Abstract

Although there is an urgent demand, it is still a tremendous challenge to use the coherent optical communication technology to the satellite-to-ground data transmission system especially at large zenith angle due to the influence of atmospheric turbulence. Adaptive optics (AO) is a considerable scheme to solve the problem. In this paper, we integrate the adaptive optics (AO) to the coherent laser communications and the performances of mixing efficiency as well as bit-error-rate (BER) at different zenith angles are studied. The analytical results show that the increasing of zenith angle can severely decrease the performances of the coherent detection, and increase the BER to higher than 10−3, which is unacceptable. The simulative results of coherent detection with AO compensation indicate that the larger mixing efficiency and lower BER can be performed by the coherent receiver with a high-mode AO compensation. The experiment of correcting the atmospheric turbulence wavefront distortion using a 249-element AO system at large zenith angles is carried out. The result demonstrates that the AO system has a significant improvement on satellite-to-ground coherent optical communication system at large zenith angle. It also indicates that the 249-element AO system can only meet the needs of coherent communication systems at zenith angle smaller than 65̊ for the 1.8m telescope under weak and moderate turbulence.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Performance evaluation of adaptive optics for atmospheric coherent laser communications

Chao Liu, Shanqiu Chen, XinYang Li, and Hao Xian
Opt. Express 22(13) 15554-15563 (2014)

Performance evaluation of coherent free space optical communications with a double-stage fast-steering-mirror adaptive optics system depending on the Greenwood frequency

Wei Liu, Kainan Yao, Danian Huang, Xudong Lin, Liang Wang, and Yaowen Lv
Opt. Express 24(12) 13288-13302 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. K. Tyson and D. E. Canning, “Indirect measurement of a laser communications bit-error-rate reduction with low-order adaptive optics,” Appl. Opt. 42(21), 4239–4243 (2003).
    [Crossref] [PubMed]
  2. R. Lange, “In-orbit verification of optical inter-satellite communication links based on homodyne BPSK,” Proc. SPIE 6877, 687702 (2008).
    [Crossref]
  3. E. Fischer, T. Berkefeld, and M. Feriencik, “Development, integration and test of a transportable adaptive optical ground station” (IEEE, 2016).
  4. Z. Sodnik, J. P. Armengol, R. H. Czichy, and R. Meyer, “Adaptive optics and ESA’s optical ground station,” Proc. SPIE 7464, 746406 (2009).
    [Crossref]
  5. B. I. Erkmen and A. Biswas, “Optical link design and validation testing of the Optical Payload for Lasercomm Science (OPALS) system,” Proc. SPIE 8971 (1933), 450– 453 (2014).
  6. Z. Sodnik, H. Smit, M. Sans, I. Zayer, M. Lanucara, I. Montilla, and A. Alonso, “LLCD operations using the Lunar Lasercom OGS Terminal,” Proc. SPIE 8971 (1933), 89710W (2014).
  7. D. M. Boroson, A. Biswas, and B. L. Edwards, “MLCD: overview of NASA’s Mars laser communications demonstration system,” Proc. SPIE 5338, 16–28 (2004).
    [Crossref]
  8. M. Gregory, F. Heine, and R. Lange, “Laser communication terminals for the European Data Relay System,” Proc. SPIE 8246(8), 8 (2012).
  9. H. Hemmati, A. Biswas, and I. B. Djordjevic, “Deep-Space Optical Communications: Future Perspectives and Applications,” Proc. IEEE 99(11), 2020–2039 (2011).
    [Crossref]
  10. F. Heine, U. Hildebrand, R. Lange, and S. Seel, “5.6 Gbps optical intersatellite communication link,” Proc. SPIE 7199(1), 296–340 (2009).
  11. M. Gregory, F. Heine, H. Kämpfner, R. Lange, M. Luter, and R. Meyer, “Coherent inter-satellite and satellite-ground laser links,” Proc. SPIE 7923, 792303 (2011).
    [Crossref]
  12. R. K. Tyson and P. L. Wizinowich, Principles of Adaptive Optics (CRC, 1991).
  13. F. Roddier and L. Thompson, Adaptive Optics in Astronomy. (Cambridge University, 1999).
  14. W. M. Wright, J. Roberts, W. Farr, and K. Wilson, “Improved optical communications performance combining adaptive optics and pulse position modulation,” Opt. Eng. 47(1), 016003 (2008).
    [Crossref]
  15. Y. Wu, Y. Zhang, H. Ye, M. Li, X. Li, E. Chen, Z. Xiong, J. Chen, Y. Ai, H. Zhao, and Z. Yang, “Simulation and Experiment of Adaptive Optics in 2.5Gbps Atmospheric Laser Communication” (IEEE, 2012).
  16. R. K. Tyson, J. S. Tharp, and D. E. Canning, “Measurement of the bit-error rate of an adaptive optics, free-space laser communications system, part 2: multichannel configuration, aberration characterization, and closed-loop results,” Opt. Eng. 44(44), 096003 (2005).
    [Crossref]
  17. T. Weyrauch and M. A. Vorontsov, “Atmospheric compensation with a speckle beacon in strong scintillation conditions: directed energy and laser communication applications,” Appl. Opt. 44(30), 6388–6401 (2005).
    [Crossref] [PubMed]
  18. C. Liu, M. Chen, S. Chen, and H. Xian, “Adaptive optics for the free-space coherent optical communications,” Opt. Commun. 361, 21–24 (2016).
    [Crossref] [PubMed]
  19. C. Liu, S. Chen, X. Li, and H. Xian, “Performance evaluation of adaptive optics for atmospheric coherent laser communications,” Opt. Express 22(13), 15554–15563 (2014).
    [Crossref] [PubMed]
  20. M. Chen, C. Liu, and H. Xian, “Experimental demonstration of single-mode fiber coupling over relatively strong turbulence with adaptive optics,” Appl. Opt. 54(29), 8722–8726 (2015).
    [Crossref] [PubMed]
  21. T. Berkefeld, D. Soltau, and Z. Sodnik, “Adaptive optics for satellite-to-ground laser communication at the 1m Telescope of the ESA Optical Ground Station, Tenerife, Spain,” Proc. SPIE 7736(10), 146 (2010).
  22. G. P. Agrawal, Fiber-Optic Communication Systems (Tsinghua University, 2004).
  23. F. N. H. Robinson, “Noise and fluctuations in electronic devices and circuits,” Electronics Power 1(10), 632 (1974).
  24. V. N. Mahajan, “Strehl ratio for primary aberrations in terms of their aberration variance,” J. Opt. Soc. Am. 73(6), 860–861 (1983).
    [Crossref]
  25. A. N. Kolmogorov, “Dissipation of energy in locally isotropic turbulence,” Akademiia Nauk Sssr Doklady 32 (1890), 1890 (1941).
  26. V. I. Tatarski, R. A. Silverman, and N. Chako, “Wave Propagation in a Turbulent Medium,” Phys. Today 14(12), 46–51 (1961).
    [Crossref]
  27. P. B. Ulrich, “Hufnagel–Valley Profiles for Specified Values of the Coherence Length and Isoplanatic Patch Angle,” Arlington, Virginia: W. J. Schafer Associates, WJSA/MA/TN-88–013, (1988).
  28. D. L. Fried, “The effect of wavefront distortion on the performance of an ideal optical heterodyne receiver and an ideal camera,” (1965).
  29. R. J. Noll, “Zernike polynomials and atmospheric turbulence*,” J. Opt. Soc. Am. 66(3), 207–211 (1976).
    [Crossref]

2016 (1)

C. Liu, M. Chen, S. Chen, and H. Xian, “Adaptive optics for the free-space coherent optical communications,” Opt. Commun. 361, 21–24 (2016).
[Crossref] [PubMed]

2015 (1)

2014 (3)

C. Liu, S. Chen, X. Li, and H. Xian, “Performance evaluation of adaptive optics for atmospheric coherent laser communications,” Opt. Express 22(13), 15554–15563 (2014).
[Crossref] [PubMed]

B. I. Erkmen and A. Biswas, “Optical link design and validation testing of the Optical Payload for Lasercomm Science (OPALS) system,” Proc. SPIE 8971 (1933), 450– 453 (2014).

Z. Sodnik, H. Smit, M. Sans, I. Zayer, M. Lanucara, I. Montilla, and A. Alonso, “LLCD operations using the Lunar Lasercom OGS Terminal,” Proc. SPIE 8971 (1933), 89710W (2014).

2012 (1)

M. Gregory, F. Heine, and R. Lange, “Laser communication terminals for the European Data Relay System,” Proc. SPIE 8246(8), 8 (2012).

2011 (2)

H. Hemmati, A. Biswas, and I. B. Djordjevic, “Deep-Space Optical Communications: Future Perspectives and Applications,” Proc. IEEE 99(11), 2020–2039 (2011).
[Crossref]

M. Gregory, F. Heine, H. Kämpfner, R. Lange, M. Luter, and R. Meyer, “Coherent inter-satellite and satellite-ground laser links,” Proc. SPIE 7923, 792303 (2011).
[Crossref]

2010 (1)

T. Berkefeld, D. Soltau, and Z. Sodnik, “Adaptive optics for satellite-to-ground laser communication at the 1m Telescope of the ESA Optical Ground Station, Tenerife, Spain,” Proc. SPIE 7736(10), 146 (2010).

2009 (2)

F. Heine, U. Hildebrand, R. Lange, and S. Seel, “5.6 Gbps optical intersatellite communication link,” Proc. SPIE 7199(1), 296–340 (2009).

Z. Sodnik, J. P. Armengol, R. H. Czichy, and R. Meyer, “Adaptive optics and ESA’s optical ground station,” Proc. SPIE 7464, 746406 (2009).
[Crossref]

2008 (2)

W. M. Wright, J. Roberts, W. Farr, and K. Wilson, “Improved optical communications performance combining adaptive optics and pulse position modulation,” Opt. Eng. 47(1), 016003 (2008).
[Crossref]

R. Lange, “In-orbit verification of optical inter-satellite communication links based on homodyne BPSK,” Proc. SPIE 6877, 687702 (2008).
[Crossref]

2005 (2)

R. K. Tyson, J. S. Tharp, and D. E. Canning, “Measurement of the bit-error rate of an adaptive optics, free-space laser communications system, part 2: multichannel configuration, aberration characterization, and closed-loop results,” Opt. Eng. 44(44), 096003 (2005).
[Crossref]

T. Weyrauch and M. A. Vorontsov, “Atmospheric compensation with a speckle beacon in strong scintillation conditions: directed energy and laser communication applications,” Appl. Opt. 44(30), 6388–6401 (2005).
[Crossref] [PubMed]

2004 (1)

D. M. Boroson, A. Biswas, and B. L. Edwards, “MLCD: overview of NASA’s Mars laser communications demonstration system,” Proc. SPIE 5338, 16–28 (2004).
[Crossref]

2003 (1)

1983 (1)

1976 (1)

1974 (1)

F. N. H. Robinson, “Noise and fluctuations in electronic devices and circuits,” Electronics Power 1(10), 632 (1974).

1961 (1)

V. I. Tatarski, R. A. Silverman, and N. Chako, “Wave Propagation in a Turbulent Medium,” Phys. Today 14(12), 46–51 (1961).
[Crossref]

1941 (1)

A. N. Kolmogorov, “Dissipation of energy in locally isotropic turbulence,” Akademiia Nauk Sssr Doklady 32 (1890), 1890 (1941).

Alonso, A.

Z. Sodnik, H. Smit, M. Sans, I. Zayer, M. Lanucara, I. Montilla, and A. Alonso, “LLCD operations using the Lunar Lasercom OGS Terminal,” Proc. SPIE 8971 (1933), 89710W (2014).

Armengol, J. P.

Z. Sodnik, J. P. Armengol, R. H. Czichy, and R. Meyer, “Adaptive optics and ESA’s optical ground station,” Proc. SPIE 7464, 746406 (2009).
[Crossref]

Berkefeld, T.

T. Berkefeld, D. Soltau, and Z. Sodnik, “Adaptive optics for satellite-to-ground laser communication at the 1m Telescope of the ESA Optical Ground Station, Tenerife, Spain,” Proc. SPIE 7736(10), 146 (2010).

Biswas, A.

B. I. Erkmen and A. Biswas, “Optical link design and validation testing of the Optical Payload for Lasercomm Science (OPALS) system,” Proc. SPIE 8971 (1933), 450– 453 (2014).

H. Hemmati, A. Biswas, and I. B. Djordjevic, “Deep-Space Optical Communications: Future Perspectives and Applications,” Proc. IEEE 99(11), 2020–2039 (2011).
[Crossref]

D. M. Boroson, A. Biswas, and B. L. Edwards, “MLCD: overview of NASA’s Mars laser communications demonstration system,” Proc. SPIE 5338, 16–28 (2004).
[Crossref]

Boroson, D. M.

D. M. Boroson, A. Biswas, and B. L. Edwards, “MLCD: overview of NASA’s Mars laser communications demonstration system,” Proc. SPIE 5338, 16–28 (2004).
[Crossref]

Canning, D. E.

R. K. Tyson, J. S. Tharp, and D. E. Canning, “Measurement of the bit-error rate of an adaptive optics, free-space laser communications system, part 2: multichannel configuration, aberration characterization, and closed-loop results,” Opt. Eng. 44(44), 096003 (2005).
[Crossref]

R. K. Tyson and D. E. Canning, “Indirect measurement of a laser communications bit-error-rate reduction with low-order adaptive optics,” Appl. Opt. 42(21), 4239–4243 (2003).
[Crossref] [PubMed]

Chako, N.

V. I. Tatarski, R. A. Silverman, and N. Chako, “Wave Propagation in a Turbulent Medium,” Phys. Today 14(12), 46–51 (1961).
[Crossref]

Chen, M.

Chen, S.

C. Liu, M. Chen, S. Chen, and H. Xian, “Adaptive optics for the free-space coherent optical communications,” Opt. Commun. 361, 21–24 (2016).
[Crossref] [PubMed]

C. Liu, S. Chen, X. Li, and H. Xian, “Performance evaluation of adaptive optics for atmospheric coherent laser communications,” Opt. Express 22(13), 15554–15563 (2014).
[Crossref] [PubMed]

Czichy, R. H.

Z. Sodnik, J. P. Armengol, R. H. Czichy, and R. Meyer, “Adaptive optics and ESA’s optical ground station,” Proc. SPIE 7464, 746406 (2009).
[Crossref]

Djordjevic, I. B.

H. Hemmati, A. Biswas, and I. B. Djordjevic, “Deep-Space Optical Communications: Future Perspectives and Applications,” Proc. IEEE 99(11), 2020–2039 (2011).
[Crossref]

Edwards, B. L.

D. M. Boroson, A. Biswas, and B. L. Edwards, “MLCD: overview of NASA’s Mars laser communications demonstration system,” Proc. SPIE 5338, 16–28 (2004).
[Crossref]

Erkmen, B. I.

B. I. Erkmen and A. Biswas, “Optical link design and validation testing of the Optical Payload for Lasercomm Science (OPALS) system,” Proc. SPIE 8971 (1933), 450– 453 (2014).

Farr, W.

W. M. Wright, J. Roberts, W. Farr, and K. Wilson, “Improved optical communications performance combining adaptive optics and pulse position modulation,” Opt. Eng. 47(1), 016003 (2008).
[Crossref]

Fried, D. L.

D. L. Fried, “The effect of wavefront distortion on the performance of an ideal optical heterodyne receiver and an ideal camera,” (1965).

Gregory, M.

M. Gregory, F. Heine, and R. Lange, “Laser communication terminals for the European Data Relay System,” Proc. SPIE 8246(8), 8 (2012).

M. Gregory, F. Heine, H. Kämpfner, R. Lange, M. Luter, and R. Meyer, “Coherent inter-satellite and satellite-ground laser links,” Proc. SPIE 7923, 792303 (2011).
[Crossref]

Heine, F.

M. Gregory, F. Heine, and R. Lange, “Laser communication terminals for the European Data Relay System,” Proc. SPIE 8246(8), 8 (2012).

M. Gregory, F. Heine, H. Kämpfner, R. Lange, M. Luter, and R. Meyer, “Coherent inter-satellite and satellite-ground laser links,” Proc. SPIE 7923, 792303 (2011).
[Crossref]

F. Heine, U. Hildebrand, R. Lange, and S. Seel, “5.6 Gbps optical intersatellite communication link,” Proc. SPIE 7199(1), 296–340 (2009).

Hemmati, H.

H. Hemmati, A. Biswas, and I. B. Djordjevic, “Deep-Space Optical Communications: Future Perspectives and Applications,” Proc. IEEE 99(11), 2020–2039 (2011).
[Crossref]

Hildebrand, U.

F. Heine, U. Hildebrand, R. Lange, and S. Seel, “5.6 Gbps optical intersatellite communication link,” Proc. SPIE 7199(1), 296–340 (2009).

Kämpfner, H.

M. Gregory, F. Heine, H. Kämpfner, R. Lange, M. Luter, and R. Meyer, “Coherent inter-satellite and satellite-ground laser links,” Proc. SPIE 7923, 792303 (2011).
[Crossref]

Kolmogorov, A. N.

A. N. Kolmogorov, “Dissipation of energy in locally isotropic turbulence,” Akademiia Nauk Sssr Doklady 32 (1890), 1890 (1941).

Lange, R.

M. Gregory, F. Heine, and R. Lange, “Laser communication terminals for the European Data Relay System,” Proc. SPIE 8246(8), 8 (2012).

M. Gregory, F. Heine, H. Kämpfner, R. Lange, M. Luter, and R. Meyer, “Coherent inter-satellite and satellite-ground laser links,” Proc. SPIE 7923, 792303 (2011).
[Crossref]

F. Heine, U. Hildebrand, R. Lange, and S. Seel, “5.6 Gbps optical intersatellite communication link,” Proc. SPIE 7199(1), 296–340 (2009).

R. Lange, “In-orbit verification of optical inter-satellite communication links based on homodyne BPSK,” Proc. SPIE 6877, 687702 (2008).
[Crossref]

Lanucara, M.

Z. Sodnik, H. Smit, M. Sans, I. Zayer, M. Lanucara, I. Montilla, and A. Alonso, “LLCD operations using the Lunar Lasercom OGS Terminal,” Proc. SPIE 8971 (1933), 89710W (2014).

Li, X.

Liu, C.

Luter, M.

M. Gregory, F. Heine, H. Kämpfner, R. Lange, M. Luter, and R. Meyer, “Coherent inter-satellite and satellite-ground laser links,” Proc. SPIE 7923, 792303 (2011).
[Crossref]

Mahajan, V. N.

Meyer, R.

M. Gregory, F. Heine, H. Kämpfner, R. Lange, M. Luter, and R. Meyer, “Coherent inter-satellite and satellite-ground laser links,” Proc. SPIE 7923, 792303 (2011).
[Crossref]

Z. Sodnik, J. P. Armengol, R. H. Czichy, and R. Meyer, “Adaptive optics and ESA’s optical ground station,” Proc. SPIE 7464, 746406 (2009).
[Crossref]

Montilla, I.

Z. Sodnik, H. Smit, M. Sans, I. Zayer, M. Lanucara, I. Montilla, and A. Alonso, “LLCD operations using the Lunar Lasercom OGS Terminal,” Proc. SPIE 8971 (1933), 89710W (2014).

Noll, R. J.

Roberts, J.

W. M. Wright, J. Roberts, W. Farr, and K. Wilson, “Improved optical communications performance combining adaptive optics and pulse position modulation,” Opt. Eng. 47(1), 016003 (2008).
[Crossref]

Robinson, F. N. H.

F. N. H. Robinson, “Noise and fluctuations in electronic devices and circuits,” Electronics Power 1(10), 632 (1974).

Sans, M.

Z. Sodnik, H. Smit, M. Sans, I. Zayer, M. Lanucara, I. Montilla, and A. Alonso, “LLCD operations using the Lunar Lasercom OGS Terminal,” Proc. SPIE 8971 (1933), 89710W (2014).

Seel, S.

F. Heine, U. Hildebrand, R. Lange, and S. Seel, “5.6 Gbps optical intersatellite communication link,” Proc. SPIE 7199(1), 296–340 (2009).

Silverman, R. A.

V. I. Tatarski, R. A. Silverman, and N. Chako, “Wave Propagation in a Turbulent Medium,” Phys. Today 14(12), 46–51 (1961).
[Crossref]

Smit, H.

Z. Sodnik, H. Smit, M. Sans, I. Zayer, M. Lanucara, I. Montilla, and A. Alonso, “LLCD operations using the Lunar Lasercom OGS Terminal,” Proc. SPIE 8971 (1933), 89710W (2014).

Sodnik, Z.

Z. Sodnik, H. Smit, M. Sans, I. Zayer, M. Lanucara, I. Montilla, and A. Alonso, “LLCD operations using the Lunar Lasercom OGS Terminal,” Proc. SPIE 8971 (1933), 89710W (2014).

T. Berkefeld, D. Soltau, and Z. Sodnik, “Adaptive optics for satellite-to-ground laser communication at the 1m Telescope of the ESA Optical Ground Station, Tenerife, Spain,” Proc. SPIE 7736(10), 146 (2010).

Z. Sodnik, J. P. Armengol, R. H. Czichy, and R. Meyer, “Adaptive optics and ESA’s optical ground station,” Proc. SPIE 7464, 746406 (2009).
[Crossref]

Soltau, D.

T. Berkefeld, D. Soltau, and Z. Sodnik, “Adaptive optics for satellite-to-ground laser communication at the 1m Telescope of the ESA Optical Ground Station, Tenerife, Spain,” Proc. SPIE 7736(10), 146 (2010).

Tatarski, V. I.

V. I. Tatarski, R. A. Silverman, and N. Chako, “Wave Propagation in a Turbulent Medium,” Phys. Today 14(12), 46–51 (1961).
[Crossref]

Tharp, J. S.

R. K. Tyson, J. S. Tharp, and D. E. Canning, “Measurement of the bit-error rate of an adaptive optics, free-space laser communications system, part 2: multichannel configuration, aberration characterization, and closed-loop results,” Opt. Eng. 44(44), 096003 (2005).
[Crossref]

Tyson, R. K.

R. K. Tyson, J. S. Tharp, and D. E. Canning, “Measurement of the bit-error rate of an adaptive optics, free-space laser communications system, part 2: multichannel configuration, aberration characterization, and closed-loop results,” Opt. Eng. 44(44), 096003 (2005).
[Crossref]

R. K. Tyson and D. E. Canning, “Indirect measurement of a laser communications bit-error-rate reduction with low-order adaptive optics,” Appl. Opt. 42(21), 4239–4243 (2003).
[Crossref] [PubMed]

Vorontsov, M. A.

Weyrauch, T.

Wilson, K.

W. M. Wright, J. Roberts, W. Farr, and K. Wilson, “Improved optical communications performance combining adaptive optics and pulse position modulation,” Opt. Eng. 47(1), 016003 (2008).
[Crossref]

Wright, W. M.

W. M. Wright, J. Roberts, W. Farr, and K. Wilson, “Improved optical communications performance combining adaptive optics and pulse position modulation,” Opt. Eng. 47(1), 016003 (2008).
[Crossref]

Xian, H.

Zayer, I.

Z. Sodnik, H. Smit, M. Sans, I. Zayer, M. Lanucara, I. Montilla, and A. Alonso, “LLCD operations using the Lunar Lasercom OGS Terminal,” Proc. SPIE 8971 (1933), 89710W (2014).

Akademiia Nauk Sssr Doklady (1)

A. N. Kolmogorov, “Dissipation of energy in locally isotropic turbulence,” Akademiia Nauk Sssr Doklady 32 (1890), 1890 (1941).

Appl. Opt. (3)

Electronics Power (1)

F. N. H. Robinson, “Noise and fluctuations in electronic devices and circuits,” Electronics Power 1(10), 632 (1974).

J. Opt. Soc. Am. (2)

Opt. Commun. (1)

C. Liu, M. Chen, S. Chen, and H. Xian, “Adaptive optics for the free-space coherent optical communications,” Opt. Commun. 361, 21–24 (2016).
[Crossref] [PubMed]

Opt. Eng. (2)

W. M. Wright, J. Roberts, W. Farr, and K. Wilson, “Improved optical communications performance combining adaptive optics and pulse position modulation,” Opt. Eng. 47(1), 016003 (2008).
[Crossref]

R. K. Tyson, J. S. Tharp, and D. E. Canning, “Measurement of the bit-error rate of an adaptive optics, free-space laser communications system, part 2: multichannel configuration, aberration characterization, and closed-loop results,” Opt. Eng. 44(44), 096003 (2005).
[Crossref]

Opt. Express (1)

Phys. Today (1)

V. I. Tatarski, R. A. Silverman, and N. Chako, “Wave Propagation in a Turbulent Medium,” Phys. Today 14(12), 46–51 (1961).
[Crossref]

Proc. IEEE (1)

H. Hemmati, A. Biswas, and I. B. Djordjevic, “Deep-Space Optical Communications: Future Perspectives and Applications,” Proc. IEEE 99(11), 2020–2039 (2011).
[Crossref]

Proc. SPIE (9)

F. Heine, U. Hildebrand, R. Lange, and S. Seel, “5.6 Gbps optical intersatellite communication link,” Proc. SPIE 7199(1), 296–340 (2009).

M. Gregory, F. Heine, H. Kämpfner, R. Lange, M. Luter, and R. Meyer, “Coherent inter-satellite and satellite-ground laser links,” Proc. SPIE 7923, 792303 (2011).
[Crossref]

Z. Sodnik, J. P. Armengol, R. H. Czichy, and R. Meyer, “Adaptive optics and ESA’s optical ground station,” Proc. SPIE 7464, 746406 (2009).
[Crossref]

B. I. Erkmen and A. Biswas, “Optical link design and validation testing of the Optical Payload for Lasercomm Science (OPALS) system,” Proc. SPIE 8971 (1933), 450– 453 (2014).

Z. Sodnik, H. Smit, M. Sans, I. Zayer, M. Lanucara, I. Montilla, and A. Alonso, “LLCD operations using the Lunar Lasercom OGS Terminal,” Proc. SPIE 8971 (1933), 89710W (2014).

D. M. Boroson, A. Biswas, and B. L. Edwards, “MLCD: overview of NASA’s Mars laser communications demonstration system,” Proc. SPIE 5338, 16–28 (2004).
[Crossref]

M. Gregory, F. Heine, and R. Lange, “Laser communication terminals for the European Data Relay System,” Proc. SPIE 8246(8), 8 (2012).

T. Berkefeld, D. Soltau, and Z. Sodnik, “Adaptive optics for satellite-to-ground laser communication at the 1m Telescope of the ESA Optical Ground Station, Tenerife, Spain,” Proc. SPIE 7736(10), 146 (2010).

R. Lange, “In-orbit verification of optical inter-satellite communication links based on homodyne BPSK,” Proc. SPIE 6877, 687702 (2008).
[Crossref]

Other (7)

E. Fischer, T. Berkefeld, and M. Feriencik, “Development, integration and test of a transportable adaptive optical ground station” (IEEE, 2016).

Y. Wu, Y. Zhang, H. Ye, M. Li, X. Li, E. Chen, Z. Xiong, J. Chen, Y. Ai, H. Zhao, and Z. Yang, “Simulation and Experiment of Adaptive Optics in 2.5Gbps Atmospheric Laser Communication” (IEEE, 2012).

G. P. Agrawal, Fiber-Optic Communication Systems (Tsinghua University, 2004).

R. K. Tyson and P. L. Wizinowich, Principles of Adaptive Optics (CRC, 1991).

F. Roddier and L. Thompson, Adaptive Optics in Astronomy. (Cambridge University, 1999).

P. B. Ulrich, “Hufnagel–Valley Profiles for Specified Values of the Coherence Length and Isoplanatic Patch Angle,” Arlington, Virginia: W. J. Schafer Associates, WJSA/MA/TN-88–013, (1988).

D. L. Fried, “The effect of wavefront distortion on the performance of an ideal optical heterodyne receiver and an ideal camera,” (1965).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Mixing efficiency as a function of RMS of the phase wavefront. The curve shows that Strehl ratio as a function of phase wavefront.
Fig. 2
Fig. 2 The modificatory Hufnagel-Valley boundary (HVB) model of the refractive-index structure constant C n 2 as a function of altitude.
Fig. 3
Fig. 3 The coherence length (1550nm) as a function of zenith angle in a satellite-to-ground link.
Fig. 4
Fig. 4 Mixing efficiency of the coherent detection over different zenith angle with and without adaptive optics correction.
Fig. 5
Fig. 5 BER of the coherent detection over different zenith angle without adaptive optics correction.
Fig. 6
Fig. 6 BER of the coherent detection over different zenith angle with adaptive optics correction. (a) zenith angle equals to 0. (b) zenith angle equals to 30°. (c) zenith angle equals to 60°. (d) zenith angle equals to 80°.
Fig. 7
Fig. 7 The experimental diagram. (a) The mechanical drawing of the 1.8 m telescope. (b) The light path of the 249-element AO system in Coude room. (c) The CCD image of the Hartmann-Shock wavefront sensor.
Fig. 8
Fig. 8 The star spot distributions in six different zenith angle.
Fig. 9
Fig. 9 The curve of the star images with 120 frames at different zenith angles.
Fig. 10
Fig. 10 The experiment results of mixing efficiency at different zenith angles.
Fig. 11
Fig. 11 The experiment results of BER at different zenith angles.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

P=K U A S 2 + A LO 2 +2 A S A LO cos(Δωt+Δφ)dU,
I=2RK U A S A LO cos(Δφ)dU,
R= eη hν ,
σ 2 = σ S 2 + σ T 2 ,
σ S 2 =2e(I+ I d )Δf, σ T 2 =(2 k B T/ R L )Δf,
SNR= I 2 σ 2 = 4 R 2 K 2 [ U A S A LO cos(Δφ)dU ] 2 2e( I d +I)+ σ T 2 .
σ T 2 0, σ S 2 2e I LO Δf.
SNR= 2ηK U A S 2 dU hνΔf × [ U A S A LO cos(Δφ)dU ] 2 U A LO 2 dU U A S 2 dU .
SN R 0 = 2ηK U A S 2 dU hνΔf .
γ= SNR SN R 0 = [ U A S A LO cos(Δφ)dU ] 2 U A LO 2 dU U A S 2 dU .
SR e (2πσ) 2 ,
γSR.
A S 2 dU= N p hυB,
SNR=4η N p .
BER= 1 2 erfc( R 2 ),
R= I 1 I 0 σ 1 + σ 0 SN R 1/2 .
BER= 1 2 erfc( 2η N p γ ).
D n (r)= [n( r 1 )n( r 1 +r)] 2 = C n 2 r 2/3 , l o <r< L 0 ,
C n 2 =5.94× 10 53 ( ω 27 ) 2 h 10 e h 1000 +2.7× 10 16 e h 1500 +A e h 100 ,
ω=21m/s,
A=1.7× 10 -14 .
r 0 =[0.423 k 0 2 sec(θ) 0 L C n 2 (z)dz ] 3/5 .

Metrics