Abstract

The time-dependent phase error induced by the instability of projection light source (IPLS) is systematically studied for phase-shifting profilometry (PSP). The IPLS of the projection device is investigated by a specially designed experimental setup. Based on the results of the investigation, a new mathematical model to analyze the time-dependent phase error induced by IPLS is established and verified. Two real-time phase error correction methods using a new designed three-dimensional shape measurement system are proposed for the effect of IPLS. Experimental results demonstrate the two methods can effectively eliminate the induced time-dependent phase error with a good robustness and high accuracy. The two real-time correction methods for PSP will be promising for high-accuracy measurements.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Self-correction of projector nonlinearity in phase-shifting fringe projection profilometry

Fuxing Lü, Shuo Xing, and Hongwei Guo
Appl. Opt. 56(25) 7204-7216 (2017)

Motion-artifact-free dynamic 3D shape measurement with hybrid Fourier-transform phase-shifting profilometry

Jiaming Qian, Tianyang Tao, Shijie Feng, Qian Chen, and Chao Zuo
Opt. Express 27(3) 2713-2731 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. Dai, Y. An, and S. Zhang, “Absolute three-dimensional shape measurement with a known object,” Opt. Express 25(9), 10384–10396 (2017).
    [Crossref] [PubMed]
  2. J. Zhu, P. Zhou, X. Su, and Z. You, “Accurate and fast 3D surface measurement with temporal-spatial binary encoding structured illumination,” Opt. Express 24(25), 28549–28560 (2016).
    [Crossref] [PubMed]
  3. Z. Li, K. Zhong, Y. F. Li, X. Zhou, and Y. Shi, “Multiview phase shifting: a full-resolution and high-speed 3D measurement framework for arbitrary shape dynamic objects,” Opt. Lett. 38(9), 1389–1391 (2013).
    [Crossref] [PubMed]
  4. S. Gorthi and P. Rastogi, “Fringe projection techniques: whither we are?” Opt. Lasers Eng. 48(2), 133–140 (2010).
    [Crossref]
  5. P. Garbat and M. Kujawińska, “Combining fringe projection method of 3D object monitoring with virtual reality environment:concept and initial results,” in Proceeding of International Symposium on 3d Data Processing (IEEE, 2002), pp. 504–508.
  6. S. Caspar, M. Honegger, S. Rinner, P. Lambelet, C. Bach, and A. Ettemeyer, “High speed fringe projection for fast 3D inspection,” Proc. SPIE 8082(1), 57–68 (2011).
  7. Y. Wang, J. I. Laughner, I. R. Efimov, and S. Zhang, “3D absolute shape measurement of live rabbit hearts with a superfast two-frequency phase-shifting technique,” Opt. Express 21(5), 5822–5832 (2013).
    [Crossref] [PubMed]
  8. F. Berryman, P. Pynsent, J. Fairbank, and S. Disney, “A new system for measuring three-dimensional back shape in scoliosis,” Eur. Spine J. 17(5), 663–672 (2008).
    [Crossref] [PubMed]
  9. P. Hariharan, “Phase-shifting interferometry: minimization of system errors,” Appl. Opt. 39, 967– 969 (2001).
  10. S. Ma, C. Quan, R. Zhu, and C. J. Tay, “Investigation of phase error correction for digital sinusoidal phase-shifting fringe projection profilometry,” Opt. Lasers Eng. 50(8), 1107–1118 (2012).
    [Crossref]
  11. Z. Cai, X. Liu, H. Jiang, D. He, X. Peng, S. Huang, and Z. Zhang, “Flexible phase error compensation based on Hilbert transform in phase shifting profilometry,” Opt. Express 23(19), 25171–25181 (2015).
    [Crossref] [PubMed]
  12. R. Cai, Q. Wu, W. Shi, H. Shu, Y. Wu, and Z. Wang, “CCD performance model and noise control,” in Proceedings of International Conference on Image Analysis and Signal Processing (IEEE, 2011), pp. 389–394.
  13. J. Yao and Y. Zhou, “Phase error elimination considering gamma nonlinearity, system vibration, and noise for fringe projection profilometry,” Opt. Eng. 53(9), 094102 (2014).
    [Crossref]
  14. L. L. Deck, “Suppressing phase errors from vibration in phase-shifting interferometry,” Appl. Opt. 48(20), 3948–3960 (2009).
    [Crossref] [PubMed]
  15. M. Fujigaki, T. Sakaguchi, and Y. Murata, “Development of a compact 3D shape measurement unit using the light-source-stepping method,” Opt. Lasers Eng. 85, 9–17 (2016).
    [Crossref]
  16. S. Zhang, “Comparative study on passive and active projector nonlinear gamma calibration,” Appl. Opt. 54(13), 3834–3841 (2015).
    [Crossref]
  17. Y. Xu, L. Ekstrand, J. Dai, and S. Zhang, “Phase error compensation for three-dimensional shape measurement with projector defocusing,” Appl. Opt. 50(17), 2572–2581 (2011).
    [Crossref] [PubMed]
  18. P. Zhou, X. Liu, Y. He, and T. Zhu, “Phase error analysis and compensation considering ambient light for phase measuring profilometry,” Opt. Lasers Eng. 55(7), 99–104 (2014).
    [Crossref]
  19. Z. Li and Y. Li, “Gamma-distorted fringe image modeling and accurate gamma correction for fast phase measuring profilometry,” Opt. Lett. 36(2), 154–156 (2011).
    [Crossref] [PubMed]
  20. K. Liu, Y. Wang, D. L. Lau, Q. Hao, and L. G. Hassebrook, “Gamma model and its analysis for phase measuring profilometry,” J. Opt. Soc. Am. A 27(3), 553–562 (2010).
    [Crossref] [PubMed]
  21. Z. Zhang and E. Zhang, “Fluctuation elimination of fringe pattern by using empirical mode decomposition,” Proc. SPIE 9046, 90460D (2013).
    [Crossref]
  22. G. Lu, S. Wu, N. Palmer, and H. Liu, “Application of phase shift optical triangulation to precision gear gauging,” Proc. SPIE 3520, 52–63 (1998).
    [Crossref]
  23. Y. Lu, R. Zhang, and H. Guo, “Correction of illumination fluctuations in phase-shifting technique by use of fringe histograms,” Appl. Opt. 55(1), 184–197 (2016).
    [Crossref] [PubMed]
  24. X. Xu, L. Cai, Y. Wang, X. Meng, X. Cheng, H. Zhang, G. Dong, and X. Shen, “Correction of wavefront reconstruction errors caused by light source intensity instability in phase-shifting interferometry,” J. Opt. A 10(8), 085008 (2008).
    [Crossref]
  25. V. Srinivasan, H. C. Liu, and M. Halioua, “Automated phase-measuring profilometry: a phase mapping approach,” Appl. Opt. 24(2), 185 (1985).
    [Crossref] [PubMed]
  26. Y. Fu and Q. Luo, “Fringe projection profilometry based on a novel phase shift method,” Opt. Express 19(22), 21739–21747 (2011).
    [Crossref] [PubMed]
  27. X. Su, S. Song, Y. Cao, and L. Xiang, “Phase-height mapping and coordinate calibration simultaneously in phase-measuring profilometry,” Opt. Eng. 43(3), 708–712 (2004).
    [Crossref]
  28. S. Liu, W. Feng, Q. Zhang, and Y. Liu, “Three-dimensional shape measurement of small object based on tri-frequency heterodyne method,” Proc. SPIE 9623, 96231C (2015).
    [Crossref]

2017 (1)

2016 (3)

2015 (3)

2014 (2)

J. Yao and Y. Zhou, “Phase error elimination considering gamma nonlinearity, system vibration, and noise for fringe projection profilometry,” Opt. Eng. 53(9), 094102 (2014).
[Crossref]

P. Zhou, X. Liu, Y. He, and T. Zhu, “Phase error analysis and compensation considering ambient light for phase measuring profilometry,” Opt. Lasers Eng. 55(7), 99–104 (2014).
[Crossref]

2013 (3)

2012 (1)

S. Ma, C. Quan, R. Zhu, and C. J. Tay, “Investigation of phase error correction for digital sinusoidal phase-shifting fringe projection profilometry,” Opt. Lasers Eng. 50(8), 1107–1118 (2012).
[Crossref]

2011 (4)

2010 (2)

2009 (1)

2008 (2)

F. Berryman, P. Pynsent, J. Fairbank, and S. Disney, “A new system for measuring three-dimensional back shape in scoliosis,” Eur. Spine J. 17(5), 663–672 (2008).
[Crossref] [PubMed]

X. Xu, L. Cai, Y. Wang, X. Meng, X. Cheng, H. Zhang, G. Dong, and X. Shen, “Correction of wavefront reconstruction errors caused by light source intensity instability in phase-shifting interferometry,” J. Opt. A 10(8), 085008 (2008).
[Crossref]

2004 (1)

X. Su, S. Song, Y. Cao, and L. Xiang, “Phase-height mapping and coordinate calibration simultaneously in phase-measuring profilometry,” Opt. Eng. 43(3), 708–712 (2004).
[Crossref]

2001 (1)

P. Hariharan, “Phase-shifting interferometry: minimization of system errors,” Appl. Opt. 39, 967– 969 (2001).

1998 (1)

G. Lu, S. Wu, N. Palmer, and H. Liu, “Application of phase shift optical triangulation to precision gear gauging,” Proc. SPIE 3520, 52–63 (1998).
[Crossref]

1985 (1)

An, Y.

Bach, C.

S. Caspar, M. Honegger, S. Rinner, P. Lambelet, C. Bach, and A. Ettemeyer, “High speed fringe projection for fast 3D inspection,” Proc. SPIE 8082(1), 57–68 (2011).

Berryman, F.

F. Berryman, P. Pynsent, J. Fairbank, and S. Disney, “A new system for measuring three-dimensional back shape in scoliosis,” Eur. Spine J. 17(5), 663–672 (2008).
[Crossref] [PubMed]

Cai, L.

X. Xu, L. Cai, Y. Wang, X. Meng, X. Cheng, H. Zhang, G. Dong, and X. Shen, “Correction of wavefront reconstruction errors caused by light source intensity instability in phase-shifting interferometry,” J. Opt. A 10(8), 085008 (2008).
[Crossref]

Cai, R.

R. Cai, Q. Wu, W. Shi, H. Shu, Y. Wu, and Z. Wang, “CCD performance model and noise control,” in Proceedings of International Conference on Image Analysis and Signal Processing (IEEE, 2011), pp. 389–394.

Cai, Z.

Cao, Y.

X. Su, S. Song, Y. Cao, and L. Xiang, “Phase-height mapping and coordinate calibration simultaneously in phase-measuring profilometry,” Opt. Eng. 43(3), 708–712 (2004).
[Crossref]

Caspar, S.

S. Caspar, M. Honegger, S. Rinner, P. Lambelet, C. Bach, and A. Ettemeyer, “High speed fringe projection for fast 3D inspection,” Proc. SPIE 8082(1), 57–68 (2011).

Cheng, X.

X. Xu, L. Cai, Y. Wang, X. Meng, X. Cheng, H. Zhang, G. Dong, and X. Shen, “Correction of wavefront reconstruction errors caused by light source intensity instability in phase-shifting interferometry,” J. Opt. A 10(8), 085008 (2008).
[Crossref]

Dai, J.

Deck, L. L.

Disney, S.

F. Berryman, P. Pynsent, J. Fairbank, and S. Disney, “A new system for measuring three-dimensional back shape in scoliosis,” Eur. Spine J. 17(5), 663–672 (2008).
[Crossref] [PubMed]

Dong, G.

X. Xu, L. Cai, Y. Wang, X. Meng, X. Cheng, H. Zhang, G. Dong, and X. Shen, “Correction of wavefront reconstruction errors caused by light source intensity instability in phase-shifting interferometry,” J. Opt. A 10(8), 085008 (2008).
[Crossref]

Efimov, I. R.

Ekstrand, L.

Ettemeyer, A.

S. Caspar, M. Honegger, S. Rinner, P. Lambelet, C. Bach, and A. Ettemeyer, “High speed fringe projection for fast 3D inspection,” Proc. SPIE 8082(1), 57–68 (2011).

Fairbank, J.

F. Berryman, P. Pynsent, J. Fairbank, and S. Disney, “A new system for measuring three-dimensional back shape in scoliosis,” Eur. Spine J. 17(5), 663–672 (2008).
[Crossref] [PubMed]

Feng, W.

S. Liu, W. Feng, Q. Zhang, and Y. Liu, “Three-dimensional shape measurement of small object based on tri-frequency heterodyne method,” Proc. SPIE 9623, 96231C (2015).
[Crossref]

Fu, Y.

Fujigaki, M.

M. Fujigaki, T. Sakaguchi, and Y. Murata, “Development of a compact 3D shape measurement unit using the light-source-stepping method,” Opt. Lasers Eng. 85, 9–17 (2016).
[Crossref]

Garbat, P.

P. Garbat and M. Kujawińska, “Combining fringe projection method of 3D object monitoring with virtual reality environment:concept and initial results,” in Proceeding of International Symposium on 3d Data Processing (IEEE, 2002), pp. 504–508.

Gorthi, S.

S. Gorthi and P. Rastogi, “Fringe projection techniques: whither we are?” Opt. Lasers Eng. 48(2), 133–140 (2010).
[Crossref]

Guo, H.

Halioua, M.

Hao, Q.

Hariharan, P.

P. Hariharan, “Phase-shifting interferometry: minimization of system errors,” Appl. Opt. 39, 967– 969 (2001).

Hassebrook, L. G.

He, D.

He, Y.

P. Zhou, X. Liu, Y. He, and T. Zhu, “Phase error analysis and compensation considering ambient light for phase measuring profilometry,” Opt. Lasers Eng. 55(7), 99–104 (2014).
[Crossref]

Honegger, M.

S. Caspar, M. Honegger, S. Rinner, P. Lambelet, C. Bach, and A. Ettemeyer, “High speed fringe projection for fast 3D inspection,” Proc. SPIE 8082(1), 57–68 (2011).

Huang, S.

Jiang, H.

Kujawinska, M.

P. Garbat and M. Kujawińska, “Combining fringe projection method of 3D object monitoring with virtual reality environment:concept and initial results,” in Proceeding of International Symposium on 3d Data Processing (IEEE, 2002), pp. 504–508.

Lambelet, P.

S. Caspar, M. Honegger, S. Rinner, P. Lambelet, C. Bach, and A. Ettemeyer, “High speed fringe projection for fast 3D inspection,” Proc. SPIE 8082(1), 57–68 (2011).

Lau, D. L.

Laughner, J. I.

Li, Y.

Li, Y. F.

Li, Z.

Liu, H.

G. Lu, S. Wu, N. Palmer, and H. Liu, “Application of phase shift optical triangulation to precision gear gauging,” Proc. SPIE 3520, 52–63 (1998).
[Crossref]

Liu, H. C.

Liu, K.

Liu, S.

S. Liu, W. Feng, Q. Zhang, and Y. Liu, “Three-dimensional shape measurement of small object based on tri-frequency heterodyne method,” Proc. SPIE 9623, 96231C (2015).
[Crossref]

Liu, X.

Z. Cai, X. Liu, H. Jiang, D. He, X. Peng, S. Huang, and Z. Zhang, “Flexible phase error compensation based on Hilbert transform in phase shifting profilometry,” Opt. Express 23(19), 25171–25181 (2015).
[Crossref] [PubMed]

P. Zhou, X. Liu, Y. He, and T. Zhu, “Phase error analysis and compensation considering ambient light for phase measuring profilometry,” Opt. Lasers Eng. 55(7), 99–104 (2014).
[Crossref]

Liu, Y.

S. Liu, W. Feng, Q. Zhang, and Y. Liu, “Three-dimensional shape measurement of small object based on tri-frequency heterodyne method,” Proc. SPIE 9623, 96231C (2015).
[Crossref]

Lu, G.

G. Lu, S. Wu, N. Palmer, and H. Liu, “Application of phase shift optical triangulation to precision gear gauging,” Proc. SPIE 3520, 52–63 (1998).
[Crossref]

Lu, Y.

Luo, Q.

Ma, S.

S. Ma, C. Quan, R. Zhu, and C. J. Tay, “Investigation of phase error correction for digital sinusoidal phase-shifting fringe projection profilometry,” Opt. Lasers Eng. 50(8), 1107–1118 (2012).
[Crossref]

Meng, X.

X. Xu, L. Cai, Y. Wang, X. Meng, X. Cheng, H. Zhang, G. Dong, and X. Shen, “Correction of wavefront reconstruction errors caused by light source intensity instability in phase-shifting interferometry,” J. Opt. A 10(8), 085008 (2008).
[Crossref]

Murata, Y.

M. Fujigaki, T. Sakaguchi, and Y. Murata, “Development of a compact 3D shape measurement unit using the light-source-stepping method,” Opt. Lasers Eng. 85, 9–17 (2016).
[Crossref]

Palmer, N.

G. Lu, S. Wu, N. Palmer, and H. Liu, “Application of phase shift optical triangulation to precision gear gauging,” Proc. SPIE 3520, 52–63 (1998).
[Crossref]

Peng, X.

Pynsent, P.

F. Berryman, P. Pynsent, J. Fairbank, and S. Disney, “A new system for measuring three-dimensional back shape in scoliosis,” Eur. Spine J. 17(5), 663–672 (2008).
[Crossref] [PubMed]

Quan, C.

S. Ma, C. Quan, R. Zhu, and C. J. Tay, “Investigation of phase error correction for digital sinusoidal phase-shifting fringe projection profilometry,” Opt. Lasers Eng. 50(8), 1107–1118 (2012).
[Crossref]

Rastogi, P.

S. Gorthi and P. Rastogi, “Fringe projection techniques: whither we are?” Opt. Lasers Eng. 48(2), 133–140 (2010).
[Crossref]

Rinner, S.

S. Caspar, M. Honegger, S. Rinner, P. Lambelet, C. Bach, and A. Ettemeyer, “High speed fringe projection for fast 3D inspection,” Proc. SPIE 8082(1), 57–68 (2011).

Sakaguchi, T.

M. Fujigaki, T. Sakaguchi, and Y. Murata, “Development of a compact 3D shape measurement unit using the light-source-stepping method,” Opt. Lasers Eng. 85, 9–17 (2016).
[Crossref]

Shen, X.

X. Xu, L. Cai, Y. Wang, X. Meng, X. Cheng, H. Zhang, G. Dong, and X. Shen, “Correction of wavefront reconstruction errors caused by light source intensity instability in phase-shifting interferometry,” J. Opt. A 10(8), 085008 (2008).
[Crossref]

Shi, W.

R. Cai, Q. Wu, W. Shi, H. Shu, Y. Wu, and Z. Wang, “CCD performance model and noise control,” in Proceedings of International Conference on Image Analysis and Signal Processing (IEEE, 2011), pp. 389–394.

Shi, Y.

Shu, H.

R. Cai, Q. Wu, W. Shi, H. Shu, Y. Wu, and Z. Wang, “CCD performance model and noise control,” in Proceedings of International Conference on Image Analysis and Signal Processing (IEEE, 2011), pp. 389–394.

Song, S.

X. Su, S. Song, Y. Cao, and L. Xiang, “Phase-height mapping and coordinate calibration simultaneously in phase-measuring profilometry,” Opt. Eng. 43(3), 708–712 (2004).
[Crossref]

Srinivasan, V.

Su, X.

J. Zhu, P. Zhou, X. Su, and Z. You, “Accurate and fast 3D surface measurement with temporal-spatial binary encoding structured illumination,” Opt. Express 24(25), 28549–28560 (2016).
[Crossref] [PubMed]

X. Su, S. Song, Y. Cao, and L. Xiang, “Phase-height mapping and coordinate calibration simultaneously in phase-measuring profilometry,” Opt. Eng. 43(3), 708–712 (2004).
[Crossref]

Tay, C. J.

S. Ma, C. Quan, R. Zhu, and C. J. Tay, “Investigation of phase error correction for digital sinusoidal phase-shifting fringe projection profilometry,” Opt. Lasers Eng. 50(8), 1107–1118 (2012).
[Crossref]

Wang, Y.

Wang, Z.

R. Cai, Q. Wu, W. Shi, H. Shu, Y. Wu, and Z. Wang, “CCD performance model and noise control,” in Proceedings of International Conference on Image Analysis and Signal Processing (IEEE, 2011), pp. 389–394.

Wu, Q.

R. Cai, Q. Wu, W. Shi, H. Shu, Y. Wu, and Z. Wang, “CCD performance model and noise control,” in Proceedings of International Conference on Image Analysis and Signal Processing (IEEE, 2011), pp. 389–394.

Wu, S.

G. Lu, S. Wu, N. Palmer, and H. Liu, “Application of phase shift optical triangulation to precision gear gauging,” Proc. SPIE 3520, 52–63 (1998).
[Crossref]

Wu, Y.

R. Cai, Q. Wu, W. Shi, H. Shu, Y. Wu, and Z. Wang, “CCD performance model and noise control,” in Proceedings of International Conference on Image Analysis and Signal Processing (IEEE, 2011), pp. 389–394.

Xiang, L.

X. Su, S. Song, Y. Cao, and L. Xiang, “Phase-height mapping and coordinate calibration simultaneously in phase-measuring profilometry,” Opt. Eng. 43(3), 708–712 (2004).
[Crossref]

Xu, X.

X. Xu, L. Cai, Y. Wang, X. Meng, X. Cheng, H. Zhang, G. Dong, and X. Shen, “Correction of wavefront reconstruction errors caused by light source intensity instability in phase-shifting interferometry,” J. Opt. A 10(8), 085008 (2008).
[Crossref]

Xu, Y.

Yao, J.

J. Yao and Y. Zhou, “Phase error elimination considering gamma nonlinearity, system vibration, and noise for fringe projection profilometry,” Opt. Eng. 53(9), 094102 (2014).
[Crossref]

You, Z.

Zhang, E.

Z. Zhang and E. Zhang, “Fluctuation elimination of fringe pattern by using empirical mode decomposition,” Proc. SPIE 9046, 90460D (2013).
[Crossref]

Zhang, H.

X. Xu, L. Cai, Y. Wang, X. Meng, X. Cheng, H. Zhang, G. Dong, and X. Shen, “Correction of wavefront reconstruction errors caused by light source intensity instability in phase-shifting interferometry,” J. Opt. A 10(8), 085008 (2008).
[Crossref]

Zhang, Q.

S. Liu, W. Feng, Q. Zhang, and Y. Liu, “Three-dimensional shape measurement of small object based on tri-frequency heterodyne method,” Proc. SPIE 9623, 96231C (2015).
[Crossref]

Zhang, R.

Zhang, S.

Zhang, Z.

Zhong, K.

Zhou, P.

J. Zhu, P. Zhou, X. Su, and Z. You, “Accurate and fast 3D surface measurement with temporal-spatial binary encoding structured illumination,” Opt. Express 24(25), 28549–28560 (2016).
[Crossref] [PubMed]

P. Zhou, X. Liu, Y. He, and T. Zhu, “Phase error analysis and compensation considering ambient light for phase measuring profilometry,” Opt. Lasers Eng. 55(7), 99–104 (2014).
[Crossref]

Zhou, X.

Zhou, Y.

J. Yao and Y. Zhou, “Phase error elimination considering gamma nonlinearity, system vibration, and noise for fringe projection profilometry,” Opt. Eng. 53(9), 094102 (2014).
[Crossref]

Zhu, J.

Zhu, R.

S. Ma, C. Quan, R. Zhu, and C. J. Tay, “Investigation of phase error correction for digital sinusoidal phase-shifting fringe projection profilometry,” Opt. Lasers Eng. 50(8), 1107–1118 (2012).
[Crossref]

Zhu, T.

P. Zhou, X. Liu, Y. He, and T. Zhu, “Phase error analysis and compensation considering ambient light for phase measuring profilometry,” Opt. Lasers Eng. 55(7), 99–104 (2014).
[Crossref]

Appl. Opt. (6)

Eur. Spine J. (1)

F. Berryman, P. Pynsent, J. Fairbank, and S. Disney, “A new system for measuring three-dimensional back shape in scoliosis,” Eur. Spine J. 17(5), 663–672 (2008).
[Crossref] [PubMed]

J. Opt. A (1)

X. Xu, L. Cai, Y. Wang, X. Meng, X. Cheng, H. Zhang, G. Dong, and X. Shen, “Correction of wavefront reconstruction errors caused by light source intensity instability in phase-shifting interferometry,” J. Opt. A 10(8), 085008 (2008).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Eng. (2)

X. Su, S. Song, Y. Cao, and L. Xiang, “Phase-height mapping and coordinate calibration simultaneously in phase-measuring profilometry,” Opt. Eng. 43(3), 708–712 (2004).
[Crossref]

J. Yao and Y. Zhou, “Phase error elimination considering gamma nonlinearity, system vibration, and noise for fringe projection profilometry,” Opt. Eng. 53(9), 094102 (2014).
[Crossref]

Opt. Express (5)

Opt. Lasers Eng. (4)

M. Fujigaki, T. Sakaguchi, and Y. Murata, “Development of a compact 3D shape measurement unit using the light-source-stepping method,” Opt. Lasers Eng. 85, 9–17 (2016).
[Crossref]

P. Zhou, X. Liu, Y. He, and T. Zhu, “Phase error analysis and compensation considering ambient light for phase measuring profilometry,” Opt. Lasers Eng. 55(7), 99–104 (2014).
[Crossref]

S. Gorthi and P. Rastogi, “Fringe projection techniques: whither we are?” Opt. Lasers Eng. 48(2), 133–140 (2010).
[Crossref]

S. Ma, C. Quan, R. Zhu, and C. J. Tay, “Investigation of phase error correction for digital sinusoidal phase-shifting fringe projection profilometry,” Opt. Lasers Eng. 50(8), 1107–1118 (2012).
[Crossref]

Opt. Lett. (2)

Proc. SPIE (4)

S. Liu, W. Feng, Q. Zhang, and Y. Liu, “Three-dimensional shape measurement of small object based on tri-frequency heterodyne method,” Proc. SPIE 9623, 96231C (2015).
[Crossref]

S. Caspar, M. Honegger, S. Rinner, P. Lambelet, C. Bach, and A. Ettemeyer, “High speed fringe projection for fast 3D inspection,” Proc. SPIE 8082(1), 57–68 (2011).

Z. Zhang and E. Zhang, “Fluctuation elimination of fringe pattern by using empirical mode decomposition,” Proc. SPIE 9046, 90460D (2013).
[Crossref]

G. Lu, S. Wu, N. Palmer, and H. Liu, “Application of phase shift optical triangulation to precision gear gauging,” Proc. SPIE 3520, 52–63 (1998).
[Crossref]

Other (2)

P. Garbat and M. Kujawińska, “Combining fringe projection method of 3D object monitoring with virtual reality environment:concept and initial results,” in Proceeding of International Symposium on 3d Data Processing (IEEE, 2002), pp. 504–508.

R. Cai, Q. Wu, W. Shi, H. Shu, Y. Wu, and Z. Wang, “CCD performance model and noise control,” in Proceedings of International Conference on Image Analysis and Signal Processing (IEEE, 2011), pp. 389–394.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Experimental setup.
Fig. 2
Fig. 2 (a) Captured checkerboard pattern, (b) the intensity variation of the regions in (a).
Fig. 3
Fig. 3 (a) Wrapped phase of the flat board. (b) Practical wrapped phase and the ideal wrapped phase. (c) time-dependent phase error distribution of (a). (d) Phase error for all points in (c). The thin curve shows the average of these points.
Fig. 4
Fig. 4 Time-dependent phase error distribution and phase error curve of (a) the second measurement, (b) the third measurement.
Fig. 5
Fig. 5 Schematic of the new measurement system.
Fig. 6
Fig. 6 (a) One of the captured patterns of RICM, (b) one of the captured patterns of RPECM.
Fig. 7
Fig. 7 (a) One of the captured patterns, (b) comparison of RMS of phase errors of two methods using different N-step phase-shifting algorithms.
Fig. 8
Fig. 8 (a) Comparison of RMS of phase errors using 16-step phase-shifting algorithm with different K. Phase error distribution (when K = 9) (b) before correction, (c) corrected by RICM, and (d) corrected by RPECM.
Fig. 9
Fig. 9 Experimental results of a leaf vein: (a) image of measured object. 3D reconstruction result (b) before correction, (c) corrected by RICM, (d) corrected by RPECM, (e) and (f) enlarged details in the rectangular region of (c) and (d), respectively.
Fig. 10
Fig. 10 Experimental results of a cup lid: (a) image of measured object, (b) one of the deformed patterns. 3D reconstruction result (c) before correction, (d) corrected by RICM, and (e) corrected by RPECM, (f-h) enlarged details in the rectangular region of (c-e), respectively.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

P(x,y)= B p (x,y)[ a+bcos( 2πfx ) ]
I n (x,y)=R(x,y){ A(x,y)+ B c (x,y){ a+bcos[φ(x,y)+ 2nπ/N ] } }
φ(x,y)=arctan n=1 N [ I n ( x,y )sin( 2nπ/N ) ] n=1 N [ I n ( x,y )cos( 2nπ/N ) ]
P(x,y)= L( t )B p (x,y)[ a+bcos( 2πfx ) ]
I n L (x,y)=R(x,y){ A(x,y)+L( t n ) B c (x,y){ a+bcos[ φ(x,y)+( 2nπ/N ) ] } }
[ I n L (x,y)R(x,y)A(x,y)]/ L( t n ) =R(x,y) B c (x,y){ a+bcos[ φ(x,y)+( 2nπ/N ) ] }
φ(x,y)=arctan n=1 N { [ I n L (x,y)R(x,y)A(x,y) ]/ L( t n ) } sin( 2nπ/N ) n=1 N { [ I n L (x,y)R(x,y)A(x,y) ]/ L( t n ) } cos( 2nπ/N )
ϕ(x,y)=φ(x,y)+Δϕ(x,y)
Δϕ(x,y)=arctan n=1 N I n L (x,y) sin( 2nπ/N ) n=1 N I n L (x,y) cos( 2nπ/N ) arctan n=1 N { [ I n L (x,y)R(x,y)A(x,y) ]/ L( t n ) } sin( 2nπ/N ) n=1 N { [ I n L (x,y)R(x,y)A(x,y) ]/ L( t n ) } cos( 2nπ/N )
Δϕ(x,y)=E[ φ(x,y) ]
L( t n )= L( t 1 )( I n C2 RA )/ ( I 1 C2 RA )
φ(x,y)=arctan n=1 N { [ I n L (x,y)R(x,y)A(x,y) ] ( I 1 C2 RA )/ ( I n C2 RA ) } sin( 2nπ/N ) n=1 N { [ I n L (x,y)R(x,y)A(x,y) ] ( I 1 C2 RA )/ ( I n C2 RA ) } cos( 2nπ/N )
φ(x,y)=arctan n=1 N { [ I n L (x,y)RA ] ( I 1 C2 RA )/ ( I n C2 RA ) } sin( 2nπ/N ) n=1 N { [ I n L (x,y)RA ] ( I 1 C2 RA )/ ( I n C2 RA ) } cos( 2nπ/N )

Metrics