Abstract

A novel phase modulation method for holographic data storage with phase-retrieval reference beam locking is proposed and incorporated into an amplitude-encoding collinear holographic storage system. Unlike the conventional phase retrieval method, the proposed method locks the data page and the corresponding phase-retrieval interference beam together at the same location with a sequential recording process, which eliminates piezoelectric elements, phase shift arrays and extra interference beams, making the system more compact and phase retrieval easier. To evaluate our proposed phase modulation method, we recorded and then recovered data pages with multilevel phase modulation using two spatial light modulators experimentally. For 4-level, 8-level, and 16-level phase modulation, we achieved the bit error rate (BER) of 0.3%, 1.5% and 6.6% respectively. To further improve data storage density, an orthogonal reference encoding multiplexing method at the same position of medium is also proposed and validated experimentally. We increased the code rate of pure 3/16 amplitude encoding method from 0.5 up to 1.0 and 1.5 using 4-level and 8-level phase modulation respectively.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Phase-image-based sparse-gray-level data pages for holographic data storage

Bhargab Das, Joby Joseph, and Kehar Singh
Appl. Opt. 48(28) 5240-5250 (2009)

Orthogonal reference pattern multiplexing for collinear holographic data storage

Liangcai Cao, Jinqiu Liu, Jianhua Li, Qingsheng He, and Guofan Jin
Appl. Opt. 53(1) 1-8 (2014)

Linear phase encoding for holographic data storage with a single phase-only spatial light modulator

Teruyoshi Nobukawa and Takanori Nomura
Appl. Opt. 55(10) 2565-2573 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. Psaltis and G. W. Burr, “Holographic data storage,” Computer (Long. Beach. Calif) 31(2), 52–60 (1998).
  2. J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Develop. 44(3), 341–368 (2000).
    [Crossref]
  3. L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92(8), 1231–1280 (2004).
    [Crossref]
  4. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage, Springer Series in Optical sciences 76 (Springer, 2000)
    [Crossref]
  5. J. Liu, H. Horimai, X. Lin, J. Liu, Y. Huang, and X. Tan, “Optimal micro-mirror tilt angle and sync mark design for digital micro-mirror device based collinear holographic data storage system,” Appl. Opt. 56(16), 4779–4784 (2017).
    [Crossref] [PubMed]
  6. G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage using orthogonal wavelength multiplexed volume holograms,” Opt. Lett. 17(20), 1471–1473 (1992).
    [Crossref] [PubMed]
  7. F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18(11), 915–917 (1993).
    [Crossref] [PubMed]
  8. G. Barbastathis, M. Levene, and D. Psaltis, “Shift multiplexing with spherical reference waves,” Appl. Opt. 35(14), 2403–2417 (1996).
    [Crossref] [PubMed]
  9. J. H. Hong, I. McMichael, T. V. Chang, W. Christian, and E. G. Paek, Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34(8), 2193–2203 (1995).
    [Crossref]
  10. H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44(13), 2575–2579 (2005).
    [Crossref] [PubMed]
  11. X. Tan and H. Horimai, “CollinearTM Technology for Holographic Versatile Disc (HVDTM) System,” Proc. SPIE 6343, 63432W (2006).
  12. H. Horimai and X. Tan, “Advanced Collinear Holography,” Opt. Rev. 12(2), 90–92 (2005).
    [Crossref]
  13. K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, “Improved performance in coaxial holographic data recording,” Opt. Express 15(24), 16196–16209 (2007).
    [Crossref] [PubMed]
  14. H. Gu, L. Cao, Q. He, and G. Jin, “A two-dimensional constant-weight sparse modulation code for volume holographic data storage,” J. Zhejiang Univ. Sci. C 12(5), 430–435 (2011).
    [Crossref]
  15. J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Channel codes for digital holographic data storage,” J. Opt. Soc. Am. A 12(11), 2432 (1995).
    [Crossref]
  16. B. M. King, G. W. Burr, and M. A. Neifeld, “Modulation Codes in Volume Holographic Storage,” Appl. Opt. 42(14), 2546–2559 (2003).
    [Crossref] [PubMed]
  17. G. W. Burr, G. Barking, H. Coufal, J. A. Hoffnagle, C. M. Jefferson, and M. A. Neifeld, “Gray-scale data pages for digital holographic data storage,” Opt. Lett. 23(15), 1218–1220 (1998).
    [Crossref] [PubMed]
  18. P. Koppa, “Phase-to-amplitude data page conversion for holographic storage and optical encryption,” Appl. Opt. 46(17), 3561–3571 (2007).
    [Crossref] [PubMed]
  19. T. Nobukawa and T. Nomura, “Holographic storage system based on digital holography for recording a phase data page in a compact optical setup,” Proc. SPIE 9771, 97710E (2016).
  20. R. John, J. Joseph, and K. Singh, “Holographic digital data storage using phase-modulated pixels,” Opt. Lasers Eng. 43(2), 183–194 (2005).
    [Crossref]
  21. J. Joseph and D. A. Waldman, “Homogenized Fourier transform holographic data storage using phase spatial light modulators and methods for recovery of data from the phase image,” Appl. Opt. 45(25), 6374–6380 (2006).
    [Crossref] [PubMed]
  22. A. Okamoto, K. Kunori, M. Takabayashi, A. Tomita, and K. Sato, “Holographic diversity interferometry for optical storage,” Opt. Express 19(14), 13436–13444 (2011).
    [Crossref] [PubMed]
  23. M. Takabayashi, A. Okamoto, and K. Sato, “Time-domain differential detection of phase-modulated signals for phase-only holographic data storage,” Jpn. J. Appl. Phys. 48, 3S1 (2009).
  24. K. Zukeran, A. Okamoto, M. Takabayashi, A. Shibukawa, K. Sato, and A. Tomita, “Double-Referential Holography and Spatial Quadrature Amplitude Modulation,” Jpn. J. Appl. Phys. 52(9S2), 09LD13 (2013).
    [Crossref]
  25. X. Pan, C. Liu, Q. Lin, and J. Zhu, “Ptycholographic iterative engine with self-positioned scanning illumination,” Opt. Express 21(5), 6162–6168 (2013).
    [Crossref] [PubMed]
  26. J. R. Fienup, “Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint,” J. Opt. Soc. Am. A 4(1), 118–123 (1987).
    [Crossref]
  27. M.-P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, and G. Wittmann, “Holographic Data Storage Materials,” Mater. Res. Bull. 21(09), 51–60 (1996).
    [Crossref]
  28. L. Hesselink and M. Bashaw, “Optical Memories Implemented with Photorefractive Media,” Opt. Quantum Electron. 25(9), 611–651 (1993).
    [Crossref]
  29. H. Guenther, R. Macfarlane, Y. Furukawa, K. Kitamura, and R. Neurgaonkar, “Two-Color Holography in Reduced Near-Stoichiometric Lithium Niobate,” Appl. Opt. 37(32), 7611–7623 (1998).
    [Crossref] [PubMed]
  30. Y. S. Bai, R. R. Neurgaonkar, and R. Kachru, “High-Efficiency Nonvolatile Holographic Storage with Two-Step Recording in Praseodymium-Doped Lithium Niobate by Use of Continuous-Wave Lasers,” Opt. Lett. 22(5), 334–336 (1997).
    [Crossref] [PubMed]

2017 (1)

2016 (1)

T. Nobukawa and T. Nomura, “Holographic storage system based on digital holography for recording a phase data page in a compact optical setup,” Proc. SPIE 9771, 97710E (2016).

2013 (2)

K. Zukeran, A. Okamoto, M. Takabayashi, A. Shibukawa, K. Sato, and A. Tomita, “Double-Referential Holography and Spatial Quadrature Amplitude Modulation,” Jpn. J. Appl. Phys. 52(9S2), 09LD13 (2013).
[Crossref]

X. Pan, C. Liu, Q. Lin, and J. Zhu, “Ptycholographic iterative engine with self-positioned scanning illumination,” Opt. Express 21(5), 6162–6168 (2013).
[Crossref] [PubMed]

2011 (2)

A. Okamoto, K. Kunori, M. Takabayashi, A. Tomita, and K. Sato, “Holographic diversity interferometry for optical storage,” Opt. Express 19(14), 13436–13444 (2011).
[Crossref] [PubMed]

H. Gu, L. Cao, Q. He, and G. Jin, “A two-dimensional constant-weight sparse modulation code for volume holographic data storage,” J. Zhejiang Univ. Sci. C 12(5), 430–435 (2011).
[Crossref]

2009 (1)

M. Takabayashi, A. Okamoto, and K. Sato, “Time-domain differential detection of phase-modulated signals for phase-only holographic data storage,” Jpn. J. Appl. Phys. 48, 3S1 (2009).

2007 (2)

2006 (1)

2005 (3)

R. John, J. Joseph, and K. Singh, “Holographic digital data storage using phase-modulated pixels,” Opt. Lasers Eng. 43(2), 183–194 (2005).
[Crossref]

H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44(13), 2575–2579 (2005).
[Crossref] [PubMed]

H. Horimai and X. Tan, “Advanced Collinear Holography,” Opt. Rev. 12(2), 90–92 (2005).
[Crossref]

2004 (1)

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92(8), 1231–1280 (2004).
[Crossref]

2003 (1)

2000 (1)

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[Crossref]

1998 (3)

1997 (1)

1996 (2)

M.-P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, and G. Wittmann, “Holographic Data Storage Materials,” Mater. Res. Bull. 21(09), 51–60 (1996).
[Crossref]

G. Barbastathis, M. Levene, and D. Psaltis, “Shift multiplexing with spherical reference waves,” Appl. Opt. 35(14), 2403–2417 (1996).
[Crossref] [PubMed]

1995 (2)

J. H. Hong, I. McMichael, T. V. Chang, W. Christian, and E. G. Paek, Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34(8), 2193–2203 (1995).
[Crossref]

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Channel codes for digital holographic data storage,” J. Opt. Soc. Am. A 12(11), 2432 (1995).
[Crossref]

1993 (2)

F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18(11), 915–917 (1993).
[Crossref] [PubMed]

L. Hesselink and M. Bashaw, “Optical Memories Implemented with Photorefractive Media,” Opt. Quantum Electron. 25(9), 611–651 (1993).
[Crossref]

1992 (1)

1987 (1)

Ashley, J.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[Crossref]

Bai, Y. S.

Barbastathis, G.

Barking, G.

Bashaw, M.

L. Hesselink and M. Bashaw, “Optical Memories Implemented with Photorefractive Media,” Opt. Quantum Electron. 25(9), 611–651 (1993).
[Crossref]

Bashaw, M. C.

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92(8), 1231–1280 (2004).
[Crossref]

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Channel codes for digital holographic data storage,” J. Opt. Soc. Am. A 12(11), 2432 (1995).
[Crossref]

Bernal, M.-P.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[Crossref]

M.-P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, and G. Wittmann, “Holographic Data Storage Materials,” Mater. Res. Bull. 21(09), 51–60 (1996).
[Crossref]

Burr, G. W.

B. M. King, G. W. Burr, and M. A. Neifeld, “Modulation Codes in Volume Holographic Storage,” Appl. Opt. 42(14), 2546–2559 (2003).
[Crossref] [PubMed]

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[Crossref]

D. Psaltis and G. W. Burr, “Holographic data storage,” Computer (Long. Beach. Calif) 31(2), 52–60 (1998).

G. W. Burr, G. Barking, H. Coufal, J. A. Hoffnagle, C. M. Jefferson, and M. A. Neifeld, “Gray-scale data pages for digital holographic data storage,” Opt. Lett. 23(15), 1218–1220 (1998).
[Crossref] [PubMed]

M.-P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, and G. Wittmann, “Holographic Data Storage Materials,” Mater. Res. Bull. 21(09), 51–60 (1996).
[Crossref]

Cao, L.

H. Gu, L. Cao, Q. He, and G. Jin, “A two-dimensional constant-weight sparse modulation code for volume holographic data storage,” J. Zhejiang Univ. Sci. C 12(5), 430–435 (2011).
[Crossref]

Chang, T. V.

J. H. Hong, I. McMichael, T. V. Chang, W. Christian, and E. G. Paek, Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34(8), 2193–2203 (1995).
[Crossref]

Christian, W.

J. H. Hong, I. McMichael, T. V. Chang, W. Christian, and E. G. Paek, Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34(8), 2193–2203 (1995).
[Crossref]

Coufal, H.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[Crossref]

G. W. Burr, G. Barking, H. Coufal, J. A. Hoffnagle, C. M. Jefferson, and M. A. Neifeld, “Gray-scale data pages for digital holographic data storage,” Opt. Lett. 23(15), 1218–1220 (1998).
[Crossref] [PubMed]

M.-P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, and G. Wittmann, “Holographic Data Storage Materials,” Mater. Res. Bull. 21(09), 51–60 (1996).
[Crossref]

Fienup, J. R.

Fukumoto, A.

Furukawa, Y.

Grygier, R. K.

M.-P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, and G. Wittmann, “Holographic Data Storage Materials,” Mater. Res. Bull. 21(09), 51–60 (1996).
[Crossref]

Gu, H.

H. Gu, L. Cao, Q. He, and G. Jin, “A two-dimensional constant-weight sparse modulation code for volume holographic data storage,” J. Zhejiang Univ. Sci. C 12(5), 430–435 (2011).
[Crossref]

Guenther, H.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[Crossref]

H. Guenther, R. Macfarlane, Y. Furukawa, K. Kitamura, and R. Neurgaonkar, “Two-Color Holography in Reduced Near-Stoichiometric Lithium Niobate,” Appl. Opt. 37(32), 7611–7623 (1998).
[Crossref] [PubMed]

Hara, M.

He, Q.

H. Gu, L. Cao, Q. He, and G. Jin, “A two-dimensional constant-weight sparse modulation code for volume holographic data storage,” J. Zhejiang Univ. Sci. C 12(5), 430–435 (2011).
[Crossref]

Heanue, J. F.

Hesselink, L.

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92(8), 1231–1280 (2004).
[Crossref]

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Channel codes for digital holographic data storage,” J. Opt. Soc. Am. A 12(11), 2432 (1995).
[Crossref]

L. Hesselink and M. Bashaw, “Optical Memories Implemented with Photorefractive Media,” Opt. Quantum Electron. 25(9), 611–651 (1993).
[Crossref]

Hirooka, K.

Hoffnagle, J. A.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[Crossref]

G. W. Burr, G. Barking, H. Coufal, J. A. Hoffnagle, C. M. Jefferson, and M. A. Neifeld, “Gray-scale data pages for digital holographic data storage,” Opt. Lett. 23(15), 1218–1220 (1998).
[Crossref] [PubMed]

M.-P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, and G. Wittmann, “Holographic Data Storage Materials,” Mater. Res. Bull. 21(09), 51–60 (1996).
[Crossref]

Hong, J. H.

J. H. Hong, I. McMichael, T. V. Chang, W. Christian, and E. G. Paek, Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34(8), 2193–2203 (1995).
[Crossref]

Horimai, H.

Huang, Y.

Ishioka, K.

Jefferson, C. M.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[Crossref]

G. W. Burr, G. Barking, H. Coufal, J. A. Hoffnagle, C. M. Jefferson, and M. A. Neifeld, “Gray-scale data pages for digital holographic data storage,” Opt. Lett. 23(15), 1218–1220 (1998).
[Crossref] [PubMed]

M.-P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, and G. Wittmann, “Holographic Data Storage Materials,” Mater. Res. Bull. 21(09), 51–60 (1996).
[Crossref]

Jin, G.

H. Gu, L. Cao, Q. He, and G. Jin, “A two-dimensional constant-weight sparse modulation code for volume holographic data storage,” J. Zhejiang Univ. Sci. C 12(5), 430–435 (2011).
[Crossref]

John, R.

R. John, J. Joseph, and K. Singh, “Holographic digital data storage using phase-modulated pixels,” Opt. Lasers Eng. 43(2), 183–194 (2005).
[Crossref]

Joseph, J.

Kachru, R.

King, B. M.

Kitamura, K.

Koppa, P.

Kunori, K.

Levene, M.

Leyva, V.

Li, J.

Lin, Q.

Lin, X.

Liu, C.

Liu, J.

Macfarlane, R.

Macfarlane, R. M.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[Crossref]

M.-P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, and G. Wittmann, “Holographic Data Storage Materials,” Mater. Res. Bull. 21(09), 51–60 (1996).
[Crossref]

Marcus, B.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[Crossref]

McMichael, I.

J. H. Hong, I. McMichael, T. V. Chang, W. Christian, and E. G. Paek, Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34(8), 2193–2203 (1995).
[Crossref]

Mok, F. H.

Neifeld, M. A.

Neurgaonkar, R.

Neurgaonkar, R. R.

Nobukawa, T.

T. Nobukawa and T. Nomura, “Holographic storage system based on digital holography for recording a phase data page in a compact optical setup,” Proc. SPIE 9771, 97710E (2016).

Nomura, T.

T. Nobukawa and T. Nomura, “Holographic storage system based on digital holography for recording a phase data page in a compact optical setup,” Proc. SPIE 9771, 97710E (2016).

Okamoto, A.

K. Zukeran, A. Okamoto, M. Takabayashi, A. Shibukawa, K. Sato, and A. Tomita, “Double-Referential Holography and Spatial Quadrature Amplitude Modulation,” Jpn. J. Appl. Phys. 52(9S2), 09LD13 (2013).
[Crossref]

A. Okamoto, K. Kunori, M. Takabayashi, A. Tomita, and K. Sato, “Holographic diversity interferometry for optical storage,” Opt. Express 19(14), 13436–13444 (2011).
[Crossref] [PubMed]

M. Takabayashi, A. Okamoto, and K. Sato, “Time-domain differential detection of phase-modulated signals for phase-only holographic data storage,” Jpn. J. Appl. Phys. 48, 3S1 (2009).

Orlov, S. S.

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92(8), 1231–1280 (2004).
[Crossref]

Paek, E. G.

J. H. Hong, I. McMichael, T. V. Chang, W. Christian, and E. G. Paek, Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34(8), 2193–2203 (1995).
[Crossref]

Pan, X.

Psaltis, D.

D. Psaltis and G. W. Burr, “Holographic data storage,” Computer (Long. Beach. Calif) 31(2), 52–60 (1998).

G. Barbastathis, M. Levene, and D. Psaltis, “Shift multiplexing with spherical reference waves,” Appl. Opt. 35(14), 2403–2417 (1996).
[Crossref] [PubMed]

Rakuljic, G. A.

Sato, K.

K. Zukeran, A. Okamoto, M. Takabayashi, A. Shibukawa, K. Sato, and A. Tomita, “Double-Referential Holography and Spatial Quadrature Amplitude Modulation,” Jpn. J. Appl. Phys. 52(9S2), 09LD13 (2013).
[Crossref]

A. Okamoto, K. Kunori, M. Takabayashi, A. Tomita, and K. Sato, “Holographic diversity interferometry for optical storage,” Opt. Express 19(14), 13436–13444 (2011).
[Crossref] [PubMed]

M. Takabayashi, A. Okamoto, and K. Sato, “Time-domain differential detection of phase-modulated signals for phase-only holographic data storage,” Jpn. J. Appl. Phys. 48, 3S1 (2009).

Shelby, R. M.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[Crossref]

M.-P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, and G. Wittmann, “Holographic Data Storage Materials,” Mater. Res. Bull. 21(09), 51–60 (1996).
[Crossref]

Shibukawa, A.

K. Zukeran, A. Okamoto, M. Takabayashi, A. Shibukawa, K. Sato, and A. Tomita, “Double-Referential Holography and Spatial Quadrature Amplitude Modulation,” Jpn. J. Appl. Phys. 52(9S2), 09LD13 (2013).
[Crossref]

Sincerbox, G. T.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[Crossref]

M.-P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, and G. Wittmann, “Holographic Data Storage Materials,” Mater. Res. Bull. 21(09), 51–60 (1996).
[Crossref]

Singh, K.

R. John, J. Joseph, and K. Singh, “Holographic digital data storage using phase-modulated pixels,” Opt. Lasers Eng. 43(2), 183–194 (2005).
[Crossref]

Takabayashi, M.

K. Zukeran, A. Okamoto, M. Takabayashi, A. Shibukawa, K. Sato, and A. Tomita, “Double-Referential Holography and Spatial Quadrature Amplitude Modulation,” Jpn. J. Appl. Phys. 52(9S2), 09LD13 (2013).
[Crossref]

A. Okamoto, K. Kunori, M. Takabayashi, A. Tomita, and K. Sato, “Holographic diversity interferometry for optical storage,” Opt. Express 19(14), 13436–13444 (2011).
[Crossref] [PubMed]

M. Takabayashi, A. Okamoto, and K. Sato, “Time-domain differential detection of phase-modulated signals for phase-only holographic data storage,” Jpn. J. Appl. Phys. 48, 3S1 (2009).

Tan, X.

Tanaka, K.

Tokuyama, K.

Tomita, A.

K. Zukeran, A. Okamoto, M. Takabayashi, A. Shibukawa, K. Sato, and A. Tomita, “Double-Referential Holography and Spatial Quadrature Amplitude Modulation,” Jpn. J. Appl. Phys. 52(9S2), 09LD13 (2013).
[Crossref]

A. Okamoto, K. Kunori, M. Takabayashi, A. Tomita, and K. Sato, “Holographic diversity interferometry for optical storage,” Opt. Express 19(14), 13436–13444 (2011).
[Crossref] [PubMed]

Waldman, D. A.

Watanabe, K.

Wittmann, G.

M.-P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, and G. Wittmann, “Holographic Data Storage Materials,” Mater. Res. Bull. 21(09), 51–60 (1996).
[Crossref]

Yariv, A.

Zhu, J.

Zukeran, K.

K. Zukeran, A. Okamoto, M. Takabayashi, A. Shibukawa, K. Sato, and A. Tomita, “Double-Referential Holography and Spatial Quadrature Amplitude Modulation,” Jpn. J. Appl. Phys. 52(9S2), 09LD13 (2013).
[Crossref]

Appl. Opt. (7)

Computer (Long. Beach. Calif) (1)

D. Psaltis and G. W. Burr, “Holographic data storage,” Computer (Long. Beach. Calif) 31(2), 52–60 (1998).

IBM J. Res. Develop. (1)

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Zhejiang Univ. Sci. C (1)

H. Gu, L. Cao, Q. He, and G. Jin, “A two-dimensional constant-weight sparse modulation code for volume holographic data storage,” J. Zhejiang Univ. Sci. C 12(5), 430–435 (2011).
[Crossref]

Jpn. J. Appl. Phys. (2)

M. Takabayashi, A. Okamoto, and K. Sato, “Time-domain differential detection of phase-modulated signals for phase-only holographic data storage,” Jpn. J. Appl. Phys. 48, 3S1 (2009).

K. Zukeran, A. Okamoto, M. Takabayashi, A. Shibukawa, K. Sato, and A. Tomita, “Double-Referential Holography and Spatial Quadrature Amplitude Modulation,” Jpn. J. Appl. Phys. 52(9S2), 09LD13 (2013).
[Crossref]

Mater. Res. Bull. (1)

M.-P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, and G. Wittmann, “Holographic Data Storage Materials,” Mater. Res. Bull. 21(09), 51–60 (1996).
[Crossref]

Opt. Eng. (1)

J. H. Hong, I. McMichael, T. V. Chang, W. Christian, and E. G. Paek, Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34(8), 2193–2203 (1995).
[Crossref]

Opt. Express (3)

Opt. Lasers Eng. (1)

R. John, J. Joseph, and K. Singh, “Holographic digital data storage using phase-modulated pixels,” Opt. Lasers Eng. 43(2), 183–194 (2005).
[Crossref]

Opt. Lett. (4)

Opt. Quantum Electron. (1)

L. Hesselink and M. Bashaw, “Optical Memories Implemented with Photorefractive Media,” Opt. Quantum Electron. 25(9), 611–651 (1993).
[Crossref]

Opt. Rev. (1)

H. Horimai and X. Tan, “Advanced Collinear Holography,” Opt. Rev. 12(2), 90–92 (2005).
[Crossref]

Proc. IEEE (1)

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92(8), 1231–1280 (2004).
[Crossref]

Proc. SPIE (1)

T. Nobukawa and T. Nomura, “Holographic storage system based on digital holography for recording a phase data page in a compact optical setup,” Proc. SPIE 9771, 97710E (2016).

Other (2)

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage, Springer Series in Optical sciences 76 (Springer, 2000)
[Crossref]

X. Tan and H. Horimai, “CollinearTM Technology for Holographic Versatile Disc (HVDTM) System,” Proc. SPIE 6343, 63432W (2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Illustration of data and reference page stored in CHDSS, (b) zoomed binary 3/16 encoding section from square of (a) and (c) phase-multilevel modulation based on (b).
Fig. 2
Fig. 2 Sketch map of collinear holography recording.
Fig. 3
Fig. 3 Separation of reference pattern. A, B, C, D parts of reference for recording the data page, and E, F, G, H parts of reference for recording the IDP.
Fig. 4
Fig. 4 Draft of recording and reconstruction process using phase retrieval reference beam locking method
Fig. 5
Fig. 5 Experimental setup. (HWP: half wave plate, PBS: polarization sensitive beam splitter, BS: beam splitter, QWP: quarter wave plate, PD: photo detector).
Fig. 6
Fig. 6 Sketch map of IDP and data page recording process. Step 1 is the data recording process, Step 2 is the IDP recording and Step 3 is the data reconstruction process. Patterns to be applied on the amplitude and phase SLM are shown under each column for different steps. One example of final reconstructed interference intensity data page is shown in the bottom right.
Fig. 7
Fig. 7 Illustration of the phase retrieval process for 4-level phase encoding: phase of the IDP is controlled by the reference E, F, G, H regions with 0, π/2, π, and 3π/2 phase values.
Fig. 8
Fig. 8 The software interface results of multilevel phase modulation with phase-locked. (a) 4-level phase modulation, (b) 8-level phase modulation, (c) 16-level phase modulation. In every picture, the left part shows the local SNR within each interference gray scale map of subpage and the right part plots the phase demodulation histogram. In the phase demodulation histogram, horizontal axis represents phase value expressed in degrees; vertical axis represents the number of occurrence for that phase value. The yellow lines represent phase values used for encoding. The green line plots the histogram of correctly resolved pixels while the blue line plots the histogram of incorrectly resolved pixels.
Fig. 9
Fig. 9 Phase modulation of reference pattern for data page pattern.
Fig. 10
Fig. 10 The phase demodulation histogram of page 1 to page 4.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

SNR= μ on μ off σ on 2 + σ off 2
O= O 0 ·exp(i φ O )
R W = R W0 ·exp(i φ R W )
R R = R R0 ·exp(i φ R R )
O reconstructed O· R W * · R R
O= i=1 4 DP(i) , R W = j=A D R W(i,j) , R R = j=A D R R(j)
O reconstructed O· R W * · R R = i=1 4 DP(i) · j=A D R * W(i,j) · j=A D R R(j)
O reconstructed =DP(1)·( R W(1,A) * · R R(A) + R W(1,B) * · R R(B) + R W(1,C) * · R R(C) + R W(1,D) * · R R(D) ) +DP(2)·( R W(2,A) * · R R(A) + R W(2,B) * · R R(B) + R W(2,C) * · R R(C) + R W(2,D) * · R R(D) ) +DP(3)·( R W(3,A) * · R R(A) + R W(3,B) * · R R(B) + R W(3,C) * · R R(C) + R W(3,D) * · R R(D) ) +DP(4)·( R W(4,A) * · R R(A) + R W(4,B) * · R R(B) + R W(4,C) * · R R(C) + R W(4,D) * · R R(D) )
coefficien t DP(2) = | R W (A) | 2 cos(00)+ | R W (B) | 2 cos(00)+ | R W (C) | 2 cos(0π)+ | R W (D) | 2 cos(π0) = | R W (A) | 2 + | R W (B) | 2 | R W (C) | 2 | R W (D) | 2 =0

Metrics