Abstract

Light-field imaging is a crucial and straightforward way of measuring and analyzing surrounding light worlds. In this paper, a dual-polarized light-field imaging micro-system based on a twisted nematic liquid-crystal microlens array (TN-LCMLA) for direct three-dimensional (3D) observation is fabricated and demonstrated. The prototyped camera has been constructed by integrating a TN-LCMLA with a common CMOS sensor array. By switching the working state of the TN-LCMLA, two orthogonally polarized light-field images can be remapped through the functioned imaging sensors. The imaging micro-system in conjunction with the electric-optical microstructure can be used to perform polarization and light-field imaging, simultaneously. Compared with conventional plenoptic cameras using liquid-crystal microlens array, the polarization-independent light-field images with a high image quality can be obtained in the arbitrary polarization state selected. We experimentally demonstrate characters including a relatively wide operation range in the manipulation of incident beams and the multiple imaging modes, such as conventional two-dimensional imaging, light-field imaging, and polarization imaging. Considering the obvious features of the TN-LCMLA, such as very low power consumption, providing multiple imaging modes mentioned, simple and low-cost manufacturing, the imaging micro-system integrated with this kind of liquid-crystal microstructure driven electrically presents the potential capability of directly observing a 3D object in typical scattering media.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Graphene-based adaptive liquid-crystal microlens array for a wide infrared spectral region

Zhaowei Xin, Dong Wei, Mingce Chen, Chai Hu, Jian Li, Xinyu Zhang, Jing Liao, Haiwei Wang, and Changsheng Xie
Opt. Mater. Express 9(1) 183-194 (2019)

Long working range light field microscope with fast scanning multifocal liquid crystal microlens array

Po-Yuan Hsieh, Ping-Yen Chou, Hsiu-An Lin, Chao-Yu Chu, Cheng-Ting Huang, Chun-Ho Chen, Zong Qin, Manuel Martinez Corral, Bahram Javidi, and Yi-Pai Huang
Opt. Express 26(8) 10981-10996 (2018)

Depth of field extension and objective space depth measurement based on wavefront imaging

Q. Tong, M. Chen, Z. Xin, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie
Opt. Express 26(14) 18368-18385 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Y. Lei, Q. Tong, X. Zhang, H. Sang, A. Ji, and C. Xie, “An electrically tunable plenoptic camera using a liquid crystal microlens array,” Rev. Sci. Instrum. 86(5), 053101 (2015).
    [Crossref] [PubMed]
  2. Q. Tong, Y. Lei, Z. Xin, X. Zhang, H. Sang, and C. Xie, “Dual-mode photosensitive arrays based on the integration of liquid crystal microlenses and CMOS sensors for obtaining the intensity images and wavefronts of objects,” Opt. Express 24(3), 1903–1923 (2016).
    [Crossref] [PubMed]
  3. Y. Wu, W. Hu, Q. Tong, Y. Lei, Z. Xin, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “Graphene-based liquid-crystal microlens arrays for synthetic-aperture imaging,” J. Opt. 19(9), 095102 (2017).
    [Crossref]
  4. R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Rep. CSTR 2(11), 1–11 (2005).
  5. A. Lumsdaine and T. Georgiev, “The focused plenoptic camera,” in Proceedings of IEEE Conference on Computational Photography (IEEE, 2009), pp. 1–8.
  6. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
    [Crossref]
  7. A. Markman, X. Shen, and B. Javidi, “Three-dimensional object visualization and detection in low light illumination using integral imaging,” Opt. Lett. 42(16), 3068–3071 (2017).
    [Crossref] [PubMed]
  8. H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid-crystal,” Appl. Phys. Lett. 86(14), 113505 (2005).
    [Crossref]
  9. Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid-crystals,” Appl. Phys. Lett. 96(11), 141110 (2010).
    [Crossref]
  10. H. Dai, L. Chen, B. Zhang, G. Si, and Y. J. Liu, “Optically isotropic, electrically tunable liquid crystal droplet arrays formed by photopolymerization-induced phase separation,” Opt. Lett. 40(12), 2723–2726 (2015).
    [Crossref] [PubMed]
  11. S. H. Lin, L. S. Huang, C. H. Lin, and C. T. Kuo, “Polarization-independent and fast tunable microlens array based on blue phase liquid crystals,” Opt. Express 22(1), 925–930 (2014).
    [Crossref] [PubMed]
  12. A. Y. Fuh, S. W. Ko, S. H. Huang, Y. Y. Chen, and T. H. Lin, “Polarization-independent liquid crystal lens based on axially symmetric photoalignment,” Opt. Express 19(3), 2294–2300 (2011).
    [Crossref] [PubMed]
  13. Y. Y. Schechner, S. G. Narasimhan, and S. K. Nayar, “Polarization-based vision through haze,” Appl. Opt. 42(3), 511–525 (2003).
    [Crossref] [PubMed]
  14. Z. Xin, Q. Tong, Y. Lei, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “An electrically tunable polarization and polarization-independent liquid-crystal microlens array for imaging applications,” J. Opt. 19(9), 095602 (2017).
    [Crossref]
  15. R. Wu, J. Suo, F. Dai, Y. Zhang, and Q. Dai, “Scattering robust 3d reconstruction via polarized transient imaging,” Opt. Lett. 41(17), 3948–3951 (2016).
    [Crossref] [PubMed]
  16. Y. Y. Schechner and N. Karpel, “Clear Underwater Vision,” Computer Vision and Pattern Recognition, (CVPR) 1, 536–543 (2004).
  17. P. C. Chang, J. C. Flitton, K. I. Hopcraft, E. Jakeman, D. L. Jordan, and J. G. Walker, “Improving visibility depth in passive underwater imaging by use of polarization,” Appl. Opt. 42(15), 2794–2803 (2003).
    [Crossref] [PubMed]
  18. N. K. Soni, R. V. Vinu, and R. K. Singh, “Polarization modulation for imaging behind the scattering medium,” Opt. Lett. 41(5), 906–909 (2016).
    [Crossref] [PubMed]
  19. S. Demos, H. Radousky, and R. Alfano, “Deep subsurface imaging in tissues using spectral and polarization filtering,” Opt. Express 7(1), 23–28 (2000).
    [Crossref] [PubMed]
  20. H. Shao, Y. He, W. Li, and H. Ma, “Polarization-degree imaging contrast in turbid media: a quantitative study,” Appl. Opt. 45(18), 4491–4496 (2006).
    [Crossref] [PubMed]
  21. S. P. Morgan, Q. Zhu, I. M. Stockford, and J. A. Crowe, “Rotating orthogonal polarization imaging,” Opt. Lett. 33(13), 1503–1505 (2008).
    [Crossref] [PubMed]
  22. C. K. Harnett and H. G. Craighead, “Liquid-crystal micropolarizer array for polarization-difference imaging,” Appl. Opt. 41(7), 1291–1296 (2002).
    [Crossref] [PubMed]
  23. V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18(18), 19087–19094 (2010).
    [Crossref] [PubMed]
  24. Y. Lei, Q. Tong, Z. Xin, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “Three dimensional measurement with an electrically tunable focused plenoptic camera,” Rev. Sci. Instrum. 88(3), 033111 (2017).
    [Crossref] [PubMed]
  25. E. Peli, “Contrast in complex images,” J. Opt. Soc. Am. A 7(10), 2032–2040 (1990).
    [Crossref] [PubMed]
  26. H. Ren, Y. H. Fan, and S. T. Wu, “Liquid-crystal microlens arrays using patterned polymer networks,” Opt. Lett. 29(14), 1608–1610 (2004).
    [Crossref] [PubMed]
  27. S. J. Hwang, Y. X. Liu, and G. A. Porter, “Improvement of performance of liquid crystal microlens with polymer surface modification,” Opt. Express 22(4), 4620–4627 (2014).
    [Crossref] [PubMed]
  28. C. J. Hsu and C. R. Sheu, “Preventing occurrence of disclination lines in liquid crystal lenses with a large aperture by means of polymer stabilization,” Opt. Express 19(16), 14999–15008 (2011).
    [Crossref] [PubMed]
  29. D. J. A. Grant, B. K. Jones, and M. G. Clark, “Nematic LCD shutters with sub-millisecond switching times,” Proceedings of Eurodisplay 87, 67–70 (1987).

2017 (4)

Y. Wu, W. Hu, Q. Tong, Y. Lei, Z. Xin, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “Graphene-based liquid-crystal microlens arrays for synthetic-aperture imaging,” J. Opt. 19(9), 095102 (2017).
[Crossref]

Z. Xin, Q. Tong, Y. Lei, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “An electrically tunable polarization and polarization-independent liquid-crystal microlens array for imaging applications,” J. Opt. 19(9), 095602 (2017).
[Crossref]

A. Markman, X. Shen, and B. Javidi, “Three-dimensional object visualization and detection in low light illumination using integral imaging,” Opt. Lett. 42(16), 3068–3071 (2017).
[Crossref] [PubMed]

Y. Lei, Q. Tong, Z. Xin, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “Three dimensional measurement with an electrically tunable focused plenoptic camera,” Rev. Sci. Instrum. 88(3), 033111 (2017).
[Crossref] [PubMed]

2016 (3)

2015 (2)

Y. Lei, Q. Tong, X. Zhang, H. Sang, A. Ji, and C. Xie, “An electrically tunable plenoptic camera using a liquid crystal microlens array,” Rev. Sci. Instrum. 86(5), 053101 (2015).
[Crossref] [PubMed]

H. Dai, L. Chen, B. Zhang, G. Si, and Y. J. Liu, “Optically isotropic, electrically tunable liquid crystal droplet arrays formed by photopolymerization-induced phase separation,” Opt. Lett. 40(12), 2723–2726 (2015).
[Crossref] [PubMed]

2014 (2)

2011 (2)

2010 (2)

V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18(18), 19087–19094 (2010).
[Crossref] [PubMed]

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid-crystals,” Appl. Phys. Lett. 96(11), 141110 (2010).
[Crossref]

2008 (1)

2006 (1)

2005 (2)

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Rep. CSTR 2(11), 1–11 (2005).

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid-crystal,” Appl. Phys. Lett. 86(14), 113505 (2005).
[Crossref]

2004 (2)

Y. Y. Schechner and N. Karpel, “Clear Underwater Vision,” Computer Vision and Pattern Recognition, (CVPR) 1, 536–543 (2004).

H. Ren, Y. H. Fan, and S. T. Wu, “Liquid-crystal microlens arrays using patterned polymer networks,” Opt. Lett. 29(14), 1608–1610 (2004).
[Crossref] [PubMed]

2003 (2)

2002 (1)

2000 (1)

1990 (1)

1987 (1)

D. J. A. Grant, B. K. Jones, and M. G. Clark, “Nematic LCD shutters with sub-millisecond switching times,” Proceedings of Eurodisplay 87, 67–70 (1987).

1979 (1)

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

Alfano, R.

Brédif, M.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Rep. CSTR 2(11), 1–11 (2005).

Chang, P. C.

Chen, H. S.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid-crystals,” Appl. Phys. Lett. 96(11), 141110 (2010).
[Crossref]

Chen, L.

Chen, Y. Y.

Clark, M. G.

D. J. A. Grant, B. K. Jones, and M. G. Clark, “Nematic LCD shutters with sub-millisecond switching times,” Proceedings of Eurodisplay 87, 67–70 (1987).

Craighead, H. G.

Crowe, J. A.

Dai, F.

Dai, H.

Dai, Q.

Demos, S.

Duval, G.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Rep. CSTR 2(11), 1–11 (2005).

Fan, Y. H.

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid-crystal,” Appl. Phys. Lett. 86(14), 113505 (2005).
[Crossref]

H. Ren, Y. H. Fan, and S. T. Wu, “Liquid-crystal microlens arrays using patterned polymer networks,” Opt. Lett. 29(14), 1608–1610 (2004).
[Crossref] [PubMed]

Flitton, J. C.

Fuh, A. Y.

Georgiev, T.

A. Lumsdaine and T. Georgiev, “The focused plenoptic camera,” in Proceedings of IEEE Conference on Computational Photography (IEEE, 2009), pp. 1–8.

Grant, D. J. A.

D. J. A. Grant, B. K. Jones, and M. G. Clark, “Nematic LCD shutters with sub-millisecond switching times,” Proceedings of Eurodisplay 87, 67–70 (1987).

Gruev, V.

Hanrahan, P.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Rep. CSTR 2(11), 1–11 (2005).

Harnett, C. K.

He, Y.

Hopcraft, K. I.

Horowitz, M.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Rep. CSTR 2(11), 1–11 (2005).

Hsu, C. J.

Hsu, H. K.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid-crystals,” Appl. Phys. Lett. 96(11), 141110 (2010).
[Crossref]

Hu, W.

Y. Wu, W. Hu, Q. Tong, Y. Lei, Z. Xin, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “Graphene-based liquid-crystal microlens arrays for synthetic-aperture imaging,” J. Opt. 19(9), 095102 (2017).
[Crossref]

Huang, L. S.

Huang, S. H.

Hwang, S. J.

Jakeman, E.

Javidi, B.

Ji, A.

Y. Lei, Q. Tong, X. Zhang, H. Sang, A. Ji, and C. Xie, “An electrically tunable plenoptic camera using a liquid crystal microlens array,” Rev. Sci. Instrum. 86(5), 053101 (2015).
[Crossref] [PubMed]

Jones, B. K.

D. J. A. Grant, B. K. Jones, and M. G. Clark, “Nematic LCD shutters with sub-millisecond switching times,” Proceedings of Eurodisplay 87, 67–70 (1987).

Jordan, D. L.

Karpel, N.

Y. Y. Schechner and N. Karpel, “Clear Underwater Vision,” Computer Vision and Pattern Recognition, (CVPR) 1, 536–543 (2004).

Ko, S. W.

Kuo, C. T.

Lei, Y.

Y. Lei, Q. Tong, Z. Xin, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “Three dimensional measurement with an electrically tunable focused plenoptic camera,” Rev. Sci. Instrum. 88(3), 033111 (2017).
[Crossref] [PubMed]

Z. Xin, Q. Tong, Y. Lei, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “An electrically tunable polarization and polarization-independent liquid-crystal microlens array for imaging applications,” J. Opt. 19(9), 095602 (2017).
[Crossref]

Y. Wu, W. Hu, Q. Tong, Y. Lei, Z. Xin, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “Graphene-based liquid-crystal microlens arrays for synthetic-aperture imaging,” J. Opt. 19(9), 095102 (2017).
[Crossref]

Q. Tong, Y. Lei, Z. Xin, X. Zhang, H. Sang, and C. Xie, “Dual-mode photosensitive arrays based on the integration of liquid crystal microlenses and CMOS sensors for obtaining the intensity images and wavefronts of objects,” Opt. Express 24(3), 1903–1923 (2016).
[Crossref] [PubMed]

Y. Lei, Q. Tong, X. Zhang, H. Sang, A. Ji, and C. Xie, “An electrically tunable plenoptic camera using a liquid crystal microlens array,” Rev. Sci. Instrum. 86(5), 053101 (2015).
[Crossref] [PubMed]

Levoy, M.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Rep. CSTR 2(11), 1–11 (2005).

Li, W.

Li, W. Y.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid-crystals,” Appl. Phys. Lett. 96(11), 141110 (2010).
[Crossref]

Liao, J.

Y. Wu, W. Hu, Q. Tong, Y. Lei, Z. Xin, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “Graphene-based liquid-crystal microlens arrays for synthetic-aperture imaging,” J. Opt. 19(9), 095102 (2017).
[Crossref]

Z. Xin, Q. Tong, Y. Lei, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “An electrically tunable polarization and polarization-independent liquid-crystal microlens array for imaging applications,” J. Opt. 19(9), 095602 (2017).
[Crossref]

Y. Lei, Q. Tong, Z. Xin, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “Three dimensional measurement with an electrically tunable focused plenoptic camera,” Rev. Sci. Instrum. 88(3), 033111 (2017).
[Crossref] [PubMed]

Lin, C. H.

Lin, H. C.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid-crystals,” Appl. Phys. Lett. 96(11), 141110 (2010).
[Crossref]

Lin, S. H.

Lin, T. H.

Lin, Y. H.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid-crystals,” Appl. Phys. Lett. 96(11), 141110 (2010).
[Crossref]

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid-crystal,” Appl. Phys. Lett. 86(14), 113505 (2005).
[Crossref]

Liu, Y. J.

Liu, Y. X.

Lumsdaine, A.

A. Lumsdaine and T. Georgiev, “The focused plenoptic camera,” in Proceedings of IEEE Conference on Computational Photography (IEEE, 2009), pp. 1–8.

Ma, H.

Markman, A.

Morgan, S. P.

Narasimhan, S. G.

Nayar, S. K.

Ng, R.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Rep. CSTR 2(11), 1–11 (2005).

Peli, E.

Perkins, R.

Porter, G. A.

Radousky, H.

Ren, H.

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid-crystal,” Appl. Phys. Lett. 86(14), 113505 (2005).
[Crossref]

H. Ren, Y. H. Fan, and S. T. Wu, “Liquid-crystal microlens arrays using patterned polymer networks,” Opt. Lett. 29(14), 1608–1610 (2004).
[Crossref] [PubMed]

Sang, H.

Sato, S.

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

Schechner, Y. Y.

Y. Y. Schechner and N. Karpel, “Clear Underwater Vision,” Computer Vision and Pattern Recognition, (CVPR) 1, 536–543 (2004).

Y. Y. Schechner, S. G. Narasimhan, and S. K. Nayar, “Polarization-based vision through haze,” Appl. Opt. 42(3), 511–525 (2003).
[Crossref] [PubMed]

Shao, H.

Shen, X.

Sheu, C. R.

Si, G.

Singh, R. K.

Soni, N. K.

Stockford, I. M.

Suo, J.

Tong, Q.

Y. Lei, Q. Tong, Z. Xin, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “Three dimensional measurement with an electrically tunable focused plenoptic camera,” Rev. Sci. Instrum. 88(3), 033111 (2017).
[Crossref] [PubMed]

Z. Xin, Q. Tong, Y. Lei, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “An electrically tunable polarization and polarization-independent liquid-crystal microlens array for imaging applications,” J. Opt. 19(9), 095602 (2017).
[Crossref]

Y. Wu, W. Hu, Q. Tong, Y. Lei, Z. Xin, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “Graphene-based liquid-crystal microlens arrays for synthetic-aperture imaging,” J. Opt. 19(9), 095102 (2017).
[Crossref]

Q. Tong, Y. Lei, Z. Xin, X. Zhang, H. Sang, and C. Xie, “Dual-mode photosensitive arrays based on the integration of liquid crystal microlenses and CMOS sensors for obtaining the intensity images and wavefronts of objects,” Opt. Express 24(3), 1903–1923 (2016).
[Crossref] [PubMed]

Y. Lei, Q. Tong, X. Zhang, H. Sang, A. Ji, and C. Xie, “An electrically tunable plenoptic camera using a liquid crystal microlens array,” Rev. Sci. Instrum. 86(5), 053101 (2015).
[Crossref] [PubMed]

Tsou, Y. S.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid-crystals,” Appl. Phys. Lett. 96(11), 141110 (2010).
[Crossref]

Vinu, R. V.

Walker, J. G.

Wang, H.

Y. Wu, W. Hu, Q. Tong, Y. Lei, Z. Xin, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “Graphene-based liquid-crystal microlens arrays for synthetic-aperture imaging,” J. Opt. 19(9), 095102 (2017).
[Crossref]

Z. Xin, Q. Tong, Y. Lei, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “An electrically tunable polarization and polarization-independent liquid-crystal microlens array for imaging applications,” J. Opt. 19(9), 095602 (2017).
[Crossref]

Y. Lei, Q. Tong, Z. Xin, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “Three dimensional measurement with an electrically tunable focused plenoptic camera,” Rev. Sci. Instrum. 88(3), 033111 (2017).
[Crossref] [PubMed]

Wei, D.

Y. Lei, Q. Tong, Z. Xin, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “Three dimensional measurement with an electrically tunable focused plenoptic camera,” Rev. Sci. Instrum. 88(3), 033111 (2017).
[Crossref] [PubMed]

Z. Xin, Q. Tong, Y. Lei, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “An electrically tunable polarization and polarization-independent liquid-crystal microlens array for imaging applications,” J. Opt. 19(9), 095602 (2017).
[Crossref]

Y. Wu, W. Hu, Q. Tong, Y. Lei, Z. Xin, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “Graphene-based liquid-crystal microlens arrays for synthetic-aperture imaging,” J. Opt. 19(9), 095102 (2017).
[Crossref]

Wu, R.

Wu, S. T.

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid-crystal,” Appl. Phys. Lett. 86(14), 113505 (2005).
[Crossref]

H. Ren, Y. H. Fan, and S. T. Wu, “Liquid-crystal microlens arrays using patterned polymer networks,” Opt. Lett. 29(14), 1608–1610 (2004).
[Crossref] [PubMed]

Wu, Y.

Y. Wu, W. Hu, Q. Tong, Y. Lei, Z. Xin, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “Graphene-based liquid-crystal microlens arrays for synthetic-aperture imaging,” J. Opt. 19(9), 095102 (2017).
[Crossref]

Xie, C.

Y. Wu, W. Hu, Q. Tong, Y. Lei, Z. Xin, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “Graphene-based liquid-crystal microlens arrays for synthetic-aperture imaging,” J. Opt. 19(9), 095102 (2017).
[Crossref]

Z. Xin, Q. Tong, Y. Lei, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “An electrically tunable polarization and polarization-independent liquid-crystal microlens array for imaging applications,” J. Opt. 19(9), 095602 (2017).
[Crossref]

Y. Lei, Q. Tong, Z. Xin, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “Three dimensional measurement with an electrically tunable focused plenoptic camera,” Rev. Sci. Instrum. 88(3), 033111 (2017).
[Crossref] [PubMed]

Q. Tong, Y. Lei, Z. Xin, X. Zhang, H. Sang, and C. Xie, “Dual-mode photosensitive arrays based on the integration of liquid crystal microlenses and CMOS sensors for obtaining the intensity images and wavefronts of objects,” Opt. Express 24(3), 1903–1923 (2016).
[Crossref] [PubMed]

Y. Lei, Q. Tong, X. Zhang, H. Sang, A. Ji, and C. Xie, “An electrically tunable plenoptic camera using a liquid crystal microlens array,” Rev. Sci. Instrum. 86(5), 053101 (2015).
[Crossref] [PubMed]

Xin, Z.

Y. Wu, W. Hu, Q. Tong, Y. Lei, Z. Xin, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “Graphene-based liquid-crystal microlens arrays for synthetic-aperture imaging,” J. Opt. 19(9), 095102 (2017).
[Crossref]

Z. Xin, Q. Tong, Y. Lei, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “An electrically tunable polarization and polarization-independent liquid-crystal microlens array for imaging applications,” J. Opt. 19(9), 095602 (2017).
[Crossref]

Y. Lei, Q. Tong, Z. Xin, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “Three dimensional measurement with an electrically tunable focused plenoptic camera,” Rev. Sci. Instrum. 88(3), 033111 (2017).
[Crossref] [PubMed]

Q. Tong, Y. Lei, Z. Xin, X. Zhang, H. Sang, and C. Xie, “Dual-mode photosensitive arrays based on the integration of liquid crystal microlenses and CMOS sensors for obtaining the intensity images and wavefronts of objects,” Opt. Express 24(3), 1903–1923 (2016).
[Crossref] [PubMed]

York, T.

Zhang, B.

Zhang, X.

Z. Xin, Q. Tong, Y. Lei, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “An electrically tunable polarization and polarization-independent liquid-crystal microlens array for imaging applications,” J. Opt. 19(9), 095602 (2017).
[Crossref]

Y. Lei, Q. Tong, Z. Xin, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “Three dimensional measurement with an electrically tunable focused plenoptic camera,” Rev. Sci. Instrum. 88(3), 033111 (2017).
[Crossref] [PubMed]

Y. Wu, W. Hu, Q. Tong, Y. Lei, Z. Xin, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “Graphene-based liquid-crystal microlens arrays for synthetic-aperture imaging,” J. Opt. 19(9), 095102 (2017).
[Crossref]

Q. Tong, Y. Lei, Z. Xin, X. Zhang, H. Sang, and C. Xie, “Dual-mode photosensitive arrays based on the integration of liquid crystal microlenses and CMOS sensors for obtaining the intensity images and wavefronts of objects,” Opt. Express 24(3), 1903–1923 (2016).
[Crossref] [PubMed]

Y. Lei, Q. Tong, X. Zhang, H. Sang, A. Ji, and C. Xie, “An electrically tunable plenoptic camera using a liquid crystal microlens array,” Rev. Sci. Instrum. 86(5), 053101 (2015).
[Crossref] [PubMed]

Zhang, Y.

Zhu, Q.

Appl. Opt. (4)

Appl. Phys. Lett. (2)

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid-crystal,” Appl. Phys. Lett. 86(14), 113505 (2005).
[Crossref]

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid-crystals,” Appl. Phys. Lett. 96(11), 141110 (2010).
[Crossref]

Computer Vision and Pattern Recognition, (CVPR) (1)

Y. Y. Schechner and N. Karpel, “Clear Underwater Vision,” Computer Vision and Pattern Recognition, (CVPR) 1, 536–543 (2004).

J. Opt. (2)

Z. Xin, Q. Tong, Y. Lei, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “An electrically tunable polarization and polarization-independent liquid-crystal microlens array for imaging applications,” J. Opt. 19(9), 095602 (2017).
[Crossref]

Y. Wu, W. Hu, Q. Tong, Y. Lei, Z. Xin, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “Graphene-based liquid-crystal microlens arrays for synthetic-aperture imaging,” J. Opt. 19(9), 095102 (2017).
[Crossref]

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

Opt. Express (7)

Opt. Lett. (6)

Proceedings of Eurodisplay (1)

D. J. A. Grant, B. K. Jones, and M. G. Clark, “Nematic LCD shutters with sub-millisecond switching times,” Proceedings of Eurodisplay 87, 67–70 (1987).

Rev. Sci. Instrum. (2)

Y. Lei, Q. Tong, Z. Xin, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “Three dimensional measurement with an electrically tunable focused plenoptic camera,” Rev. Sci. Instrum. 88(3), 033111 (2017).
[Crossref] [PubMed]

Y. Lei, Q. Tong, X. Zhang, H. Sang, A. Ji, and C. Xie, “An electrically tunable plenoptic camera using a liquid crystal microlens array,” Rev. Sci. Instrum. 86(5), 053101 (2015).
[Crossref] [PubMed]

Stanford Tech. Rep. CSTR (1)

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Rep. CSTR 2(11), 1–11 (2005).

Other (1)

A. Lumsdaine and T. Georgiev, “The focused plenoptic camera,” in Proceedings of IEEE Conference on Computational Photography (IEEE, 2009), pp. 1–8.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Basic structure of the twisted nematic liquid-crystal microlens array (NT-LCMLA).
Fig. 2
Fig. 2 The principle of the dual-polarized light-field imaging micro-system. (a) Schematic of the TN-LCMLA firstly interacting with incident beams. The beams transmit through the LC layer confined in the TNLC cell and their polarization is rotated in 90°. The polarizer selectively transmits light that presents the same direction with the optical axis of the LCMLA. The selected beams are continuously focused on the focal plane so as to further put onto the CMOS sensors. (b) The driving voltage signal across the TNLC cell will reorient LC molecules and thus keep the polarization state of incident beams. Only one polarized light is converged by the LCMLA.
Fig. 3
Fig. 3 The depth estimation of an object.
Fig. 4
Fig. 4 The PSFs of the devices. (a)The converging pattern of the conventional LCMLA at ~4.47 Vrms and the focal length of 1.2mm. (b)Switching on the TNLC cell (~10 Vrms), the PSF of the TN-LCMLA at ~4.47 Vrms on the LCMLA and the focal length of 1.2mm. (c) Switching off the TNLC cell (0 Vrms), the PSF of the TN-LCMLA at ~4.47 Vrms on the LCMLA and the focal length of 1.2mm. (d) The relationship between the optical axis of the sample and the transmittance axis of the polarizer used.
Fig. 5
Fig. 5 The focal length of the TN-LCMLA under different driving voltage signal.
Fig. 6
Fig. 6 (a) Measurement schematic for performing light-field and polarization imaging based on the TN-LCMLA, and (b) dual light-field and polarization imaging prototype, and (c) basic structural features of the TN-LCMLA.
Fig. 7
Fig. 7 Comparing the light-field images of the TN-LCMLA with that of the LCMLA under two orthogonally polarized states. (a) The 0° polarized light-field image of the conventional LCMLA at the signal voltage of ~3.5 Vrms. (b) The 90° polarized light-field image of the conventional LCMLA at ~3.5 Vrms. (c) Switching on the TNLC cell (~10 Vrms), the 0° polarized light-field image of the TN-LCMLA at ~3.5 Vrms. (d) Switching off the TNLC cell (0 Vrms), the 90° polarized light-field image of the TN-LCMLA at ~3.5 Vrms.
Fig. 8
Fig. 8 (a) Horizontally polarized light-field image, and (b) vertically polarized light-field image, and (c) the total intensity image, and (d) the rendering image.
Fig. 9
Fig. 9 (a) Raw images of 'E' block remapped by a conventional LCMLA, and (b) the polarization-insensitive raw image of 'E' block remapped by the TN-LCMLA developed.
Fig. 10
Fig. 10 A complete light-field image captured by our prototype. The scene is illuminated by sunset. (a) The conventional intensity image of a scene with a fire truck and a tree in front of buildings. (b) Horizontally polarized light-field image remapped by our prototype, and (c) vertically polarized light-field image acquired by the same set-up.
Fig. 11
Fig. 11 2D polarized imaging based on the DPLFI. (a) Ex-component of 2D image at the signal voltage of ~10 Vrms applied on the TNLC. (b) Ey-component of the 2D image removing the signal voltage applied on the TNLC. (c) Computational image with total incident beam intensity.

Tables (1)

Tables Icon

Table 1 Evaluation of the imaging quality shown in Fig. 9

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

1 a L + 1 b L = 1 f L ,
b a = d 1 e 1 = d 2 e 2 ,
e = e 2 e 1 ,
b a = Δ d e .
a = b e Δ d .
a L = 1 ( 1 f L 1 b e / Δ d + l ) ,
C = 1 M N i = 0 N 1 j = 0 M 1 ( I ( i , j ) I ¯ ) 2 ,
D = i = 0 N 1 j = 0 M 1 ( I g r a y ( i , j ) I ¯ 2 g r a y ) ,

Metrics