Abstract

Terahertz-frequency quantum cascade lasers (THz QCLs) based on ridge waveguides incorporating silver waveguide layers have been investigated theoretically and experimentally, and compared with traditional gold-based devices. The threshold gain associated with silver-, gold- and copper-based devices, and the effects of titanium adhesion layers and top contact layers, in both surface-plasmon and double-metal waveguide geometries, have been analysed. Our simulations show that silver-based waveguides yield lower losses for THz QCLs across all practical operating temperatures and frequencies. Experimentally, QCLs with silver-based surface-plasmon waveguides were found to exhibit higher operating temperatures and higher output powers compared to those with identical but gold-based waveguides. Specifically, for a three-well resonant phonon active region with a scaled oscillator strength of 0.43 and doping density of 6.83 × 1015 cm−3, an increase of 5 K in the maximum operating temperature and 40% increase in the output power were demonstrated. These effects were found to be dependent on the active region design, and greater improvements were observed for QCLs with a larger radiative diagonality. Our results indicate that silver-based waveguide structures could potentially enable THz QCLs to operate at high temperatures.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
An investigation on optimum ridge width and exposed side strips width of terahertz quantum cascade lasers with metal-metal waveguides

Chao Xu, Seyed Ghasem Razavipour, Zbigniew Wasilewski, and Dayan Ban
Opt. Express 21(26) 31951-31959 (2013)

High-temperature, continuous-wave operation of terahertz quantum-cascade lasers with metal-metal waveguides and third-order distributed feedback

M. Wienold, B. Röben, L. Schrottke, R. Sharma, A. Tahraoui, K. Biermann, and H. T. Grahn
Opt. Express 22(3) 3334-3348 (2014)

Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode

Benjamin S. Williams, Sushil Kumar, Qing Hu, and John L. Reno
Opt. Express 13(9) 3331-3339 (2005)

References

  • View by:
  • |
  • |
  • |

  1. P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photon. 6, 16–24 (2012).
    [Crossref]
  2. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
    [Crossref]
  3. C. Sirtori, C. Gmachl, F. Capasso, J. Faist, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long-wavelength (8−1.5 μm) semiconductor lasers with waveguides based on surface plasmons,” Opt. Lett. 23, 1366–1368 (1998).
    [Crossref]
  4. A. Tredicucci, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Single-mode surface-plasmon laser,” Appl. Phys. Lett. 76, 2164–2166 (2000).
    [Crossref]
  5. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
    [Crossref] [PubMed]
  6. B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum-cascade laser at lambda approximate to 100 μm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83, 2124–2126 (2003).
    [Crossref]
  7. J. R. Gao, J. N. Hovenier, Z. Q. Yang, J. J. Baselmans, A. Baryshev, M. Hajenius, T. M. Klapwijk, A. J. Adam, T. O. Klaassen, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer,” Appl. Phys. Lett. 86, 244104 (2005).
    [Crossref]
  8. J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, and J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).
    [Crossref]
  9. P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. L. Lim, R. Alhathlool, A. D. Burnett, L. H. Li, S. P. Khanna, D. Indjin, T. Taimre, A. D. Rakić, E. H. Linfield, and A. G. Davies, “Terahertz imaging using quantum cascade lasers - review of systems and applications,” J. Phys. D 47, 374008 (2014).
    [Crossref]
  10. B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode,” Opt. Express 13, 3331–3339 (2005).
    [Crossref] [PubMed]
  11. M. A. Belkin, J. A. Fan, S. Hormoz, F. Capasso, S. P. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K,” Opt. Express 16, 3242–3248 (2008).
    [Crossref] [PubMed]
  12. S. Fathololoumi, E. Dupont, S. G. Razavipour, S. R. Laframboise, G. Parent, Z. Wasilewski, H. C. Liu, and D. Y. Ban, “On metal contacts of terahertz quantum cascade lasers with a metal-metal waveguide,” Semicond. Sci. Technol. 26, 105021 (2011).
    [Crossref]
  13. C. W. I. Chan, “Towards room-temperature THz QCLs : directions and design,” PhD thesis, Chapter 5 (Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2015).
  14. S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866 (2012).
    [Crossref] [PubMed]
  15. L. Y. Ying, N. Horiuchi-Ikeda, and H. Hirayama, “Ag-metal bonding conditions for low-loss double-metal waveguide for terahertz quantum cascade laser,” Jpn. J. Appl. Phys. 47, 7926–7928 (2008).
    [Crossref]
  16. R. A. Matula, “Electrical resistivity of copper, gold, palladium, and silver,” J. Phys. Chem. Ref. Data 8, 1147–1298 (1979).
    [Crossref]
  17. Y. S. Touloukian, R. W. Powell, C. Y. Ho, and P. G. Klemens, Thermophysical Properties of Matter - The TPRC Data Series. Volume 1. Thermal Conductivity - Metallic Elements and Alloys (TPRC1970).
  18. J. R. Waldrop, “Schottky barrier height of ideal metal contacts to GaAs,” Appl. Phys. Lett. 44, 1002–1004 (1984).
    [Crossref]
  19. S. H. Pan, D. Mo, W. G. Petro, I. Lindau, and W. E. Spicer, “Schottky barrier formation and intermixing of noble metals on GaAs(110),” J. Vac. Sci. Technol. B 1, 593–597 (1983).
    [Crossref]
  20. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  21. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  22. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Applied Optics 24, 4493–4499 (1985).
    [Crossref] [PubMed]
  23. R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
    [Crossref]
  24. H. U. Yang, J. D Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91, 235137 (2015).
    [Crossref]
  25. S. Babar and J. H. Weaver, “Optical constants of Cu, Ag, and Au revisited,” Appl. Opt. 54, 477–481 (2015).
    [Crossref]
  26. D. L. Windt, W. C. Cash, M. Scott, P. Arendt, B. Newnam, R. F. Fisher, and A. B. Swartzlander, “Optical constants for thin films of Ti, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Hf, Ta, W, Re, Ir, Os, Pt, and Au from 24 Å to 1216 Å,” Appl. Opt. 27, 246–278 (1988).
    [Crossref] [PubMed]
  27. D. B. Tanner and D. C. Larson, “Electrical resistivity of silver films,” Phys. Rev. 166, 652–655 (1968).
    [Crossref]
  28. D. R. Smith and F. R. Fickett, “Low-temperature properties of silver,” J. Res. Natl. Inst. Stand. Technol. 100, 119 (1995).
    [Crossref] [PubMed]
  29. M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76, 125408 (2007).
    [Crossref]
  30. Z. Cheng, L. Liu, S. Xu, M. Lu, and X. Wang, “Temperature dependence of electrical and thermal conduction in single silver nanowire,” Sci. Rep. 5, 10718 (2015).
    [Crossref] [PubMed]
  31. C. Y. Ho, R. W. Powell, and P. E. Liley, “Thermal conductivity of the elements: A comprehensive review,” Journal of Physical and Chemical Reference Data 3-1, 1–796 (1974).
  32. F. R. Fickett, Electrical Properties of Materials and Their Measurement at Low Temperatures (U.S. Government Printing Office, 1982).
  33. P. Harrison and A. Valavanis, Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures, 4 Edition (John Wiley & Sons, Inc., 2016). Chap. 13.
    [Crossref]
  34. Y. J. Han, W. Feng, and J. C. Cao, “Optimization of radiative recombination in terahertz quantum cascade lasers for high temperature operation,” J. Appl. Phys. 111, 113111 (2012).
    [Crossref]
  35. H. Callebaut and Q. Hu, “Importance of coherence for electron transport in terahertz quantum cascade lasers,” J. Appl. Phys. 98, 104505 (2005).
    [Crossref]
  36. A. Albo and Q. Hu, “Carrier leakage into the continuum in diagonal GaAs/Al0.15GaAs terahertz quantum cascade lasers,” Appl. Phys. Lett. 107, 241101 (2015).
    [Crossref]
  37. M. I. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, and E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” New. J. Phys. 11, 125022 (2009).
    [Crossref]

2015 (4)

H. U. Yang, J. D Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91, 235137 (2015).
[Crossref]

S. Babar and J. H. Weaver, “Optical constants of Cu, Ag, and Au revisited,” Appl. Opt. 54, 477–481 (2015).
[Crossref]

Z. Cheng, L. Liu, S. Xu, M. Lu, and X. Wang, “Temperature dependence of electrical and thermal conduction in single silver nanowire,” Sci. Rep. 5, 10718 (2015).
[Crossref] [PubMed]

A. Albo and Q. Hu, “Carrier leakage into the continuum in diagonal GaAs/Al0.15GaAs terahertz quantum cascade lasers,” Appl. Phys. Lett. 107, 241101 (2015).
[Crossref]

2014 (1)

P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. L. Lim, R. Alhathlool, A. D. Burnett, L. H. Li, S. P. Khanna, D. Indjin, T. Taimre, A. D. Rakić, E. H. Linfield, and A. G. Davies, “Terahertz imaging using quantum cascade lasers - review of systems and applications,” J. Phys. D 47, 374008 (2014).
[Crossref]

2013 (1)

J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, and J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).
[Crossref]

2012 (4)

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866 (2012).
[Crossref] [PubMed]

P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photon. 6, 16–24 (2012).
[Crossref]

Y. J. Han, W. Feng, and J. C. Cao, “Optimization of radiative recombination in terahertz quantum cascade lasers for high temperature operation,” J. Appl. Phys. 111, 113111 (2012).
[Crossref]

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

2011 (1)

S. Fathololoumi, E. Dupont, S. G. Razavipour, S. R. Laframboise, G. Parent, Z. Wasilewski, H. C. Liu, and D. Y. Ban, “On metal contacts of terahertz quantum cascade lasers with a metal-metal waveguide,” Semicond. Sci. Technol. 26, 105021 (2011).
[Crossref]

2009 (1)

M. I. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, and E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” New. J. Phys. 11, 125022 (2009).
[Crossref]

2008 (2)

L. Y. Ying, N. Horiuchi-Ikeda, and H. Hirayama, “Ag-metal bonding conditions for low-loss double-metal waveguide for terahertz quantum cascade laser,” Jpn. J. Appl. Phys. 47, 7926–7928 (2008).
[Crossref]

M. A. Belkin, J. A. Fan, S. Hormoz, F. Capasso, S. P. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K,” Opt. Express 16, 3242–3248 (2008).
[Crossref] [PubMed]

2007 (1)

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76, 125408 (2007).
[Crossref]

2005 (4)

H. Callebaut and Q. Hu, “Importance of coherence for electron transport in terahertz quantum cascade lasers,” J. Appl. Phys. 98, 104505 (2005).
[Crossref]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
[Crossref]

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode,” Opt. Express 13, 3331–3339 (2005).
[Crossref] [PubMed]

J. R. Gao, J. N. Hovenier, Z. Q. Yang, J. J. Baselmans, A. Baryshev, M. Hajenius, T. M. Klapwijk, A. J. Adam, T. O. Klaassen, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer,” Appl. Phys. Lett. 86, 244104 (2005).
[Crossref]

2003 (1)

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum-cascade laser at lambda approximate to 100 μm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83, 2124–2126 (2003).
[Crossref]

2002 (1)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

2000 (1)

A. Tredicucci, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Single-mode surface-plasmon laser,” Appl. Phys. Lett. 76, 2164–2166 (2000).
[Crossref]

1998 (1)

1995 (1)

D. R. Smith and F. R. Fickett, “Low-temperature properties of silver,” J. Res. Natl. Inst. Stand. Technol. 100, 119 (1995).
[Crossref] [PubMed]

1988 (1)

1985 (1)

M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Applied Optics 24, 4493–4499 (1985).
[Crossref] [PubMed]

1984 (1)

J. R. Waldrop, “Schottky barrier height of ideal metal contacts to GaAs,” Appl. Phys. Lett. 44, 1002–1004 (1984).
[Crossref]

1983 (1)

S. H. Pan, D. Mo, W. G. Petro, I. Lindau, and W. E. Spicer, “Schottky barrier formation and intermixing of noble metals on GaAs(110),” J. Vac. Sci. Technol. B 1, 593–597 (1983).
[Crossref]

1979 (1)

R. A. Matula, “Electrical resistivity of copper, gold, palladium, and silver,” J. Phys. Chem. Ref. Data 8, 1147–1298 (1979).
[Crossref]

1974 (1)

C. Y. Ho, R. W. Powell, and P. E. Liley, “Thermal conductivity of the elements: A comprehensive review,” Journal of Physical and Chemical Reference Data 3-1, 1–796 (1974).

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

1968 (1)

D. B. Tanner and D. C. Larson, “Electrical resistivity of silver films,” Phys. Rev. 166, 652–655 (1968).
[Crossref]

Adam, A. J.

J. R. Gao, J. N. Hovenier, Z. Q. Yang, J. J. Baselmans, A. Baryshev, M. Hajenius, T. M. Klapwijk, A. J. Adam, T. O. Klaassen, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer,” Appl. Phys. Lett. 86, 244104 (2005).
[Crossref]

Albo, A.

A. Albo and Q. Hu, “Carrier leakage into the continuum in diagonal GaAs/Al0.15GaAs terahertz quantum cascade lasers,” Appl. Phys. Lett. 107, 241101 (2015).
[Crossref]

Alexander, R. W.

M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Applied Optics 24, 4493–4499 (1985).
[Crossref] [PubMed]

Alhathlool, R.

P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. L. Lim, R. Alhathlool, A. D. Burnett, L. H. Li, S. P. Khanna, D. Indjin, T. Taimre, A. D. Rakić, E. H. Linfield, and A. G. Davies, “Terahertz imaging using quantum cascade lasers - review of systems and applications,” J. Phys. D 47, 374008 (2014).
[Crossref]

Amanti, M. I.

M. I. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, and E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” New. J. Phys. 11, 125022 (2009).
[Crossref]

Archangel, J. D

H. U. Yang, J. D Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91, 235137 (2015).
[Crossref]

Arendt, P.

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
[Crossref]

Babar, S.

Ban, D.

Ban, D. Y.

S. Fathololoumi, E. Dupont, S. G. Razavipour, S. R. Laframboise, G. Parent, Z. Wasilewski, H. C. Liu, and D. Y. Ban, “On metal contacts of terahertz quantum cascade lasers with a metal-metal waveguide,” Semicond. Sci. Technol. 26, 105021 (2011).
[Crossref]

Baryshev, A.

J. R. Gao, J. N. Hovenier, Z. Q. Yang, J. J. Baselmans, A. Baryshev, M. Hajenius, T. M. Klapwijk, A. J. Adam, T. O. Klaassen, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer,” Appl. Phys. Lett. 86, 244104 (2005).
[Crossref]

Baselmans, J. J.

J. R. Gao, J. N. Hovenier, Z. Q. Yang, J. J. Baselmans, A. Baryshev, M. Hajenius, T. M. Klapwijk, A. J. Adam, T. O. Klaassen, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer,” Appl. Phys. Lett. 86, 244104 (2005).
[Crossref]

Beck, M.

M. I. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, and E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” New. J. Phys. 11, 125022 (2009).
[Crossref]

Beere, H. E.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Belkin, M. A.

Bell, R. J.

M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Applied Optics 24, 4493–4499 (1985).
[Crossref] [PubMed]

Beltram, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Berini, P.

P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photon. 6, 16–24 (2012).
[Crossref]

Bertling, K.

P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. L. Lim, R. Alhathlool, A. D. Burnett, L. H. Li, S. P. Khanna, D. Indjin, T. Taimre, A. D. Rakić, E. H. Linfield, and A. G. Davies, “Terahertz imaging using quantum cascade lasers - review of systems and applications,” J. Phys. D 47, 374008 (2014).
[Crossref]

Boreman, G. D.

H. U. Yang, J. D Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91, 235137 (2015).
[Crossref]

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Burnett, A. D.

P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. L. Lim, R. Alhathlool, A. D. Burnett, L. H. Li, S. P. Khanna, D. Indjin, T. Taimre, A. D. Rakić, E. H. Linfield, and A. G. Davies, “Terahertz imaging using quantum cascade lasers - review of systems and applications,” J. Phys. D 47, 374008 (2014).
[Crossref]

Callebaut, H.

H. Callebaut and Q. Hu, “Importance of coherence for electron transport in terahertz quantum cascade lasers,” J. Appl. Phys. 98, 104505 (2005).
[Crossref]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum-cascade laser at lambda approximate to 100 μm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83, 2124–2126 (2003).
[Crossref]

Cao, J. C.

Y. J. Han, W. Feng, and J. C. Cao, “Optimization of radiative recombination in terahertz quantum cascade lasers for high temperature operation,” J. Appl. Phys. 111, 113111 (2012).
[Crossref]

Capasso, F.

Cash, W. C.

Chan, C. W. I.

Cheng, Z.

Z. Cheng, L. Liu, S. Xu, M. Lu, and X. Wang, “Temperature dependence of electrical and thermal conduction in single silver nanowire,” Sci. Rep. 5, 10718 (2015).
[Crossref] [PubMed]

Cho, A. Y.

A. Tredicucci, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Single-mode surface-plasmon laser,” Appl. Phys. Lett. 76, 2164–2166 (2000).
[Crossref]

C. Sirtori, C. Gmachl, F. Capasso, J. Faist, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long-wavelength (8−1.5 μm) semiconductor lasers with waveguides based on surface plasmons,” Opt. Lett. 23, 1366–1368 (1998).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Cooke, D. G.

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76, 125408 (2007).
[Crossref]

Davies, A. G.

P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. L. Lim, R. Alhathlool, A. D. Burnett, L. H. Li, S. P. Khanna, D. Indjin, T. Taimre, A. D. Rakić, E. H. Linfield, and A. G. Davies, “Terahertz imaging using quantum cascade lasers - review of systems and applications,” J. Phys. D 47, 374008 (2014).
[Crossref]

M. A. Belkin, J. A. Fan, S. Hormoz, F. Capasso, S. P. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K,” Opt. Express 16, 3242–3248 (2008).
[Crossref] [PubMed]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

De Leon, I.

P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photon. 6, 16–24 (2012).
[Crossref]

Dean, P.

P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. L. Lim, R. Alhathlool, A. D. Burnett, L. H. Li, S. P. Khanna, D. Indjin, T. Taimre, A. D. Rakić, E. H. Linfield, and A. G. Davies, “Terahertz imaging using quantum cascade lasers - review of systems and applications,” J. Phys. D 47, 374008 (2014).
[Crossref]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
[Crossref]

Dupont, E.

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866 (2012).
[Crossref] [PubMed]

S. Fathololoumi, E. Dupont, S. G. Razavipour, S. R. Laframboise, G. Parent, Z. Wasilewski, H. C. Liu, and D. Y. Ban, “On metal contacts of terahertz quantum cascade lasers with a metal-metal waveguide,” Semicond. Sci. Technol. 26, 105021 (2011).
[Crossref]

Faist, J.

M. I. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, and E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” New. J. Phys. 11, 125022 (2009).
[Crossref]

C. Sirtori, C. Gmachl, F. Capasso, J. Faist, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long-wavelength (8−1.5 μm) semiconductor lasers with waveguides based on surface plasmons,” Opt. Lett. 23, 1366–1368 (1998).
[Crossref]

Fan, J. A.

Fathololoumi, S.

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866 (2012).
[Crossref] [PubMed]

S. Fathololoumi, E. Dupont, S. G. Razavipour, S. R. Laframboise, G. Parent, Z. Wasilewski, H. C. Liu, and D. Y. Ban, “On metal contacts of terahertz quantum cascade lasers with a metal-metal waveguide,” Semicond. Sci. Technol. 26, 105021 (2011).
[Crossref]

Feng, W.

Y. J. Han, W. Feng, and J. C. Cao, “Optimization of radiative recombination in terahertz quantum cascade lasers for high temperature operation,” J. Appl. Phys. 111, 113111 (2012).
[Crossref]

Fickett, F. R.

D. R. Smith and F. R. Fickett, “Low-temperature properties of silver,” J. Res. Natl. Inst. Stand. Technol. 100, 119 (1995).
[Crossref] [PubMed]

F. R. Fickett, Electrical Properties of Materials and Their Measurement at Low Temperatures (U.S. Government Printing Office, 1982).

Fischer, M.

M. I. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, and E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” New. J. Phys. 11, 125022 (2009).
[Crossref]

Fisher, R. F.

Freeman, M. R.

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76, 125408 (2007).
[Crossref]

Gallo, P.

M. I. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, and E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” New. J. Phys. 11, 125022 (2009).
[Crossref]

Gao, J. R.

J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, and J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).
[Crossref]

J. R. Gao, J. N. Hovenier, Z. Q. Yang, J. J. Baselmans, A. Baryshev, M. Hajenius, T. M. Klapwijk, A. J. Adam, T. O. Klaassen, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer,” Appl. Phys. Lett. 86, 244104 (2005).
[Crossref]

Gmachl, C.

A. Tredicucci, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Single-mode surface-plasmon laser,” Appl. Phys. Lett. 76, 2164–2166 (2000).
[Crossref]

C. Sirtori, C. Gmachl, F. Capasso, J. Faist, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long-wavelength (8−1.5 μm) semiconductor lasers with waveguides based on surface plasmons,” Opt. Lett. 23, 1366–1368 (1998).
[Crossref]

Hajar, M.

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76, 125408 (2007).
[Crossref]

Hajenius, M.

J. R. Gao, J. N. Hovenier, Z. Q. Yang, J. J. Baselmans, A. Baryshev, M. Hajenius, T. M. Klapwijk, A. J. Adam, T. O. Klaassen, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer,” Appl. Phys. Lett. 86, 244104 (2005).
[Crossref]

Han, Y. J.

Y. J. Han, W. Feng, and J. C. Cao, “Optimization of radiative recombination in terahertz quantum cascade lasers for high temperature operation,” J. Appl. Phys. 111, 113111 (2012).
[Crossref]

Harrison, P.

P. Harrison and A. Valavanis, Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures, 4 Edition (John Wiley & Sons, Inc., 2016). Chap. 13.
[Crossref]

Hayton, D. J.

J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, and J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).
[Crossref]

Hegmann, F. A.

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76, 125408 (2007).
[Crossref]

Hirayama, H.

L. Y. Ying, N. Horiuchi-Ikeda, and H. Hirayama, “Ag-metal bonding conditions for low-loss double-metal waveguide for terahertz quantum cascade laser,” Jpn. J. Appl. Phys. 47, 7926–7928 (2008).
[Crossref]

Ho, C. Y.

C. Y. Ho, R. W. Powell, and P. E. Liley, “Thermal conductivity of the elements: A comprehensive review,” Journal of Physical and Chemical Reference Data 3-1, 1–796 (1974).

Y. S. Touloukian, R. W. Powell, C. Y. Ho, and P. G. Klemens, Thermophysical Properties of Matter - The TPRC Data Series. Volume 1. Thermal Conductivity - Metallic Elements and Alloys (TPRC1970).

Horiuchi-Ikeda, N.

L. Y. Ying, N. Horiuchi-Ikeda, and H. Hirayama, “Ag-metal bonding conditions for low-loss double-metal waveguide for terahertz quantum cascade laser,” Jpn. J. Appl. Phys. 47, 7926–7928 (2008).
[Crossref]

Hormoz, S.

Hovenier, J. N.

J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, and J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).
[Crossref]

J. R. Gao, J. N. Hovenier, Z. Q. Yang, J. J. Baselmans, A. Baryshev, M. Hajenius, T. M. Klapwijk, A. J. Adam, T. O. Klaassen, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer,” Appl. Phys. Lett. 86, 244104 (2005).
[Crossref]

Hu, Q.

A. Albo and Q. Hu, “Carrier leakage into the continuum in diagonal GaAs/Al0.15GaAs terahertz quantum cascade lasers,” Appl. Phys. Lett. 107, 241101 (2015).
[Crossref]

J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, and J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).
[Crossref]

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866 (2012).
[Crossref] [PubMed]

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode,” Opt. Express 13, 3331–3339 (2005).
[Crossref] [PubMed]

J. R. Gao, J. N. Hovenier, Z. Q. Yang, J. J. Baselmans, A. Baryshev, M. Hajenius, T. M. Klapwijk, A. J. Adam, T. O. Klaassen, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer,” Appl. Phys. Lett. 86, 244104 (2005).
[Crossref]

H. Callebaut and Q. Hu, “Importance of coherence for electron transport in terahertz quantum cascade lasers,” J. Appl. Phys. 98, 104505 (2005).
[Crossref]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum-cascade laser at lambda approximate to 100 μm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83, 2124–2126 (2003).
[Crossref]

Hutchinson, A. L.

A. Tredicucci, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Single-mode surface-plasmon laser,” Appl. Phys. Lett. 76, 2164–2166 (2000).
[Crossref]

C. Sirtori, C. Gmachl, F. Capasso, J. Faist, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long-wavelength (8−1.5 μm) semiconductor lasers with waveguides based on surface plasmons,” Opt. Lett. 23, 1366–1368 (1998).
[Crossref]

Indjin, D.

P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. L. Lim, R. Alhathlool, A. D. Burnett, L. H. Li, S. P. Khanna, D. Indjin, T. Taimre, A. D. Rakić, E. H. Linfield, and A. G. Davies, “Terahertz imaging using quantum cascade lasers - review of systems and applications,” J. Phys. D 47, 374008 (2014).
[Crossref]

Iotti, R. C.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Jirauschek, C.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Johnson, T. W.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Kao, T. Y.

J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, and J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).
[Crossref]

Kapon, E.

M. I. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, and E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” New. J. Phys. 11, 125022 (2009).
[Crossref]

Keeley, J.

P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. L. Lim, R. Alhathlool, A. D. Burnett, L. H. Li, S. P. Khanna, D. Indjin, T. Taimre, A. D. Rakić, E. H. Linfield, and A. G. Davies, “Terahertz imaging using quantum cascade lasers - review of systems and applications,” J. Phys. D 47, 374008 (2014).
[Crossref]

Khanna, S. P.

P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. L. Lim, R. Alhathlool, A. D. Burnett, L. H. Li, S. P. Khanna, D. Indjin, T. Taimre, A. D. Rakić, E. H. Linfield, and A. G. Davies, “Terahertz imaging using quantum cascade lasers - review of systems and applications,” J. Phys. D 47, 374008 (2014).
[Crossref]

M. A. Belkin, J. A. Fan, S. Hormoz, F. Capasso, S. P. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K,” Opt. Express 16, 3242–3248 (2008).
[Crossref] [PubMed]

Klaassen, T. O.

J. R. Gao, J. N. Hovenier, Z. Q. Yang, J. J. Baselmans, A. Baryshev, M. Hajenius, T. M. Klapwijk, A. J. Adam, T. O. Klaassen, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer,” Appl. Phys. Lett. 86, 244104 (2005).
[Crossref]

Klapwijk, T. M.

J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, and J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).
[Crossref]

J. R. Gao, J. N. Hovenier, Z. Q. Yang, J. J. Baselmans, A. Baryshev, M. Hajenius, T. M. Klapwijk, A. J. Adam, T. O. Klaassen, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer,” Appl. Phys. Lett. 86, 244104 (2005).
[Crossref]

Klemens, P. G.

Y. S. Touloukian, R. W. Powell, C. Y. Ho, and P. G. Klemens, Thermophysical Properties of Matter - The TPRC Data Series. Volume 1. Thermal Conductivity - Metallic Elements and Alloys (TPRC1970).

Kloosterman, J. L.

J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, and J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).
[Crossref]

Köhler, R.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Kumar, S.

J. R. Gao, J. N. Hovenier, Z. Q. Yang, J. J. Baselmans, A. Baryshev, M. Hajenius, T. M. Klapwijk, A. J. Adam, T. O. Klaassen, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer,” Appl. Phys. Lett. 86, 244104 (2005).
[Crossref]

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode,” Opt. Express 13, 3331–3339 (2005).
[Crossref] [PubMed]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum-cascade laser at lambda approximate to 100 μm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83, 2124–2126 (2003).
[Crossref]

Lachab, M.

Laframboise, S. R.

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866 (2012).
[Crossref] [PubMed]

S. Fathololoumi, E. Dupont, S. G. Razavipour, S. R. Laframboise, G. Parent, Z. Wasilewski, H. C. Liu, and D. Y. Ban, “On metal contacts of terahertz quantum cascade lasers with a metal-metal waveguide,” Semicond. Sci. Technol. 26, 105021 (2011).
[Crossref]

Larson, D. C.

D. B. Tanner and D. C. Larson, “Electrical resistivity of silver films,” Phys. Rev. 166, 652–655 (1968).
[Crossref]

Li, L. H.

P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. L. Lim, R. Alhathlool, A. D. Burnett, L. H. Li, S. P. Khanna, D. Indjin, T. Taimre, A. D. Rakić, E. H. Linfield, and A. G. Davies, “Terahertz imaging using quantum cascade lasers - review of systems and applications,” J. Phys. D 47, 374008 (2014).
[Crossref]

Liley, P. E.

C. Y. Ho, R. W. Powell, and P. E. Liley, “Thermal conductivity of the elements: A comprehensive review,” Journal of Physical and Chemical Reference Data 3-1, 1–796 (1974).

Lim, Y. L.

P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. L. Lim, R. Alhathlool, A. D. Burnett, L. H. Li, S. P. Khanna, D. Indjin, T. Taimre, A. D. Rakić, E. H. Linfield, and A. G. Davies, “Terahertz imaging using quantum cascade lasers - review of systems and applications,” J. Phys. D 47, 374008 (2014).
[Crossref]

Lindau, I.

S. H. Pan, D. Mo, W. G. Petro, I. Lindau, and W. E. Spicer, “Schottky barrier formation and intermixing of noble metals on GaAs(110),” J. Vac. Sci. Technol. B 1, 593–597 (1983).
[Crossref]

Linfield, E. H.

P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. L. Lim, R. Alhathlool, A. D. Burnett, L. H. Li, S. P. Khanna, D. Indjin, T. Taimre, A. D. Rakić, E. H. Linfield, and A. G. Davies, “Terahertz imaging using quantum cascade lasers - review of systems and applications,” J. Phys. D 47, 374008 (2014).
[Crossref]

M. A. Belkin, J. A. Fan, S. Hormoz, F. Capasso, S. P. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K,” Opt. Express 16, 3242–3248 (2008).
[Crossref] [PubMed]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Liu, H. C.

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866 (2012).
[Crossref] [PubMed]

S. Fathololoumi, E. Dupont, S. G. Razavipour, S. R. Laframboise, G. Parent, Z. Wasilewski, H. C. Liu, and D. Y. Ban, “On metal contacts of terahertz quantum cascade lasers with a metal-metal waveguide,” Semicond. Sci. Technol. 26, 105021 (2011).
[Crossref]

Liu, L.

Z. Cheng, L. Liu, S. Xu, M. Lu, and X. Wang, “Temperature dependence of electrical and thermal conduction in single silver nanowire,” Sci. Rep. 5, 10718 (2015).
[Crossref] [PubMed]

Long, L. L.

M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Applied Optics 24, 4493–4499 (1985).
[Crossref] [PubMed]

Lu, M.

Z. Cheng, L. Liu, S. Xu, M. Lu, and X. Wang, “Temperature dependence of electrical and thermal conduction in single silver nanowire,” Sci. Rep. 5, 10718 (2015).
[Crossref] [PubMed]

Matula, R. A.

R. A. Matula, “Electrical resistivity of copper, gold, palladium, and silver,” J. Phys. Chem. Ref. Data 8, 1147–1298 (1979).
[Crossref]

Mátyás, A.

Mo, D.

S. H. Pan, D. Mo, W. G. Petro, I. Lindau, and W. E. Spicer, “Schottky barrier formation and intermixing of noble metals on GaAs(110),” J. Vac. Sci. Technol. B 1, 593–597 (1983).
[Crossref]

Newnam, B.

Oh, S.-H.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Olmon, R. L.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Ordal, M. A.

M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Applied Optics 24, 4493–4499 (1985).
[Crossref] [PubMed]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Pan, S. H.

S. H. Pan, D. Mo, W. G. Petro, I. Lindau, and W. E. Spicer, “Schottky barrier formation and intermixing of noble metals on GaAs(110),” J. Vac. Sci. Technol. B 1, 593–597 (1983).
[Crossref]

Parent, G.

S. Fathololoumi, E. Dupont, S. G. Razavipour, S. R. Laframboise, G. Parent, Z. Wasilewski, H. C. Liu, and D. Y. Ban, “On metal contacts of terahertz quantum cascade lasers with a metal-metal waveguide,” Semicond. Sci. Technol. 26, 105021 (2011).
[Crossref]

Petro, W. G.

S. H. Pan, D. Mo, W. G. Petro, I. Lindau, and W. E. Spicer, “Schottky barrier formation and intermixing of noble metals on GaAs(110),” J. Vac. Sci. Technol. B 1, 593–597 (1983).
[Crossref]

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
[Crossref]

Powell, R. W.

C. Y. Ho, R. W. Powell, and P. E. Liley, “Thermal conductivity of the elements: A comprehensive review,” Journal of Physical and Chemical Reference Data 3-1, 1–796 (1974).

Y. S. Touloukian, R. W. Powell, C. Y. Ho, and P. G. Klemens, Thermophysical Properties of Matter - The TPRC Data Series. Volume 1. Thermal Conductivity - Metallic Elements and Alloys (TPRC1970).

Querry, M. R.

M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Applied Optics 24, 4493–4499 (1985).
[Crossref] [PubMed]

Rakic, A. D.

P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. L. Lim, R. Alhathlool, A. D. Burnett, L. H. Li, S. P. Khanna, D. Indjin, T. Taimre, A. D. Rakić, E. H. Linfield, and A. G. Davies, “Terahertz imaging using quantum cascade lasers - review of systems and applications,” J. Phys. D 47, 374008 (2014).
[Crossref]

Raschke, M. B.

H. U. Yang, J. D Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91, 235137 (2015).
[Crossref]

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Razavipour, S. G.

S. Fathololoumi, E. Dupont, S. G. Razavipour, S. R. Laframboise, G. Parent, Z. Wasilewski, H. C. Liu, and D. Y. Ban, “On metal contacts of terahertz quantum cascade lasers with a metal-metal waveguide,” Semicond. Sci. Technol. 26, 105021 (2011).
[Crossref]

Ren, Y.

J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, and J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).
[Crossref]

Reno, J. L.

J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, and J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).
[Crossref]

J. R. Gao, J. N. Hovenier, Z. Q. Yang, J. J. Baselmans, A. Baryshev, M. Hajenius, T. M. Klapwijk, A. J. Adam, T. O. Klaassen, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer,” Appl. Phys. Lett. 86, 244104 (2005).
[Crossref]

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode,” Opt. Express 13, 3331–3339 (2005).
[Crossref] [PubMed]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum-cascade laser at lambda approximate to 100 μm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83, 2124–2126 (2003).
[Crossref]

Ritchie, D. A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Rossi, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Rudra, A.

M. I. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, and E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” New. J. Phys. 11, 125022 (2009).
[Crossref]

Scalari, G.

M. I. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, and E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” New. J. Phys. 11, 125022 (2009).
[Crossref]

Scott, M.

Shelton, D.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Sherstan, C.

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76, 125408 (2007).
[Crossref]

Sirtori, C.

Sivco, D. L.

A. Tredicucci, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Single-mode surface-plasmon laser,” Appl. Phys. Lett. 76, 2164–2166 (2000).
[Crossref]

C. Sirtori, C. Gmachl, F. Capasso, J. Faist, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long-wavelength (8−1.5 μm) semiconductor lasers with waveguides based on surface plasmons,” Opt. Lett. 23, 1366–1368 (1998).
[Crossref]

Slovick, B.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Smith, D. R.

D. R. Smith and F. R. Fickett, “Low-temperature properties of silver,” J. Res. Natl. Inst. Stand. Technol. 100, 119 (1995).
[Crossref] [PubMed]

Spicer, W. E.

S. H. Pan, D. Mo, W. G. Petro, I. Lindau, and W. E. Spicer, “Schottky barrier formation and intermixing of noble metals on GaAs(110),” J. Vac. Sci. Technol. B 1, 593–597 (1983).
[Crossref]

Sundheimer, M. L.

H. U. Yang, J. D Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91, 235137 (2015).
[Crossref]

Swartzlander, A. B.

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
[Crossref]

Taimre, T.

P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. L. Lim, R. Alhathlool, A. D. Burnett, L. H. Li, S. P. Khanna, D. Indjin, T. Taimre, A. D. Rakić, E. H. Linfield, and A. G. Davies, “Terahertz imaging using quantum cascade lasers - review of systems and applications,” J. Phys. D 47, 374008 (2014).
[Crossref]

Tanner, D. B.

D. B. Tanner and D. C. Larson, “Electrical resistivity of silver films,” Phys. Rev. 166, 652–655 (1968).
[Crossref]

Terazzi, R.

M. I. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, and E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” New. J. Phys. 11, 125022 (2009).
[Crossref]

Touloukian, Y. S.

Y. S. Touloukian, R. W. Powell, C. Y. Ho, and P. G. Klemens, Thermophysical Properties of Matter - The TPRC Data Series. Volume 1. Thermal Conductivity - Metallic Elements and Alloys (TPRC1970).

Tredicucci, A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

A. Tredicucci, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Single-mode surface-plasmon laser,” Appl. Phys. Lett. 76, 2164–2166 (2000).
[Crossref]

Tucker, E.

H. U. Yang, J. D Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91, 235137 (2015).
[Crossref]

Valavanis, A.

P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. L. Lim, R. Alhathlool, A. D. Burnett, L. H. Li, S. P. Khanna, D. Indjin, T. Taimre, A. D. Rakić, E. H. Linfield, and A. G. Davies, “Terahertz imaging using quantum cascade lasers - review of systems and applications,” J. Phys. D 47, 374008 (2014).
[Crossref]

P. Harrison and A. Valavanis, Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures, 4 Edition (John Wiley & Sons, Inc., 2016). Chap. 13.
[Crossref]

Waldrop, J. R.

J. R. Waldrop, “Schottky barrier height of ideal metal contacts to GaAs,” Appl. Phys. Lett. 44, 1002–1004 (1984).
[Crossref]

Walker, C. K.

J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, and J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).
[Crossref]

Walther, M.

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76, 125408 (2007).
[Crossref]

Wang, X.

Z. Cheng, L. Liu, S. Xu, M. Lu, and X. Wang, “Temperature dependence of electrical and thermal conduction in single silver nanowire,” Sci. Rep. 5, 10718 (2015).
[Crossref] [PubMed]

Wasilewski, Z.

S. Fathololoumi, E. Dupont, S. G. Razavipour, S. R. Laframboise, G. Parent, Z. Wasilewski, H. C. Liu, and D. Y. Ban, “On metal contacts of terahertz quantum cascade lasers with a metal-metal waveguide,” Semicond. Sci. Technol. 26, 105021 (2011).
[Crossref]

Wasilewski, Z. R.

Weaver, J. H.

Williams, B. S.

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode,” Opt. Express 13, 3331–3339 (2005).
[Crossref] [PubMed]

J. R. Gao, J. N. Hovenier, Z. Q. Yang, J. J. Baselmans, A. Baryshev, M. Hajenius, T. M. Klapwijk, A. J. Adam, T. O. Klaassen, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer,” Appl. Phys. Lett. 86, 244104 (2005).
[Crossref]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum-cascade laser at lambda approximate to 100 μm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83, 2124–2126 (2003).
[Crossref]

Windt, D. L.

Xu, S.

Z. Cheng, L. Liu, S. Xu, M. Lu, and X. Wang, “Temperature dependence of electrical and thermal conduction in single silver nanowire,” Sci. Rep. 5, 10718 (2015).
[Crossref] [PubMed]

Yang, H. U.

H. U. Yang, J. D Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91, 235137 (2015).
[Crossref]

Yang, Z. Q.

J. R. Gao, J. N. Hovenier, Z. Q. Yang, J. J. Baselmans, A. Baryshev, M. Hajenius, T. M. Klapwijk, A. J. Adam, T. O. Klaassen, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer,” Appl. Phys. Lett. 86, 244104 (2005).
[Crossref]

Ying, L. Y.

L. Y. Ying, N. Horiuchi-Ikeda, and H. Hirayama, “Ag-metal bonding conditions for low-loss double-metal waveguide for terahertz quantum cascade laser,” Jpn. J. Appl. Phys. 47, 7926–7928 (2008).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (6)

J. R. Waldrop, “Schottky barrier height of ideal metal contacts to GaAs,” Appl. Phys. Lett. 44, 1002–1004 (1984).
[Crossref]

A. Albo and Q. Hu, “Carrier leakage into the continuum in diagonal GaAs/Al0.15GaAs terahertz quantum cascade lasers,” Appl. Phys. Lett. 107, 241101 (2015).
[Crossref]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum-cascade laser at lambda approximate to 100 μm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83, 2124–2126 (2003).
[Crossref]

J. R. Gao, J. N. Hovenier, Z. Q. Yang, J. J. Baselmans, A. Baryshev, M. Hajenius, T. M. Klapwijk, A. J. Adam, T. O. Klaassen, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer,” Appl. Phys. Lett. 86, 244104 (2005).
[Crossref]

J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, and J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).
[Crossref]

A. Tredicucci, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Single-mode surface-plasmon laser,” Appl. Phys. Lett. 76, 2164–2166 (2000).
[Crossref]

Applied Optics (1)

M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Applied Optics 24, 4493–4499 (1985).
[Crossref] [PubMed]

J. Appl. Phys. (2)

Y. J. Han, W. Feng, and J. C. Cao, “Optimization of radiative recombination in terahertz quantum cascade lasers for high temperature operation,” J. Appl. Phys. 111, 113111 (2012).
[Crossref]

H. Callebaut and Q. Hu, “Importance of coherence for electron transport in terahertz quantum cascade lasers,” J. Appl. Phys. 98, 104505 (2005).
[Crossref]

J. Phys. Chem. Ref. Data (1)

R. A. Matula, “Electrical resistivity of copper, gold, palladium, and silver,” J. Phys. Chem. Ref. Data 8, 1147–1298 (1979).
[Crossref]

J. Phys. D (1)

P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. L. Lim, R. Alhathlool, A. D. Burnett, L. H. Li, S. P. Khanna, D. Indjin, T. Taimre, A. D. Rakić, E. H. Linfield, and A. G. Davies, “Terahertz imaging using quantum cascade lasers - review of systems and applications,” J. Phys. D 47, 374008 (2014).
[Crossref]

J. Res. Natl. Inst. Stand. Technol. (1)

D. R. Smith and F. R. Fickett, “Low-temperature properties of silver,” J. Res. Natl. Inst. Stand. Technol. 100, 119 (1995).
[Crossref] [PubMed]

J. Vac. Sci. Technol. B (1)

S. H. Pan, D. Mo, W. G. Petro, I. Lindau, and W. E. Spicer, “Schottky barrier formation and intermixing of noble metals on GaAs(110),” J. Vac. Sci. Technol. B 1, 593–597 (1983).
[Crossref]

Journal of Physical and Chemical Reference Data (1)

C. Y. Ho, R. W. Powell, and P. E. Liley, “Thermal conductivity of the elements: A comprehensive review,” Journal of Physical and Chemical Reference Data 3-1, 1–796 (1974).

Jpn. J. Appl. Phys. (1)

L. Y. Ying, N. Horiuchi-Ikeda, and H. Hirayama, “Ag-metal bonding conditions for low-loss double-metal waveguide for terahertz quantum cascade laser,” Jpn. J. Appl. Phys. 47, 7926–7928 (2008).
[Crossref]

Nat. Photon. (1)

P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photon. 6, 16–24 (2012).
[Crossref]

Nature (1)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

New. J. Phys. (1)

M. I. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, and E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” New. J. Phys. 11, 125022 (2009).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. (1)

D. B. Tanner and D. C. Larson, “Electrical resistivity of silver films,” Phys. Rev. 166, 652–655 (1968).
[Crossref]

Phys. Rev. B (5)

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

H. U. Yang, J. D Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91, 235137 (2015).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76, 125408 (2007).
[Crossref]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
[Crossref]

Sci. Rep. (1)

Z. Cheng, L. Liu, S. Xu, M. Lu, and X. Wang, “Temperature dependence of electrical and thermal conduction in single silver nanowire,” Sci. Rep. 5, 10718 (2015).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

S. Fathololoumi, E. Dupont, S. G. Razavipour, S. R. Laframboise, G. Parent, Z. Wasilewski, H. C. Liu, and D. Y. Ban, “On metal contacts of terahertz quantum cascade lasers with a metal-metal waveguide,” Semicond. Sci. Technol. 26, 105021 (2011).
[Crossref]

Other (5)

C. W. I. Chan, “Towards room-temperature THz QCLs : directions and design,” PhD thesis, Chapter 5 (Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2015).

Y. S. Touloukian, R. W. Powell, C. Y. Ho, and P. G. Klemens, Thermophysical Properties of Matter - The TPRC Data Series. Volume 1. Thermal Conductivity - Metallic Elements and Alloys (TPRC1970).

F. R. Fickett, Electrical Properties of Materials and Their Measurement at Low Temperatures (U.S. Government Printing Office, 1982).

P. Harrison and A. Valavanis, Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures, 4 Edition (John Wiley & Sons, Inc., 2016). Chap. 13.
[Crossref]

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Calculated dielectric constants of Ag, Au and Cu films at 100 K. The inset shows the temperature evolution of the measured resistivity (ρ) of the Ag, Au and Cu films.
Fig. 2
Fig. 2 Temperature evolution of the calculated peak gain (black squares), and the threshold gain for devices with Ag (black solid lines), Au (red dashed lines) and Cu-based (green dots) surface-plasmon waveguides and double metal waveguides. The peak gain is from a 3.1-THz QCL based on a three-well resonant phonon design [14].
Fig. 3
Fig. 3 The difference between the calculated threshold gains for Ag, Cu-based waveguides and Au-based waveguide, plotted as a function of frequency at a temperature of 100 K. SP and DM indicate the surface-plasmon waveguide and the double metal waveguide, respectively. The inset shows the threshold gain for Ag-based waveguides.
Fig. 4
Fig. 4 The room temperature threshold gain as a function of frequency for the Ag-based surface-plasmon waveguide (a) and double metal waveguide (b) with different thickness of Ti adhesion layer. The insets show enlarged figures in the dotted squares.
Fig. 5
Fig. 5 The room temperature threshold gain plotted as a function of frequency for the Ag-based surface-plasmon waveguide (a) and double metal waveguide (b) with different thickness of GaAs top contact layer. The insets show enlarged figures in the dotted squares.
Fig. 6
Fig. 6 The room temperature threshold gain as a function of frequency for the Ag, Au and Cu-based surface-plasmon waveguide (a) and double metal waveguide (b). The threshold gains are calculated using the dielectric constants from the metal films and bulk metals, respectively. The insets show enlarged figures in the dotted squares.
Fig. 7
Fig. 7 The threshold current density (a) and peak output power (b) measured from four pairs of QCLs (A1, A2, B1 and B2) as a function of heat-sink temperature. For each pair of devices, the only difference is the waveguide metal layer.
Fig. 8
Fig. 8 LIV curves of QCLs (pair A2) with Ag and Au waveguide layers measured at 10 K. The inset shows the emission spectra measured at 10 K and at the maximum operating temperatures. The devices were driven by 2 μs-wide current pulses with a duty cycle of 2%. Ag-R indicates the re-characterised LIV curves of the Ag-based device after it had been placed in air for more than two years.

Tables (3)

Tables Icon

Table 1 Waveguide analysis results of Ag and Au-based surface-plasmon (SP) and double metal (DM) waveguides at a frequency of 3.1 THz and temperature of 100 K. αm is the mirror loss, αw is the waveguide loss, Γ is the confinement factor, and gth is the threshold gain. The cavity length of 2000 μm, and the mirror reflectivity of 0.82 for DM waveguides, are used in the calculation.

Tables Icon

Table 2 Key parameters of the wafers characterized experimentally. Wafers A1 and A2 are based on a three-well resonant phonon active region [14] with different scaled oscillator strengths (ful). Wafers B1 and B2 are based on an active region with interlaced bound-to-continuum (B-to-C) and a phonon extraction stages [37] with different doping concentrations and device lengths. Two nominally identical laser ridges were fabricated from each wafer, one is with a Ag-based surface-plasmon (SP) waveguide and the other with a Au-based SP waveguide, giving eight lasers in total in this study.

Tables Icon

Table 3 Key characterisation results of QCLs with Ag- and Au-based surface-plasmon (SP) waveguides. Jth is the threshold current density at 10 K, Pmax is the maximum peak output power at 10 K, and Tmax is the maximum operating temperature.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ε ( ω ) = ε 1 ( ω ) + i ε 2 ( ω ) = 1 ω p 2 ω ( ω + i ω d ) ,
ω p = n e 2 m ε 0 ,
ω d = 1 τ ,
σ 0 = n e 2 τ m = n e 2 m ω d .
g th = α m + α w Γ ,
Δ n = n ( 2 η τ ul τ u 0 η τ ul τ u 0 + ( 1 η ) τ ul τ l + τ l τ u 0 1 ) ,
1 τ ul = 1 τ ul sr + 1 τ ul st ,
1 τ u = 1 τ ul + 1 τ u 0 ,
P = Δ n A d τ ul st ω ,

Metrics