Abstract

A new method for a long-wave infrared (LWIR), picosecond difference frequency generation (DFG) source using one near-infrared laser and a Raman shifter is experimentally tested and characterized. The signal seed for DFG is a Stokes pulse generated via transient stimulated Raman scattering in a nonlinear medium with a Raman frequency in the 2–20 µm range. A study of the dynamics of the transient Raman regime in liquid C6D6 has shown that the efficiency of Stokes production can be increased and the central wavelength can be controlled by chirping the pump pulse in order to compensate for chirping caused by self-phase modulation. High energy, ≥3 µJ, picosecond pulses at 10.6 µm have been generated in a GaSe crystal pumped by 1 mJ pulses of 1060 nm light from a Nd:glass laser.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-power picosecond mid-infrared optical parametric amplifier for infrared Raman spectroscopy

John C. Deàk, Lawrence K. Iwaki, and Dana D. Dlott
Opt. Lett. 22(23) 1796-1798 (1997)

Generation of infrared radiation by stimulated Raman scattering in para-hydrogen crystal at 5 K

Mizuho Fushitani, Susumu Kuma, Yuuki Miyamoto, Hiroyuki Katsuki, Tomonari Wakabayashi, Takamasa Momose, and Andrey F. Vilesov
Opt. Lett. 28(1) 37-39 (2003)

Millijoule-level picosecond mid-infrared optical parametric amplifier based on MgO-doped periodically poled lithium niobate

Hongyan Xu, Feng Yang, Ying Chen, Ke Liu, Shifeng Du, Nan Zong, Jing Yang, Yong Bo, Qinjun Peng, Jingyuan Zhang, Dafu Cui, and Zuyan Xu
Appl. Opt. 54(9) 2489-2494 (2015)

References

  • View by:
  • |
  • |
  • |

  1. V. Petrov, “Parametric down-conversion devices: The coverage of the mid-infrared spectral range by solid-state laser sources,” Opt. Mater. 34, 536–554 (2012).
    [Crossref]
  2. T. Dahinten, U. Plodereder, A. Seilmeier, K. L. Vodopyanov, K. R. Allakhverdiev, and Z. A. Ibragimov, “Infrared pulses of 1 picosecond duration tunable between 4 µ m and 18 µ m,” IEEE J. Quantum Electron. 29(7), 2245–2250 (1993).
    [Crossref]
  3. I. M. Bayanov, R. Danielius, P. Heinz, and A. Seilmeier, “Intense subpicosecond pulses tunable between 4 µ m and 20 µ m generated by an all-solid-state laser system,” Opt. Commun. 113, 99–104 (1994).
    [Crossref]
  4. C. Schriever, S. Lochbrunner, P. Krok, and E. Riedle, “Tunable pulses from below 300 to 970 nm with durations down to 14 fs based on a 2 MHz ytterbium-doped fiber system,” Opt. Lett. 33(2), 192–194 (2008).
    [Crossref] [PubMed]
  5. G. I. Petrov, K. L. Vodopyanov, and V. V. Yakovlev, “Tunable mid-infrared MHz-rate picosecond pulses generated by optical parametric amplification of white-light continuum in GaSe,” Opt. Lett. 32(5), 515–517 (2007).
    [Crossref] [PubMed]
  6. T. T. Basiev, A. A. Sobol, P. G. Zverev, V. V. Osiko, and R. C. Powell, “Comparative spontaneous Raman spectroscopy of crystals for Raman lasers,” Appl. Opt. 38(3), 594–598 (1999).
    [Crossref]
  7. E. O. Ammann and C. D. Decker, “0.9-W Raman oscillator,” J. Appl. Phys. 48(5), 1973–1975 (1977).
    [Crossref]
  8. S. R. J. Brueck and H. Kildal, “Efficient Raman frequency conversion in liquid nitrogen,” IEEE J. Quantum Electron. 18(3), 310–312 (1982).
    [Crossref]
  9. S. L. Shapiro, J. A. Giordmaine, and K. W. Wecht, “Stimulated Raman and Brillouin scattering with picosecond light pulses,” Phys. Rev. Lett. 19(19), 1093–1095 (1967).
    [Crossref]
  10. S. Ya. Tochitsky, J. J. Pigeon, D. J. Haberberger, C. Gong, and C. Joshi, “Amplification of multi-gigawatt 3 ps pulses in an atmospheric CO2 laser using ac Stark effect,” Opt. Express 20(13), 13762–13768 (2012).
    [Crossref] [PubMed]
  11. “Tunable Lasers,” Topics in Applied Physics. Ed. L. F. Mollenauer and J. C. White, eds. (Springer-Verlag, 1987) vol. 59.
    [Crossref]
  12. H. M. Pask, “The design and operation of solid-state Raman lasers,” Progress in Quantum Electronics 27, 3–56 (2003).
    [Crossref]
  13. S. Melin and J. W. Nibler, “A nonlinear optical experiment: stimulated Raman scattering in benzene and deuterated benzene,” J. Chem. Educ. 80(10), 1187–1190 (2003).
    [Crossref]
  14. M. J. Colles and J. E. Griffiths, “Relative and absolute Raman scattering cross sections in liquids,” J. Chem. Phys. 56(7), 3384–3391 (1972).
    [Crossref]
  15. D. von der Linde, M. Maier, and W. Kaiser, “Quantitative investigations of the stimulated Raman effect using subnanosecond light pulses,” Phys. Rev. 178(1), 11–17 (1969).
    [Crossref]
  16. R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, “Theory of stokes pulse shapes in transient stimulated Raman scattering,” Phys. Rev. A 2(1), 60–72 (1970).
    [Crossref]
  17. M. J. Colles, “Efficient stimulated Raman scattering from picosecond pulses,” Opt. Commun. 1(4), 169–172 (1969).
    [Crossref]
  18. P. G. Zverev, J. T. Murray, R. C. Powell, R. J. Reeves, and T. T. Basiev, “Stimulated Raman scattering of picosecond pulses in barium nitrate crystals,” Opt. Commun. 97(1–2), 59–64 (1993).
    [Crossref]
  19. A. Couairon, E. Brambilla, T. Corti, D. Majus, O. de J. Ramirez-Gongora, and M. Kolesik, “Practitioner’s guide to laser pulse propagation models and simulation,” Eur. Phys. J. Spec. Top. 199, 5–76 (2011).
    [Crossref]
  20. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001).
  21. L. Yu, M. Huang, M. Chen, W. Chen, W. Huang, and Z. Zhu, “Quasi-discrete Hankel transform,” Opt. Lett. 23(6), 409–411 (1998).
    [Crossref]
  22. M. Guizar-Sicarios and J. C. Gutierrez-Vega, “Computation of quasi-discrete Hankel transforms of integer order for propagating optical wave fields,” J. Opt. Soc. Am. A 21(1), 53–58 (2004).
    [Crossref]
  23. R. W. Boyd and G. L. Fischer, “Nonlinear Optical Materials,” in Encyclopedia of Materials: Science and Technology (Elsevier Ltd., 2001).
    [Crossref]
  24. K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B 116(3), 617–622 (2013).
    [Crossref]
  25. J. M. Dudley, G. Gentry, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  26. W. Zinth and W. Kaiser, “Frequency shifts in stimulated Raman scattering,” Opt. Commun. 32(3), 507–511 (1980).
    [Crossref]

2013 (1)

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B 116(3), 617–622 (2013).
[Crossref]

2012 (2)

V. Petrov, “Parametric down-conversion devices: The coverage of the mid-infrared spectral range by solid-state laser sources,” Opt. Mater. 34, 536–554 (2012).
[Crossref]

S. Ya. Tochitsky, J. J. Pigeon, D. J. Haberberger, C. Gong, and C. Joshi, “Amplification of multi-gigawatt 3 ps pulses in an atmospheric CO2 laser using ac Stark effect,” Opt. Express 20(13), 13762–13768 (2012).
[Crossref] [PubMed]

2011 (1)

A. Couairon, E. Brambilla, T. Corti, D. Majus, O. de J. Ramirez-Gongora, and M. Kolesik, “Practitioner’s guide to laser pulse propagation models and simulation,” Eur. Phys. J. Spec. Top. 199, 5–76 (2011).
[Crossref]

2008 (1)

2007 (1)

2006 (1)

J. M. Dudley, G. Gentry, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

2004 (1)

2003 (2)

H. M. Pask, “The design and operation of solid-state Raman lasers,” Progress in Quantum Electronics 27, 3–56 (2003).
[Crossref]

S. Melin and J. W. Nibler, “A nonlinear optical experiment: stimulated Raman scattering in benzene and deuterated benzene,” J. Chem. Educ. 80(10), 1187–1190 (2003).
[Crossref]

1999 (1)

1998 (1)

1994 (1)

I. M. Bayanov, R. Danielius, P. Heinz, and A. Seilmeier, “Intense subpicosecond pulses tunable between 4 µ m and 20 µ m generated by an all-solid-state laser system,” Opt. Commun. 113, 99–104 (1994).
[Crossref]

1993 (2)

T. Dahinten, U. Plodereder, A. Seilmeier, K. L. Vodopyanov, K. R. Allakhverdiev, and Z. A. Ibragimov, “Infrared pulses of 1 picosecond duration tunable between 4 µ m and 18 µ m,” IEEE J. Quantum Electron. 29(7), 2245–2250 (1993).
[Crossref]

P. G. Zverev, J. T. Murray, R. C. Powell, R. J. Reeves, and T. T. Basiev, “Stimulated Raman scattering of picosecond pulses in barium nitrate crystals,” Opt. Commun. 97(1–2), 59–64 (1993).
[Crossref]

1982 (1)

S. R. J. Brueck and H. Kildal, “Efficient Raman frequency conversion in liquid nitrogen,” IEEE J. Quantum Electron. 18(3), 310–312 (1982).
[Crossref]

1980 (1)

W. Zinth and W. Kaiser, “Frequency shifts in stimulated Raman scattering,” Opt. Commun. 32(3), 507–511 (1980).
[Crossref]

1977 (1)

E. O. Ammann and C. D. Decker, “0.9-W Raman oscillator,” J. Appl. Phys. 48(5), 1973–1975 (1977).
[Crossref]

1972 (1)

M. J. Colles and J. E. Griffiths, “Relative and absolute Raman scattering cross sections in liquids,” J. Chem. Phys. 56(7), 3384–3391 (1972).
[Crossref]

1970 (1)

R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, “Theory of stokes pulse shapes in transient stimulated Raman scattering,” Phys. Rev. A 2(1), 60–72 (1970).
[Crossref]

1969 (2)

M. J. Colles, “Efficient stimulated Raman scattering from picosecond pulses,” Opt. Commun. 1(4), 169–172 (1969).
[Crossref]

D. von der Linde, M. Maier, and W. Kaiser, “Quantitative investigations of the stimulated Raman effect using subnanosecond light pulses,” Phys. Rev. 178(1), 11–17 (1969).
[Crossref]

1967 (1)

S. L. Shapiro, J. A. Giordmaine, and K. W. Wecht, “Stimulated Raman and Brillouin scattering with picosecond light pulses,” Phys. Rev. Lett. 19(19), 1093–1095 (1967).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001).

Allakhverdiev, K. R.

T. Dahinten, U. Plodereder, A. Seilmeier, K. L. Vodopyanov, K. R. Allakhverdiev, and Z. A. Ibragimov, “Infrared pulses of 1 picosecond duration tunable between 4 µ m and 18 µ m,” IEEE J. Quantum Electron. 29(7), 2245–2250 (1993).
[Crossref]

Ammann, E. O.

E. O. Ammann and C. D. Decker, “0.9-W Raman oscillator,” J. Appl. Phys. 48(5), 1973–1975 (1977).
[Crossref]

Basiev, T. T.

T. T. Basiev, A. A. Sobol, P. G. Zverev, V. V. Osiko, and R. C. Powell, “Comparative spontaneous Raman spectroscopy of crystals for Raman lasers,” Appl. Opt. 38(3), 594–598 (1999).
[Crossref]

P. G. Zverev, J. T. Murray, R. C. Powell, R. J. Reeves, and T. T. Basiev, “Stimulated Raman scattering of picosecond pulses in barium nitrate crystals,” Opt. Commun. 97(1–2), 59–64 (1993).
[Crossref]

Bayanov, I. M.

I. M. Bayanov, R. Danielius, P. Heinz, and A. Seilmeier, “Intense subpicosecond pulses tunable between 4 µ m and 20 µ m generated by an all-solid-state laser system,” Opt. Commun. 113, 99–104 (1994).
[Crossref]

Betsis, S. C.

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B 116(3), 617–622 (2013).
[Crossref]

Bloembergen, N.

R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, “Theory of stokes pulse shapes in transient stimulated Raman scattering,” Phys. Rev. A 2(1), 60–72 (1970).
[Crossref]

Boyd, R. W.

R. W. Boyd and G. L. Fischer, “Nonlinear Optical Materials,” in Encyclopedia of Materials: Science and Technology (Elsevier Ltd., 2001).
[Crossref]

Brambilla, E.

A. Couairon, E. Brambilla, T. Corti, D. Majus, O. de J. Ramirez-Gongora, and M. Kolesik, “Practitioner’s guide to laser pulse propagation models and simulation,” Eur. Phys. J. Spec. Top. 199, 5–76 (2011).
[Crossref]

Brueck, S. R. J.

S. R. J. Brueck and H. Kildal, “Efficient Raman frequency conversion in liquid nitrogen,” IEEE J. Quantum Electron. 18(3), 310–312 (1982).
[Crossref]

Carman, R. L.

R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, “Theory of stokes pulse shapes in transient stimulated Raman scattering,” Phys. Rev. A 2(1), 60–72 (1970).
[Crossref]

Chen, M.

Chen, W.

Coen, S.

J. M. Dudley, G. Gentry, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Colles, M. J.

M. J. Colles and J. E. Griffiths, “Relative and absolute Raman scattering cross sections in liquids,” J. Chem. Phys. 56(7), 3384–3391 (1972).
[Crossref]

M. J. Colles, “Efficient stimulated Raman scattering from picosecond pulses,” Opt. Commun. 1(4), 169–172 (1969).
[Crossref]

Corti, T.

A. Couairon, E. Brambilla, T. Corti, D. Majus, O. de J. Ramirez-Gongora, and M. Kolesik, “Practitioner’s guide to laser pulse propagation models and simulation,” Eur. Phys. J. Spec. Top. 199, 5–76 (2011).
[Crossref]

Couairon, A.

A. Couairon, E. Brambilla, T. Corti, D. Majus, O. de J. Ramirez-Gongora, and M. Kolesik, “Practitioner’s guide to laser pulse propagation models and simulation,” Eur. Phys. J. Spec. Top. 199, 5–76 (2011).
[Crossref]

Dahinten, T.

T. Dahinten, U. Plodereder, A. Seilmeier, K. L. Vodopyanov, K. R. Allakhverdiev, and Z. A. Ibragimov, “Infrared pulses of 1 picosecond duration tunable between 4 µ m and 18 µ m,” IEEE J. Quantum Electron. 29(7), 2245–2250 (1993).
[Crossref]

Danielius, R.

I. M. Bayanov, R. Danielius, P. Heinz, and A. Seilmeier, “Intense subpicosecond pulses tunable between 4 µ m and 20 µ m generated by an all-solid-state laser system,” Opt. Commun. 113, 99–104 (1994).
[Crossref]

Decker, C. D.

E. O. Ammann and C. D. Decker, “0.9-W Raman oscillator,” J. Appl. Phys. 48(5), 1973–1975 (1977).
[Crossref]

Dudley, J. M.

J. M. Dudley, G. Gentry, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Fischer, G. L.

R. W. Boyd and G. L. Fischer, “Nonlinear Optical Materials,” in Encyclopedia of Materials: Science and Technology (Elsevier Ltd., 2001).
[Crossref]

Gentry, G.

J. M. Dudley, G. Gentry, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Giordmaine, J. A.

S. L. Shapiro, J. A. Giordmaine, and K. W. Wecht, “Stimulated Raman and Brillouin scattering with picosecond light pulses,” Phys. Rev. Lett. 19(19), 1093–1095 (1967).
[Crossref]

Gong, C.

Griffiths, J. E.

M. J. Colles and J. E. Griffiths, “Relative and absolute Raman scattering cross sections in liquids,” J. Chem. Phys. 56(7), 3384–3391 (1972).
[Crossref]

Guizar-Sicarios, M.

Gutierrez-Vega, J. C.

Haberberger, D. J.

Heinz, P.

I. M. Bayanov, R. Danielius, P. Heinz, and A. Seilmeier, “Intense subpicosecond pulses tunable between 4 µ m and 20 µ m generated by an all-solid-state laser system,” Opt. Commun. 113, 99–104 (1994).
[Crossref]

Hloupis, G.

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B 116(3), 617–622 (2013).
[Crossref]

Huang, M.

Huang, W.

Ibragimov, Z. A.

T. Dahinten, U. Plodereder, A. Seilmeier, K. L. Vodopyanov, K. R. Allakhverdiev, and Z. A. Ibragimov, “Infrared pulses of 1 picosecond duration tunable between 4 µ m and 18 µ m,” IEEE J. Quantum Electron. 29(7), 2245–2250 (1993).
[Crossref]

Joshi, C.

Kaiser, W.

W. Zinth and W. Kaiser, “Frequency shifts in stimulated Raman scattering,” Opt. Commun. 32(3), 507–511 (1980).
[Crossref]

D. von der Linde, M. Maier, and W. Kaiser, “Quantitative investigations of the stimulated Raman effect using subnanosecond light pulses,” Phys. Rev. 178(1), 11–17 (1969).
[Crossref]

Kildal, H.

S. R. J. Brueck and H. Kildal, “Efficient Raman frequency conversion in liquid nitrogen,” IEEE J. Quantum Electron. 18(3), 310–312 (1982).
[Crossref]

Kolesik, M.

A. Couairon, E. Brambilla, T. Corti, D. Majus, O. de J. Ramirez-Gongora, and M. Kolesik, “Practitioner’s guide to laser pulse propagation models and simulation,” Eur. Phys. J. Spec. Top. 199, 5–76 (2011).
[Crossref]

Krok, P.

Lochbrunner, S.

Maier, M.

D. von der Linde, M. Maier, and W. Kaiser, “Quantitative investigations of the stimulated Raman effect using subnanosecond light pulses,” Phys. Rev. 178(1), 11–17 (1969).
[Crossref]

Majus, D.

A. Couairon, E. Brambilla, T. Corti, D. Majus, O. de J. Ramirez-Gongora, and M. Kolesik, “Practitioner’s guide to laser pulse propagation models and simulation,” Eur. Phys. J. Spec. Top. 199, 5–76 (2011).
[Crossref]

Melin, S.

S. Melin and J. W. Nibler, “A nonlinear optical experiment: stimulated Raman scattering in benzene and deuterated benzene,” J. Chem. Educ. 80(10), 1187–1190 (2003).
[Crossref]

Moutzouris, K.

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B 116(3), 617–622 (2013).
[Crossref]

Murray, J. T.

P. G. Zverev, J. T. Murray, R. C. Powell, R. J. Reeves, and T. T. Basiev, “Stimulated Raman scattering of picosecond pulses in barium nitrate crystals,” Opt. Commun. 97(1–2), 59–64 (1993).
[Crossref]

Nibler, J. W.

S. Melin and J. W. Nibler, “A nonlinear optical experiment: stimulated Raman scattering in benzene and deuterated benzene,” J. Chem. Educ. 80(10), 1187–1190 (2003).
[Crossref]

Osiko, V. V.

Papamichael, M.

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B 116(3), 617–622 (2013).
[Crossref]

Pask, H. M.

H. M. Pask, “The design and operation of solid-state Raman lasers,” Progress in Quantum Electronics 27, 3–56 (2003).
[Crossref]

Petrov, G. I.

Petrov, V.

V. Petrov, “Parametric down-conversion devices: The coverage of the mid-infrared spectral range by solid-state laser sources,” Opt. Mater. 34, 536–554 (2012).
[Crossref]

Pigeon, J. J.

Plodereder, U.

T. Dahinten, U. Plodereder, A. Seilmeier, K. L. Vodopyanov, K. R. Allakhverdiev, and Z. A. Ibragimov, “Infrared pulses of 1 picosecond duration tunable between 4 µ m and 18 µ m,” IEEE J. Quantum Electron. 29(7), 2245–2250 (1993).
[Crossref]

Powell, R. C.

T. T. Basiev, A. A. Sobol, P. G. Zverev, V. V. Osiko, and R. C. Powell, “Comparative spontaneous Raman spectroscopy of crystals for Raman lasers,” Appl. Opt. 38(3), 594–598 (1999).
[Crossref]

P. G. Zverev, J. T. Murray, R. C. Powell, R. J. Reeves, and T. T. Basiev, “Stimulated Raman scattering of picosecond pulses in barium nitrate crystals,” Opt. Commun. 97(1–2), 59–64 (1993).
[Crossref]

Ramirez-Gongora, O. de J.

A. Couairon, E. Brambilla, T. Corti, D. Majus, O. de J. Ramirez-Gongora, and M. Kolesik, “Practitioner’s guide to laser pulse propagation models and simulation,” Eur. Phys. J. Spec. Top. 199, 5–76 (2011).
[Crossref]

Reeves, R. J.

P. G. Zverev, J. T. Murray, R. C. Powell, R. J. Reeves, and T. T. Basiev, “Stimulated Raman scattering of picosecond pulses in barium nitrate crystals,” Opt. Commun. 97(1–2), 59–64 (1993).
[Crossref]

Riedle, E.

Schriever, C.

Seilmeier, A.

I. M. Bayanov, R. Danielius, P. Heinz, and A. Seilmeier, “Intense subpicosecond pulses tunable between 4 µ m and 20 µ m generated by an all-solid-state laser system,” Opt. Commun. 113, 99–104 (1994).
[Crossref]

T. Dahinten, U. Plodereder, A. Seilmeier, K. L. Vodopyanov, K. R. Allakhverdiev, and Z. A. Ibragimov, “Infrared pulses of 1 picosecond duration tunable between 4 µ m and 18 µ m,” IEEE J. Quantum Electron. 29(7), 2245–2250 (1993).
[Crossref]

Shapiro, S. L.

S. L. Shapiro, J. A. Giordmaine, and K. W. Wecht, “Stimulated Raman and Brillouin scattering with picosecond light pulses,” Phys. Rev. Lett. 19(19), 1093–1095 (1967).
[Crossref]

Shimizu, F.

R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, “Theory of stokes pulse shapes in transient stimulated Raman scattering,” Phys. Rev. A 2(1), 60–72 (1970).
[Crossref]

Sobol, A. A.

Stavrakas, I.

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B 116(3), 617–622 (2013).
[Crossref]

Tochitsky, S. Ya.

Triantis, D.

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B 116(3), 617–622 (2013).
[Crossref]

Vodopyanov, K. L.

G. I. Petrov, K. L. Vodopyanov, and V. V. Yakovlev, “Tunable mid-infrared MHz-rate picosecond pulses generated by optical parametric amplification of white-light continuum in GaSe,” Opt. Lett. 32(5), 515–517 (2007).
[Crossref] [PubMed]

T. Dahinten, U. Plodereder, A. Seilmeier, K. L. Vodopyanov, K. R. Allakhverdiev, and Z. A. Ibragimov, “Infrared pulses of 1 picosecond duration tunable between 4 µ m and 18 µ m,” IEEE J. Quantum Electron. 29(7), 2245–2250 (1993).
[Crossref]

von der Linde, D.

D. von der Linde, M. Maier, and W. Kaiser, “Quantitative investigations of the stimulated Raman effect using subnanosecond light pulses,” Phys. Rev. 178(1), 11–17 (1969).
[Crossref]

Wang, C. S.

R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, “Theory of stokes pulse shapes in transient stimulated Raman scattering,” Phys. Rev. A 2(1), 60–72 (1970).
[Crossref]

Wecht, K. W.

S. L. Shapiro, J. A. Giordmaine, and K. W. Wecht, “Stimulated Raman and Brillouin scattering with picosecond light pulses,” Phys. Rev. Lett. 19(19), 1093–1095 (1967).
[Crossref]

Yakovlev, V. V.

Yu, L.

Zhu, Z.

Zinth, W.

W. Zinth and W. Kaiser, “Frequency shifts in stimulated Raman scattering,” Opt. Commun. 32(3), 507–511 (1980).
[Crossref]

Zverev, P. G.

T. T. Basiev, A. A. Sobol, P. G. Zverev, V. V. Osiko, and R. C. Powell, “Comparative spontaneous Raman spectroscopy of crystals for Raman lasers,” Appl. Opt. 38(3), 594–598 (1999).
[Crossref]

P. G. Zverev, J. T. Murray, R. C. Powell, R. J. Reeves, and T. T. Basiev, “Stimulated Raman scattering of picosecond pulses in barium nitrate crystals,” Opt. Commun. 97(1–2), 59–64 (1993).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B 116(3), 617–622 (2013).
[Crossref]

Eur. Phys. J. Spec. Top. (1)

A. Couairon, E. Brambilla, T. Corti, D. Majus, O. de J. Ramirez-Gongora, and M. Kolesik, “Practitioner’s guide to laser pulse propagation models and simulation,” Eur. Phys. J. Spec. Top. 199, 5–76 (2011).
[Crossref]

IEEE J. Quantum Electron. (2)

S. R. J. Brueck and H. Kildal, “Efficient Raman frequency conversion in liquid nitrogen,” IEEE J. Quantum Electron. 18(3), 310–312 (1982).
[Crossref]

T. Dahinten, U. Plodereder, A. Seilmeier, K. L. Vodopyanov, K. R. Allakhverdiev, and Z. A. Ibragimov, “Infrared pulses of 1 picosecond duration tunable between 4 µ m and 18 µ m,” IEEE J. Quantum Electron. 29(7), 2245–2250 (1993).
[Crossref]

J. Appl. Phys. (1)

E. O. Ammann and C. D. Decker, “0.9-W Raman oscillator,” J. Appl. Phys. 48(5), 1973–1975 (1977).
[Crossref]

J. Chem. Educ. (1)

S. Melin and J. W. Nibler, “A nonlinear optical experiment: stimulated Raman scattering in benzene and deuterated benzene,” J. Chem. Educ. 80(10), 1187–1190 (2003).
[Crossref]

J. Chem. Phys. (1)

M. J. Colles and J. E. Griffiths, “Relative and absolute Raman scattering cross sections in liquids,” J. Chem. Phys. 56(7), 3384–3391 (1972).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Commun. (4)

W. Zinth and W. Kaiser, “Frequency shifts in stimulated Raman scattering,” Opt. Commun. 32(3), 507–511 (1980).
[Crossref]

I. M. Bayanov, R. Danielius, P. Heinz, and A. Seilmeier, “Intense subpicosecond pulses tunable between 4 µ m and 20 µ m generated by an all-solid-state laser system,” Opt. Commun. 113, 99–104 (1994).
[Crossref]

M. J. Colles, “Efficient stimulated Raman scattering from picosecond pulses,” Opt. Commun. 1(4), 169–172 (1969).
[Crossref]

P. G. Zverev, J. T. Murray, R. C. Powell, R. J. Reeves, and T. T. Basiev, “Stimulated Raman scattering of picosecond pulses in barium nitrate crystals,” Opt. Commun. 97(1–2), 59–64 (1993).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Opt. Mater. (1)

V. Petrov, “Parametric down-conversion devices: The coverage of the mid-infrared spectral range by solid-state laser sources,” Opt. Mater. 34, 536–554 (2012).
[Crossref]

Phys. Rev. (1)

D. von der Linde, M. Maier, and W. Kaiser, “Quantitative investigations of the stimulated Raman effect using subnanosecond light pulses,” Phys. Rev. 178(1), 11–17 (1969).
[Crossref]

Phys. Rev. A (1)

R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, “Theory of stokes pulse shapes in transient stimulated Raman scattering,” Phys. Rev. A 2(1), 60–72 (1970).
[Crossref]

Phys. Rev. Lett. (1)

S. L. Shapiro, J. A. Giordmaine, and K. W. Wecht, “Stimulated Raman and Brillouin scattering with picosecond light pulses,” Phys. Rev. Lett. 19(19), 1093–1095 (1967).
[Crossref]

Progress in Quantum Electronics (1)

H. M. Pask, “The design and operation of solid-state Raman lasers,” Progress in Quantum Electronics 27, 3–56 (2003).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Gentry, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Other (3)

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001).

R. W. Boyd and G. L. Fischer, “Nonlinear Optical Materials,” in Encyclopedia of Materials: Science and Technology (Elsevier Ltd., 2001).
[Crossref]

“Tunable Lasers,” Topics in Applied Physics. Ed. L. F. Mollenauer and J. C. White, eds. (Springer-Verlag, 1987) vol. 59.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Energy diagram (left) of pump laser ωL exciting a Raman medium and being down-shifted by the Raman frequency ΩR to produce ωStokes = ωL − ΩR. Block diagram (right) describing the three wave mixing scheme for efficient down-conversion to LWIR wavelengths from a near-IR laser (~1 µm). The output frequency is equal to the Raman frequency of the Raman shifter material.
Fig. 2
Fig. 2 Transient SRS with a transform-limited (TL) pump pulse (propagating to the right) leads to a blue-shifted Stokes component by XPM from the pump (a). Adding a negative chirp to the pump compensates for SPM and removes the blue-shift from the Stokes pulse (b).
Fig. 3
Fig. 3 Simulation results from the GNLSE modeling in C6H6. (a) The beam profile of 1.5 ps pump pulses shows significant self-focusing. The color bar is intensity in units of GW/cm2. (b) Stokes pulse conversion efficiency and central wavelength depend on sign of the chirp on 4 ps pump pulses.
Fig. 4
Fig. 4 Experimental setup with a 50/50 beam splitter BS, beam combiner BC, and variable delay line DL.
Fig. 5
Fig. 5 Spectra measured after the Raman cell are shown for three cases: 1.5 ps transform-limited (green, a), 4 ps with a negative chirp (red, b), and 4 ps with a positive chirp (blue, b).
Fig. 6
Fig. 6 Beam profiles of the pump laser before (left) and after (right) the Raman cell for the 4 ps case as measured by a pyroelectric array. The onset of self-focusing is observed.
Fig. 7
Fig. 7 Experimental results of DFG in 1 cm GaSe between pump and Stokes pulse from transient SRS. (a) Phase-matching measurements are compared with theory for plane-wave and fixed-field approximations. (b) Measured 10 µm idler spectra after the DFG crystal. The black vertical line marks the 10P(20) transition and peak gain of a CO2 laser.
Fig. 8
Fig. 8 Cross correlation measurement between pump and Stokes pulses in the GaSe DFG crystal. The x-axis is a delay on the pump pulse with respect to the Stokes pulse.

Tables (1)

Tables Icon

Table 1 Raman-active materials that could be used to reach the LWIR range around 10 µm with the presented DFG scheme [6,13,14]

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ ν S = 2 × 10 13 ν L n 2 I L L n L τ p

Metrics