Abstract

We propose a bifocal computational near eye light field display (bifocal computational display) and structure parameters determination scheme (SPDS) for bifocal computational display that achieves greater depth of field (DOF), high resolution, accommodation and compact form factor. Using a liquid varifocal lens, two single-focal computational light fields are superimposed to reconstruct a virtual object’s light field by time multiplex and avoid the limitation on high refresh rate. By minimizing the deviation between reconstructed light field and original light field, we propose a determination framework to determine the structure parameters of bifocal computational light field display. When applied to different objective to SPDS, it can achieve high average resolution or uniform resolution display over scene depth range. To analyze the advantages and limitation of our proposed method, we have conducted simulations and constructed a simple prototype which comprises a liquid varifocal lens, dual-layer LCDs and a uniform backlight. The results of simulation and experiments with our method show that the proposed system can achieve expected performance well. Owing to the excellent performance of our system, we motivate bifocal computational display and SPDS to contribute to a daily-use and commercial virtual reality display.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Near eye light field display based on human visual features

Mali Liu, Chihao Lu, Haifeng Li, and Xu Liu
Opt. Express 25(9) 9886-9900 (2017)

High-resolution additive light field near-eye display by switchable Pancharatnam–Berry phase lenses

Tao Zhan, Yun-Han Lee, and Shin-Tson Wu
Opt. Express 26(4) 4863-4872 (2018)

Design of an optical see-through light-field near-eye display using a discrete lenslet array

Cheng Yao, Dewen Cheng, Tong Yang, and Yongtian Wang
Opt. Express 26(14) 18292-18301 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 834–862 (2005).
    [Crossref] [PubMed]
  2. K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
    [Crossref]
  3. M. Emoto, T. Nida, and F. Okano, “Repeated Vergence adaptation causes the decline of visual functions in watching stereoscopic television. Display Technology,” J. Disp. Technol. 1(2), 328–340 (2005).
    [Crossref]
  4. M. Lambooij, M. Fortuin, and I. Heynderickx, “Visual discomfort and visual fatigue of stereoscopic displays: a review,” J. Imaging Sci. Technol. 53(3), 30201 (2009).
    [Crossref]
  5. T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, “The zone of comfort: Predicting visual discomfort with stereo displays,” J. Vision 11(8), 11–40 (2011).
    [Crossref] [PubMed]
  6. D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vision 8(3), 1–30 (2008).
    [Crossref] [PubMed]
  7. D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 1–10 (2013).
    [Crossref]
  8. H. Huang and H. Hua, “An integral-imaging-based head-mounted light field display using a tunable lens and aperture array,” J. Soc. Inf. Disp. 25(3), 200–207 (2017).
    [Crossref]
  9. B. T. Schowengerdt, H. G. Hoffman, C. M. Lee, C. D. Melville, and E. J. Seibel, “57.1: Near‐to‐Eye Display using Scanning Fiber Display Engine,” Digest Tech. Papers - SID International Symposium 41(1),848–851 (2010).
  10. J. P. Rolland, M. W. Krueger, and A. Goon, “Multifocal planes head-mounted displays,” Appl. Opt. 39(19), 3209–3215 (2000).
    [Crossref] [PubMed]
  11. K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
    [Crossref]
  12. S. Hillaire, A. Lecuyer, R. Cozot, and G. Casiez, “Using an eye-tracking system to improve camera motions and depth-of-field blur effects in virtual environments,” in 2008 IEEE Virtual Reality Conference (IEEE, 2008), pp. 47–50.
  13. G. D. Love, D. M. Hoffman, P. J. W. Hands, J. Gao, A. K. Kirby, and M. S. Banks, “High-speed switchable lens enables the development of a volumetric stereoscopic display,” Opt. Express 17(18), 15716–15725 (2009).
    [Crossref] [PubMed]
  14. F.-C. Huang, D. Luebke, and G. Wetzstein, “The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues,” ACM Trans. Graph. 34(4), 1–12 (2015).
    [Crossref]
  15. J.-X. Chai, X. Tong, S.-C. Chan, and H.-Y. Shum, “Plenoptic sampling,” in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (2000), pp. 307–318.
  16. Y. Takaki, “High-density directional display for generating natural three-dimensional images,” Proc. IEEE 94(3), 654–663 (2006).
    [Crossref]
  17. M. Liu, C. Lu, H. Li, and X. Liu, “Near eye light field display based on human visual features,” Opt. Express 25(9), 9886–9900 (2017).
    [Crossref] [PubMed]
  18. D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph. 29(6), 1–10 (2010).
    [Crossref]
  19. G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31(4), 1–11 (2012).
    [Crossref]
  20. X. Cao, Z. Geng, M. Zhang, and X. Zhang, “Load-balancing multi-LCD light field display,” Proc. SPIE 9391, 93910F (2015).
  21. D. Lanman, G. Wetzstein, M. Hirsch, and R. Raskar, “Depth of field analysis for multilayer automultiscopic displays,” in Journal of Physics: Conference Series (2013), pp. 012–036.
  22. A. Maimone, G. Wetzstein, M. Hirsch, D. Lanman, R. Raskar, and H. Fuchs, “Focus 3D: Compressive accommodation display,” ACM Trans. Graph. 32(5), 1–13 (2013).
    [Crossref]
  23. B. Sitter, J. Yang, J. Thielen, N. Naismith, and J. Lonergan, “78-3: screen door effect reduction with diffractive film for virtual reality and augmented reality displays,” SID Symposium Digest Tech. Papers 48(1), 1150–1153 (2017).

2017 (3)

H. Huang and H. Hua, “An integral-imaging-based head-mounted light field display using a tunable lens and aperture array,” J. Soc. Inf. Disp. 25(3), 200–207 (2017).
[Crossref]

M. Liu, C. Lu, H. Li, and X. Liu, “Near eye light field display based on human visual features,” Opt. Express 25(9), 9886–9900 (2017).
[Crossref] [PubMed]

B. Sitter, J. Yang, J. Thielen, N. Naismith, and J. Lonergan, “78-3: screen door effect reduction with diffractive film for virtual reality and augmented reality displays,” SID Symposium Digest Tech. Papers 48(1), 1150–1153 (2017).

2015 (2)

X. Cao, Z. Geng, M. Zhang, and X. Zhang, “Load-balancing multi-LCD light field display,” Proc. SPIE 9391, 93910F (2015).

F.-C. Huang, D. Luebke, and G. Wetzstein, “The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues,” ACM Trans. Graph. 34(4), 1–12 (2015).
[Crossref]

2013 (2)

D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 1–10 (2013).
[Crossref]

A. Maimone, G. Wetzstein, M. Hirsch, D. Lanman, R. Raskar, and H. Fuchs, “Focus 3D: Compressive accommodation display,” ACM Trans. Graph. 32(5), 1–13 (2013).
[Crossref]

2012 (1)

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31(4), 1–11 (2012).
[Crossref]

2011 (1)

T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, “The zone of comfort: Predicting visual discomfort with stereo displays,” J. Vision 11(8), 11–40 (2011).
[Crossref] [PubMed]

2010 (2)

B. T. Schowengerdt, H. G. Hoffman, C. M. Lee, C. D. Melville, and E. J. Seibel, “57.1: Near‐to‐Eye Display using Scanning Fiber Display Engine,” Digest Tech. Papers - SID International Symposium 41(1),848–851 (2010).

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph. 29(6), 1–10 (2010).
[Crossref]

2009 (2)

G. D. Love, D. M. Hoffman, P. J. W. Hands, J. Gao, A. K. Kirby, and M. S. Banks, “High-speed switchable lens enables the development of a volumetric stereoscopic display,” Opt. Express 17(18), 15716–15725 (2009).
[Crossref] [PubMed]

M. Lambooij, M. Fortuin, and I. Heynderickx, “Visual discomfort and visual fatigue of stereoscopic displays: a review,” J. Imaging Sci. Technol. 53(3), 30201 (2009).
[Crossref]

2008 (1)

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vision 8(3), 1–30 (2008).
[Crossref] [PubMed]

2006 (1)

Y. Takaki, “High-density directional display for generating natural three-dimensional images,” Proc. IEEE 94(3), 654–663 (2006).
[Crossref]

2005 (2)

M. Emoto, T. Nida, and F. Okano, “Repeated Vergence adaptation causes the decline of visual functions in watching stereoscopic television. Display Technology,” J. Disp. Technol. 1(2), 328–340 (2005).
[Crossref]

S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 834–862 (2005).
[Crossref] [PubMed]

2004 (2)

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

2000 (1)

Akeley, K.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vision 8(3), 1–30 (2008).
[Crossref] [PubMed]

S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 834–862 (2005).
[Crossref] [PubMed]

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Banks, M. S.

T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, “The zone of comfort: Predicting visual discomfort with stereo displays,” J. Vision 11(8), 11–40 (2011).
[Crossref] [PubMed]

G. D. Love, D. M. Hoffman, P. J. W. Hands, J. Gao, A. K. Kirby, and M. S. Banks, “High-speed switchable lens enables the development of a volumetric stereoscopic display,” Opt. Express 17(18), 15716–15725 (2009).
[Crossref] [PubMed]

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vision 8(3), 1–30 (2008).
[Crossref] [PubMed]

S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 834–862 (2005).
[Crossref] [PubMed]

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Cao, X.

X. Cao, Z. Geng, M. Zhang, and X. Zhang, “Load-balancing multi-LCD light field display,” Proc. SPIE 9391, 93910F (2015).

Chai, J.-X.

J.-X. Chai, X. Tong, S.-C. Chan, and H.-Y. Shum, “Plenoptic sampling,” in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (2000), pp. 307–318.

Chan, S.-C.

J.-X. Chai, X. Tong, S.-C. Chan, and H.-Y. Shum, “Plenoptic sampling,” in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (2000), pp. 307–318.

Emoto, M.

M. Emoto, T. Nida, and F. Okano, “Repeated Vergence adaptation causes the decline of visual functions in watching stereoscopic television. Display Technology,” J. Disp. Technol. 1(2), 328–340 (2005).
[Crossref]

Ernst, M. O.

S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 834–862 (2005).
[Crossref] [PubMed]

Fortuin, M.

M. Lambooij, M. Fortuin, and I. Heynderickx, “Visual discomfort and visual fatigue of stereoscopic displays: a review,” J. Imaging Sci. Technol. 53(3), 30201 (2009).
[Crossref]

Fuchs, H.

A. Maimone, G. Wetzstein, M. Hirsch, D. Lanman, R. Raskar, and H. Fuchs, “Focus 3D: Compressive accommodation display,” ACM Trans. Graph. 32(5), 1–13 (2013).
[Crossref]

Gao, J.

Geng, Z.

X. Cao, Z. Geng, M. Zhang, and X. Zhang, “Load-balancing multi-LCD light field display,” Proc. SPIE 9391, 93910F (2015).

Girshick, A. R.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vision 8(3), 1–30 (2008).
[Crossref] [PubMed]

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Goon, A.

Hands, P. J. W.

Heynderickx, I.

M. Lambooij, M. Fortuin, and I. Heynderickx, “Visual discomfort and visual fatigue of stereoscopic displays: a review,” J. Imaging Sci. Technol. 53(3), 30201 (2009).
[Crossref]

Hirsch, M.

A. Maimone, G. Wetzstein, M. Hirsch, D. Lanman, R. Raskar, and H. Fuchs, “Focus 3D: Compressive accommodation display,” ACM Trans. Graph. 32(5), 1–13 (2013).
[Crossref]

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31(4), 1–11 (2012).
[Crossref]

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph. 29(6), 1–10 (2010).
[Crossref]

Hoffman, D. M.

T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, “The zone of comfort: Predicting visual discomfort with stereo displays,” J. Vision 11(8), 11–40 (2011).
[Crossref] [PubMed]

G. D. Love, D. M. Hoffman, P. J. W. Hands, J. Gao, A. K. Kirby, and M. S. Banks, “High-speed switchable lens enables the development of a volumetric stereoscopic display,” Opt. Express 17(18), 15716–15725 (2009).
[Crossref] [PubMed]

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vision 8(3), 1–30 (2008).
[Crossref] [PubMed]

Hoffman, H. G.

B. T. Schowengerdt, H. G. Hoffman, C. M. Lee, C. D. Melville, and E. J. Seibel, “57.1: Near‐to‐Eye Display using Scanning Fiber Display Engine,” Digest Tech. Papers - SID International Symposium 41(1),848–851 (2010).

Hua, H.

H. Huang and H. Hua, “An integral-imaging-based head-mounted light field display using a tunable lens and aperture array,” J. Soc. Inf. Disp. 25(3), 200–207 (2017).
[Crossref]

Huang, F.-C.

F.-C. Huang, D. Luebke, and G. Wetzstein, “The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues,” ACM Trans. Graph. 34(4), 1–12 (2015).
[Crossref]

Huang, H.

H. Huang and H. Hua, “An integral-imaging-based head-mounted light field display using a tunable lens and aperture array,” J. Soc. Inf. Disp. 25(3), 200–207 (2017).
[Crossref]

Kim, J.

T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, “The zone of comfort: Predicting visual discomfort with stereo displays,” J. Vision 11(8), 11–40 (2011).
[Crossref] [PubMed]

Kim, Y.

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph. 29(6), 1–10 (2010).
[Crossref]

Kirby, A. K.

Krueger, M. W.

Lambooij, M.

M. Lambooij, M. Fortuin, and I. Heynderickx, “Visual discomfort and visual fatigue of stereoscopic displays: a review,” J. Imaging Sci. Technol. 53(3), 30201 (2009).
[Crossref]

Lanman, D.

D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 1–10 (2013).
[Crossref]

A. Maimone, G. Wetzstein, M. Hirsch, D. Lanman, R. Raskar, and H. Fuchs, “Focus 3D: Compressive accommodation display,” ACM Trans. Graph. 32(5), 1–13 (2013).
[Crossref]

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31(4), 1–11 (2012).
[Crossref]

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph. 29(6), 1–10 (2010).
[Crossref]

Lee, C. M.

B. T. Schowengerdt, H. G. Hoffman, C. M. Lee, C. D. Melville, and E. J. Seibel, “57.1: Near‐to‐Eye Display using Scanning Fiber Display Engine,” Digest Tech. Papers - SID International Symposium 41(1),848–851 (2010).

Li, H.

Liu, M.

Liu, X.

Lonergan, J.

B. Sitter, J. Yang, J. Thielen, N. Naismith, and J. Lonergan, “78-3: screen door effect reduction with diffractive film for virtual reality and augmented reality displays,” SID Symposium Digest Tech. Papers 48(1), 1150–1153 (2017).

Love, G. D.

Lu, C.

Luebke, D.

F.-C. Huang, D. Luebke, and G. Wetzstein, “The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues,” ACM Trans. Graph. 34(4), 1–12 (2015).
[Crossref]

D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 1–10 (2013).
[Crossref]

Maimone, A.

A. Maimone, G. Wetzstein, M. Hirsch, D. Lanman, R. Raskar, and H. Fuchs, “Focus 3D: Compressive accommodation display,” ACM Trans. Graph. 32(5), 1–13 (2013).
[Crossref]

Melville, C. D.

B. T. Schowengerdt, H. G. Hoffman, C. M. Lee, C. D. Melville, and E. J. Seibel, “57.1: Near‐to‐Eye Display using Scanning Fiber Display Engine,” Digest Tech. Papers - SID International Symposium 41(1),848–851 (2010).

Naismith, N.

B. Sitter, J. Yang, J. Thielen, N. Naismith, and J. Lonergan, “78-3: screen door effect reduction with diffractive film for virtual reality and augmented reality displays,” SID Symposium Digest Tech. Papers 48(1), 1150–1153 (2017).

Nida, T.

M. Emoto, T. Nida, and F. Okano, “Repeated Vergence adaptation causes the decline of visual functions in watching stereoscopic television. Display Technology,” J. Disp. Technol. 1(2), 328–340 (2005).
[Crossref]

Okano, F.

M. Emoto, T. Nida, and F. Okano, “Repeated Vergence adaptation causes the decline of visual functions in watching stereoscopic television. Display Technology,” J. Disp. Technol. 1(2), 328–340 (2005).
[Crossref]

Raskar, R.

A. Maimone, G. Wetzstein, M. Hirsch, D. Lanman, R. Raskar, and H. Fuchs, “Focus 3D: Compressive accommodation display,” ACM Trans. Graph. 32(5), 1–13 (2013).
[Crossref]

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31(4), 1–11 (2012).
[Crossref]

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph. 29(6), 1–10 (2010).
[Crossref]

Rolland, J. P.

Schowengerdt, B. T.

B. T. Schowengerdt, H. G. Hoffman, C. M. Lee, C. D. Melville, and E. J. Seibel, “57.1: Near‐to‐Eye Display using Scanning Fiber Display Engine,” Digest Tech. Papers - SID International Symposium 41(1),848–851 (2010).

Seibel, E. J.

B. T. Schowengerdt, H. G. Hoffman, C. M. Lee, C. D. Melville, and E. J. Seibel, “57.1: Near‐to‐Eye Display using Scanning Fiber Display Engine,” Digest Tech. Papers - SID International Symposium 41(1),848–851 (2010).

Shibata, T.

T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, “The zone of comfort: Predicting visual discomfort with stereo displays,” J. Vision 11(8), 11–40 (2011).
[Crossref] [PubMed]

Shum, H.-Y.

J.-X. Chai, X. Tong, S.-C. Chan, and H.-Y. Shum, “Plenoptic sampling,” in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (2000), pp. 307–318.

Sitter, B.

B. Sitter, J. Yang, J. Thielen, N. Naismith, and J. Lonergan, “78-3: screen door effect reduction with diffractive film for virtual reality and augmented reality displays,” SID Symposium Digest Tech. Papers 48(1), 1150–1153 (2017).

Takaki, Y.

Y. Takaki, “High-density directional display for generating natural three-dimensional images,” Proc. IEEE 94(3), 654–663 (2006).
[Crossref]

Thielen, J.

B. Sitter, J. Yang, J. Thielen, N. Naismith, and J. Lonergan, “78-3: screen door effect reduction with diffractive film for virtual reality and augmented reality displays,” SID Symposium Digest Tech. Papers 48(1), 1150–1153 (2017).

Tong, X.

J.-X. Chai, X. Tong, S.-C. Chan, and H.-Y. Shum, “Plenoptic sampling,” in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (2000), pp. 307–318.

Watt, S. J.

S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 834–862 (2005).
[Crossref] [PubMed]

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Wetzstein, G.

F.-C. Huang, D. Luebke, and G. Wetzstein, “The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues,” ACM Trans. Graph. 34(4), 1–12 (2015).
[Crossref]

A. Maimone, G. Wetzstein, M. Hirsch, D. Lanman, R. Raskar, and H. Fuchs, “Focus 3D: Compressive accommodation display,” ACM Trans. Graph. 32(5), 1–13 (2013).
[Crossref]

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31(4), 1–11 (2012).
[Crossref]

Yang, J.

B. Sitter, J. Yang, J. Thielen, N. Naismith, and J. Lonergan, “78-3: screen door effect reduction with diffractive film for virtual reality and augmented reality displays,” SID Symposium Digest Tech. Papers 48(1), 1150–1153 (2017).

Zhang, M.

X. Cao, Z. Geng, M. Zhang, and X. Zhang, “Load-balancing multi-LCD light field display,” Proc. SPIE 9391, 93910F (2015).

Zhang, X.

X. Cao, Z. Geng, M. Zhang, and X. Zhang, “Load-balancing multi-LCD light field display,” Proc. SPIE 9391, 93910F (2015).

ACM Trans. Graph. (7)

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 1–10 (2013).
[Crossref]

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph. 29(6), 1–10 (2010).
[Crossref]

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31(4), 1–11 (2012).
[Crossref]

F.-C. Huang, D. Luebke, and G. Wetzstein, “The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues,” ACM Trans. Graph. 34(4), 1–12 (2015).
[Crossref]

A. Maimone, G. Wetzstein, M. Hirsch, D. Lanman, R. Raskar, and H. Fuchs, “Focus 3D: Compressive accommodation display,” ACM Trans. Graph. 32(5), 1–13 (2013).
[Crossref]

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Appl. Opt. (1)

Digest Tech. Papers - SID International Symposium (1)

B. T. Schowengerdt, H. G. Hoffman, C. M. Lee, C. D. Melville, and E. J. Seibel, “57.1: Near‐to‐Eye Display using Scanning Fiber Display Engine,” Digest Tech. Papers - SID International Symposium 41(1),848–851 (2010).

J. Disp. Technol. (1)

M. Emoto, T. Nida, and F. Okano, “Repeated Vergence adaptation causes the decline of visual functions in watching stereoscopic television. Display Technology,” J. Disp. Technol. 1(2), 328–340 (2005).
[Crossref]

J. Imaging Sci. Technol. (1)

M. Lambooij, M. Fortuin, and I. Heynderickx, “Visual discomfort and visual fatigue of stereoscopic displays: a review,” J. Imaging Sci. Technol. 53(3), 30201 (2009).
[Crossref]

J. Soc. Inf. Disp. (1)

H. Huang and H. Hua, “An integral-imaging-based head-mounted light field display using a tunable lens and aperture array,” J. Soc. Inf. Disp. 25(3), 200–207 (2017).
[Crossref]

J. Vis. (1)

S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 834–862 (2005).
[Crossref] [PubMed]

J. Vision (2)

T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, “The zone of comfort: Predicting visual discomfort with stereo displays,” J. Vision 11(8), 11–40 (2011).
[Crossref] [PubMed]

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vision 8(3), 1–30 (2008).
[Crossref] [PubMed]

Opt. Express (2)

Proc. IEEE (1)

Y. Takaki, “High-density directional display for generating natural three-dimensional images,” Proc. IEEE 94(3), 654–663 (2006).
[Crossref]

Proc. SPIE (1)

X. Cao, Z. Geng, M. Zhang, and X. Zhang, “Load-balancing multi-LCD light field display,” Proc. SPIE 9391, 93910F (2015).

SID Symposium Digest Tech. Papers (1)

B. Sitter, J. Yang, J. Thielen, N. Naismith, and J. Lonergan, “78-3: screen door effect reduction with diffractive film for virtual reality and augmented reality displays,” SID Symposium Digest Tech. Papers 48(1), 1150–1153 (2017).

Other (3)

J.-X. Chai, X. Tong, S.-C. Chan, and H.-Y. Shum, “Plenoptic sampling,” in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (2000), pp. 307–318.

D. Lanman, G. Wetzstein, M. Hirsch, and R. Raskar, “Depth of field analysis for multilayer automultiscopic displays,” in Journal of Physics: Conference Series (2013), pp. 012–036.

S. Hillaire, A. Lecuyer, R. Cozot, and G. Casiez, “Using an eye-tracking system to improve camera motions and depth-of-field blur effects in virtual environments,” in 2008 IEEE Virtual Reality Conference (IEEE, 2008), pp. 47–50.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 The structure and coordinates diagram of our bifocal computational display system. (a) The structure illustration of the system. l 1 and l 2 correspond to the optical object distance of the front LCD and rear LCD, respectively. (b) The coordinates of the system for parameterizing a light ray. The black and red arrow lines represent the coordinates of (s, t) and (u, v), respectively. The black line l illustrates a light ray parameterized by ( s o , t o , u o , v o ).
Fig. 2
Fig. 2 The illustration of superimposing two conventional computational light field to form a bifocal computational light field. (a) F and G are the optical magnified images of front LCD and rear LCD at focal length f 1 , respectively. They reconstruct a virtual 3D object. (b) R and P are the optical magnified images of front LCD and rear LCD at focal length f 2 , respectively. They reconstruct the same virtual object as in Fig. 2 (a). (c) The reconstructed light field of bifocal computational display is the superimposition of light field mentioned in Fig. 2(a) and Fig. 2 (b) by time multiplex.
Fig. 3
Fig. 3 Illustration of overload rate η' of computational display. (a) The value of red pixel on F is determined by the light rays from object O 1 . The reconstructed object O 2 locates on the same position of the blue pixel on G. the value of blue pixel on G is decided by O 2 , however these pixels in black box are partly decided by O 2 . Obviously, the reconstructed accuracy of O 2 is mainly decided by the blue pixel whose η is smaller.
Fig. 4
Fig. 4 The comparison of the spectra between the original light field L and the reconstructed light field L ˜ . (a) The spectrum of the original light field L. (b) The spectra of L and L ˜ . The blue parallelogram is the spectrum of conventional computational light field L ˜ . The slopes of parallelogram’s sides are determined by Z F and Z G . The maximum spatial frequency of F ( ω s , ω t , ω u , ω v ) is determined by the pixel size on G and F. When the object locates at depth Z 1 , the frequency of the reconstructed light field is lower than that of L by Δ ω s 1 . When the object locates at depth Z 2 , the frequency difference is Δ ω s 2 . (c) The spectrum of bifocal computational display. The blue and gray parallelograms are spectra of light fields created by (F, G) and (R, P), respectively. The spectrum of bifocal computational display is a superimposed result of these two light fields’ spectra.
Fig. 5
Fig. 5 Determination algorithm flow chart of α
Fig. 6
Fig. 6 Simulation flow chart of the perceived images of the reconstructed light field at different depths. (a) The display patterns on (F, G) and (R, P) for bifocal computational display. In conventional computational display, there are only (F, G). (b) Acquisition of P i z . The triangle means projection of the reconstructed light rays. The inset is the magnified view of the projection on all of the viewpoints. (c) Illustration of the sum of P i z . (d) The perceived image P z at depth Z.
Fig. 7
Fig. 7 The equipment of prototype. (a) The prototype of our designed system. (b) The liquid varifocal lens and its frame. (c) The liquid varifocal lens.
Fig. 8
Fig. 8 The contrasts of the reconstructed stripes with different methods. The blue, green and red dot lines are corresponding to the contrasts of conventional computational display, bifocal computational display when α equals to 1.0 and 0.0, respectively. The resolution of the strips in (a), (b) and (c) are 3cpd, 4cpd and 5cpd, respectively.
Fig. 9
Fig. 9 The physical positions of the scene for reconstruction. (a) The illustration of positions in X-Y plane. (b) The illustration of positions in Z-X plane. The depth interval of the stripes is 0.28D.
Fig. 10
Fig. 10 Display patterns of two light field display systems. (a) Display patterns of conventional computational display. (b) Display patterns of bifocal computational display when α equals to 1.0. (c) Display patterns of bifocal computational display when α equals 0.0.
Fig. 11
Fig. 11 The perceived images of 3 finest stripes under different camera focus depths with our method. The images in first, second and third row are the perceived images of first, fourth and tenth stripes in Fig. 9, respectively. The images in first, second and third column are the perceived images when the camera focus at first, fourth and tenth strip depths, respectively.
Fig. 12
Fig. 12 The experimental comparison results of conventional computational display and bifocal computational display. Each column of the images is arranged to show the in-focus perceived stripes in different depths from near to far.
Fig. 13
Fig. 13 The perceived images of the 10 finest stripes utilizing 8 groups of structure parameters. Each row shows the reconstructed stripes when the depth of camera changes from near to far. Each column shows the stripes of different light fields at the same depth.

Tables (2)

Tables Icon

Table 1 The structure parameters of 3 reconstructed light fields.

Tables Icon

Table 2 The structure parameters of 7 reconstructed light fields.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

L ˜ = F G .
arg F min G 1 2 L L ˜ W 2 F , G 0.
F F [ ( W L ) G T ] [ ( W ( F G ) ) G T ] ,
G G [ F T ( W L ) ] [ F T ( W ( F G ) ) ] ,
L ˜ ( s , t , u , v ) = 1 2 ( F G + R P ) .
arg min F , G , R , P 1 2 L L ˜ W 2 F , G , R , P 0.
F F [ ( W L ) G T ] [ ( W 1 2 ( F G + R P ) ) G T ] ,
G G [ F T ( W L ) ] [ F T ( W 1 2 ( F G + R P ) ) ] ,
R R [ ( W L ) P T ] [ ( W 1 2 ( R P + F G ) ) P T ] ,
P P [ R T ( W L ) ] [ R T ( W 1 2 ( R P + F G ) ) ] .
η = min ( D × | Z o Z F | P o × Z F , D × | Z o Z G | P o × Z G ) .
F ( ω s , ω t , ω u , ω v ) = f F ( ω s , ω t ) δ ( ω u + Z F ω s ) δ ( ω v + Z F ω t ) f G ( ω s , ω t ) δ ( ω u + Z G ω s ) δ ( ω v + Z G ω t ) .
F ( ω s , ω u ) = f F ( ω s ) δ ( ω u + Z F ω s ) f G ( ω s ) δ ( ω u + Z G ω s ) .
η ' = min ( D o × ( Z o Z F ) P o × Z F , D o × ( Z o Z G ) P o × Z G , D o × ( Z o Z R ) P o × Z R , D o × ( Z o Z P ) P o × Z P ) + α × 2 t h min ( D o × ( Z o Z F ) P o × Z F , D o × ( Z o Z G ) P o × Z G , D o × ( Z o Z R ) P o × Z R , D o × ( Z o Z P ) P o × Z P ) α [ 0 1 ] ,
F ( ω s , ω t , ω u , ω v ) = f F ( ω s , ω t ) δ ( ω u Z F ω s ) δ ( ω v Z F ω t ) f G ( ω s , ω t ) δ ( ω u Z G ω s ) δ ( ω v Z G ω t ) + f R ( ω s , ω t ) δ ( ω u Z R ω s ) δ ( ω v Z R ω t ) f P ( ω s , ω t ) δ ( ω u Z P ω s ) δ ( ω v Z P ω t ) .
F ( ω s , ω u ) = f F ( ω s ) δ ( ω u Z F ω s ) f G ( ω s ) δ ( ω u Z G ω s ) + f R ( ω s ) δ ( ω u Z R ω s ) f P ( ω s ) δ ( ω u Z P ω s ) .
a r g m i n ( Z min Z max ( | ω r s ( f 1 , f 2 , l 1 , l 2 ) ω o s | + η ' ) d z ) f 1 , f 2 [ f min f max ] , l 2 l 1 Δ l ,
P z = i = 1 n P i z i = 1 n O i z ,

Metrics