Abstract

A glass cuboid, embedded inside a dielectric cylinder is studied when illuminated with a monochromatic plane wave. A photonic nanojet (PNJ) with a full-width at half-maximum (FWHM) waist of around 0.25λ0 is obtained outside the external surface of the cuboid. The influence of the parameters of a square section cuboid is studied. Three particular phenomena can be obtained and are discussed: an ultra-narrow PNJ on the external surface of the cuboid, a long photonic jet and the excitation of whispering gallery modes (WGMs). A parametric study, over the width and the height of a rectangular section cuboid, shows that these parameters can be used to control the photonic jet properties. We also study several other geometries of the insert, which shows that the key parameter is the refractive index of the inserted material. Finally, we show that by changing the incident angle we can obtain a curved photonic jet.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultralong photonic nanojet formed by dielectric microtoroid structure

Baifu Zhang, Jingjing Hao, Zhe Shen, Heng Wu, Kang Zhu, Ji Xu, and Jianping Ding
Appl. Opt. 57(28) 8331-8337 (2018)

Temperature-controlled photonic nanojet via VO2 coating

Jia Hao Soh, Mengxue Wu, Guoqiang Gu, Lianwei Chen, and Minghui Hong
Appl. Opt. 55(14) 3751-3756 (2016)

Optical forces on metallic nanoparticles induced by a photonic nanojet

Xudong Cui, Daniel Erni, and Christian Hafner
Opt. Express 16(18) 13560-13568 (2008)

References

  • View by:
  • |
  • |
  • |

  1. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004).
    [Crossref] [PubMed]
  2. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330(3), 377–445 (1908).
    [Crossref]
  3. X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
    [Crossref] [PubMed]
  4. S. Lecler, Y. Takakura, and P. Meyrueis, “Properties of a three-dimensional photonic jet,” Opt. Lett. 30(19), 2641–2643 (2005).
    [Crossref] [PubMed]
  5. S. Yang, A. Taflove, and V. Backman, “Experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet,” Opt. Express 19(8), 7084–7093 (2011).
    [Crossref] [PubMed]
  6. S. Lecler, S. Haacke, N. Lecong, O. Crégut, J.-L. Rehspringer, and C. Hirlimann, “Photonic jet driven non-linear optics: example of two-photon fluorescence enhancement by dielectric microspheres,” Opt. Express 15(8), 4935–4942 (2007).
    [Crossref] [PubMed]
  7. P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Direct imaging of photonic nanojets,” Opt. Express 16(10), 6930–6940 (2008).
    [Crossref] [PubMed]
  8. D. Grojo, N. Sandeau, L. Boarino, C. Constantinescu, N. De Leo, M. Laus, and K. Sparnacci, “Bessel-like photonic nanojets from core-shell sub-wavelength spheres,” Opt. Lett. 39(13), 3989–3992 (2014).
    [Crossref] [PubMed]
  9. S. Lee, L. Li, and Z. Wang, “Optical resonances in microsphere photonic nanojets,” J. Opt. 16(1), 015704 (2014).
    [Crossref]
  10. Y. E. Geints, E. Panina, and A. Zemlyanov, “Control over parameters of photonic nanojets of dielectric microspheres,” Opt. Commun. 283(23), 4775–4781 (2010).
    [Crossref]
  11. H. Guo, Y. Han, X. Weng, Y. Zhao, G. Sui, Y. Wang, and S. Zhuang, “Near-field focusing of the dielectric microsphere with wavelength scale radius,” Opt. Express 21(2), 2434–2443 (2013).
    [Crossref] [PubMed]
  12. A. Devilez, B. Stout, N. Bonod, and E. Popov, “Spectral analysis of three-dimensional photonic jets,” Opt. Express 16(18), 14200–14212 (2008).
    [Crossref] [PubMed]
  13. A. Heifetz, J. J. Simpson, S.-C. Kong, A. Taflove, and V. Backman, “Subdiffraction optical resolution of a gold nanosphere located within the nanojet of a Mie-resonant dielectric microsphere,” Opt. Express 15(25), 17334–17342 (2007).
    [Crossref] [PubMed]
  14. A. V. Itagi and W. A. Challener, “Optics of photonic nanojets,” J. Opt. Soc. Am. A 22(12), 2847–2858 (2005).
    [Crossref] [PubMed]
  15. V. Pacheco-Peña, M. Beruete, I. V. Minin, and O. V. Minin, “Multifrequency focusing and wide angular scanning of terajets,” Opt. Lett. 40(2), 245–248 (2015).
    [Crossref] [PubMed]
  16. M. X. Wu, B. J. Huang, R. Chen, Y. Yang, J. F. Wu, R. Ji, X. D. Chen, and M. H. Hong, “Modulation of photonic nanojets generated by microspheres decorated with concentric rings,” Opt. Express 23(15), 20096–20103 (2015).
    [Crossref] [PubMed]
  17. B. Yan, L. Yue, and Z. Wang, “Engineering near-field focusing of a microsphere lens with pupil masks,” Opt. Commun. 370, 140–144 (2016).
    [Crossref]
  18. M. Wu, R. Chen, J. Soh, Y. Shen, L. Jiao, J. Wu, X. Chen, R. Ji, and M. Hong, “Super-focusing of center-covered engineered microsphere,” Sci. Rep. 6(1), 31637 (2016).
    [Crossref] [PubMed]
  19. L. Yue, B. Yan, J. N. Monks, Z. Wang, N. T. Tung, V. D. Lam, O. Minin, and I. Minin, “Production of photonic nanojets by using pupil-masked 3D dielectric cuboid,” J. Phys. D Appl. Phys. 50(17), 175102 (2017).
    [Crossref]
  20. L. Yue, B. Yan, and Z. Wang, “Photonic nanojet of cylindrical metalens assembled by hexagonally arranged nanofibers for breaking the diffraction limit,” Opt. Lett. 41(7), 1336–1339 (2016).
    [Crossref] [PubMed]
  21. G. Gu, J. Song, H. Liang, M. Zhao, Y. Chen, and J. Qu, “Overstepping the upper refractive index limit to form ultra-narrow photonic nanojets,” Sci. Rep. 7(1), 5635 (2017).
    [Crossref] [PubMed]
  22. B. S. Luk’yanchuk, R. Paniagua-Domínguez, I. Minin, O. Minin, and Z. Wang, “Refractive index less than two: photonic nanojets yesterday, today and tomorrow,” Opt. Mater. Express 7(6), 1820–1847 (2017).
    [Crossref]
  23. V. Pacheco-Peña, M. Beruete, I. V. Minin, and O. V. Minin, “Terajets produced by dielectric cuboids,” Appl. Phys. Lett. 105(8), 084102 (2014).
    [Crossref]
  24. I. Minin, O. Minin, I. Nefedov, V. Pacheco-Peña, and M. Beruete, “Beam compressed system concept based on dielectric cluster of self-similar three-dimensional dielectric cuboids,” in 2016 Global Symposium on Millimeter Waves (GSMM) & ESA Workshop on Millimetre-Wave Technology and Applications (IEEE, 2016), pp. 1–2.
    [Crossref]
  25. H. H. Nguyen Pham, S. Hisatake, O. V. Minin, T. Nagatsuma, and I. V. Minin, “Enhancement of spatial resolution of terahertz imaging systems based on terajet generation by dielectric cube,” APL Photonics 2(5), 056106 (2017).
    [Crossref]
  26. I. Mahariq and H. Kurt, “Strong field enhancement of resonance modes in dielectric microcylinders,” J. Opt. Soc. Am. B 33(4), 656–662 (2016).
    [Crossref]
  27. I. V. Minin and O. V. Minin, Diffractive Optics and Nanophotonics (Springer International Publishing, 2016).

2017 (4)

L. Yue, B. Yan, J. N. Monks, Z. Wang, N. T. Tung, V. D. Lam, O. Minin, and I. Minin, “Production of photonic nanojets by using pupil-masked 3D dielectric cuboid,” J. Phys. D Appl. Phys. 50(17), 175102 (2017).
[Crossref]

G. Gu, J. Song, H. Liang, M. Zhao, Y. Chen, and J. Qu, “Overstepping the upper refractive index limit to form ultra-narrow photonic nanojets,” Sci. Rep. 7(1), 5635 (2017).
[Crossref] [PubMed]

B. S. Luk’yanchuk, R. Paniagua-Domínguez, I. Minin, O. Minin, and Z. Wang, “Refractive index less than two: photonic nanojets yesterday, today and tomorrow,” Opt. Mater. Express 7(6), 1820–1847 (2017).
[Crossref]

H. H. Nguyen Pham, S. Hisatake, O. V. Minin, T. Nagatsuma, and I. V. Minin, “Enhancement of spatial resolution of terahertz imaging systems based on terajet generation by dielectric cube,” APL Photonics 2(5), 056106 (2017).
[Crossref]

2016 (4)

I. Mahariq and H. Kurt, “Strong field enhancement of resonance modes in dielectric microcylinders,” J. Opt. Soc. Am. B 33(4), 656–662 (2016).
[Crossref]

L. Yue, B. Yan, and Z. Wang, “Photonic nanojet of cylindrical metalens assembled by hexagonally arranged nanofibers for breaking the diffraction limit,” Opt. Lett. 41(7), 1336–1339 (2016).
[Crossref] [PubMed]

B. Yan, L. Yue, and Z. Wang, “Engineering near-field focusing of a microsphere lens with pupil masks,” Opt. Commun. 370, 140–144 (2016).
[Crossref]

M. Wu, R. Chen, J. Soh, Y. Shen, L. Jiao, J. Wu, X. Chen, R. Ji, and M. Hong, “Super-focusing of center-covered engineered microsphere,” Sci. Rep. 6(1), 31637 (2016).
[Crossref] [PubMed]

2015 (2)

2014 (3)

D. Grojo, N. Sandeau, L. Boarino, C. Constantinescu, N. De Leo, M. Laus, and K. Sparnacci, “Bessel-like photonic nanojets from core-shell sub-wavelength spheres,” Opt. Lett. 39(13), 3989–3992 (2014).
[Crossref] [PubMed]

S. Lee, L. Li, and Z. Wang, “Optical resonances in microsphere photonic nanojets,” J. Opt. 16(1), 015704 (2014).
[Crossref]

V. Pacheco-Peña, M. Beruete, I. V. Minin, and O. V. Minin, “Terajets produced by dielectric cuboids,” Appl. Phys. Lett. 105(8), 084102 (2014).
[Crossref]

2013 (1)

2011 (1)

2010 (1)

Y. E. Geints, E. Panina, and A. Zemlyanov, “Control over parameters of photonic nanojets of dielectric microspheres,” Opt. Commun. 283(23), 4775–4781 (2010).
[Crossref]

2008 (2)

2007 (2)

2005 (3)

2004 (1)

1908 (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330(3), 377–445 (1908).
[Crossref]

Backman, V.

Beruete, M.

V. Pacheco-Peña, M. Beruete, I. V. Minin, and O. V. Minin, “Multifrequency focusing and wide angular scanning of terajets,” Opt. Lett. 40(2), 245–248 (2015).
[Crossref] [PubMed]

V. Pacheco-Peña, M. Beruete, I. V. Minin, and O. V. Minin, “Terajets produced by dielectric cuboids,” Appl. Phys. Lett. 105(8), 084102 (2014).
[Crossref]

I. Minin, O. Minin, I. Nefedov, V. Pacheco-Peña, and M. Beruete, “Beam compressed system concept based on dielectric cluster of self-similar three-dimensional dielectric cuboids,” in 2016 Global Symposium on Millimeter Waves (GSMM) & ESA Workshop on Millimetre-Wave Technology and Applications (IEEE, 2016), pp. 1–2.
[Crossref]

Boarino, L.

Bonod, N.

Challener, W. A.

Chen, R.

Chen, X.

M. Wu, R. Chen, J. Soh, Y. Shen, L. Jiao, J. Wu, X. Chen, R. Ji, and M. Hong, “Super-focusing of center-covered engineered microsphere,” Sci. Rep. 6(1), 31637 (2016).
[Crossref] [PubMed]

Chen, X. D.

Chen, Y.

G. Gu, J. Song, H. Liang, M. Zhao, Y. Chen, and J. Qu, “Overstepping the upper refractive index limit to form ultra-narrow photonic nanojets,” Sci. Rep. 7(1), 5635 (2017).
[Crossref] [PubMed]

Chen, Z.

Constantinescu, C.

Crégut, O.

De Leo, N.

Devilez, A.

Ferrand, P.

Geints, Y. E.

Y. E. Geints, E. Panina, and A. Zemlyanov, “Control over parameters of photonic nanojets of dielectric microspheres,” Opt. Commun. 283(23), 4775–4781 (2010).
[Crossref]

Grojo, D.

Gu, G.

G. Gu, J. Song, H. Liang, M. Zhao, Y. Chen, and J. Qu, “Overstepping the upper refractive index limit to form ultra-narrow photonic nanojets,” Sci. Rep. 7(1), 5635 (2017).
[Crossref] [PubMed]

Guo, H.

Haacke, S.

Han, Y.

Heifetz, A.

Hirlimann, C.

Hisatake, S.

H. H. Nguyen Pham, S. Hisatake, O. V. Minin, T. Nagatsuma, and I. V. Minin, “Enhancement of spatial resolution of terahertz imaging systems based on terajet generation by dielectric cube,” APL Photonics 2(5), 056106 (2017).
[Crossref]

Hong, M.

M. Wu, R. Chen, J. Soh, Y. Shen, L. Jiao, J. Wu, X. Chen, R. Ji, and M. Hong, “Super-focusing of center-covered engineered microsphere,” Sci. Rep. 6(1), 31637 (2016).
[Crossref] [PubMed]

Hong, M. H.

Huang, B. J.

Itagi, A. V.

Ji, R.

Jiao, L.

M. Wu, R. Chen, J. Soh, Y. Shen, L. Jiao, J. Wu, X. Chen, R. Ji, and M. Hong, “Super-focusing of center-covered engineered microsphere,” Sci. Rep. 6(1), 31637 (2016).
[Crossref] [PubMed]

Kong, S.-C.

Kurt, H.

Lam, V. D.

L. Yue, B. Yan, J. N. Monks, Z. Wang, N. T. Tung, V. D. Lam, O. Minin, and I. Minin, “Production of photonic nanojets by using pupil-masked 3D dielectric cuboid,” J. Phys. D Appl. Phys. 50(17), 175102 (2017).
[Crossref]

Laus, M.

Lecler, S.

Lecong, N.

Lee, S.

S. Lee, L. Li, and Z. Wang, “Optical resonances in microsphere photonic nanojets,” J. Opt. 16(1), 015704 (2014).
[Crossref]

Li, L.

S. Lee, L. Li, and Z. Wang, “Optical resonances in microsphere photonic nanojets,” J. Opt. 16(1), 015704 (2014).
[Crossref]

Li, X.

Liang, H.

G. Gu, J. Song, H. Liang, M. Zhao, Y. Chen, and J. Qu, “Overstepping the upper refractive index limit to form ultra-narrow photonic nanojets,” Sci. Rep. 7(1), 5635 (2017).
[Crossref] [PubMed]

Luk’yanchuk, B. S.

Mahariq, I.

Meyrueis, P.

Mie, G.

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330(3), 377–445 (1908).
[Crossref]

Minin, I.

L. Yue, B. Yan, J. N. Monks, Z. Wang, N. T. Tung, V. D. Lam, O. Minin, and I. Minin, “Production of photonic nanojets by using pupil-masked 3D dielectric cuboid,” J. Phys. D Appl. Phys. 50(17), 175102 (2017).
[Crossref]

B. S. Luk’yanchuk, R. Paniagua-Domínguez, I. Minin, O. Minin, and Z. Wang, “Refractive index less than two: photonic nanojets yesterday, today and tomorrow,” Opt. Mater. Express 7(6), 1820–1847 (2017).
[Crossref]

I. Minin, O. Minin, I. Nefedov, V. Pacheco-Peña, and M. Beruete, “Beam compressed system concept based on dielectric cluster of self-similar three-dimensional dielectric cuboids,” in 2016 Global Symposium on Millimeter Waves (GSMM) & ESA Workshop on Millimetre-Wave Technology and Applications (IEEE, 2016), pp. 1–2.
[Crossref]

Minin, I. V.

H. H. Nguyen Pham, S. Hisatake, O. V. Minin, T. Nagatsuma, and I. V. Minin, “Enhancement of spatial resolution of terahertz imaging systems based on terajet generation by dielectric cube,” APL Photonics 2(5), 056106 (2017).
[Crossref]

V. Pacheco-Peña, M. Beruete, I. V. Minin, and O. V. Minin, “Multifrequency focusing and wide angular scanning of terajets,” Opt. Lett. 40(2), 245–248 (2015).
[Crossref] [PubMed]

V. Pacheco-Peña, M. Beruete, I. V. Minin, and O. V. Minin, “Terajets produced by dielectric cuboids,” Appl. Phys. Lett. 105(8), 084102 (2014).
[Crossref]

Minin, O.

L. Yue, B. Yan, J. N. Monks, Z. Wang, N. T. Tung, V. D. Lam, O. Minin, and I. Minin, “Production of photonic nanojets by using pupil-masked 3D dielectric cuboid,” J. Phys. D Appl. Phys. 50(17), 175102 (2017).
[Crossref]

B. S. Luk’yanchuk, R. Paniagua-Domínguez, I. Minin, O. Minin, and Z. Wang, “Refractive index less than two: photonic nanojets yesterday, today and tomorrow,” Opt. Mater. Express 7(6), 1820–1847 (2017).
[Crossref]

I. Minin, O. Minin, I. Nefedov, V. Pacheco-Peña, and M. Beruete, “Beam compressed system concept based on dielectric cluster of self-similar three-dimensional dielectric cuboids,” in 2016 Global Symposium on Millimeter Waves (GSMM) & ESA Workshop on Millimetre-Wave Technology and Applications (IEEE, 2016), pp. 1–2.
[Crossref]

Minin, O. V.

H. H. Nguyen Pham, S. Hisatake, O. V. Minin, T. Nagatsuma, and I. V. Minin, “Enhancement of spatial resolution of terahertz imaging systems based on terajet generation by dielectric cube,” APL Photonics 2(5), 056106 (2017).
[Crossref]

V. Pacheco-Peña, M. Beruete, I. V. Minin, and O. V. Minin, “Multifrequency focusing and wide angular scanning of terajets,” Opt. Lett. 40(2), 245–248 (2015).
[Crossref] [PubMed]

V. Pacheco-Peña, M. Beruete, I. V. Minin, and O. V. Minin, “Terajets produced by dielectric cuboids,” Appl. Phys. Lett. 105(8), 084102 (2014).
[Crossref]

Monks, J. N.

L. Yue, B. Yan, J. N. Monks, Z. Wang, N. T. Tung, V. D. Lam, O. Minin, and I. Minin, “Production of photonic nanojets by using pupil-masked 3D dielectric cuboid,” J. Phys. D Appl. Phys. 50(17), 175102 (2017).
[Crossref]

Nagatsuma, T.

H. H. Nguyen Pham, S. Hisatake, O. V. Minin, T. Nagatsuma, and I. V. Minin, “Enhancement of spatial resolution of terahertz imaging systems based on terajet generation by dielectric cube,” APL Photonics 2(5), 056106 (2017).
[Crossref]

Nefedov, I.

I. Minin, O. Minin, I. Nefedov, V. Pacheco-Peña, and M. Beruete, “Beam compressed system concept based on dielectric cluster of self-similar three-dimensional dielectric cuboids,” in 2016 Global Symposium on Millimeter Waves (GSMM) & ESA Workshop on Millimetre-Wave Technology and Applications (IEEE, 2016), pp. 1–2.
[Crossref]

Nguyen Pham, H. H.

H. H. Nguyen Pham, S. Hisatake, O. V. Minin, T. Nagatsuma, and I. V. Minin, “Enhancement of spatial resolution of terahertz imaging systems based on terajet generation by dielectric cube,” APL Photonics 2(5), 056106 (2017).
[Crossref]

Pacheco-Peña, V.

V. Pacheco-Peña, M. Beruete, I. V. Minin, and O. V. Minin, “Multifrequency focusing and wide angular scanning of terajets,” Opt. Lett. 40(2), 245–248 (2015).
[Crossref] [PubMed]

V. Pacheco-Peña, M. Beruete, I. V. Minin, and O. V. Minin, “Terajets produced by dielectric cuboids,” Appl. Phys. Lett. 105(8), 084102 (2014).
[Crossref]

I. Minin, O. Minin, I. Nefedov, V. Pacheco-Peña, and M. Beruete, “Beam compressed system concept based on dielectric cluster of self-similar three-dimensional dielectric cuboids,” in 2016 Global Symposium on Millimeter Waves (GSMM) & ESA Workshop on Millimetre-Wave Technology and Applications (IEEE, 2016), pp. 1–2.
[Crossref]

Paniagua-Domínguez, R.

Panina, E.

Y. E. Geints, E. Panina, and A. Zemlyanov, “Control over parameters of photonic nanojets of dielectric microspheres,” Opt. Commun. 283(23), 4775–4781 (2010).
[Crossref]

Pianta, M.

Popov, E.

Qu, J.

G. Gu, J. Song, H. Liang, M. Zhao, Y. Chen, and J. Qu, “Overstepping the upper refractive index limit to form ultra-narrow photonic nanojets,” Sci. Rep. 7(1), 5635 (2017).
[Crossref] [PubMed]

Rehspringer, J.-L.

Rigneault, H.

Sandeau, N.

Shen, Y.

M. Wu, R. Chen, J. Soh, Y. Shen, L. Jiao, J. Wu, X. Chen, R. Ji, and M. Hong, “Super-focusing of center-covered engineered microsphere,” Sci. Rep. 6(1), 31637 (2016).
[Crossref] [PubMed]

Simpson, J. J.

Soh, J.

M. Wu, R. Chen, J. Soh, Y. Shen, L. Jiao, J. Wu, X. Chen, R. Ji, and M. Hong, “Super-focusing of center-covered engineered microsphere,” Sci. Rep. 6(1), 31637 (2016).
[Crossref] [PubMed]

Song, J.

G. Gu, J. Song, H. Liang, M. Zhao, Y. Chen, and J. Qu, “Overstepping the upper refractive index limit to form ultra-narrow photonic nanojets,” Sci. Rep. 7(1), 5635 (2017).
[Crossref] [PubMed]

Sparnacci, K.

Stout, B.

Sui, G.

Taflove, A.

Takakura, Y.

Tung, N. T.

L. Yue, B. Yan, J. N. Monks, Z. Wang, N. T. Tung, V. D. Lam, O. Minin, and I. Minin, “Production of photonic nanojets by using pupil-masked 3D dielectric cuboid,” J. Phys. D Appl. Phys. 50(17), 175102 (2017).
[Crossref]

Wang, Y.

Wang, Z.

B. S. Luk’yanchuk, R. Paniagua-Domínguez, I. Minin, O. Minin, and Z. Wang, “Refractive index less than two: photonic nanojets yesterday, today and tomorrow,” Opt. Mater. Express 7(6), 1820–1847 (2017).
[Crossref]

L. Yue, B. Yan, J. N. Monks, Z. Wang, N. T. Tung, V. D. Lam, O. Minin, and I. Minin, “Production of photonic nanojets by using pupil-masked 3D dielectric cuboid,” J. Phys. D Appl. Phys. 50(17), 175102 (2017).
[Crossref]

B. Yan, L. Yue, and Z. Wang, “Engineering near-field focusing of a microsphere lens with pupil masks,” Opt. Commun. 370, 140–144 (2016).
[Crossref]

L. Yue, B. Yan, and Z. Wang, “Photonic nanojet of cylindrical metalens assembled by hexagonally arranged nanofibers for breaking the diffraction limit,” Opt. Lett. 41(7), 1336–1339 (2016).
[Crossref] [PubMed]

S. Lee, L. Li, and Z. Wang, “Optical resonances in microsphere photonic nanojets,” J. Opt. 16(1), 015704 (2014).
[Crossref]

Weng, X.

Wenger, J.

Wu, J.

M. Wu, R. Chen, J. Soh, Y. Shen, L. Jiao, J. Wu, X. Chen, R. Ji, and M. Hong, “Super-focusing of center-covered engineered microsphere,” Sci. Rep. 6(1), 31637 (2016).
[Crossref] [PubMed]

Wu, J. F.

Wu, M.

M. Wu, R. Chen, J. Soh, Y. Shen, L. Jiao, J. Wu, X. Chen, R. Ji, and M. Hong, “Super-focusing of center-covered engineered microsphere,” Sci. Rep. 6(1), 31637 (2016).
[Crossref] [PubMed]

Wu, M. X.

Yan, B.

L. Yue, B. Yan, J. N. Monks, Z. Wang, N. T. Tung, V. D. Lam, O. Minin, and I. Minin, “Production of photonic nanojets by using pupil-masked 3D dielectric cuboid,” J. Phys. D Appl. Phys. 50(17), 175102 (2017).
[Crossref]

B. Yan, L. Yue, and Z. Wang, “Engineering near-field focusing of a microsphere lens with pupil masks,” Opt. Commun. 370, 140–144 (2016).
[Crossref]

L. Yue, B. Yan, and Z. Wang, “Photonic nanojet of cylindrical metalens assembled by hexagonally arranged nanofibers for breaking the diffraction limit,” Opt. Lett. 41(7), 1336–1339 (2016).
[Crossref] [PubMed]

Yang, S.

Yang, Y.

Yue, L.

L. Yue, B. Yan, J. N. Monks, Z. Wang, N. T. Tung, V. D. Lam, O. Minin, and I. Minin, “Production of photonic nanojets by using pupil-masked 3D dielectric cuboid,” J. Phys. D Appl. Phys. 50(17), 175102 (2017).
[Crossref]

B. Yan, L. Yue, and Z. Wang, “Engineering near-field focusing of a microsphere lens with pupil masks,” Opt. Commun. 370, 140–144 (2016).
[Crossref]

L. Yue, B. Yan, and Z. Wang, “Photonic nanojet of cylindrical metalens assembled by hexagonally arranged nanofibers for breaking the diffraction limit,” Opt. Lett. 41(7), 1336–1339 (2016).
[Crossref] [PubMed]

Zemlyanov, A.

Y. E. Geints, E. Panina, and A. Zemlyanov, “Control over parameters of photonic nanojets of dielectric microspheres,” Opt. Commun. 283(23), 4775–4781 (2010).
[Crossref]

Zhao, M.

G. Gu, J. Song, H. Liang, M. Zhao, Y. Chen, and J. Qu, “Overstepping the upper refractive index limit to form ultra-narrow photonic nanojets,” Sci. Rep. 7(1), 5635 (2017).
[Crossref] [PubMed]

Zhao, Y.

Zhuang, S.

Ann. Phys. (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330(3), 377–445 (1908).
[Crossref]

APL Photonics (1)

H. H. Nguyen Pham, S. Hisatake, O. V. Minin, T. Nagatsuma, and I. V. Minin, “Enhancement of spatial resolution of terahertz imaging systems based on terajet generation by dielectric cube,” APL Photonics 2(5), 056106 (2017).
[Crossref]

Appl. Phys. Lett. (1)

V. Pacheco-Peña, M. Beruete, I. V. Minin, and O. V. Minin, “Terajets produced by dielectric cuboids,” Appl. Phys. Lett. 105(8), 084102 (2014).
[Crossref]

J. Opt. (1)

S. Lee, L. Li, and Z. Wang, “Optical resonances in microsphere photonic nanojets,” J. Opt. 16(1), 015704 (2014).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

L. Yue, B. Yan, J. N. Monks, Z. Wang, N. T. Tung, V. D. Lam, O. Minin, and I. Minin, “Production of photonic nanojets by using pupil-masked 3D dielectric cuboid,” J. Phys. D Appl. Phys. 50(17), 175102 (2017).
[Crossref]

Opt. Commun. (2)

B. Yan, L. Yue, and Z. Wang, “Engineering near-field focusing of a microsphere lens with pupil masks,” Opt. Commun. 370, 140–144 (2016).
[Crossref]

Y. E. Geints, E. Panina, and A. Zemlyanov, “Control over parameters of photonic nanojets of dielectric microspheres,” Opt. Commun. 283(23), 4775–4781 (2010).
[Crossref]

Opt. Express (9)

H. Guo, Y. Han, X. Weng, Y. Zhao, G. Sui, Y. Wang, and S. Zhuang, “Near-field focusing of the dielectric microsphere with wavelength scale radius,” Opt. Express 21(2), 2434–2443 (2013).
[Crossref] [PubMed]

A. Devilez, B. Stout, N. Bonod, and E. Popov, “Spectral analysis of three-dimensional photonic jets,” Opt. Express 16(18), 14200–14212 (2008).
[Crossref] [PubMed]

A. Heifetz, J. J. Simpson, S.-C. Kong, A. Taflove, and V. Backman, “Subdiffraction optical resolution of a gold nanosphere located within the nanojet of a Mie-resonant dielectric microsphere,” Opt. Express 15(25), 17334–17342 (2007).
[Crossref] [PubMed]

S. Yang, A. Taflove, and V. Backman, “Experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet,” Opt. Express 19(8), 7084–7093 (2011).
[Crossref] [PubMed]

S. Lecler, S. Haacke, N. Lecong, O. Crégut, J.-L. Rehspringer, and C. Hirlimann, “Photonic jet driven non-linear optics: example of two-photon fluorescence enhancement by dielectric microspheres,” Opt. Express 15(8), 4935–4942 (2007).
[Crossref] [PubMed]

P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Direct imaging of photonic nanojets,” Opt. Express 16(10), 6930–6940 (2008).
[Crossref] [PubMed]

Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004).
[Crossref] [PubMed]

M. X. Wu, B. J. Huang, R. Chen, Y. Yang, J. F. Wu, R. Ji, X. D. Chen, and M. H. Hong, “Modulation of photonic nanojets generated by microspheres decorated with concentric rings,” Opt. Express 23(15), 20096–20103 (2015).
[Crossref] [PubMed]

X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
[Crossref] [PubMed]

Opt. Lett. (4)

Opt. Mater. Express (1)

Sci. Rep. (2)

G. Gu, J. Song, H. Liang, M. Zhao, Y. Chen, and J. Qu, “Overstepping the upper refractive index limit to form ultra-narrow photonic nanojets,” Sci. Rep. 7(1), 5635 (2017).
[Crossref] [PubMed]

M. Wu, R. Chen, J. Soh, Y. Shen, L. Jiao, J. Wu, X. Chen, R. Ji, and M. Hong, “Super-focusing of center-covered engineered microsphere,” Sci. Rep. 6(1), 31637 (2016).
[Crossref] [PubMed]

Other (2)

I. Minin, O. Minin, I. Nefedov, V. Pacheco-Peña, and M. Beruete, “Beam compressed system concept based on dielectric cluster of self-similar three-dimensional dielectric cuboids,” in 2016 Global Symposium on Millimeter Waves (GSMM) & ESA Workshop on Millimetre-Wave Technology and Applications (IEEE, 2016), pp. 1–2.
[Crossref]

I. V. Minin and O. V. Minin, Diffractive Optics and Nanophotonics (Springer International Publishing, 2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Dielectric cuboid embedded in a dielectric cylinder. The wavelength of the illumination plane wave is 0.5 μm. The radius of the cylinder is r = 2.5 μm. The cuboid has a square section of side a = 1 μm. The refractive indices of the cylinder and the cuboid are n1 = 1.5 and n2 = 1.8 respectively. (a) The electric field intensity |E|2. (b) Streamlines of the Poynting vectors. The insert is the zoomed image around the focal position. The color scale represents the value of the Px component. (c) Electric field intensity |E|2 on the focus width. In green: reference for a single full cylinder with an index of n = 1.5. In blue: new design shown in (a). (d) The electric field intensity distribution |E|2 along x. L represents the distance between the position of the maximum intensity and the external surface of the cuboid. L = 455 nm for the reference case and L = 32 nm for the new design. D is the decay length from the point of the maximum light intensity Imax to 1/e value of Imax.
Fig. 2
Fig. 2 FWHM ratio ( FWHM/ λ 0 ) of the maximum intensity spot, maximum intensity position L and maximum electric field intensity |E|2 out of the cuboid vs the cylinder size parameter q and the side a of the cuboid in λ unit. Different colors represent different refractive indices n2 of the cuboid, which is indicated in the center of the figure. The refractive index of the cylinder is 1.5 in all cases. The red stars are representative points that are studied separately. (a) cylinder size parameter q = 39.3; (b) q = 31.4 and (c) q = 26.2.
Fig. 3
Fig. 3 Electric field intensity |Ez|2 and Poynting vectors streamlines for several specific cases (marked with stars) referenced in Fig. 2. (a) n2 = 1.9, a = 2λ0and q = 26.2. (b) n2 = 1.4, a = 3λ0 and q = 39.3 (c) n2 = 1.4, a = 1.25λ0 and q = 39.3.
Fig. 4
Fig. 4 Characteristics of the focal spot vs the cuboid geometry. (a) FWHM ratio of the maximum intensity spot, (b) maximum intensity position L and (c) maximum electric field intensity |Ez|2 out of the cuboid vs the height a. Different colors represent different values of ρ and different marks represent different refractive indices n2 of the cuboid, which is indicated in the center of the figure. The refractive index of the cylinder is 1.5 in all cases. The illumination wavelength is λ 0 =0.5 μm. The reference corresponds to a cylinder of refractive index n1 = 1.5.
Fig. 5
Fig. 5 Alternative geometries that can reduce the FWHM. The refractive index of all the inserts is 1.7. The FWHM ratio and maximum intensity position L are given in the upper right corner of each figure. (a) Case corresponding to star number 4 in Fig. 2. The side length a = 2λ0. (b) The insert is similar to a cuboid with a side length of a = 2λ0, but with an external surface fitting the host cylinder shape. (c) The left surface of the original cuboid (a = 2λ0) is replaced by a cylinder with a radius equals to λ0 and the right surface is a surface fitting the host cylinder shape. (d) The inclusion is a cylinder with 1.4λ0 radius tangent to the larger cylinder.
Fig. 6
Fig. 6 Effect of the incidence angle. The illumination light flows from left to right. θ is the cuboid rotation angle compared to Fig. 1. As in Fig. 1, the wavelength of the illumination plane wave is 0.5 μm. The radius of the cylinder is r = 2.5 μm. The cuboid has a square section of side a = 1 μm. The refractive indices of the cylinder and the cuboid are n1 = 1.5 and n2 = 1.8 respectively. (Left) Electric field intensity |E|2 and (right) streamline of Poynting vectors for several rotation angles. (a) θ = 11°, (b) θ = 70°, (c) θ = 180°.

Metrics