubMed]

2006 (2)

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

2004 (3)

W. Gebauer, A. Langner, M. Schneider, M. Sokolowski, and E. Umbach, “Luminescence quenching of ordered π-conjugated molecules near a metal surface: Quaterthiophene and PTCDA on Ag(111),” Phys. Rev. B 69(15), 155431 (2004).
[Crossref]

D. K. James and J. M. Tour, “Electrical Measurements in Molecular Electronics,” Chem. Mater. 16(23), 4423–4435 (2004).
[Crossref]

Z. C. Dong, X. L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, and S. Mashiko, “Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope,” Phys. Rev. Lett. 92(8), 086801 (2004).
[Crossref] [PubMed]

2003 (1)

H. Yu, Y. Luo, K. Beverly, J. F. Stoddart, H. R. Tseng, and J. R. Heath, “The molecule-electrode interface in single-molecule transistors,” Angew. Chem. Int. Ed. Engl. 42(46), 5706–5711 (2003).
[Crossref] [PubMed]

2002 (2)

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[Crossref] [PubMed]

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89(11), 117401 (2002).
[Crossref] [PubMed]

2001 (1)

S. Berner, M. Brunner, L. Ramoino, H. Suzuki, H. J. Güntherodt, and T. A. Jung, “Time evolution analysis of a 2D solid-gas equilibrium: a model system for molecular adsorption and diffusion,” Chem. Phys. Lett. 348(3-4), 175–181 (2001).
[Crossref]

1995 (2)

S. Hamai, N. Tamai, and H. Masuhata, “Excimer Formation of Pyrene in a Solid/Polymer Solution Interface Layer. A Time-Resolved Total Internal Reflection Fluorescence Study,” J. Phys. Chem. 99(14), 4980–4985 (1995).
[Crossref]

R. Bonnett, “Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy,” Chem. Soc. Rev. 26(1), 19–33 (1995).
[Crossref]

1994 (1)

X. S. Xie and R. C. Dunn, “Probing single molecule dynamics,” Science 265(5170), 361–364 (1994).
[Crossref] [PubMed]

1987 (1)

S. Suto, W. Uchida, M. Yashima, and T. Goto, “Luminescence quenching of an ultrathin tetraphenylporphyrin film on a conductive SnO2 substrate,” Phys. Rev. B Condens. Matter 35(9), 4393–4397 (1987).
[Crossref] [PubMed]

1984 (1)

P. Avouris and B. N. J. Persson, “Excited states at metal surfaces and their non-radiative relaxation,” J. Phys. Chem. 88(5), 837–848 (1984).
[Crossref]

Aklilu, M.

M. C. Chen, Y. L. Yang, S. W. Chen, J. H. Li, M. Aklilu, and Y. Tai, “Self-assembled monolayer immobilized gold nanoparticles for plasmonic effects in small molecule organic photovoltaic,” ACS Appl. Mater. Interfaces 5(3), 511–517 (2013).
[Crossref] [PubMed]

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

Ariga, K.

Y. Wakayama, J. P. Hill, and K. Ariga, “Real-time STM observation of molecular dynamics on a metal surface,” Surf. Sci. 601(18), 3984–3987 (2007).
[Crossref]

Asapu, R.

R. Asapu, N. Claes, S. Bals, S. Denys, C. Detavernier, S. Lenaerts, and S. W. Verbruggen, “Silver-polymer core-shell nanoparticles for ultrastable plasmon-enhanced photocatalysis,” Appl. Catal. B 200, 31–38 (2017).
[Crossref]

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Avouris, P.

P. Avouris and B. N. J. Persson, “Excited states at metal surfaces and their non-radiative relaxation,” J. Phys. Chem. 88(5), 837–848 (1984).
[Crossref]

Bach, U.

P. Reineck, D. Gómez, S. H. Ng, M. Karg, T. Bell, P. Mulvaney, and U. Bach, “Distance and wavelength dependent quenching of molecular fluorescence by Au@SiO2 core-shell nanoparticles,” ACS Nano 7(8), 6636–6648 (2013).
[Crossref] [PubMed]

Bals, S.

R. Asapu, N. Claes, S. Bals, S. Denys, C. Detavernier, S. Lenaerts, and S. W. Verbruggen, “Silver-polymer core-shell nanoparticles for ultrastable plasmon-enhanced photocatalysis,” Appl. Catal. B 200, 31–38 (2017).
[Crossref]

Banerjee, P.

P. Banerjee, D. Conklin, S. Nanayakkara, T. H. Park, M. J. Therien, and D. A. Bonnell, “Plasmon-induced electrical conduction in molecular devices,” ACS Nano 4(2), 1019–1025 (2010).
[Crossref] [PubMed]

Bastús, N. G.

N. G. Bastús, F. Merkoçi, J. Piella, and V. Puntes, “Synthesis of Highly Monodisperse Citrate-Stabilized Silver Nanoparticles of up to 200 nm: Kinetic Control and Catalytic Properties,” Chem. Mater. 26(9), 2836–2846 (2014).
[Crossref]

Bawendi, M. G.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89(11), 117401 (2002).
[Crossref] [PubMed]

Bell, T.

P. Reineck, D. Gómez, S. H. Ng, M. Karg, T. Bell, P. Mulvaney, and U. Bach, “Distance and wavelength dependent quenching of molecular fluorescence by Au@SiO2 core-shell nanoparticles,” ACS Nano 7(8), 6636–6648 (2013).
[Crossref] [PubMed]

Berner, S.

S. Berner, M. Brunner, L. Ramoino, H. Suzuki, H. J. Güntherodt, and T. A. Jung, “Time evolution analysis of a 2D solid-gas equilibrium: a model system for molecular adsorption and diffusion,” Chem. Phys. Lett. 348(3-4), 175–181 (2001).
[Crossref]

Beverly, K.

H. Yu, Y. Luo, K. Beverly, J. F. Stoddart, H. R. Tseng, and J. R. Heath, “The molecule-electrode interface in single-molecule transistors,” Angew. Chem. Int. Ed. Engl. 42(46), 5706–5711 (2003).
[Crossref] [PubMed]

Bharadwaj, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

Bonnell, D. A.

D. Conklin, S. Nanayakkara, T. H. Park, M. F. Lagadec, J. T. Stecher, X. Chen, M. J. Therien, and D. A. Bonnell, “Exploiting plasmon-induced hot electrons in molecular electronic devices,” ACS Nano 7(5), 4479–4486 (2013).
[Crossref] [PubMed]

P. Banerjee, D. Conklin, S. Nanayakkara, T. H. Park, M. J. Therien, and D. A. Bonnell, “Plasmon-induced electrical conduction in molecular devices,” ACS Nano 4(2), 1019–1025 (2010).
[Crossref] [PubMed]

Bonnett, R.

R. Bonnett, “Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy,” Chem. Soc. Rev. 26(1), 19–33 (1995).
[Crossref]

Brunner, M.

S. Berner, M. Brunner, L. Ramoino, H. Suzuki, H. J. Güntherodt, and T. A. Jung, “Time evolution analysis of a 2D solid-gas equilibrium: a model system for molecular adsorption and diffusion,” Chem. Phys. Lett. 348(3-4), 175–181 (2001).
[Crossref]

Chen, L. G.

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nat. Photonics 4(1), 50–54 (2010).
[Crossref]

X. L. Zhang, L. G. Chen, P. Lv, H. Y. Gao, S. J. Wei, Z. C. Dong, and J. G. Hou, “Fluorescence decay of quasimonolayered porphyrins near a metal surface separated by short-chain alkanethiols,” Appl. Phys. Lett. 92(22), 223118 (2008).
[Crossref]

Chen, M. C.

M. C. Chen, Y. L. Yang, S. W. Chen, J. H. Li, M. Aklilu, and Y. Tai, “Self-assembled monolayer immobilized gold nanoparticles for plasmonic effects in small molecule organic photovoltaic,” ACS Appl. Mater. Interfaces 5(3), 511–517 (2013).
[Crossref] [PubMed]

Chen, S. W.

M. C. Chen, Y. L. Yang, S. W. Chen, J. H. Li, M. Aklilu, and Y. Tai, “Self-assembled monolayer immobilized gold nanoparticles for plasmonic effects in small molecule organic photovoltaic,” ACS Appl. Mater. Interfaces 5(3), 511–517 (2013).
[Crossref] [PubMed]

Chen, X.

D. Conklin, S. Nanayakkara, T. H. Park, M. F. Lagadec, J. T. Stecher, X. Chen, M. J. Therien, and D. A. Bonnell, “Exploiting plasmon-induced hot electrons in molecular electronic devices,” ACS Nano 7(5), 4479–4486 (2013).
[Crossref] [PubMed]

Chen, Y.

Y. Chen, K. Munechika, and D. S. Ginger, “Dependence of Fluorescence Intensity on the Spectral Overlap between Fluorophores and Plasmon Resonant Single Silver Nanoparticles,” Nano Lett. 7(3), 690–696 (2007).
[Crossref] [PubMed]

Claes, N.

R. Asapu, N. Claes, S. Bals, S. Denys, C. Detavernier, S. Lenaerts, and S. W. Verbruggen, “Silver-polymer core-shell nanoparticles for ultrastable plasmon-enhanced photocatalysis,” Appl. Catal. B 200, 31–38 (2017).
[Crossref]

Conklin, D.

D. Conklin, S. Nanayakkara, T. H. Park, M. F. Lagadec, J. T. Stecher, X. Chen, M. J. Therien, and D. A. Bonnell, “Exploiting plasmon-induced hot electrons in molecular electronic devices,” ACS Nano 7(5), 4479–4486 (2013).
[Crossref] [PubMed]

P. Banerjee, D. Conklin, S. Nanayakkara, T. H. Park, M. J. Therien, and D. A. Bonnell, “Plasmon-induced electrical conduction in molecular devices,” ACS Nano 4(2), 1019–1025 (2010).
[Crossref] [PubMed]

Denys, S.

R. Asapu, N. Claes, S. Bals, S. Denys, C. Detavernier, S. Lenaerts, and S. W. Verbruggen, “Silver-polymer core-shell nanoparticles for ultrastable plasmon-enhanced photocatalysis,” Appl. Catal. B 200, 31–38 (2017).
[Crossref]

Detavernier, C.

R. Asapu, N. Claes, S. Bals, S. Denys, C. Detavernier, S. Lenaerts, and S. W. Verbruggen, “Silver-polymer core-shell nanoparticles for ultrastable plasmon-enhanced photocatalysis,” Appl. Catal. B 200, 31–38 (2017).
[Crossref]

Ding, C.

Y. Xue, C. Ding, Y. Rong, Q. Ma, C. Pan, E. Wu, B. Wu, and H. Zeng, “Tuning Plasmonic Enhancement of Single Nanocrystal Upconversion Luminescence by Varying Gold Nanorod Diameter,” Small 13(36), 1701155 (2017).
[Crossref] [PubMed]

Dong, Z. C.

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nat. Photonics 4(1), 50–54 (2010).
[Crossref]

X. L. Zhang, L. G. Chen, P. Lv, H. Y. Gao, S. J. Wei, Z. C. Dong, and J. G. Hou, “Fluorescence decay of quasimonolayered porphyrins near a metal surface separated by short-chain alkanethiols,” Appl. Phys. Lett. 92(22), 223118 (2008).
[Crossref]

Z. C. Dong, X. L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, and S. Mashiko, “Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope,” Phys. Rev. Lett. 92(8), 086801 (2004).
[Crossref] [PubMed]

Dorozhkin, P. S.

Z. C. Dong, X. L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, and S. Mashiko, “Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope,” Phys. Rev. Lett. 92(8), 086801 (2004).
[Crossref] [PubMed]

Dulkeith, E.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[Crossref] [PubMed]

Dunn, R. C.

X. S. Xie and R. C. Dunn, “Probing single molecule dynamics,” Science 265(5170), 361–364 (1994).
[Crossref] [PubMed]

Eisler, H. J.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89(11), 117401 (2002).
[Crossref] [PubMed]

El-Sayed, I. H.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref] [PubMed]

El-Sayed, M. A.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref] [PubMed]

Fan, S.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Feldmann, J.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[Crossref] [PubMed]

Filippousi, M.

S. W. Verbruggen, M. Keulemans, M. Filippousi, D. Flahaut, G. V. Tendeloo, S. Lacombe, J. A. Martens, and S. Lenaerts, “Plasmonic gold–silver alloy on TiO2 photocatalysts with tunable visible light activity,” Appl. Catal. B 156–157, 116–121 (2014).
[Crossref]

Fisher, B. R.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89(11), 117401 (2002).
[Crossref] [PubMed]

Flahaut, D.

S. W. Verbruggen, M. Keulemans, M. Filippousi, D. Flahaut, G. V. Tendeloo, S. Lacombe, J. A. Martens, and S. Lenaerts, “Plasmonic gold–silver alloy on TiO2 photocatalysts with tunable visible light activity,” Appl. Catal. B 156–157, 116–121 (2014).
[Crossref]

Foggi, P.

L. Moroni, C. Gellini, P. R. Salvi, A. Marcelli, and P. Foggi, “Excited states of Porphyrin Macrocycles,” J. Phys. Chem. A 112(44), 11044–11051 (2008).
[Crossref] [PubMed]

Fukuura, T.

T. Fukuura, “Plasmons excited in a large dense silver nanoparticle layer enhancethe luminescence intensity of organic light emitting diodes,” Appl. Surf. Sci. 346, 451–457 (2015).
[Crossref]

Gao, H. Y.

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nat. Photonics 4(1), 50–54 (2010).
[Crossref]

X. L. Zhang, L. G. Chen, P. Lv, H. Y. Gao, S. J. Wei, Z. C. Dong, and J. G. Hou, “Fluorescence decay of quasimonolayered porphyrins near a metal surface separated by short-chain alkanethiols,” Appl. Phys. Lett. 92(22), 223118 (2008).
[Crossref]

Gebauer, W.

W. Gebauer, A. Langner, M. Schneider, M. Sokolowski, and E. Umbach, “Luminescence quenching of ordered π-conjugated molecules near a metal surface: Quaterthiophene and PTCDA on Ag(111),” Phys. Rev. B 69(15), 155431 (2004).
[Crossref]

Gellini, C.

L. Moroni, C. Gellini, P. R. Salvi, A. Marcelli, and P. Foggi, “Excited states of Porphyrin Macrocycles,” J. Phys. Chem. A 112(44), 11044–11051 (2008).
[Crossref] [PubMed]

Ginger, D. S.

Y. Chen, K. Munechika, and D. S. Ginger, “Dependence of Fluorescence Intensity on the Spectral Overlap between Fluorophores and Plasmon Resonant Single Silver Nanoparticles,” Nano Lett. 7(3), 690–696 (2007).
[Crossref] [PubMed]

Gittins, D. I.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[Crossref] [PubMed]

Gómez, D.

P. Reineck, D. Gómez, S. H. Ng, M. Karg, T. Bell, P. Mulvaney, and U. Bach, “Distance and wavelength dependent quenching of molecular fluorescence by Au@SiO2 core-shell nanoparticles,” ACS Nano 7(8), 6636–6648 (2013).
[Crossref] [PubMed]

Goodrich, G. P.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[Crossref] [PubMed]

Goto, T.

S. Suto, W. Uchida, M. Yashima, and T. Goto, “Luminescence quenching of an ultrathin tetraphenylporphyrin film on a conductive SnO2 substrate,” Phys. Rev. B Condens. Matter 35(9), 4393–4397 (1987).
[Crossref] [PubMed]

Güntherodt, H. J.

S. Berner, M. Brunner, L. Ramoino, H. Suzuki, H. J. Güntherodt, and T. A. Jung, “Time evolution analysis of a 2D solid-gas equilibrium: a model system for molecular adsorption and diffusion,” Chem. Phys. Lett. 348(3-4), 175–181 (2001).
[Crossref]

Guo, X. L.

Z. C. Dong, X. L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, and S. Mashiko, “Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope,” Phys. Rev. Lett. 92(8), 086801 (2004).
[Crossref] [PubMed]

Håkanson, U.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

Halas, N. J.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[Crossref] [PubMed]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

Hamai, S.

S. Hamai, N. Tamai, and H. Masuhata, “Excimer Formation of Pyrene in a Solid/Polymer Solution Interface Layer. A Time-Resolved Total Internal Reflection Fluorescence Study,” J. Phys. Chem. 99(14), 4980–4985 (1995).
[Crossref]

Heath, J. R.

H. Yu, Y. Luo, K. Beverly, J. F. Stoddart, H. R. Tseng, and J. R. Heath, “The molecule-electrode interface in single-molecule transistors,” Angew. Chem. Int. Ed. Engl. 42(46), 5706–5711 (2003).
[Crossref] [PubMed]

Hill, J. P.

Y. Wakayama, J. P. Hill, and K. Ariga, “Real-time STM observation of molecular dynamics on a metal surface,” Surf. Sci. 601(18), 3984–3987 (2007).
[Crossref]

Hou, J. G.

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nat. Photonics 4(1), 50–54 (2010).
[Crossref]

X. L. Zhang, L. G. Chen, P. Lv, H. Y. Gao, S. J. Wei, Z. C. Dong, and J. G. Hou, “Fluorescence decay of quasimonolayered porphyrins near a metal surface separated by short-chain alkanethiols,” Appl. Phys. Lett. 92(22), 223118 (2008).
[Crossref]

Huang, X.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref] [PubMed]

Jain, P. K.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref] [PubMed]

James, D. K.

D. K. James and J. M. Tour, “Electrical Measurements in Molecular Electronics,” Chem. Mater. 16(23), 4423–4435 (2004).
[Crossref]

Johnson, B. R.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[Crossref] [PubMed]

Jung, T. A.

S. Berner, M. Brunner, L. Ramoino, H. Suzuki, H. J. Güntherodt, and T. A. Jung, “Time evolution analysis of a 2D solid-gas equilibrium: a model system for molecular adsorption and diffusion,” Chem. Phys. Lett. 348(3-4), 175–181 (2001).
[Crossref]

Karg, M.

P. Reineck, D. Gómez, S. H. Ng, M. Karg, T. Bell, P. Mulvaney, and U. Bach, “Distance and wavelength dependent quenching of molecular fluorescence by Au@SiO2 core-shell nanoparticles,” ACS Nano 7(8), 6636–6648 (2013).
[Crossref] [PubMed]

Kern, A. M.

A. M. Kern and O. J. F. Martin, “Excitation and reemission of molecules near realistic plasmonic nanostructures,” Nano Lett. 11(2), 482–487 (2011).
[Crossref] [PubMed]

Keulemans, M.

S. W. Verbruggen, M. Keulemans, M. Filippousi, D. Flahaut, G. V. Tendeloo, S. Lacombe, J. A. Martens, and S. Lenaerts, “Plasmonic gold–silver alloy on TiO2 photocatalysts with tunable visible light activity,” Appl. Catal. B 156–157, 116–121 (2014).
[Crossref]

S. W. Verbruggen, M. Keulemans, J. A. Martens, and S. Lenaerts, “Predicting the Surface Plasmon Resonance Wavelength of Gold–Silver Alloy Nanoparticles,” J. Phys. Chem. C 117(37), 19142–19145 (2013).
[Crossref]

Kimura, K.

Z. C. Dong, X. L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, and S. Mashiko, “Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope,” Phys. Rev. Lett. 92(8), 086801 (2004).
[Crossref] [PubMed]

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Klar, T. A.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[Crossref] [PubMed]

Kühn, S.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

Lacombe, S.

S. W. Verbruggen, M. Keulemans, M. Filippousi, D. Flahaut, G. V. Tendeloo, S. Lacombe, J. A. Martens, and S. Lenaerts, “Plasmonic gold–silver alloy on TiO2 photocatalysts with tunable visible light activity,” Appl. Catal. B 156–157, 116–121 (2014).
[Crossref]

Lagadec, M. F.

D. Conklin, S. Nanayakkara, T. H. Park, M. F. Lagadec, J. T. Stecher, X. Chen, M. J. Therien, and D. A. Bonnell, “Exploiting plasmon-induced hot electrons in molecular electronic devices,” ACS Nano 7(5), 4479–4486 (2013).
[Crossref] [PubMed]

Lal, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

Langner, A.

W. Gebauer, A. Langner, M. Schneider, M. Sokolowski, and E. Umbach, “Luminescence quenching of ordered π-conjugated molecules near a metal surface: Quaterthiophene and PTCDA on Ag(111),” Phys. Rev. B 69(15), 155431 (2004).
[Crossref]

Lenaerts, S.

R. Asapu, N. Claes, S. Bals, S. Denys, C. Detavernier, S. Lenaerts, and S. W. Verbruggen, “Silver-polymer core-shell nanoparticles for ultrastable plasmon-enhanced photocatalysis,” Appl. Catal. B 200, 31–38 (2017).
[Crossref]

S. W. Verbruggen, M. Keulemans, M. Filippousi, D. Flahaut, G. V. Tendeloo, S. Lacombe, J. A. Martens, and S. Lenaerts, “Plasmonic gold–silver alloy on TiO2 photocatalysts with tunable visible light activity,” Appl. Catal. B 156–157, 116–121 (2014).
[Crossref]

S. W. Verbruggen, M. Keulemans, J. A. Martens, and S. Lenaerts, “Predicting the Surface Plasmon Resonance Wavelength of Gold–Silver Alloy Nanoparticles,” J. Phys. Chem. C 117(37), 19142–19145 (2013).
[Crossref]

Levi, S. A.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[Crossref] [PubMed]

Li, J. H.

M. C. Chen, Y. L. Yang, S. W. Chen, J. H. Li, M. Aklilu, and Y. Tai, “Self-assembled monolayer immobilized gold nanoparticles for plasmonic effects in small molecule organic photovoltaic,” ACS Appl. Mater. Interfaces 5(3), 511–517 (2013).
[Crossref] [PubMed]

Link, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

Luo, Y.

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nat. Photonics 4(1), 50–54 (2010).
[Crossref]

H. Yu, Y. Luo, K. Beverly, J. F. Stoddart, H. R. Tseng, and J. R. Heath, “The molecule-electrode interface in single-molecule transistors,” Angew. Chem. Int. Ed. Engl. 42(46), 5706–5711 (2003).
[Crossref] [PubMed]

Lv, P.

X. L. Zhang, L. G. Chen, P. Lv, H. Y. Gao, S. J. Wei, Z. C. Dong, and J. G. Hou, “Fluorescence decay of quasimonolayered porphyrins near a metal surface separated by short-chain alkanethiols,” Appl. Phys. Lett. 92(22), 223118 (2008).
[Crossref]

Ma, Q.

Y. Xue, C. Ding, Y. Rong, Q. Ma, C. Pan, E. Wu, B. Wu, and H. Zeng, “Tuning Plasmonic Enhancement of Single Nanocrystal Upconversion Luminescence by Varying Gold Nanorod Diameter,” Small 13(36), 1701155 (2017).
[Crossref] [PubMed]

Marcelli, A.

L. Moroni, C. Gellini, P. R. Salvi, A. Marcelli, and P. Foggi, “Excited states of Porphyrin Macrocycles,” J. Phys. Chem. A 112(44), 11044–11051 (2008).
[Crossref] [PubMed]

Martens, J. A.

S. W. Verbruggen, M. Keulemans, M. Filippousi, D. Flahaut, G. V. Tendeloo, S. Lacombe, J. A. Martens, and S. Lenaerts, “Plasmonic gold–silver alloy on TiO2 photocatalysts with tunable visible light activity,” Appl. Catal. B 156–157, 116–121 (2014).
[Crossref]

S. W. Verbruggen, M. Keulemans, J. A. Martens, and S. Lenaerts, “Predicting the Surface Plasmon Resonance Wavelength of Gold–Silver Alloy Nanoparticles,” J. Phys. Chem. C 117(37), 19142–19145 (2013).
[Crossref]

Martin, O. J. F.

A. M. Kern and O. J. F. Martin, “Excitation and reemission of molecules near realistic plasmonic nanostructures,” Nano Lett. 11(2), 482–487 (2011).
[Crossref] [PubMed]

Mashiko, S.

Z. C. Dong, X. L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, and S. Mashiko, “Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope,” Phys. Rev. Lett. 92(8), 086801 (2004).
[Crossref] [PubMed]

Masuhata, H.

S. Hamai, N. Tamai, and H. Masuhata, “Excimer Formation of Pyrene in a Solid/Polymer Solution Interface Layer. A Time-Resolved Total Internal Reflection Fluorescence Study,” J. Phys. Chem. 99(14), 4980–4985 (1995).
[Crossref]

Merkoçi, F.

N. G. Bastús, F. Merkoçi, J. Piella, and V. Puntes, “Synthesis of Highly Monodisperse Citrate-Stabilized Silver Nanoparticles of up to 200 nm: Kinetic Control and Catalytic Properties,” Chem. Mater. 26(9), 2836–2846 (2014).
[Crossref]

Miki, K.

Z. C. Dong, X. L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, and S. Mashiko, “Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope,” Phys. Rev. Lett. 92(8), 086801 (2004).
[Crossref] [PubMed]

Moerner, W. E.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Möller, M.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[Crossref] [PubMed]

Moroni, L.

L. Moroni, C. Gellini, P. R. Salvi, A. Marcelli, and P. Foggi, “Excited states of Porphyrin Macrocycles,” J. Phys. Chem. A 112(44), 11044–11051 (2008).
[Crossref] [PubMed]

Morteani, A. C.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[Crossref] [PubMed]

Müllen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Mulvaney, P.

P. Reineck, D. Gómez, S. H. Ng, M. Karg, T. Bell, P. Mulvaney, and U. Bach, “Distance and wavelength dependent quenching of molecular fluorescence by Au@SiO2 core-shell nanoparticles,” ACS Nano 7(8), 6636–6648 (2013).
[Crossref] [PubMed]

Munechika, K.

Y. Chen, K. Munechika, and D. S. Ginger, “Dependence of Fluorescence Intensity on the Spectral Overlap between Fluorophores and Plasmon Resonant Single Silver Nanoparticles,” Nano Lett. 7(3), 690–696 (2007).
[Crossref] [PubMed]

Nanayakkara, S.

D. Conklin, S. Nanayakkara, T. H. Park, M. F. Lagadec, J. T. Stecher, X. Chen, M. J. Therien, and D. A. Bonnell, “Exploiting plasmon-induced hot electrons in molecular electronic devices,” ACS Nano 7(5), 4479–4486 (2013).
[Crossref] [PubMed]

P. Banerjee, D. Conklin, S. Nanayakkara, T. H. Park, M. J. Therien, and D. A. Bonnell, “Plasmon-induced electrical conduction in molecular devices,” ACS Nano 4(2), 1019–1025 (2010).
[Crossref] [PubMed]

Ng, S. H.

P. Reineck, D. Gómez, S. H. Ng, M. Karg, T. Bell, P. Mulvaney, and U. Bach, “Distance and wavelength dependent quenching of molecular fluorescence by Au@SiO2 core-shell nanoparticles,” ACS Nano 7(8), 6636–6648 (2013).
[Crossref] [PubMed]

Niedereichholz, T.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[Crossref] [PubMed]

Novotny, L.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

Pan, C.

Y. Xue, C. Ding, Y. Rong, Q. Ma, C. Pan, E. Wu, B. Wu, and H. Zeng, “Tuning Plasmonic Enhancement of Single Nanocrystal Upconversion Luminescence by Varying Gold Nanorod Diameter,” Small 13(36), 1701155 (2017).
[Crossref] [PubMed]

Park, T. H.

D. Conklin, S. Nanayakkara, T. H. Park, M. F. Lagadec, J. T. Stecher, X. Chen, M. J. Therien, and D. A. Bonnell, “Exploiting plasmon-induced hot electrons in molecular electronic devices,” ACS Nano 7(5), 4479–4486 (2013).
[Crossref] [PubMed]

P. Banerjee, D. Conklin, S. Nanayakkara, T. H. Park, M. J. Therien, and D. A. Bonnell, “Plasmon-induced electrical conduction in molecular devices,” ACS Nano 4(2), 1019–1025 (2010).
[Crossref] [PubMed]

Persson, B. N. J.

P. Avouris and B. N. J. Persson, “Excited states at metal surfaces and their non-radiative relaxation,” J. Phys. Chem. 88(5), 837–848 (1984).
[Crossref]

Piella, J.

N. G. Bastús, F. Merkoçi, J. Piella, and V. Puntes, “Synthesis of Highly Monodisperse Citrate-Stabilized Silver Nanoparticles of up to 200 nm: Kinetic Control and Catalytic Properties,” Chem. Mater. 26(9), 2836–2846 (2014).
[Crossref]

Puntes, V.

N. G. Bastús, F. Merkoçi, J. Piella, and V. Puntes, “Synthesis of Highly Monodisperse Citrate-Stabilized Silver Nanoparticles of up to 200 nm: Kinetic Control and Catalytic Properties,” Chem. Mater. 26(9), 2836–2846 (2014).
[Crossref]

Ramoino, L.

S. Berner, M. Brunner, L. Ramoino, H. Suzuki, H. J. Güntherodt, and T. A. Jung, “Time evolution analysis of a 2D solid-gas equilibrium: a model system for molecular adsorption and diffusion,” Chem. Phys. Lett. 348(3-4), 175–181 (2001).
[Crossref]

Reineck, P.

P. Reineck, D. Gómez, S. H. Ng, M. Karg, T. Bell, P. Mulvaney, and U. Bach, “Distance and wavelength dependent quenching of molecular fluorescence by Au@SiO2 core-shell nanoparticles,” ACS Nano 7(8), 6636–6648 (2013).
[Crossref] [PubMed]

Reinhoudt, D. N.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[Crossref] [PubMed]

Rogobete, L.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

Rong, Y.

Y. Xue, C. Ding, Y. Rong, Q. Ma, C. Pan, E. Wu, B. Wu, and H. Zeng, “Tuning Plasmonic Enhancement of Single Nanocrystal Upconversion Luminescence by Varying Gold Nanorod Diameter,” Small 13(36), 1701155 (2017).
[Crossref] [PubMed]

Salvi, P. R.

L. Moroni, C. Gellini, P. R. Salvi, A. Marcelli, and P. Foggi, “Excited states of Porphyrin Macrocycles,” J. Phys. Chem. A 112(44), 11044–11051 (2008).
[Crossref] [PubMed]

Sandoghdar, V.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

Schneider, M.

W. Gebauer, A. Langner, M. Schneider, M. Sokolowski, and E. Umbach, “Luminescence quenching of ordered π-conjugated molecules near a metal surface: Quaterthiophene and PTCDA on Ag(111),” Phys. Rev. B 69(15), 155431 (2004).
[Crossref]

Shimizu, K. T.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89(11), 117401 (2002).
[Crossref] [PubMed]

Sokolowski, M.

W. Gebauer, A. Langner, M. Schneider, M. Sokolowski, and E. Umbach, “Luminescence quenching of ordered π-conjugated molecules near a metal surface: Quaterthiophene and PTCDA on Ag(111),” Phys. Rev. B 69(15), 155431 (2004).
[Crossref]

Stecher, J. T.

D. Conklin, S. Nanayakkara, T. H. Park, M. F. Lagadec, J. T. Stecher, X. Chen, M. J. Therien, and D. A. Bonnell, “Exploiting plasmon-induced hot electrons in molecular electronic devices,” ACS Nano 7(5), 4479–4486 (2013).
[Crossref] [PubMed]

Stoddart, J. F.

H. Yu, Y. Luo, K. Beverly, J. F. Stoddart, H. R. Tseng, and J. R. Heath, “The molecule-electrode interface in single-molecule transistors,” Angew. Chem. Int. Ed. Engl. 42(46), 5706–5711 (2003).
[Crossref] [PubMed]

Suto, S.

S. Suto, W. Uchida, M. Yashima, and T. Goto, “Luminescence quenching of an ultrathin tetraphenylporphyrin film on a conductive SnO2 substrate,” Phys. Rev. B Condens. Matter 35(9), 4393–4397 (1987).
[Crossref] [PubMed]

Suzuki, H.

S. Berner, M. Brunner, L. Ramoino, H. Suzuki, H. J. Güntherodt, and T. A. Jung, “Time evolution analysis of a 2D solid-gas equilibrium: a model system for molecular adsorption and diffusion,” Chem. Phys. Lett. 348(3-4), 175–181 (2001).
[Crossref]

Tai, Y.

M. C. Chen, Y. L. Yang, S. W. Chen, J. H. Li, M. Aklilu, and Y. Tai, “Self-assembled monolayer immobilized gold nanoparticles for plasmonic effects in small molecule organic photovoltaic,” ACS Appl. Mater. Interfaces 5(3), 511–517 (2013).
[Crossref] [PubMed]

Tam, F.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[Crossref] [PubMed]

Tamai, N.

S. Hamai, N. Tamai, and H. Masuhata, “Excimer Formation of Pyrene in a Solid/Polymer Solution Interface Layer. A Time-Resolved Total Internal Reflection Fluorescence Study,” J. Phys. Chem. 99(14), 4980–4985 (1995).
[Crossref]

Tao, X.

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nat. Photonics 4(1), 50–54 (2010).
[Crossref]

Tendeloo, G. V.

S. W. Verbruggen, M. Keulemans, M. Filippousi, D. Flahaut, G. V. Tendeloo, S. Lacombe, J. A. Martens, and S. Lenaerts, “Plasmonic gold–silver alloy on TiO2 photocatalysts with tunable visible light activity,” Appl. Catal. B 156–157, 116–121 (2014).
[Crossref]

Therien, M. J.

D. Conklin, S. Nanayakkara, T. H. Park, M. F. Lagadec, J. T. Stecher, X. Chen, M. J. Therien, and D. A. Bonnell, “Exploiting plasmon-induced hot electrons in molecular electronic devices,” ACS Nano 7(5), 4479–4486 (2013).
[Crossref] [PubMed]

P. Banerjee, D. Conklin, S. Nanayakkara, T. H. Park, M. J. Therien, and D. A. Bonnell, “Plasmon-induced electrical conduction in molecular devices,” ACS Nano 4(2), 1019–1025 (2010).
[Crossref] [PubMed]

Tour, J. M.

D. K. James and J. M. Tour, “Electrical Measurements in Molecular Electronics,” Chem. Mater. 16(23), 4423–4435 (2004).
[Crossref]

Trifonov, A. S.

Z. C. Dong, X. L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, and S. Mashiko, “Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope,” Phys. Rev. Lett. 92(8), 086801 (2004).
[Crossref] [PubMed]

Tseng, H. R.

H. Yu, Y. Luo, K. Beverly, J. F. Stoddart, H. R. Tseng, and J. R. Heath, “The molecule-electrode interface in single-molecule transistors,” Angew. Chem. Int. Ed. Engl. 42(46), 5706–5711 (2003).
[Crossref] [PubMed]

Uchida, W.

S. Suto, W. Uchida, M. Yashima, and T. Goto, “Luminescence quenching of an ultrathin tetraphenylporphyrin film on a conductive SnO2 substrate,” Phys. Rev. B Condens. Matter 35(9), 4393–4397 (1987).
[Crossref] [PubMed]

Umbach, E.

W. Gebauer, A. Langner, M. Schneider, M. Sokolowski, and E. Umbach, “Luminescence quenching of ordered π-conjugated molecules near a metal surface: Quaterthiophene and PTCDA on Ag(111),” Phys. Rev. B 69(15), 155431 (2004).
[Crossref]

van Veggel, F. C. J. M.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[Crossref] [PubMed]

Verbruggen, S. W.

R. Asapu, N. Claes, S. Bals, S. Denys, C. Detavernier, S. Lenaerts, and S. W. Verbruggen, “Silver-polymer core-shell nanoparticles for ultrastable plasmon-enhanced photocatalysis,” Appl. Catal. B 200, 31–38 (2017).
[Crossref]

S. W. Verbruggen, M. Keulemans, M. Filippousi, D. Flahaut, G. V. Tendeloo, S. Lacombe, J. A. Martens, and S. Lenaerts, “Plasmonic gold–silver alloy on TiO2 photocatalysts with tunable visible light activity,” Appl. Catal. B 156–157, 116–121 (2014).
[Crossref]

S. W. Verbruggen, M. Keulemans, J. A. Martens, and S. Lenaerts, “Predicting the Surface Plasmon Resonance Wavelength of Gold–Silver Alloy Nanoparticles,” J. Phys. Chem. C 117(37), 19142–19145 (2013).
[Crossref]

Wakayama, Y.

Y. Wakayama, J. P. Hill, and K. Ariga, “Real-time STM observation of molecular dynamics on a metal surface,” Surf. Sci. 601(18), 3984–3987 (2007).
[Crossref]

Wei, S. J.

X. L. Zhang, L. G. Chen, P. Lv, H. Y. Gao, S. J. Wei, Z. C. Dong, and J. G. Hou, “Fluorescence decay of quasimonolayered porphyrins near a metal surface separated by short-chain alkanethiols,” Appl. Phys. Lett. 92(22), 223118 (2008).
[Crossref]

Woo, W. K.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89(11), 117401 (2002).
[Crossref] [PubMed]

Wu, B.

Y. Xue, C. Ding, Y. Rong, Q. Ma, C. Pan, E. Wu, B. Wu, and H. Zeng, “Tuning Plasmonic Enhancement of Single Nanocrystal Upconversion Luminescence by Varying Gold Nanorod Diameter,” Small 13(36), 1701155 (2017).
[Crossref] [PubMed]

Wu, E.

Y. Xue, C. Ding, Y. Rong, Q. Ma, C. Pan, E. Wu, B. Wu, and H. Zeng, “Tuning Plasmonic Enhancement of Single Nanocrystal Upconversion Luminescence by Varying Gold Nanorod Diameter,” Small 13(36), 1701155 (2017).
[Crossref] [PubMed]

Xie, X. S.

X. S. Xie and R. C. Dunn, “Probing single molecule dynamics,” Science 265(5170), 361–364 (1994).
[Crossref] [PubMed]

Xue, Y.

Y. Xue, C. Ding, Y. Rong, Q. Ma, C. Pan, E. Wu, B. Wu, and H. Zeng, “Tuning Plasmonic Enhancement of Single Nanocrystal Upconversion Luminescence by Varying Gold Nanorod Diameter,” Small 13(36), 1701155 (2017).
[Crossref] [PubMed]

Yang, J. L.

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nat. Photonics 4(1), 50–54 (2010).
[Crossref]

Yang, Y. L.

M. C. Chen, Y. L. Yang, S. W. Chen, J. H. Li, M. Aklilu, and Y. Tai, “Self-assembled monolayer immobilized gold nanoparticles for plasmonic effects in small molecule organic photovoltaic,” ACS Appl. Mater. Interfaces 5(3), 511–517 (2013).
[Crossref] [PubMed]

Yashima, M.

S. Suto, W. Uchida, M. Yashima, and T. Goto, “Luminescence quenching of an ultrathin tetraphenylporphyrin film on a conductive SnO2 substrate,” Phys. Rev. B Condens. Matter 35(9), 4393–4397 (1987).
[Crossref] [PubMed]

Yokoyama, S.

Z. C. Dong, X. L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, and S. Mashiko, “Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope,” Phys. Rev. Lett. 92(8), 086801 (2004).
[Crossref] [PubMed]

Yu, H.

H. Yu, Y. Luo, K. Beverly, J. F. Stoddart, H. R. Tseng, and J. R. Heath, “The molecule-electrode interface in single-molecule transistors,” Angew. Chem. Int. Ed. Engl. 42(46), 5706–5711 (2003).
[Crossref] [PubMed]

Yu, Z.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Zeng, H.

Y. Xue, C. Ding, Y. Rong, Q. Ma, C. Pan, E. Wu, B. Wu, and H. Zeng, “Tuning Plasmonic Enhancement of Single Nanocrystal Upconversion Luminescence by Varying Gold Nanorod Diameter,” Small 13(36), 1701155 (2017).
[Crossref] [PubMed]

Zhang, C.

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nat. Photonics 4(1), 50–54 (2010).
[Crossref]

Zhang, R.

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nat. Photonics 4(1), 50–54 (2010).
[Crossref]

Zhang, X. L.

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nat. Photonics 4(1), 50–54 (2010).
[Crossref]

X. L. Zhang, L. G. Chen, P. Lv, H. Y. Gao, S. J. Wei, Z. C. Dong, and J. G. Hou, “Fluorescence decay of quasimonolayered porphyrins near a metal surface separated by short-chain alkanethiols,” Appl. Phys. Lett. 92(22), 223118 (2008).
[Crossref]

Zhang, Y.

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nat. Photonics 4(1), 50–54 (2010).
[Crossref]

Acc. Chem. Res. (1)

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

M. C. Chen, Y. L. Yang, S. W. Chen, J. H. Li, M. Aklilu, and Y. Tai, “Self-assembled monolayer immobilized gold nanoparticles for plasmonic effects in small molecule organic photovoltaic,” ACS Appl. Mater. Interfaces 5(3), 511–517 (2013).
[Crossref] [PubMed]

ACS Nano (3)

D. Conklin, S. Nanayakkara, T. H. Park, M. F. Lagadec, J. T. Stecher, X. Chen, M. J. Therien, and D. A. Bonnell, “Exploiting plasmon-induced hot electrons in molecular electronic devices,” ACS Nano 7(5), 4479–4486 (2013).
[Crossref] [PubMed]

P. Banerjee, D. Conklin, S. Nanayakkara, T. H. Park, M. J. Therien, and D. A. Bonnell, “Plasmon-induced electrical conduction in molecular devices,” ACS Nano 4(2), 1019–1025 (2010).
[Crossref] [PubMed]

P. Reineck, D. Gómez, S. H. Ng, M. Karg, T. Bell, P. Mulvaney, and U. Bach, “Distance and wavelength dependent quenching of molecular fluorescence by Au@SiO2 core-shell nanoparticles,” ACS Nano 7(8), 6636–6648 (2013).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

H. Yu, Y. Luo, K. Beverly, J. F. Stoddart, H. R. Tseng, and J. R. Heath, “The molecule-electrode interface in single-molecule transistors,” Angew. Chem. Int. Ed. Engl. 42(46), 5706–5711 (2003).
[Crossref] [PubMed]

Appl. Catal. B (2)

R. Asapu, N. Claes, S. Bals, S. Denys, C. Detavernier, S. Lenaerts, and S. W. Verbruggen, “Silver-polymer core-shell nanoparticles for ultrastable plasmon-enhanced photocatalysis,” Appl. Catal. B 200, 31–38 (2017).
[Crossref]

S. W. Verbruggen, M. Keulemans, M. Filippousi, D. Flahaut, G. V. Tendeloo, S. Lacombe, J. A. Martens, and S. Lenaerts, “Plasmonic gold–silver alloy on TiO2 photocatalysts with tunable visible light activity,” Appl. Catal. B 156–157, 116–121 (2014).
[Crossref]

Appl. Phys. Lett. (1)

X. L. Zhang, L. G. Chen, P. Lv, H. Y. Gao, S. J. Wei, Z. C. Dong, and J. G. Hou, “Fluorescence decay of quasimonolayered porphyrins near a metal surface separated by short-chain alkanethiols,” Appl. Phys. Lett. 92(22), 223118 (2008).
[Crossref]

Appl. Surf. Sci. (1)

T. Fukuura, “Plasmons excited in a large dense silver nanoparticle layer enhancethe luminescence intensity of organic light emitting diodes,” Appl. Surf. Sci. 346, 451–457 (2015).
[Crossref]

Chem. Mater. (2)

N. G. Bastús, F. Merkoçi, J. Piella, and V. Puntes, “Synthesis of Highly Monodisperse Citrate-Stabilized Silver Nanoparticles of up to 200 nm: Kinetic Control and Catalytic Properties,” Chem. Mater. 26(9), 2836–2846 (2014).
[Crossref]

D. K. James and J. M. Tour, “Electrical Measurements in Molecular Electronics,” Chem. Mater. 16(23), 4423–4435 (2004).
[Crossref]

Chem. Phys. Lett. (1)

S. Berner, M. Brunner, L. Ramoino, H. Suzuki, H. J. Güntherodt, and T. A. Jung, “Time evolution analysis of a 2D solid-gas equilibrium: a model system for molecular adsorption and diffusion,” Chem. Phys. Lett. 348(3-4), 175–181 (2001).
[Crossref]

Chem. Soc. Rev. (1)

R. Bonnett, “Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy,” Chem. Soc. Rev. 26(1), 19–33 (1995).
[Crossref]

J. Phys. Chem. (2)

S. Hamai, N. Tamai, and H. Masuhata, “Excimer Formation of Pyrene in a Solid/Polymer Solution Interface Layer. A Time-Resolved Total Internal Reflection Fluorescence Study,” J. Phys. Chem. 99(14), 4980–4985 (1995).
[Crossref]

P. Avouris and B. N. J. Persson, “Excited states at metal surfaces and their non-radiative relaxation,” J. Phys. Chem. 88(5), 837–848 (1984).
[Crossref]

J. Phys. Chem. A (1)

L. Moroni, C. Gellini, P. R. Salvi, A. Marcelli, and P. Foggi, “Excited states of Porphyrin Macrocycles,” J. Phys. Chem. A 112(44), 11044–11051 (2008).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

S. W. Verbruggen, M. Keulemans, J. A. Martens, and S. Lenaerts, “Predicting the Surface Plasmon Resonance Wavelength of Gold–Silver Alloy Nanoparticles,” J. Phys. Chem. C 117(37), 19142–19145 (2013).
[Crossref]

Nano Lett. (3)

Y. Chen, K. Munechika, and D. S. Ginger, “Dependence of Fluorescence Intensity on the Spectral Overlap between Fluorophores and Plasmon Resonant Single Silver Nanoparticles,” Nano Lett. 7(3), 690–696 (2007).
[Crossref] [PubMed]

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[Crossref] [PubMed]

A. M. Kern and O. J. F. Martin, “Excitation and reemission of molecules near realistic plasmonic nanostructures,” Nano Lett. 11(2), 482–487 (2011).
[Crossref] [PubMed]

Nat. Photonics (3)

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nat. Photonics 4(1), 50–54 (2010).
[Crossref]

Phys. Rev. B (1)

W. Gebauer, A. Langner, M. Schneider, M. Sokolowski, and E. Umbach, “Luminescence quenching of ordered π-conjugated molecules near a metal surface: Quaterthiophene and PTCDA on Ag(111),” Phys. Rev. B 69(15), 155431 (2004).
[Crossref]

Phys. Rev. B Condens. Matter (1)

S. Suto, W. Uchida, M. Yashima, and T. Goto, “Luminescence quenching of an ultrathin tetraphenylporphyrin film on a conductive SnO2 substrate,” Phys. Rev. B Condens. Matter 35(9), 4393–4397 (1987).
[Crossref] [PubMed]

Phys. Rev. Lett. (5)

Z. C. Dong, X. L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, and S. Mashiko, “Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope,” Phys. Rev. Lett. 92(8), 086801 (2004).
[Crossref] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[Crossref] [PubMed]

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89(11), 117401 (2002).
[Crossref] [PubMed]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

Science (1)

X. S. Xie and R. C. Dunn, “Probing single molecule dynamics,” Science 265(5170), 361–364 (1994).
[Crossref] [PubMed]

Small (1)

Y. Xue, C. Ding, Y. Rong, Q. Ma, C. Pan, E. Wu, B. Wu, and H. Zeng, “Tuning Plasmonic Enhancement of Single Nanocrystal Upconversion Luminescence by Varying Gold Nanorod Diameter,” Small 13(36), 1701155 (2017).
[Crossref] [PubMed]

Surf. Sci. (1)

Y. Wakayama, J. P. Hill, and K. Ariga, “Real-time STM observation of molecular dynamics on a metal surface,” Surf. Sci. 601(18), 3984–3987 (2007).
[Crossref]

Other (1)

D. W. Lynch and W. R. Hunter, “Silver (Ag),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) TEM image of Ag NPs. (b) NPs size distribution. (c), (d) and (e) are TEM images of Ag NPs with (PAH/PSS)n/PAH layers (n = 0, 1, 2) with 1 nm, 3 nm, 5 nm shell thickness respectively.
Fig. 2
Fig. 2 (a), (b) and (c) are AFM images of TPP/Ag/(PAH/PSS)n/PAH/Glass (n = 0, 1, 2). (d) UV-vis absorption spectra of the NPs with 1 nm (black), 3 nm (red), 5nm (blue) shell thickness on glass.
Fig. 3
Fig. 3 (a) Typical STM image of TPP on Au (111) (200 × 200 nm2, −2.6 V, 10 pA). (b) Typical AFM image of TPP on glass. (c) Schematic of Ag NPs coupled with submonolayer TPP molecules on glass. (d) and (e) are fluorescence spectra and dynamics of PL decay of the TPP/Glass and TPP/Ag/(PAH/PSS)n/PAH/Glass, respectively.
Fig. 4
Fig. 4 Electric field enhancement (|E/E0|2) distribution images for the core-shell NPs at λ = 405 nm with the shell thickness 1 nm (a), 3 nm (b) and 5 nm (c), and the dash white circle represents Ag core. (d) the enhancement factor dependent on the polymer shell thickness.

Tables (1)

Tables Icon

Table 1 Lifetimes and Enhancement Factor of the TPP/(PAH/PSS)n/PAH and TPP/Glass Samples.

Metrics