Abstract

Using two beams of femtosecond laser pulses linearly polarized in different directions, we demonstrate a new phenomenon of eliminating the periodic subwavelength surface structures recorded on Fe-based metallic glass. It is found that such femtosecond laser erasing process can be efficiently controlled by varying the temporal delay between two laser beams while maintaining the amorphous properties of the sample surface. The underlying mechanisms are substantially attributed to the transient enhancement of the surface mobility of the sample by two laser-matter interactions. These investigations may be helpful in high precision manipulation of the material surface for rewritable applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Direct fabricating large-area nanotriangle structure arrays on tungsten surface by nonlinear lithography of two femtosecond laser beams

Qi Liu, Nan Zhang, Jianjun Yang, Hongzhen Qiao, and Chunlei Guo
Opt. Express 26(9) 11718-11727 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Y. Tang, J. Yang, B. Zhao, M. Wang, and X. Zhu, “Control of periodic ripples growth on metals by femtosecond laser ellipticity,” Opt. Express 20(23), 25826–25833 (2012).
    [Crossref] [PubMed]
  2. A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
    [Crossref]
  3. J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
    [Crossref]
  4. A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
    [Crossref]
  5. Z. Ou, M. Huang, and F. Zhao, “Colorizing pure copper surface by ultrafast laser-induced near-subwavelength ripples,” Opt. Express 22(14), 17254–17265 (2014).
    [Crossref] [PubMed]
  6. Y. Yang, J. Yang, C. Liang, H. Wang, X. Zhu, and N. Zhang, “Surface microstructuring of Ti plates by femtosecond lasers in liquid ambiences: a new approach to improving biocompatibility,” Opt. Express 17(23), 21124–21133 (2009).
    [Crossref] [PubMed]
  7. A. Y. Vorobyev and C. Guo, “Laser turns silicon superwicking,” Opt. Express 18(7), 6455–6460 (2010).
    [Crossref] [PubMed]
  8. A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
    [Crossref]
  9. C. E. Athanasiou, M. O. Hongler, and Y. Bellouard, “Unraveling brittle-fracture statistics from intermittent patterns formed during femtosecond laser exposure,” Phys. Rev. Appl. 8(5), 054013 (2017).
    [Crossref]
  10. J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-induced periodic surface structures—a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 1–15 (2017).
    [Crossref]
  11. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009).
    [Crossref]
  12. T. Y. Hwang and C. Guo, “Angular effects of nanostructure-covered femtosecond laser induced periodic surface structures on metals,” J. Appl. Phys. 108(7), 073523 (2010).
    [Crossref]
  13. Y. Yang, J. Yang, L. Xue, and Y. Guo, “Surface patterning on periodicity of femtosecond laser-induced ripples,” Appl. Phys. Lett. 97(14), 141101 (2010).
    [Crossref]
  14. J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108(3), 034903 (2010).
    [Crossref]
  15. H. Qiao, J. Yang, F. Wang, Y. Yang, and J. Sun, “Femtosecond laser direct writing of large-area two-dimensional metallic photonic crystal structures on tungsten surfaces,” Opt. Express 23(20), 26617–26627 (2015).
    [Crossref] [PubMed]
  16. J. Cong, J. Yang, B. Zhao, and X. Xu, “Fabricating subwavelength dot-matrix surface structures of molybdenum by transient correlated actions of two-color femtosecond laser beams,” Opt. Express 23(4), 5357–5367 (2015).
    [Crossref] [PubMed]
  17. R. S. Taylor, C. Hnatovsky, E. Simova, P. P. Rajeev, D. M. Rayner, and P. B. Corkum, “Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass,” Opt. Lett. 32(19), 2888–2890 (2007).
    [Crossref] [PubMed]
  18. F. Zimmermann, A. Plech, S. Richter, A. Tünnermann, and S. Nolte, “On the rewriting of ultrashort pulse-induced nanogratings,” Opt. Lett. 40(9), 2049–2052 (2015).
    [Crossref] [PubMed]
  19. G. Dumitru, V. Romano, H. P. Weber, M. Sentis, and W. Marine, “Femtosecond ablation of ultrahard materials,” Appl. Phys., A Mater. Sci. Process. 74(6), 729–739 (2002).
    [Crossref]
  20. W. Jia, Z. Peng, Z. Wang, X. Ni, and C. Wang, “The effect of femtosecond laser micromachining on the surface characteristics and subsurface microstructure of amorphous FeCuNbSiB alloy,” Appl. Surf. Sci. 253(3), 1299–1303 (2006).
    [Crossref]
  21. Q. J. Zhu, X. H. Wang, S. Y. Qu, and Z. D. Zou, “Microstructure and wear properties of laser clad Fe based amorphous composite coatings,” Surf. Eng. 25(3), 201–205 (2013).
    [Crossref]
  22. W. Zhang, G. Cheng, X. D. Hui, and Q. Feng, “Abnormal ripple patterns with enhanced regularity and continuity in a bulk metallic glass induced by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 115(4), 1451–1455 (2014).
    [Crossref]
  23. F. Ma, J. Yang, X. Zhu, C. Liang, and H. Wang, “Femtosecond laser-induced concentric ring microstructures on Zr-based metallic glass,” Appl. Surf. Sci. 256(11), 3653–3660 (2010).
    [Crossref]
  24. O. Salihoglu, U. Kürüm, H. G. Yaglioglu, A. Elmali, and A. Aydinli, “Femtosecond laser crystallization of amorphous Ge,” J. Appl. Phys. 109(12), 123108 (2011).
    [Crossref]
  25. M. Sorescu, L. Tsakalakos, and T. Sands, “Fluence effects on the magnetic properties of Fe81B13.5Si3.5C2 metallic glass produced by pulsed laser deposition,” J. Appl. Phys. 85(9), 6652–6654 (1999).
    [Crossref]
  26. H. Zhang, Y. Feng, D. Nieto, E. García-Lecina, C. McDaniel, J. Díaz-Marcos, M. T. Flores-Arias, G. M. O’Cononor, M. D. Baró, E. Pellicer, and J. Sort, “Sub-micron magnetic patterns and local variations of adhesion force induced in non-ferromagnetic amorphous steel by femtosecond pulsed laser irradiation,” Appl. Surf. Sci. 371, 399–406 (2016).
    [Crossref]
  27. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
    [Crossref] [PubMed]
  28. C. R. Cao, Y. M. Lu, H. Y. Bai, and W. H. Wang, “High surface mobility and fast surface enhanced crystallization of metallic glass,” Appl. Phys. Lett. 107(14), 141606 (2015).
    [Crossref]
  29. J. Wang and C. Guo, “Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals,” Appl. Phys. Lett. 87(25), 251914 (2005).
    [Crossref]
  30. G. Du, Q. Yang, F. Chen, Y. Wu, Y. Ou, Y. Lu, and X. Hou, “Ultrafast thermalization dynamics in two-layer metal films excited by temporally shaped femtosecond laser,” Int. J. Heat Mass Transfer 87, 341–346 (2015).
    [Crossref]
  31. Y. Ren, J. K. Chen, and Y. Zhang, “Optical properties and thermal response of copper films induced by ultrashort-pulsed lasers,” J. Appl. Phys. 110(11), 113102 (2011).
    [Crossref]
  32. P. Garoche and J. Bigot, “Comparison between amorphous and crystalline phases of copper-zirconium alloys by specific-heat measurements,” Phys. Rev. B 28(12), 6886–6895 (1983).
    [Crossref]
  33. S. Marinier and L. J. Lewis, “Femtosecond laser ablation of CuxZr1−x bulk metallic glasses: A molecular dynamics study,” Phys. Rev. B 92(18), 184108 (2015).
    [Crossref]
  34. Y. Zhang, L. Liu, G. Zou, N. Chen, A. Wu, H. Bai, and Y. Zhou, “Femtosecond laser-induced phase transformations in amorphous Cu77Ni6Sn10P7 alloy,” J. Appl. Phys. 117(2), 023109 (2015).
    [Crossref]

2017 (2)

C. E. Athanasiou, M. O. Hongler, and Y. Bellouard, “Unraveling brittle-fracture statistics from intermittent patterns formed during femtosecond laser exposure,” Phys. Rev. Appl. 8(5), 054013 (2017).
[Crossref]

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-induced periodic surface structures—a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 1–15 (2017).
[Crossref]

2016 (1)

H. Zhang, Y. Feng, D. Nieto, E. García-Lecina, C. McDaniel, J. Díaz-Marcos, M. T. Flores-Arias, G. M. O’Cononor, M. D. Baró, E. Pellicer, and J. Sort, “Sub-micron magnetic patterns and local variations of adhesion force induced in non-ferromagnetic amorphous steel by femtosecond pulsed laser irradiation,” Appl. Surf. Sci. 371, 399–406 (2016).
[Crossref]

2015 (7)

C. R. Cao, Y. M. Lu, H. Y. Bai, and W. H. Wang, “High surface mobility and fast surface enhanced crystallization of metallic glass,” Appl. Phys. Lett. 107(14), 141606 (2015).
[Crossref]

G. Du, Q. Yang, F. Chen, Y. Wu, Y. Ou, Y. Lu, and X. Hou, “Ultrafast thermalization dynamics in two-layer metal films excited by temporally shaped femtosecond laser,” Int. J. Heat Mass Transfer 87, 341–346 (2015).
[Crossref]

S. Marinier and L. J. Lewis, “Femtosecond laser ablation of CuxZr1−x bulk metallic glasses: A molecular dynamics study,” Phys. Rev. B 92(18), 184108 (2015).
[Crossref]

Y. Zhang, L. Liu, G. Zou, N. Chen, A. Wu, H. Bai, and Y. Zhou, “Femtosecond laser-induced phase transformations in amorphous Cu77Ni6Sn10P7 alloy,” J. Appl. Phys. 117(2), 023109 (2015).
[Crossref]

J. Cong, J. Yang, B. Zhao, and X. Xu, “Fabricating subwavelength dot-matrix surface structures of molybdenum by transient correlated actions of two-color femtosecond laser beams,” Opt. Express 23(4), 5357–5367 (2015).
[Crossref] [PubMed]

F. Zimmermann, A. Plech, S. Richter, A. Tünnermann, and S. Nolte, “On the rewriting of ultrashort pulse-induced nanogratings,” Opt. Lett. 40(9), 2049–2052 (2015).
[Crossref] [PubMed]

H. Qiao, J. Yang, F. Wang, Y. Yang, and J. Sun, “Femtosecond laser direct writing of large-area two-dimensional metallic photonic crystal structures on tungsten surfaces,” Opt. Express 23(20), 26617–26627 (2015).
[Crossref] [PubMed]

2014 (2)

Z. Ou, M. Huang, and F. Zhao, “Colorizing pure copper surface by ultrafast laser-induced near-subwavelength ripples,” Opt. Express 22(14), 17254–17265 (2014).
[Crossref] [PubMed]

W. Zhang, G. Cheng, X. D. Hui, and Q. Feng, “Abnormal ripple patterns with enhanced regularity and continuity in a bulk metallic glass induced by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 115(4), 1451–1455 (2014).
[Crossref]

2013 (2)

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
[Crossref]

Q. J. Zhu, X. H. Wang, S. Y. Qu, and Z. D. Zou, “Microstructure and wear properties of laser clad Fe based amorphous composite coatings,” Surf. Eng. 25(3), 201–205 (2013).
[Crossref]

2012 (1)

2011 (2)

Y. Ren, J. K. Chen, and Y. Zhang, “Optical properties and thermal response of copper films induced by ultrashort-pulsed lasers,” J. Appl. Phys. 110(11), 113102 (2011).
[Crossref]

O. Salihoglu, U. Kürüm, H. G. Yaglioglu, A. Elmali, and A. Aydinli, “Femtosecond laser crystallization of amorphous Ge,” J. Appl. Phys. 109(12), 123108 (2011).
[Crossref]

2010 (5)

F. Ma, J. Yang, X. Zhu, C. Liang, and H. Wang, “Femtosecond laser-induced concentric ring microstructures on Zr-based metallic glass,” Appl. Surf. Sci. 256(11), 3653–3660 (2010).
[Crossref]

T. Y. Hwang and C. Guo, “Angular effects of nanostructure-covered femtosecond laser induced periodic surface structures on metals,” J. Appl. Phys. 108(7), 073523 (2010).
[Crossref]

Y. Yang, J. Yang, L. Xue, and Y. Guo, “Surface patterning on periodicity of femtosecond laser-induced ripples,” Appl. Phys. Lett. 97(14), 141101 (2010).
[Crossref]

J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108(3), 034903 (2010).
[Crossref]

A. Y. Vorobyev and C. Guo, “Laser turns silicon superwicking,” Opt. Express 18(7), 6455–6460 (2010).
[Crossref] [PubMed]

2009 (2)

Y. Yang, J. Yang, C. Liang, H. Wang, X. Zhu, and N. Zhang, “Surface microstructuring of Ti plates by femtosecond lasers in liquid ambiences: a new approach to improving biocompatibility,” Opt. Express 17(23), 21124–21133 (2009).
[Crossref] [PubMed]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009).
[Crossref]

2008 (1)

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[Crossref]

2007 (1)

2006 (1)

W. Jia, Z. Peng, Z. Wang, X. Ni, and C. Wang, “The effect of femtosecond laser micromachining on the surface characteristics and subsurface microstructure of amorphous FeCuNbSiB alloy,” Appl. Surf. Sci. 253(3), 1299–1303 (2006).
[Crossref]

2005 (1)

J. Wang and C. Guo, “Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals,” Appl. Phys. Lett. 87(25), 251914 (2005).
[Crossref]

2003 (2)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[Crossref]

2002 (2)

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
[Crossref]

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, and W. Marine, “Femtosecond ablation of ultrahard materials,” Appl. Phys., A Mater. Sci. Process. 74(6), 729–739 (2002).
[Crossref]

1999 (1)

M. Sorescu, L. Tsakalakos, and T. Sands, “Fluence effects on the magnetic properties of Fe81B13.5Si3.5C2 metallic glass produced by pulsed laser deposition,” J. Appl. Phys. 85(9), 6652–6654 (1999).
[Crossref]

1983 (1)

P. Garoche and J. Bigot, “Comparison between amorphous and crystalline phases of copper-zirconium alloys by specific-heat measurements,” Phys. Rev. B 28(12), 6886–6895 (1983).
[Crossref]

Athanasiou, C. E.

C. E. Athanasiou, M. O. Hongler, and Y. Bellouard, “Unraveling brittle-fracture statistics from intermittent patterns formed during femtosecond laser exposure,” Phys. Rev. Appl. 8(5), 054013 (2017).
[Crossref]

Aydinli, A.

O. Salihoglu, U. Kürüm, H. G. Yaglioglu, A. Elmali, and A. Aydinli, “Femtosecond laser crystallization of amorphous Ge,” J. Appl. Phys. 109(12), 123108 (2011).
[Crossref]

Bai, H.

Y. Zhang, L. Liu, G. Zou, N. Chen, A. Wu, H. Bai, and Y. Zhou, “Femtosecond laser-induced phase transformations in amorphous Cu77Ni6Sn10P7 alloy,” J. Appl. Phys. 117(2), 023109 (2015).
[Crossref]

Bai, H. Y.

C. R. Cao, Y. M. Lu, H. Y. Bai, and W. H. Wang, “High surface mobility and fast surface enhanced crystallization of metallic glass,” Appl. Phys. Lett. 107(14), 141606 (2015).
[Crossref]

Baró, M. D.

H. Zhang, Y. Feng, D. Nieto, E. García-Lecina, C. McDaniel, J. Díaz-Marcos, M. T. Flores-Arias, G. M. O’Cononor, M. D. Baró, E. Pellicer, and J. Sort, “Sub-micron magnetic patterns and local variations of adhesion force induced in non-ferromagnetic amorphous steel by femtosecond pulsed laser irradiation,” Appl. Surf. Sci. 371, 399–406 (2016).
[Crossref]

Bellouard, Y.

C. E. Athanasiou, M. O. Hongler, and Y. Bellouard, “Unraveling brittle-fracture statistics from intermittent patterns formed during femtosecond laser exposure,” Phys. Rev. Appl. 8(5), 054013 (2017).
[Crossref]

Bigot, J.

P. Garoche and J. Bigot, “Comparison between amorphous and crystalline phases of copper-zirconium alloys by specific-heat measurements,” Phys. Rev. B 28(12), 6886–6895 (1983).
[Crossref]

Bonse, J.

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-induced periodic surface structures—a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 1–15 (2017).
[Crossref]

J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108(3), 034903 (2010).
[Crossref]

Borowiec, A.

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[Crossref]

Cao, C. R.

C. R. Cao, Y. M. Lu, H. Y. Bai, and W. H. Wang, “High surface mobility and fast surface enhanced crystallization of metallic glass,” Appl. Phys. Lett. 107(14), 141606 (2015).
[Crossref]

Chen, F.

G. Du, Q. Yang, F. Chen, Y. Wu, Y. Ou, Y. Lu, and X. Hou, “Ultrafast thermalization dynamics in two-layer metal films excited by temporally shaped femtosecond laser,” Int. J. Heat Mass Transfer 87, 341–346 (2015).
[Crossref]

Chen, J. K.

Y. Ren, J. K. Chen, and Y. Zhang, “Optical properties and thermal response of copper films induced by ultrashort-pulsed lasers,” J. Appl. Phys. 110(11), 113102 (2011).
[Crossref]

Chen, N.

Y. Zhang, L. Liu, G. Zou, N. Chen, A. Wu, H. Bai, and Y. Zhou, “Femtosecond laser-induced phase transformations in amorphous Cu77Ni6Sn10P7 alloy,” J. Appl. Phys. 117(2), 023109 (2015).
[Crossref]

Cheng, G.

W. Zhang, G. Cheng, X. D. Hui, and Q. Feng, “Abnormal ripple patterns with enhanced regularity and continuity in a bulk metallic glass induced by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 115(4), 1451–1455 (2014).
[Crossref]

Cheng, Y.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009).
[Crossref]

Cong, J.

Corkum, P. B.

Costache, F.

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
[Crossref]

Díaz-Marcos, J.

H. Zhang, Y. Feng, D. Nieto, E. García-Lecina, C. McDaniel, J. Díaz-Marcos, M. T. Flores-Arias, G. M. O’Cononor, M. D. Baró, E. Pellicer, and J. Sort, “Sub-micron magnetic patterns and local variations of adhesion force induced in non-ferromagnetic amorphous steel by femtosecond pulsed laser irradiation,” Appl. Surf. Sci. 371, 399–406 (2016).
[Crossref]

Du, G.

G. Du, Q. Yang, F. Chen, Y. Wu, Y. Ou, Y. Lu, and X. Hou, “Ultrafast thermalization dynamics in two-layer metal films excited by temporally shaped femtosecond laser,” Int. J. Heat Mass Transfer 87, 341–346 (2015).
[Crossref]

Dumitru, G.

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, and W. Marine, “Femtosecond ablation of ultrahard materials,” Appl. Phys., A Mater. Sci. Process. 74(6), 729–739 (2002).
[Crossref]

Elmali, A.

O. Salihoglu, U. Kürüm, H. G. Yaglioglu, A. Elmali, and A. Aydinli, “Femtosecond laser crystallization of amorphous Ge,” J. Appl. Phys. 109(12), 123108 (2011).
[Crossref]

Feng, Q.

W. Zhang, G. Cheng, X. D. Hui, and Q. Feng, “Abnormal ripple patterns with enhanced regularity and continuity in a bulk metallic glass induced by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 115(4), 1451–1455 (2014).
[Crossref]

Feng, Y.

H. Zhang, Y. Feng, D. Nieto, E. García-Lecina, C. McDaniel, J. Díaz-Marcos, M. T. Flores-Arias, G. M. O’Cononor, M. D. Baró, E. Pellicer, and J. Sort, “Sub-micron magnetic patterns and local variations of adhesion force induced in non-ferromagnetic amorphous steel by femtosecond pulsed laser irradiation,” Appl. Surf. Sci. 371, 399–406 (2016).
[Crossref]

Flores-Arias, M. T.

H. Zhang, Y. Feng, D. Nieto, E. García-Lecina, C. McDaniel, J. Díaz-Marcos, M. T. Flores-Arias, G. M. O’Cononor, M. D. Baró, E. Pellicer, and J. Sort, “Sub-micron magnetic patterns and local variations of adhesion force induced in non-ferromagnetic amorphous steel by femtosecond pulsed laser irradiation,” Appl. Surf. Sci. 371, 399–406 (2016).
[Crossref]

García-Lecina, E.

H. Zhang, Y. Feng, D. Nieto, E. García-Lecina, C. McDaniel, J. Díaz-Marcos, M. T. Flores-Arias, G. M. O’Cononor, M. D. Baró, E. Pellicer, and J. Sort, “Sub-micron magnetic patterns and local variations of adhesion force induced in non-ferromagnetic amorphous steel by femtosecond pulsed laser irradiation,” Appl. Surf. Sci. 371, 399–406 (2016).
[Crossref]

Garoche, P.

P. Garoche and J. Bigot, “Comparison between amorphous and crystalline phases of copper-zirconium alloys by specific-heat measurements,” Phys. Rev. B 28(12), 6886–6895 (1983).
[Crossref]

Guo, C.

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
[Crossref]

T. Y. Hwang and C. Guo, “Angular effects of nanostructure-covered femtosecond laser induced periodic surface structures on metals,” J. Appl. Phys. 108(7), 073523 (2010).
[Crossref]

A. Y. Vorobyev and C. Guo, “Laser turns silicon superwicking,” Opt. Express 18(7), 6455–6460 (2010).
[Crossref] [PubMed]

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[Crossref]

J. Wang and C. Guo, “Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals,” Appl. Phys. Lett. 87(25), 251914 (2005).
[Crossref]

Guo, Y.

Y. Yang, J. Yang, L. Xue, and Y. Guo, “Surface patterning on periodicity of femtosecond laser-induced ripples,” Appl. Phys. Lett. 97(14), 141101 (2010).
[Crossref]

Haugen, H. K.

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[Crossref]

Henyk, M.

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
[Crossref]

Hirao, K.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Hnatovsky, C.

Höhm, S.

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-induced periodic surface structures—a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 1–15 (2017).
[Crossref]

Hongler, M. O.

C. E. Athanasiou, M. O. Hongler, and Y. Bellouard, “Unraveling brittle-fracture statistics from intermittent patterns formed during femtosecond laser exposure,” Phys. Rev. Appl. 8(5), 054013 (2017).
[Crossref]

Hou, X.

G. Du, Q. Yang, F. Chen, Y. Wu, Y. Ou, Y. Lu, and X. Hou, “Ultrafast thermalization dynamics in two-layer metal films excited by temporally shaped femtosecond laser,” Int. J. Heat Mass Transfer 87, 341–346 (2015).
[Crossref]

Huang, M.

Z. Ou, M. Huang, and F. Zhao, “Colorizing pure copper surface by ultrafast laser-induced near-subwavelength ripples,” Opt. Express 22(14), 17254–17265 (2014).
[Crossref] [PubMed]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009).
[Crossref]

Hui, X. D.

W. Zhang, G. Cheng, X. D. Hui, and Q. Feng, “Abnormal ripple patterns with enhanced regularity and continuity in a bulk metallic glass induced by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 115(4), 1451–1455 (2014).
[Crossref]

Hwang, T. Y.

T. Y. Hwang and C. Guo, “Angular effects of nanostructure-covered femtosecond laser induced periodic surface structures on metals,” J. Appl. Phys. 108(7), 073523 (2010).
[Crossref]

Jia, W.

W. Jia, Z. Peng, Z. Wang, X. Ni, and C. Wang, “The effect of femtosecond laser micromachining on the surface characteristics and subsurface microstructure of amorphous FeCuNbSiB alloy,” Appl. Surf. Sci. 253(3), 1299–1303 (2006).
[Crossref]

Kazansky, P. G.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Kirner, S. V.

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-induced periodic surface structures—a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 1–15 (2017).
[Crossref]

Krüger, J.

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-induced periodic surface structures—a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 1–15 (2017).
[Crossref]

J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108(3), 034903 (2010).
[Crossref]

Kürüm, U.

O. Salihoglu, U. Kürüm, H. G. Yaglioglu, A. Elmali, and A. Aydinli, “Femtosecond laser crystallization of amorphous Ge,” J. Appl. Phys. 109(12), 123108 (2011).
[Crossref]

Lewis, L. J.

S. Marinier and L. J. Lewis, “Femtosecond laser ablation of CuxZr1−x bulk metallic glasses: A molecular dynamics study,” Phys. Rev. B 92(18), 184108 (2015).
[Crossref]

Liang, C.

F. Ma, J. Yang, X. Zhu, C. Liang, and H. Wang, “Femtosecond laser-induced concentric ring microstructures on Zr-based metallic glass,” Appl. Surf. Sci. 256(11), 3653–3660 (2010).
[Crossref]

Y. Yang, J. Yang, C. Liang, H. Wang, X. Zhu, and N. Zhang, “Surface microstructuring of Ti plates by femtosecond lasers in liquid ambiences: a new approach to improving biocompatibility,” Opt. Express 17(23), 21124–21133 (2009).
[Crossref] [PubMed]

Liu, L.

Y. Zhang, L. Liu, G. Zou, N. Chen, A. Wu, H. Bai, and Y. Zhou, “Femtosecond laser-induced phase transformations in amorphous Cu77Ni6Sn10P7 alloy,” J. Appl. Phys. 117(2), 023109 (2015).
[Crossref]

Lu, Y.

G. Du, Q. Yang, F. Chen, Y. Wu, Y. Ou, Y. Lu, and X. Hou, “Ultrafast thermalization dynamics in two-layer metal films excited by temporally shaped femtosecond laser,” Int. J. Heat Mass Transfer 87, 341–346 (2015).
[Crossref]

Lu, Y. M.

C. R. Cao, Y. M. Lu, H. Y. Bai, and W. H. Wang, “High surface mobility and fast surface enhanced crystallization of metallic glass,” Appl. Phys. Lett. 107(14), 141606 (2015).
[Crossref]

Ma, F.

F. Ma, J. Yang, X. Zhu, C. Liang, and H. Wang, “Femtosecond laser-induced concentric ring microstructures on Zr-based metallic glass,” Appl. Surf. Sci. 256(11), 3653–3660 (2010).
[Crossref]

Marine, W.

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, and W. Marine, “Femtosecond ablation of ultrahard materials,” Appl. Phys., A Mater. Sci. Process. 74(6), 729–739 (2002).
[Crossref]

Marinier, S.

S. Marinier and L. J. Lewis, “Femtosecond laser ablation of CuxZr1−x bulk metallic glasses: A molecular dynamics study,” Phys. Rev. B 92(18), 184108 (2015).
[Crossref]

McDaniel, C.

H. Zhang, Y. Feng, D. Nieto, E. García-Lecina, C. McDaniel, J. Díaz-Marcos, M. T. Flores-Arias, G. M. O’Cononor, M. D. Baró, E. Pellicer, and J. Sort, “Sub-micron magnetic patterns and local variations of adhesion force induced in non-ferromagnetic amorphous steel by femtosecond pulsed laser irradiation,” Appl. Surf. Sci. 371, 399–406 (2016).
[Crossref]

Ni, X.

W. Jia, Z. Peng, Z. Wang, X. Ni, and C. Wang, “The effect of femtosecond laser micromachining on the surface characteristics and subsurface microstructure of amorphous FeCuNbSiB alloy,” Appl. Surf. Sci. 253(3), 1299–1303 (2006).
[Crossref]

Nieto, D.

H. Zhang, Y. Feng, D. Nieto, E. García-Lecina, C. McDaniel, J. Díaz-Marcos, M. T. Flores-Arias, G. M. O’Cononor, M. D. Baró, E. Pellicer, and J. Sort, “Sub-micron magnetic patterns and local variations of adhesion force induced in non-ferromagnetic amorphous steel by femtosecond pulsed laser irradiation,” Appl. Surf. Sci. 371, 399–406 (2016).
[Crossref]

Nolte, S.

O’Cononor, G. M.

H. Zhang, Y. Feng, D. Nieto, E. García-Lecina, C. McDaniel, J. Díaz-Marcos, M. T. Flores-Arias, G. M. O’Cononor, M. D. Baró, E. Pellicer, and J. Sort, “Sub-micron magnetic patterns and local variations of adhesion force induced in non-ferromagnetic amorphous steel by femtosecond pulsed laser irradiation,” Appl. Surf. Sci. 371, 399–406 (2016).
[Crossref]

Ou, Y.

G. Du, Q. Yang, F. Chen, Y. Wu, Y. Ou, Y. Lu, and X. Hou, “Ultrafast thermalization dynamics in two-layer metal films excited by temporally shaped femtosecond laser,” Int. J. Heat Mass Transfer 87, 341–346 (2015).
[Crossref]

Ou, Z.

Pandelov, S. V.

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
[Crossref]

Pellicer, E.

H. Zhang, Y. Feng, D. Nieto, E. García-Lecina, C. McDaniel, J. Díaz-Marcos, M. T. Flores-Arias, G. M. O’Cononor, M. D. Baró, E. Pellicer, and J. Sort, “Sub-micron magnetic patterns and local variations of adhesion force induced in non-ferromagnetic amorphous steel by femtosecond pulsed laser irradiation,” Appl. Surf. Sci. 371, 399–406 (2016).
[Crossref]

Peng, Z.

W. Jia, Z. Peng, Z. Wang, X. Ni, and C. Wang, “The effect of femtosecond laser micromachining on the surface characteristics and subsurface microstructure of amorphous FeCuNbSiB alloy,” Appl. Surf. Sci. 253(3), 1299–1303 (2006).
[Crossref]

Plech, A.

Qiao, H.

Qiu, J.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Qu, S. Y.

Q. J. Zhu, X. H. Wang, S. Y. Qu, and Z. D. Zou, “Microstructure and wear properties of laser clad Fe based amorphous composite coatings,” Surf. Eng. 25(3), 201–205 (2013).
[Crossref]

Rajeev, P. P.

Rayner, D. M.

Reif, J.

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
[Crossref]

Ren, Y.

Y. Ren, J. K. Chen, and Y. Zhang, “Optical properties and thermal response of copper films induced by ultrashort-pulsed lasers,” J. Appl. Phys. 110(11), 113102 (2011).
[Crossref]

Richter, S.

Romano, V.

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, and W. Marine, “Femtosecond ablation of ultrahard materials,” Appl. Phys., A Mater. Sci. Process. 74(6), 729–739 (2002).
[Crossref]

Rosenfeld, A.

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-induced periodic surface structures—a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 1–15 (2017).
[Crossref]

Salihoglu, O.

O. Salihoglu, U. Kürüm, H. G. Yaglioglu, A. Elmali, and A. Aydinli, “Femtosecond laser crystallization of amorphous Ge,” J. Appl. Phys. 109(12), 123108 (2011).
[Crossref]

Sands, T.

M. Sorescu, L. Tsakalakos, and T. Sands, “Fluence effects on the magnetic properties of Fe81B13.5Si3.5C2 metallic glass produced by pulsed laser deposition,” J. Appl. Phys. 85(9), 6652–6654 (1999).
[Crossref]

Sentis, M.

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, and W. Marine, “Femtosecond ablation of ultrahard materials,” Appl. Phys., A Mater. Sci. Process. 74(6), 729–739 (2002).
[Crossref]

Shimotsuma, Y.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Simova, E.

Sorescu, M.

M. Sorescu, L. Tsakalakos, and T. Sands, “Fluence effects on the magnetic properties of Fe81B13.5Si3.5C2 metallic glass produced by pulsed laser deposition,” J. Appl. Phys. 85(9), 6652–6654 (1999).
[Crossref]

Sort, J.

H. Zhang, Y. Feng, D. Nieto, E. García-Lecina, C. McDaniel, J. Díaz-Marcos, M. T. Flores-Arias, G. M. O’Cononor, M. D. Baró, E. Pellicer, and J. Sort, “Sub-micron magnetic patterns and local variations of adhesion force induced in non-ferromagnetic amorphous steel by femtosecond pulsed laser irradiation,” Appl. Surf. Sci. 371, 399–406 (2016).
[Crossref]

Sun, J.

Tang, Y.

Taylor, R. S.

Tsakalakos, L.

M. Sorescu, L. Tsakalakos, and T. Sands, “Fluence effects on the magnetic properties of Fe81B13.5Si3.5C2 metallic glass produced by pulsed laser deposition,” J. Appl. Phys. 85(9), 6652–6654 (1999).
[Crossref]

Tünnermann, A.

Vorobyev, A. Y.

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
[Crossref]

A. Y. Vorobyev and C. Guo, “Laser turns silicon superwicking,” Opt. Express 18(7), 6455–6460 (2010).
[Crossref] [PubMed]

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[Crossref]

Wang, C.

W. Jia, Z. Peng, Z. Wang, X. Ni, and C. Wang, “The effect of femtosecond laser micromachining on the surface characteristics and subsurface microstructure of amorphous FeCuNbSiB alloy,” Appl. Surf. Sci. 253(3), 1299–1303 (2006).
[Crossref]

Wang, F.

Wang, H.

F. Ma, J. Yang, X. Zhu, C. Liang, and H. Wang, “Femtosecond laser-induced concentric ring microstructures on Zr-based metallic glass,” Appl. Surf. Sci. 256(11), 3653–3660 (2010).
[Crossref]

Y. Yang, J. Yang, C. Liang, H. Wang, X. Zhu, and N. Zhang, “Surface microstructuring of Ti plates by femtosecond lasers in liquid ambiences: a new approach to improving biocompatibility,” Opt. Express 17(23), 21124–21133 (2009).
[Crossref] [PubMed]

Wang, J.

J. Wang and C. Guo, “Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals,” Appl. Phys. Lett. 87(25), 251914 (2005).
[Crossref]

Wang, M.

Wang, W. H.

C. R. Cao, Y. M. Lu, H. Y. Bai, and W. H. Wang, “High surface mobility and fast surface enhanced crystallization of metallic glass,” Appl. Phys. Lett. 107(14), 141606 (2015).
[Crossref]

Wang, X. H.

Q. J. Zhu, X. H. Wang, S. Y. Qu, and Z. D. Zou, “Microstructure and wear properties of laser clad Fe based amorphous composite coatings,” Surf. Eng. 25(3), 201–205 (2013).
[Crossref]

Wang, Z.

W. Jia, Z. Peng, Z. Wang, X. Ni, and C. Wang, “The effect of femtosecond laser micromachining on the surface characteristics and subsurface microstructure of amorphous FeCuNbSiB alloy,” Appl. Surf. Sci. 253(3), 1299–1303 (2006).
[Crossref]

Weber, H. P.

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, and W. Marine, “Femtosecond ablation of ultrahard materials,” Appl. Phys., A Mater. Sci. Process. 74(6), 729–739 (2002).
[Crossref]

Wu, A.

Y. Zhang, L. Liu, G. Zou, N. Chen, A. Wu, H. Bai, and Y. Zhou, “Femtosecond laser-induced phase transformations in amorphous Cu77Ni6Sn10P7 alloy,” J. Appl. Phys. 117(2), 023109 (2015).
[Crossref]

Wu, Y.

G. Du, Q. Yang, F. Chen, Y. Wu, Y. Ou, Y. Lu, and X. Hou, “Ultrafast thermalization dynamics in two-layer metal films excited by temporally shaped femtosecond laser,” Int. J. Heat Mass Transfer 87, 341–346 (2015).
[Crossref]

Xu, N.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009).
[Crossref]

Xu, X.

Xu, Z.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009).
[Crossref]

Xue, L.

Y. Yang, J. Yang, L. Xue, and Y. Guo, “Surface patterning on periodicity of femtosecond laser-induced ripples,” Appl. Phys. Lett. 97(14), 141101 (2010).
[Crossref]

Yaglioglu, H. G.

O. Salihoglu, U. Kürüm, H. G. Yaglioglu, A. Elmali, and A. Aydinli, “Femtosecond laser crystallization of amorphous Ge,” J. Appl. Phys. 109(12), 123108 (2011).
[Crossref]

Yang, J.

Yang, Q.

G. Du, Q. Yang, F. Chen, Y. Wu, Y. Ou, Y. Lu, and X. Hou, “Ultrafast thermalization dynamics in two-layer metal films excited by temporally shaped femtosecond laser,” Int. J. Heat Mass Transfer 87, 341–346 (2015).
[Crossref]

Yang, Y.

Zhang, H.

H. Zhang, Y. Feng, D. Nieto, E. García-Lecina, C. McDaniel, J. Díaz-Marcos, M. T. Flores-Arias, G. M. O’Cononor, M. D. Baró, E. Pellicer, and J. Sort, “Sub-micron magnetic patterns and local variations of adhesion force induced in non-ferromagnetic amorphous steel by femtosecond pulsed laser irradiation,” Appl. Surf. Sci. 371, 399–406 (2016).
[Crossref]

Zhang, N.

Zhang, W.

W. Zhang, G. Cheng, X. D. Hui, and Q. Feng, “Abnormal ripple patterns with enhanced regularity and continuity in a bulk metallic glass induced by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 115(4), 1451–1455 (2014).
[Crossref]

Zhang, Y.

Y. Zhang, L. Liu, G. Zou, N. Chen, A. Wu, H. Bai, and Y. Zhou, “Femtosecond laser-induced phase transformations in amorphous Cu77Ni6Sn10P7 alloy,” J. Appl. Phys. 117(2), 023109 (2015).
[Crossref]

Y. Ren, J. K. Chen, and Y. Zhang, “Optical properties and thermal response of copper films induced by ultrashort-pulsed lasers,” J. Appl. Phys. 110(11), 113102 (2011).
[Crossref]

Zhao, B.

Zhao, F.

Z. Ou, M. Huang, and F. Zhao, “Colorizing pure copper surface by ultrafast laser-induced near-subwavelength ripples,” Opt. Express 22(14), 17254–17265 (2014).
[Crossref] [PubMed]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009).
[Crossref]

Zhou, Y.

Y. Zhang, L. Liu, G. Zou, N. Chen, A. Wu, H. Bai, and Y. Zhou, “Femtosecond laser-induced phase transformations in amorphous Cu77Ni6Sn10P7 alloy,” J. Appl. Phys. 117(2), 023109 (2015).
[Crossref]

Zhu, Q. J.

Q. J. Zhu, X. H. Wang, S. Y. Qu, and Z. D. Zou, “Microstructure and wear properties of laser clad Fe based amorphous composite coatings,” Surf. Eng. 25(3), 201–205 (2013).
[Crossref]

Zhu, X.

Zimmermann, F.

Zou, G.

Y. Zhang, L. Liu, G. Zou, N. Chen, A. Wu, H. Bai, and Y. Zhou, “Femtosecond laser-induced phase transformations in amorphous Cu77Ni6Sn10P7 alloy,” J. Appl. Phys. 117(2), 023109 (2015).
[Crossref]

Zou, Z. D.

Q. J. Zhu, X. H. Wang, S. Y. Qu, and Z. D. Zou, “Microstructure and wear properties of laser clad Fe based amorphous composite coatings,” Surf. Eng. 25(3), 201–205 (2013).
[Crossref]

Appl. Phys. Lett. (5)

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[Crossref]

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[Crossref]

Y. Yang, J. Yang, L. Xue, and Y. Guo, “Surface patterning on periodicity of femtosecond laser-induced ripples,” Appl. Phys. Lett. 97(14), 141101 (2010).
[Crossref]

C. R. Cao, Y. M. Lu, H. Y. Bai, and W. H. Wang, “High surface mobility and fast surface enhanced crystallization of metallic glass,” Appl. Phys. Lett. 107(14), 141606 (2015).
[Crossref]

J. Wang and C. Guo, “Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals,” Appl. Phys. Lett. 87(25), 251914 (2005).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

W. Zhang, G. Cheng, X. D. Hui, and Q. Feng, “Abnormal ripple patterns with enhanced regularity and continuity in a bulk metallic glass induced by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 115(4), 1451–1455 (2014).
[Crossref]

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, and W. Marine, “Femtosecond ablation of ultrahard materials,” Appl. Phys., A Mater. Sci. Process. 74(6), 729–739 (2002).
[Crossref]

Appl. Surf. Sci. (4)

W. Jia, Z. Peng, Z. Wang, X. Ni, and C. Wang, “The effect of femtosecond laser micromachining on the surface characteristics and subsurface microstructure of amorphous FeCuNbSiB alloy,” Appl. Surf. Sci. 253(3), 1299–1303 (2006).
[Crossref]

H. Zhang, Y. Feng, D. Nieto, E. García-Lecina, C. McDaniel, J. Díaz-Marcos, M. T. Flores-Arias, G. M. O’Cononor, M. D. Baró, E. Pellicer, and J. Sort, “Sub-micron magnetic patterns and local variations of adhesion force induced in non-ferromagnetic amorphous steel by femtosecond pulsed laser irradiation,” Appl. Surf. Sci. 371, 399–406 (2016).
[Crossref]

F. Ma, J. Yang, X. Zhu, C. Liang, and H. Wang, “Femtosecond laser-induced concentric ring microstructures on Zr-based metallic glass,” Appl. Surf. Sci. 256(11), 3653–3660 (2010).
[Crossref]

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-induced periodic surface structures—a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 1–15 (2017).
[Crossref]

Int. J. Heat Mass Transfer (1)

G. Du, Q. Yang, F. Chen, Y. Wu, Y. Ou, Y. Lu, and X. Hou, “Ultrafast thermalization dynamics in two-layer metal films excited by temporally shaped femtosecond laser,” Int. J. Heat Mass Transfer 87, 341–346 (2015).
[Crossref]

J. Appl. Phys. (6)

Y. Ren, J. K. Chen, and Y. Zhang, “Optical properties and thermal response of copper films induced by ultrashort-pulsed lasers,” J. Appl. Phys. 110(11), 113102 (2011).
[Crossref]

Y. Zhang, L. Liu, G. Zou, N. Chen, A. Wu, H. Bai, and Y. Zhou, “Femtosecond laser-induced phase transformations in amorphous Cu77Ni6Sn10P7 alloy,” J. Appl. Phys. 117(2), 023109 (2015).
[Crossref]

O. Salihoglu, U. Kürüm, H. G. Yaglioglu, A. Elmali, and A. Aydinli, “Femtosecond laser crystallization of amorphous Ge,” J. Appl. Phys. 109(12), 123108 (2011).
[Crossref]

M. Sorescu, L. Tsakalakos, and T. Sands, “Fluence effects on the magnetic properties of Fe81B13.5Si3.5C2 metallic glass produced by pulsed laser deposition,” J. Appl. Phys. 85(9), 6652–6654 (1999).
[Crossref]

T. Y. Hwang and C. Guo, “Angular effects of nanostructure-covered femtosecond laser induced periodic surface structures on metals,” J. Appl. Phys. 108(7), 073523 (2010).
[Crossref]

J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108(3), 034903 (2010).
[Crossref]

Laser Photonics Rev. (1)

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Phys. Rev. Appl. (1)

C. E. Athanasiou, M. O. Hongler, and Y. Bellouard, “Unraveling brittle-fracture statistics from intermittent patterns formed during femtosecond laser exposure,” Phys. Rev. Appl. 8(5), 054013 (2017).
[Crossref]

Phys. Rev. B (3)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009).
[Crossref]

P. Garoche and J. Bigot, “Comparison between amorphous and crystalline phases of copper-zirconium alloys by specific-heat measurements,” Phys. Rev. B 28(12), 6886–6895 (1983).
[Crossref]

S. Marinier and L. J. Lewis, “Femtosecond laser ablation of CuxZr1−x bulk metallic glasses: A molecular dynamics study,” Phys. Rev. B 92(18), 184108 (2015).
[Crossref]

Phys. Rev. Lett. (1)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Surf. Eng. (1)

Q. J. Zhu, X. H. Wang, S. Y. Qu, and Z. D. Zou, “Microstructure and wear properties of laser clad Fe based amorphous composite coatings,” Surf. Eng. 25(3), 201–205 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic diagram for controllable erasing the subwavelength ripple structures on Fe-based metallic glass surface using two beams of femtosecond laser pulses with variable time delays. E1 and E2 represent directions of the linear polarization of two femtosecond laser beams, respectively.
Fig. 2
Fig. 2 Surface morphologies of Fe-based metallic glass irradiated by femtosecond laser pulses. (a) Regular ripple structures induced by the single beam femtosecond laser pulses. (b)-(d) Surface structures induced by two beams of femtosecond laser pulses at the time delays of Δt = 0 ps, 15 ps and 30 ps, respectively. In these images, the red double-head arrows (E, E1 and E2) represent the polarization directions of the incident laser pulses, and the interaction angle between the polarization directions of two time-delayed laser beams is φ = 60°. Each laser pulse has an identical energy fluence of 0.02 J/cm2. A black single-head arrow S denotes the scanning direction of the sample at a speed of 1 mm/s. The scale bar in (a) is applied to all these images.
Fig. 3
Fig. 3 (a)-(d) Erasing the subwavelength periodic ripple structures on Fe-based metallic glass surface via two steps: First the periodic ripple structures are induced by the single beam femtosecond laser pulses; then the ripple-covered area is re-irradiated by two laser beams at variable time delays. During the second step the intersection angle between two laser polarization directions is φ = 60°, and the time delay between two laser beams is indicated in the bottom right corner of each picture. (e) Rewriting periodic ripple structures on the erased surface region by re-employing the single beam femtosecond laser pulses.
Fig. 4
Fig. 4 Measured dependences of the laser erasing effect on the time delay of femtosecond laser pulses during the second step, where the intersection angle φ between the two linear polarization directions is given with different values.
Fig. 5
Fig. 5 XRD measurement results for the surface of Fe-based metallic glass with and without femtosecond laser treatments.

Tables (1)

Tables Icon

Table 1 Measured erased surface area (μm2) when different time delay Δt was employed during the second step, the intersection angle between the two linear polarization directions is given by φ = 60°.

Metrics