Abstract

We introduce a structurally reconfigurable metasurface which is made of shape memory alloys (SMA). It could change the morphology of the unit cells repeatedly as we expect in response to a thermal stimulus and realize a tuning range from 13.3GHz to 17.2GHz for both polarizations simultaneously. Equivalent circuit models describe the operational principle and design methodology, the physical mechanism is interpreted with the variation of surface current distribution on the structure. The experimental results coincide with the numerical simulations, making the all-metal metasurface an attractive choice for manipulating the electromagnetic wave in a wide range of spectrums with the merits of higher controllability for dynamic behavior and greater freedom for design and manufacturing.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Reconfiguring structured light beams using nonlinear metasurfaces

Yun Xu, Jingbo Sun, Jesse Frantz, Mikhail I. Shalaev, Wiktor Walasik, Apra Pandey, Jason D. Myers, Robel Y. Bekele, Alexander Tsukernik, Jasbinder S. Sanghera, and Natalia M. Litchinitser
Opt. Express 26(23) 30930-30943 (2018)

Vanadium dioxide based frequency tunable metasurface filters for realizing reconfigurable terahertz optical phase and polarization control

M. Tayyab Nouman, Ji Hyun Hwang, Mohd. Faiyaz, Kye-Jeong Lee, Do-Young Noh, and Jae-Hyung Jang
Opt. Express 26(10) 12922-12929 (2018)

Electromechanically tunable metasurface transmission waveplate at terahertz frequencies

Xiaoguang Zhao, Jacob Schalch, Jingdi Zhang, Huseyin R. Seren, Guangwu Duan, Richard D. Averitt, and Xin Zhang
Optica 5(3) 303-310 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [Crossref] [PubMed]
  2. N. Engheta and R. W. Ziolkowski, Metamaterials: physics and engineering explorations (Wiley-IEEE, 2006).
  3. W. Cai and V. Shalaev, Optical metamaterials: fundamentals and applications (Springer, 2009).
  4. D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
    [Crossref] [PubMed]
  5. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
    [Crossref] [PubMed]
  6. K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4(1), 5935 (2014).
    [Crossref] [PubMed]
  7. L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
    [Crossref] [PubMed]
  8. L. Zhang, S. Mei, K. Huang, and C. Qiu, “Advances in full control of electromagnetic waves with metasurfaces,” Adv. Opt. Mater. 4(6), 818–833 (2016).
    [Crossref]
  9. S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro-and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
    [Crossref]
  10. S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, “Metasurfing: addressing waves on impenetrable metasurfaces,” IEEE Antennas Wirel. Propag. Lett. 10(1), 1499–1502 (2012).
  11. C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
    [Crossref]
  12. N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
    [Crossref] [PubMed]
  13. B. Zhu, K. Chen, N. Jia, L. Sun, J. M. Zhao, T. Jiang, and Y. J. Feng, “Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface,” Sci. Rep. 4(1), 4971 (2014).
    [Crossref]
  14. S. Liu, H. X. Xu, H. C. Zhang, and T. J. Cui, “Tunable ultrathin mantle cloak via varactor-diode-loaded metasurface,” Opt. Express 22(11), 13403–13417 (2014).
    [Crossref] [PubMed]
  15. H. X. Xu, G. M. Wang, T. Cai, J. Xiao, and Y. Q. Zhuang, “Tunable Pancharatnam-Berry metasurface for dynamical and high-efficiency anomalous reflection,” Opt. Express 24(24), 27836–27848 (2016).
    [Crossref] [PubMed]
  16. P. Pitchappa, C. P. Ho, P. Kropelnicki, N. Singh, D. Kwong, and C. Lee, “Micro-electro-mechanically switchable near infrared complementary metamaterial absorber,” Appl. Phys. Lett. 104(20), 201114 (2014).
    [Crossref]
  17. Z. Su, Q. Zhao, K. Song, X. Zhao, and J. Yin, “Electrically tunable metasurface based on Mie-type dielectric resonators,” Sci. Rep. 7, 43026 (2017).
    [Crossref] [PubMed]
  18. J. Chou, L. Parameswaran, B. Kimball, and M. Rothschild, “Electrically switchable diffractive waveplates with metasurface aligned liquid crystals,” Opt. Express 24(21), 24265–24273 (2016).
    [Crossref] [PubMed]
  19. K. P. Chen, S. C. Ye, C. Y. Yang, Z. H. Yang, W. Lee, and M. G. Sun, “Electrically tunable transmission of gold binary-grating metasurfaces integrated with liquid crystals,” Opt. Express 24(15), 16815–16821 (2016).
    [Crossref] [PubMed]
  20. H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable Terahertz Metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
    [Crossref] [PubMed]
  21. I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
    [Crossref] [PubMed]
  22. J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable Photonic Metamaterials,” Nano Lett. 11(5), 2142–2144 (2011).
    [Crossref] [PubMed]
  23. F. Ma, Y.-S. Lin, X. Zhang, and C. Lee, “Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array,” Light Sci. Appl. 3(5), 171 (2014).
    [Crossref]
  24. X. Chen, J. S. Gao, and B. N. Kang, “Achieving dynamic switchable filter based on a transmutable metasurface using SMA,” AIP Adv. 7(9), 095025 (2017).
    [Crossref]
  25. J. M. Jani, M. Leary, A. Subic, and M. A. Gibson, “A review of shape memory alloy research, applications and opportunities,” Mater. Des. 56(4), 1078–1113 (2014).
    [Crossref]
  26. A. Nespoli, S. Besseghini, S. Pittaccio, E. Villa, and S. Viscuso, “The high potential of shape memory alloys in developing miniature mechanical devices: A review on shape memory alloy mini-actuators,” Sensor. Actuat. A-Phys. 158(1), 149–160 (2010).
  27. G. F. Xu, N. C. Si, and Y. X. Li, “Rolling wearab ilities of different structural state CuZnAl shape memory alloys,” Chin. J. Nonferrous Met. 14(5), 825–830 (2004).
  28. Y. Bellouard, “Shape memory alloys for microsystems: A review from a material research perspective,” in Proceedings of the 7th European Symposium on Martensitic Transformations, G. Eggeler and G. Kostorz, ed. (Elsevier, 2008), pp. 582–589.
    [Crossref]
  29. M. Koyama, T. Sawaguchi, K. Ogawa, T. Kikuchi, and M. Murakami, “The effects of thermomechanical training treatment on the deformation characteristics of Fe-Mn-Si-Al alloys,” Mater. Sci. Eng. A 497(1–2), 353–357 (2008).
    [Crossref]
  30. G. F. Xu, “The effect of transformation temperature on dry sliding wearability of CuZnAl shape memory alloys,” Res. Stud. Foundry Equip. 23(6), 20–23 (2001).

2017 (2)

Z. Su, Q. Zhao, K. Song, X. Zhao, and J. Yin, “Electrically tunable metasurface based on Mie-type dielectric resonators,” Sci. Rep. 7, 43026 (2017).
[Crossref] [PubMed]

X. Chen, J. S. Gao, and B. N. Kang, “Achieving dynamic switchable filter based on a transmutable metasurface using SMA,” AIP Adv. 7(9), 095025 (2017).
[Crossref]

2016 (4)

2015 (1)

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro-and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

2014 (8)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4(1), 5935 (2014).
[Crossref] [PubMed]

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

P. Pitchappa, C. P. Ho, P. Kropelnicki, N. Singh, D. Kwong, and C. Lee, “Micro-electro-mechanically switchable near infrared complementary metamaterial absorber,” Appl. Phys. Lett. 104(20), 201114 (2014).
[Crossref]

B. Zhu, K. Chen, N. Jia, L. Sun, J. M. Zhao, T. Jiang, and Y. J. Feng, “Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface,” Sci. Rep. 4(1), 4971 (2014).
[Crossref]

S. Liu, H. X. Xu, H. C. Zhang, and T. J. Cui, “Tunable ultrathin mantle cloak via varactor-diode-loaded metasurface,” Opt. Express 22(11), 13403–13417 (2014).
[Crossref] [PubMed]

J. M. Jani, M. Leary, A. Subic, and M. A. Gibson, “A review of shape memory alloy research, applications and opportunities,” Mater. Des. 56(4), 1078–1113 (2014).
[Crossref]

F. Ma, Y.-S. Lin, X. Zhang, and C. Lee, “Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array,” Light Sci. Appl. 3(5), 171 (2014).
[Crossref]

2012 (3)

S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, “Metasurfing: addressing waves on impenetrable metasurfaces,” IEEE Antennas Wirel. Propag. Lett. 10(1), 1499–1502 (2012).

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

2011 (1)

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable Photonic Metamaterials,” Nano Lett. 11(5), 2142–2144 (2011).
[Crossref] [PubMed]

2010 (2)

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref] [PubMed]

A. Nespoli, S. Besseghini, S. Pittaccio, E. Villa, and S. Viscuso, “The high potential of shape memory alloys in developing miniature mechanical devices: A review on shape memory alloy mini-actuators,” Sensor. Actuat. A-Phys. 158(1), 149–160 (2010).

2009 (1)

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable Terahertz Metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[Crossref] [PubMed]

2008 (1)

M. Koyama, T. Sawaguchi, K. Ogawa, T. Kikuchi, and M. Murakami, “The effects of thermomechanical training treatment on the deformation characteristics of Fe-Mn-Si-Al alloys,” Mater. Sci. Eng. A 497(1–2), 353–357 (2008).
[Crossref]

2004 (2)

G. F. Xu, N. C. Si, and Y. X. Li, “Rolling wearab ilities of different structural state CuZnAl shape memory alloys,” Chin. J. Nonferrous Met. 14(5), 825–830 (2004).

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

2001 (2)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

G. F. Xu, “The effect of transformation temperature on dry sliding wearability of CuZnAl shape memory alloys,” Res. Stud. Foundry Equip. 23(6), 20–23 (2001).

Atwater, H. A.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref] [PubMed]

Averitt, R. D.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable Terahertz Metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[Crossref] [PubMed]

Aydin, K.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref] [PubMed]

Besseghini, S.

A. Nespoli, S. Besseghini, S. Pittaccio, E. Villa, and S. Viscuso, “The high potential of shape memory alloys in developing miniature mechanical devices: A review on shape memory alloy mini-actuators,” Sensor. Actuat. A-Phys. 158(1), 149–160 (2010).

Bhaskaran, M.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro-and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

Booth, J.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Bosiljevac, M.

S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, “Metasurfing: addressing waves on impenetrable metasurfaces,” IEEE Antennas Wirel. Propag. Lett. 10(1), 1499–1502 (2012).

Briggs, R. M.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref] [PubMed]

Cai, T.

Capasso, F.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Casaletti, M.

S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, “Metasurfing: addressing waves on impenetrable metasurfaces,” IEEE Antennas Wirel. Propag. Lett. 10(1), 1499–1502 (2012).

Chen, K.

B. Zhu, K. Chen, N. Jia, L. Sun, J. M. Zhao, T. Jiang, and Y. J. Feng, “Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface,” Sci. Rep. 4(1), 4971 (2014).
[Crossref]

Chen, K. P.

Chen, X.

X. Chen, J. S. Gao, and B. N. Kang, “Achieving dynamic switchable filter based on a transmutable metasurface using SMA,” AIP Adv. 7(9), 095025 (2017).
[Crossref]

Cheng, Q.

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4(1), 5935 (2014).
[Crossref] [PubMed]

Chou, J.

Chowdhury, D. R.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro-and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

Cui, T. J.

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4(1), 5935 (2014).
[Crossref] [PubMed]

S. Liu, H. X. Xu, H. C. Zhang, and T. J. Cui, “Tunable ultrathin mantle cloak via varactor-diode-loaded metasurface,” Opt. Express 22(11), 13403–13417 (2014).
[Crossref] [PubMed]

Dong, D. S.

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4(1), 5935 (2014).
[Crossref] [PubMed]

Fan, K.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable Terahertz Metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[Crossref] [PubMed]

Feng, Y. J.

B. Zhu, K. Chen, N. Jia, L. Sun, J. M. Zhao, T. Jiang, and Y. J. Feng, “Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface,” Sci. Rep. 4(1), 4971 (2014).
[Crossref]

Gao, J. S.

X. Chen, J. S. Gao, and B. N. Kang, “Achieving dynamic switchable filter based on a transmutable metasurface using SMA,” AIP Adv. 7(9), 095025 (2017).
[Crossref]

Gibson, M. A.

J. M. Jani, M. Leary, A. Subic, and M. A. Gibson, “A review of shape memory alloy research, applications and opportunities,” Mater. Des. 56(4), 1078–1113 (2014).
[Crossref]

Gordon, J. A.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Gutruf, P.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro-and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

Han, J.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Ho, C. P.

P. Pitchappa, C. P. Ho, P. Kropelnicki, N. Singh, D. Kwong, and C. Lee, “Micro-electro-mechanically switchable near infrared complementary metamaterial absorber,” Appl. Phys. Lett. 104(20), 201114 (2014).
[Crossref]

Holloway, C. L.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Huang, K.

L. Zhang, S. Mei, K. Huang, and C. Qiu, “Advances in full control of electromagnetic waves with metasurfaces,” Adv. Opt. Mater. 4(6), 818–833 (2016).
[Crossref]

Jani, J. M.

J. M. Jani, M. Leary, A. Subic, and M. A. Gibson, “A review of shape memory alloy research, applications and opportunities,” Mater. Des. 56(4), 1078–1113 (2014).
[Crossref]

Jia, N.

B. Zhu, K. Chen, N. Jia, L. Sun, J. M. Zhao, T. Jiang, and Y. J. Feng, “Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface,” Sci. Rep. 4(1), 4971 (2014).
[Crossref]

Jiang, L.

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable Photonic Metamaterials,” Nano Lett. 11(5), 2142–2144 (2011).
[Crossref] [PubMed]

Jiang, T.

B. Zhu, K. Chen, N. Jia, L. Sun, J. M. Zhao, T. Jiang, and Y. J. Feng, “Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface,” Sci. Rep. 4(1), 4971 (2014).
[Crossref]

Kang, B. N.

X. Chen, J. S. Gao, and B. N. Kang, “Achieving dynamic switchable filter based on a transmutable metasurface using SMA,” AIP Adv. 7(9), 095025 (2017).
[Crossref]

Kelaita, Y. A.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref] [PubMed]

Kenney, M.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Kikuchi, T.

M. Koyama, T. Sawaguchi, K. Ogawa, T. Kikuchi, and M. Murakami, “The effects of thermomechanical training treatment on the deformation characteristics of Fe-Mn-Si-Al alloys,” Mater. Sci. Eng. A 497(1–2), 353–357 (2008).
[Crossref]

Kimball, B.

Kivshar, Y. S.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Koyama, M.

M. Koyama, T. Sawaguchi, K. Ogawa, T. Kikuchi, and M. Murakami, “The effects of thermomechanical training treatment on the deformation characteristics of Fe-Mn-Si-Al alloys,” Mater. Sci. Eng. A 497(1–2), 353–357 (2008).
[Crossref]

Kropelnicki, P.

P. Pitchappa, C. P. Ho, P. Kropelnicki, N. Singh, D. Kwong, and C. Lee, “Micro-electro-mechanically switchable near infrared complementary metamaterial absorber,” Appl. Phys. Lett. 104(20), 201114 (2014).
[Crossref]

Kuester, E. F.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Kwong, D.

P. Pitchappa, C. P. Ho, P. Kropelnicki, N. Singh, D. Kwong, and C. Lee, “Micro-electro-mechanically switchable near infrared complementary metamaterial absorber,” Appl. Phys. Lett. 104(20), 201114 (2014).
[Crossref]

Leary, M.

J. M. Jani, M. Leary, A. Subic, and M. A. Gibson, “A review of shape memory alloy research, applications and opportunities,” Mater. Des. 56(4), 1078–1113 (2014).
[Crossref]

Lee, C.

P. Pitchappa, C. P. Ho, P. Kropelnicki, N. Singh, D. Kwong, and C. Lee, “Micro-electro-mechanically switchable near infrared complementary metamaterial absorber,” Appl. Phys. Lett. 104(20), 201114 (2014).
[Crossref]

F. Ma, Y.-S. Lin, X. Zhang, and C. Lee, “Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array,” Light Sci. Appl. 3(5), 171 (2014).
[Crossref]

Lee, W.

Li, Y. X.

G. F. Xu, N. C. Si, and Y. X. Li, “Rolling wearab ilities of different structural state CuZnAl shape memory alloys,” Chin. J. Nonferrous Met. 14(5), 825–830 (2004).

Lin, Y.-S.

F. Ma, Y.-S. Lin, X. Zhang, and C. Lee, “Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array,” Light Sci. Appl. 3(5), 171 (2014).
[Crossref]

Liu, L.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Liu, S.

Ma, F.

F. Ma, Y.-S. Lin, X. Zhang, and C. Lee, “Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array,” Light Sci. Appl. 3(5), 171 (2014).
[Crossref]

Maci, S.

S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, “Metasurfing: addressing waves on impenetrable metasurfaces,” IEEE Antennas Wirel. Propag. Lett. 10(1), 1499–1502 (2012).

Mei, S.

L. Zhang, S. Mei, K. Huang, and C. Qiu, “Advances in full control of electromagnetic waves with metasurfaces,” Adv. Opt. Mater. 4(6), 818–833 (2016).
[Crossref]

Minatti, G.

S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, “Metasurfing: addressing waves on impenetrable metasurfaces,” IEEE Antennas Wirel. Propag. Lett. 10(1), 1499–1502 (2012).

Murakami, M.

M. Koyama, T. Sawaguchi, K. Ogawa, T. Kikuchi, and M. Murakami, “The effects of thermomechanical training treatment on the deformation characteristics of Fe-Mn-Si-Al alloys,” Mater. Sci. Eng. A 497(1–2), 353–357 (2008).
[Crossref]

Nespoli, A.

A. Nespoli, S. Besseghini, S. Pittaccio, E. Villa, and S. Viscuso, “The high potential of shape memory alloys in developing miniature mechanical devices: A review on shape memory alloy mini-actuators,” Sensor. Actuat. A-Phys. 158(1), 149–160 (2010).

Nili, H.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro-and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

O’Hara, J.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Ogawa, K.

M. Koyama, T. Sawaguchi, K. Ogawa, T. Kikuchi, and M. Murakami, “The effects of thermomechanical training treatment on the deformation characteristics of Fe-Mn-Si-Al alloys,” Mater. Sci. Eng. A 497(1–2), 353–357 (2008).
[Crossref]

Ou, J. Y.

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable Photonic Metamaterials,” Nano Lett. 11(5), 2142–2144 (2011).
[Crossref] [PubMed]

Ouyang, C.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Padilla, W. J.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable Terahertz Metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[Crossref] [PubMed]

Parameswaran, L.

Pendry, J. B.

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Pitchappa, P.

P. Pitchappa, C. P. Ho, P. Kropelnicki, N. Singh, D. Kwong, and C. Lee, “Micro-electro-mechanically switchable near infrared complementary metamaterial absorber,” Appl. Phys. Lett. 104(20), 201114 (2014).
[Crossref]

Pittaccio, S.

A. Nespoli, S. Besseghini, S. Pittaccio, E. Villa, and S. Viscuso, “The high potential of shape memory alloys in developing miniature mechanical devices: A review on shape memory alloy mini-actuators,” Sensor. Actuat. A-Phys. 158(1), 149–160 (2010).

Plum, E.

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable Photonic Metamaterials,” Nano Lett. 11(5), 2142–2144 (2011).
[Crossref] [PubMed]

Pryce, I. M.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref] [PubMed]

Qiu, C.

L. Zhang, S. Mei, K. Huang, and C. Qiu, “Advances in full control of electromagnetic waves with metasurfaces,” Adv. Opt. Mater. 4(6), 818–833 (2016).
[Crossref]

Rothschild, M.

Sawaguchi, T.

M. Koyama, T. Sawaguchi, K. Ogawa, T. Kikuchi, and M. Murakami, “The effects of thermomechanical training treatment on the deformation characteristics of Fe-Mn-Si-Al alloys,” Mater. Sci. Eng. A 497(1–2), 353–357 (2008).
[Crossref]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Shah, C. M.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro-and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Shi, Y.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Si, N. C.

G. F. Xu, N. C. Si, and Y. X. Li, “Rolling wearab ilities of different structural state CuZnAl shape memory alloys,” Chin. J. Nonferrous Met. 14(5), 825–830 (2004).

Singh, N.

P. Pitchappa, C. P. Ho, P. Kropelnicki, N. Singh, D. Kwong, and C. Lee, “Micro-electro-mechanically switchable near infrared complementary metamaterial absorber,” Appl. Phys. Lett. 104(20), 201114 (2014).
[Crossref]

Smith, D. R.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Song, K.

Z. Su, Q. Zhao, K. Song, X. Zhao, and J. Yin, “Electrically tunable metasurface based on Mie-type dielectric resonators,” Sci. Rep. 7, 43026 (2017).
[Crossref] [PubMed]

Sriram, S.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro-and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

Strikwerda, A. C.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable Terahertz Metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[Crossref] [PubMed]

Su, X.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Su, Z.

Z. Su, Q. Zhao, K. Song, X. Zhao, and J. Yin, “Electrically tunable metasurface based on Mie-type dielectric resonators,” Sci. Rep. 7, 43026 (2017).
[Crossref] [PubMed]

Subic, A.

J. M. Jani, M. Leary, A. Subic, and M. A. Gibson, “A review of shape memory alloy research, applications and opportunities,” Mater. Des. 56(4), 1078–1113 (2014).
[Crossref]

Sun, L.

B. Zhu, K. Chen, N. Jia, L. Sun, J. M. Zhao, T. Jiang, and Y. J. Feng, “Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface,” Sci. Rep. 4(1), 4971 (2014).
[Crossref]

Sun, M. G.

Tao, H.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable Terahertz Metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[Crossref] [PubMed]

Villa, E.

A. Nespoli, S. Besseghini, S. Pittaccio, E. Villa, and S. Viscuso, “The high potential of shape memory alloys in developing miniature mechanical devices: A review on shape memory alloy mini-actuators,” Sensor. Actuat. A-Phys. 158(1), 149–160 (2010).

Viscuso, S.

A. Nespoli, S. Besseghini, S. Pittaccio, E. Villa, and S. Viscuso, “The high potential of shape memory alloys in developing miniature mechanical devices: A review on shape memory alloy mini-actuators,” Sensor. Actuat. A-Phys. 158(1), 149–160 (2010).

Walia, S.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro-and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

Wang, G. M.

Wang, K.

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4(1), 5935 (2014).
[Crossref] [PubMed]

Wiltshire, M. C.

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Withayachumnankul, W.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro-and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

Xiao, J.

Xu, G. F.

G. F. Xu, N. C. Si, and Y. X. Li, “Rolling wearab ilities of different structural state CuZnAl shape memory alloys,” Chin. J. Nonferrous Met. 14(5), 825–830 (2004).

G. F. Xu, “The effect of transformation temperature on dry sliding wearability of CuZnAl shape memory alloys,” Res. Stud. Foundry Equip. 23(6), 20–23 (2001).

Xu, H. X.

Xu, N.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Yang, C. Y.

Yang, Z. H.

Ye, S. C.

Yin, J.

Z. Su, Q. Zhao, K. Song, X. Zhao, and J. Yin, “Electrically tunable metasurface based on Mie-type dielectric resonators,” Sci. Rep. 7, 43026 (2017).
[Crossref] [PubMed]

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Zhang, H. C.

Zhang, L.

L. Zhang, S. Mei, K. Huang, and C. Qiu, “Advances in full control of electromagnetic waves with metasurfaces,” Adv. Opt. Mater. 4(6), 818–833 (2016).
[Crossref]

Zhang, S.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Zhang, W.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Zhang, X.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

F. Ma, Y.-S. Lin, X. Zhang, and C. Lee, “Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array,” Light Sci. Appl. 3(5), 171 (2014).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable Terahertz Metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[Crossref] [PubMed]

Zhao, J.

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4(1), 5935 (2014).
[Crossref] [PubMed]

Zhao, J. M.

B. Zhu, K. Chen, N. Jia, L. Sun, J. M. Zhao, T. Jiang, and Y. J. Feng, “Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface,” Sci. Rep. 4(1), 4971 (2014).
[Crossref]

Zhao, Q.

Z. Su, Q. Zhao, K. Song, X. Zhao, and J. Yin, “Electrically tunable metasurface based on Mie-type dielectric resonators,” Sci. Rep. 7, 43026 (2017).
[Crossref] [PubMed]

Zhao, X.

Z. Su, Q. Zhao, K. Song, X. Zhao, and J. Yin, “Electrically tunable metasurface based on Mie-type dielectric resonators,” Sci. Rep. 7, 43026 (2017).
[Crossref] [PubMed]

Zheludev, N. I.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable Photonic Metamaterials,” Nano Lett. 11(5), 2142–2144 (2011).
[Crossref] [PubMed]

Zhu, B.

B. Zhu, K. Chen, N. Jia, L. Sun, J. M. Zhao, T. Jiang, and Y. J. Feng, “Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface,” Sci. Rep. 4(1), 4971 (2014).
[Crossref]

Zhuang, Y. Q.

Adv. Mater. (1)

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

L. Zhang, S. Mei, K. Huang, and C. Qiu, “Advances in full control of electromagnetic waves with metasurfaces,” Adv. Opt. Mater. 4(6), 818–833 (2016).
[Crossref]

AIP Adv. (1)

X. Chen, J. S. Gao, and B. N. Kang, “Achieving dynamic switchable filter based on a transmutable metasurface using SMA,” AIP Adv. 7(9), 095025 (2017).
[Crossref]

Appl. Phys. Lett. (1)

P. Pitchappa, C. P. Ho, P. Kropelnicki, N. Singh, D. Kwong, and C. Lee, “Micro-electro-mechanically switchable near infrared complementary metamaterial absorber,” Appl. Phys. Lett. 104(20), 201114 (2014).
[Crossref]

Appl. Phys. Rev. (1)

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro-and nano-scales,” Appl. Phys. Rev. 2(1), 011303 (2015).
[Crossref]

Chin. J. Nonferrous Met. (1)

G. F. Xu, N. C. Si, and Y. X. Li, “Rolling wearab ilities of different structural state CuZnAl shape memory alloys,” Chin. J. Nonferrous Met. 14(5), 825–830 (2004).

IEEE Antennas Propag. Mag. (1)

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (1)

S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, “Metasurfing: addressing waves on impenetrable metasurfaces,” IEEE Antennas Wirel. Propag. Lett. 10(1), 1499–1502 (2012).

Light Sci. Appl. (1)

F. Ma, Y.-S. Lin, X. Zhang, and C. Lee, “Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array,” Light Sci. Appl. 3(5), 171 (2014).
[Crossref]

Mater. Des. (1)

J. M. Jani, M. Leary, A. Subic, and M. A. Gibson, “A review of shape memory alloy research, applications and opportunities,” Mater. Des. 56(4), 1078–1113 (2014).
[Crossref]

Mater. Sci. Eng. A (1)

M. Koyama, T. Sawaguchi, K. Ogawa, T. Kikuchi, and M. Murakami, “The effects of thermomechanical training treatment on the deformation characteristics of Fe-Mn-Si-Al alloys,” Mater. Sci. Eng. A 497(1–2), 353–357 (2008).
[Crossref]

Nano Lett. (2)

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref] [PubMed]

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable Photonic Metamaterials,” Nano Lett. 11(5), 2142–2144 (2011).
[Crossref] [PubMed]

Nat. Mater. (2)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Opt. Express (4)

Phys. Rev. Lett. (1)

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable Terahertz Metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[Crossref] [PubMed]

Res. Stud. Foundry Equip. (1)

G. F. Xu, “The effect of transformation temperature on dry sliding wearability of CuZnAl shape memory alloys,” Res. Stud. Foundry Equip. 23(6), 20–23 (2001).

Sci. Rep. (3)

Z. Su, Q. Zhao, K. Song, X. Zhao, and J. Yin, “Electrically tunable metasurface based on Mie-type dielectric resonators,” Sci. Rep. 7, 43026 (2017).
[Crossref] [PubMed]

B. Zhu, K. Chen, N. Jia, L. Sun, J. M. Zhao, T. Jiang, and Y. J. Feng, “Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface,” Sci. Rep. 4(1), 4971 (2014).
[Crossref]

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4(1), 5935 (2014).
[Crossref] [PubMed]

Science (2)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Sensor. Actuat. A-Phys. (1)

A. Nespoli, S. Besseghini, S. Pittaccio, E. Villa, and S. Viscuso, “The high potential of shape memory alloys in developing miniature mechanical devices: A review on shape memory alloy mini-actuators,” Sensor. Actuat. A-Phys. 158(1), 149–160 (2010).

Other (3)

Y. Bellouard, “Shape memory alloys for microsystems: A review from a material research perspective,” in Proceedings of the 7th European Symposium on Martensitic Transformations, G. Eggeler and G. Kostorz, ed. (Elsevier, 2008), pp. 582–589.
[Crossref]

N. Engheta and R. W. Ziolkowski, Metamaterials: physics and engineering explorations (Wiley-IEEE, 2006).

W. Cai and V. Shalaev, Optical metamaterials: fundamentals and applications (Springer, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) 3D schematic of the original unit cell, where T = 12mm, a = 9.5mm, b = 1mm, c = 9mm, d = 0.5mm and t = 0.5mm, the impinging plane wave propagates along Z direction. The equivalent circuit models of the unit cell for (b) TE polarization and (c) TM polarization.
Fig. 2
Fig. 2 Frequency response predicted by equivalent circuit models and obtained from full-wave simulations.
Fig. 3
Fig. 3 (a) 3D schematic of the original unit cell with a rotating angel of ω and the corresponding equivalent circuit models for (b) TE polarization and (c) TM polarization. (d) Frequency response obtained from full-wave simulation with different values of ω for both polarizations.
Fig. 4
Fig. 4 (a) 3D schematic of the optimized unit cell with a rotating angel of ω, where T = 12mm, a = 10.64mm, b = 1.44mm, c = 7.08mm, d = 0.5mm, e = 4mm, f = 3.8mm, g = 1.15mm, h = 1.5mm, i = 1.1mm and t = 0.5mm, the impinging plane wave propagates along Z direction. (b) Frequency response obtained from full-wave simulation with different values of ω for both polarizations.
Fig. 5
Fig. 5 The morphologies of the unit cells with external stimulations of (a) high temperature and (b) low temperature.
Fig. 6
Fig. 6 (a) The experimental setup for measurement in the microwave chamber. (b) Measurement results of the sample under different temperature for both polarizations.
Fig. 7
Fig. 7 Distributions of the surface currents for TE polarization under normal incidence when ω = 10° (a, c) and ω = 45° (b, d) at 13.3GHz (a, b) and 17.2GHz (c, d).
Fig. 8
Fig. 8 Distributions of the surface currents for TM polarization under normal incidence when ω = 10° (a, c) and ω = 45° (b, d) at 13.3GHz (a, b) and 17.2GHz (c, d)

Metrics