Abstract

A challenging point in the prediction of the image quality of infrared imaging systems is the evaluation of the detector modulation transfer function (MTF). In this paper, we present a linear method to get a 2D continuous MTF from sparse spectral data. Within the method, an object with a predictable sparse spatial spectrum is imaged by the focal plane array. The sparse data is then treated to return the 2D continuous MTF with the hypothesis that all the pixels have an identical spatial response. The linearity of the treatment is a key point to estimate directly the error bars of the resulting detector MTF. The test bench will be presented along with measurement tests on a 25 μm pitch InGaAs detector.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
MTF measurements of a type-II superlattice infrared focal plane array sealed in a cryocooler

Jean Nghiem, Julien Jaeck, Jerome Primot, Christophe Coudrain, Sophie Derelle, Edouard Huard, Marcel Caes, Sylvie Bernhardt, Riad Haidar, Philippe Christol, and Isabelle Ribet-Mohamed
Opt. Express 26(8) 11034-11045 (2018)

Modulation transfer function measurement technique for small-pixel detectors

Mike Marchywka and Dennis G. Socker
Appl. Opt. 31(34) 7198-7213 (1992)

Regularized image reconstruction for continuously self-imaging gratings

Ryoichi Horisaki, Martin Piponnier, Guillaume Druart, Nicolas Guérineau, Jérôme Primot, François Goudail, Jean Taboury, and Jun Tanida
Appl. Opt. 52(16) 3802-3811 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Armstrong, M. R. Skokan, M. A. Kinch, and J. D. Luttmer, “HDVIP five-micron pitch HgCdTe focal plane arrays,” Proc. SPIE 9070, 907033 (2014).
    [Crossref]
  2. M. A. Kinch, “The future of infrared; III–Vs or HgCdTe? ” J. Electron. Mater. 44(9), 2969–3162 (2015).
    [Crossref]
  3. A. P. Tzannes and J. M. Mooney, “Measurement of the modulation transfer function of infrared cameras,” Opt. Eng. 34 (6), 1808–1817 (1995).
    [Crossref]
  4. M. Estribeau and P. Magnan, “Fast MTF measurement of CMOS imagers using ISO 12233 slanted-edge methodology,” Proc. SPIE 5251, 243–252 (2004).
    [Crossref]
  5. C. D. Claxton and R. C. Staunton, “Measurement of the point-spread function of a noisy imaging system,” J. Opt. Soc. Am. 25(1), 159–170 (2008).
    [Crossref]
  6. R. F. Rauchmiller and R. A. Schowengerdt, “Measurement of the Landsat Thematic Mapper modulation transfer function using an array of point sources,” Opt. Eng. 27(4), 334–343 (April1988).
    [Crossref]
  7. E. di Mambro, N. Guérineau, and J. Primot, “Modulation transfer function measurement of an infrared focal plane array using a Continuously Self-Imaging Grating,” J. Opt. Soc. Am. 11(24), 3310–3319(2003).
  8. E. di Mambro, R. Haïdar, N. Guérineau, and J. Primot, “Sharpness limitations in the projection of thin lines by use of the Talbot experiment,” J. Opt. Soc. Am. 21(12), 2276–2282 (2004).
    [Crossref]
  9. N. Guérineau, B. Harchaoui, and J. Primot, “Generation of achromatic and propagation-invariant spot arrays by use of continuously self-imaging gratings,” Opt. Lett. 26(7), 411–413 (2001).
    [Crossref]
  10. F. de la Barrière, G. Druart, N. Guérineau, S. Rommeluère, L. Mugnier, O. Gravand, N. Baier, N. Lhermet, G. Destefanis, and S. Derelle, “Modulation Transfer Function Measurement of Infrared Focal-Plane Arrays with Small Fill Factors,” J. Electron. Mater. 41(10), 2730–2737 (2012).
    [Crossref]
  11. J. Berthoz, R. Grille, L. Rubaldo, O. Gravrand, A. Kerlain, N. Pere-Laperne, L. Martineau, F. Chabuel, and D. Leclercq, “Modeling and Characterization of MTF an Spectral Response at Small Pitch on Mercury Cadmium Telluride,” J. Electron. Mater. 44(9), 3157–3162 (2015).
    [Crossref]
  12. J. Primot, G. Rousset, and J.C. Fontanella, “Deconvolution from wave-front sensing: a new technique for compensating turbulence-degraded images,” J. Opt. Soc. Am. 7(9), 1598–1608 (1990).
    [Crossref]
  13. J. Arines and S. Bara, “Optics and Deconvolution: Wavefront Sensing,” in Optical and Digital Image Processing: Fundamentals and Applications, G. Cristobal, P. Schelkens, and H. Thienpont, eds. (Wiley-VCH Verlag GmbH, Co. KGaA, 2011), Chap. 25.
  14. O. Gravand, J.C. Desplanches, C. Delbègue, G. Mathieu, and J. Rothman, “Study of the Spatial Response of reduced Pitch Hg1−xCdxTe Dual-Band Detector Array,” J. Electron. Mater. 35(6), 1159–1165 (2006).
    [Crossref]
  15. J. Robinson, M. Kinch, M. Marquis, D. Littlejohn, and K. Jeppson, “Case for small pixels: system perspective and FPA challenge,” Proc. SPIE. 9100, 91000I (2014).
  16. A. Rogalski, P. Martyniuk, and M. Kopytko, “Challenges of small-pixel infrared detectors: a review,” Rep. Prog. Phys. 79(4), 046501 (2016).
    [Crossref] [PubMed]
  17. C.R. Vogel and M. E. Oman, “Fast, robust total variation-based reconstruction of noisy, blurred images,” IEEE Trans. Image Process. 7(6), 813–824 (1998).
    [Crossref]

2016 (1)

A. Rogalski, P. Martyniuk, and M. Kopytko, “Challenges of small-pixel infrared detectors: a review,” Rep. Prog. Phys. 79(4), 046501 (2016).
[Crossref] [PubMed]

2015 (2)

J. Berthoz, R. Grille, L. Rubaldo, O. Gravrand, A. Kerlain, N. Pere-Laperne, L. Martineau, F. Chabuel, and D. Leclercq, “Modeling and Characterization of MTF an Spectral Response at Small Pitch on Mercury Cadmium Telluride,” J. Electron. Mater. 44(9), 3157–3162 (2015).
[Crossref]

M. A. Kinch, “The future of infrared; III–Vs or HgCdTe? ” J. Electron. Mater. 44(9), 2969–3162 (2015).
[Crossref]

2014 (2)

J. M. Armstrong, M. R. Skokan, M. A. Kinch, and J. D. Luttmer, “HDVIP five-micron pitch HgCdTe focal plane arrays,” Proc. SPIE 9070, 907033 (2014).
[Crossref]

J. Robinson, M. Kinch, M. Marquis, D. Littlejohn, and K. Jeppson, “Case for small pixels: system perspective and FPA challenge,” Proc. SPIE. 9100, 91000I (2014).

2012 (1)

F. de la Barrière, G. Druart, N. Guérineau, S. Rommeluère, L. Mugnier, O. Gravand, N. Baier, N. Lhermet, G. Destefanis, and S. Derelle, “Modulation Transfer Function Measurement of Infrared Focal-Plane Arrays with Small Fill Factors,” J. Electron. Mater. 41(10), 2730–2737 (2012).
[Crossref]

2008 (1)

C. D. Claxton and R. C. Staunton, “Measurement of the point-spread function of a noisy imaging system,” J. Opt. Soc. Am. 25(1), 159–170 (2008).
[Crossref]

2006 (1)

O. Gravand, J.C. Desplanches, C. Delbègue, G. Mathieu, and J. Rothman, “Study of the Spatial Response of reduced Pitch Hg1−xCdxTe Dual-Band Detector Array,” J. Electron. Mater. 35(6), 1159–1165 (2006).
[Crossref]

2004 (2)

E. di Mambro, R. Haïdar, N. Guérineau, and J. Primot, “Sharpness limitations in the projection of thin lines by use of the Talbot experiment,” J. Opt. Soc. Am. 21(12), 2276–2282 (2004).
[Crossref]

M. Estribeau and P. Magnan, “Fast MTF measurement of CMOS imagers using ISO 12233 slanted-edge methodology,” Proc. SPIE 5251, 243–252 (2004).
[Crossref]

2003 (1)

E. di Mambro, N. Guérineau, and J. Primot, “Modulation transfer function measurement of an infrared focal plane array using a Continuously Self-Imaging Grating,” J. Opt. Soc. Am. 11(24), 3310–3319(2003).

2001 (1)

1998 (1)

C.R. Vogel and M. E. Oman, “Fast, robust total variation-based reconstruction of noisy, blurred images,” IEEE Trans. Image Process. 7(6), 813–824 (1998).
[Crossref]

1995 (1)

A. P. Tzannes and J. M. Mooney, “Measurement of the modulation transfer function of infrared cameras,” Opt. Eng. 34 (6), 1808–1817 (1995).
[Crossref]

1990 (1)

J. Primot, G. Rousset, and J.C. Fontanella, “Deconvolution from wave-front sensing: a new technique for compensating turbulence-degraded images,” J. Opt. Soc. Am. 7(9), 1598–1608 (1990).
[Crossref]

1988 (1)

R. F. Rauchmiller and R. A. Schowengerdt, “Measurement of the Landsat Thematic Mapper modulation transfer function using an array of point sources,” Opt. Eng. 27(4), 334–343 (April1988).
[Crossref]

Arines, J.

J. Arines and S. Bara, “Optics and Deconvolution: Wavefront Sensing,” in Optical and Digital Image Processing: Fundamentals and Applications, G. Cristobal, P. Schelkens, and H. Thienpont, eds. (Wiley-VCH Verlag GmbH, Co. KGaA, 2011), Chap. 25.

Armstrong, J. M.

J. M. Armstrong, M. R. Skokan, M. A. Kinch, and J. D. Luttmer, “HDVIP five-micron pitch HgCdTe focal plane arrays,” Proc. SPIE 9070, 907033 (2014).
[Crossref]

Baier, N.

F. de la Barrière, G. Druart, N. Guérineau, S. Rommeluère, L. Mugnier, O. Gravand, N. Baier, N. Lhermet, G. Destefanis, and S. Derelle, “Modulation Transfer Function Measurement of Infrared Focal-Plane Arrays with Small Fill Factors,” J. Electron. Mater. 41(10), 2730–2737 (2012).
[Crossref]

Bara, S.

J. Arines and S. Bara, “Optics and Deconvolution: Wavefront Sensing,” in Optical and Digital Image Processing: Fundamentals and Applications, G. Cristobal, P. Schelkens, and H. Thienpont, eds. (Wiley-VCH Verlag GmbH, Co. KGaA, 2011), Chap. 25.

Berthoz, J.

J. Berthoz, R. Grille, L. Rubaldo, O. Gravrand, A. Kerlain, N. Pere-Laperne, L. Martineau, F. Chabuel, and D. Leclercq, “Modeling and Characterization of MTF an Spectral Response at Small Pitch on Mercury Cadmium Telluride,” J. Electron. Mater. 44(9), 3157–3162 (2015).
[Crossref]

Chabuel, F.

J. Berthoz, R. Grille, L. Rubaldo, O. Gravrand, A. Kerlain, N. Pere-Laperne, L. Martineau, F. Chabuel, and D. Leclercq, “Modeling and Characterization of MTF an Spectral Response at Small Pitch on Mercury Cadmium Telluride,” J. Electron. Mater. 44(9), 3157–3162 (2015).
[Crossref]

Claxton, C. D.

C. D. Claxton and R. C. Staunton, “Measurement of the point-spread function of a noisy imaging system,” J. Opt. Soc. Am. 25(1), 159–170 (2008).
[Crossref]

de la Barrière, F.

F. de la Barrière, G. Druart, N. Guérineau, S. Rommeluère, L. Mugnier, O. Gravand, N. Baier, N. Lhermet, G. Destefanis, and S. Derelle, “Modulation Transfer Function Measurement of Infrared Focal-Plane Arrays with Small Fill Factors,” J. Electron. Mater. 41(10), 2730–2737 (2012).
[Crossref]

Delbègue, C.

O. Gravand, J.C. Desplanches, C. Delbègue, G. Mathieu, and J. Rothman, “Study of the Spatial Response of reduced Pitch Hg1−xCdxTe Dual-Band Detector Array,” J. Electron. Mater. 35(6), 1159–1165 (2006).
[Crossref]

Derelle, S.

F. de la Barrière, G. Druart, N. Guérineau, S. Rommeluère, L. Mugnier, O. Gravand, N. Baier, N. Lhermet, G. Destefanis, and S. Derelle, “Modulation Transfer Function Measurement of Infrared Focal-Plane Arrays with Small Fill Factors,” J. Electron. Mater. 41(10), 2730–2737 (2012).
[Crossref]

Desplanches, J.C.

O. Gravand, J.C. Desplanches, C. Delbègue, G. Mathieu, and J. Rothman, “Study of the Spatial Response of reduced Pitch Hg1−xCdxTe Dual-Band Detector Array,” J. Electron. Mater. 35(6), 1159–1165 (2006).
[Crossref]

Destefanis, G.

F. de la Barrière, G. Druart, N. Guérineau, S. Rommeluère, L. Mugnier, O. Gravand, N. Baier, N. Lhermet, G. Destefanis, and S. Derelle, “Modulation Transfer Function Measurement of Infrared Focal-Plane Arrays with Small Fill Factors,” J. Electron. Mater. 41(10), 2730–2737 (2012).
[Crossref]

di Mambro, E.

E. di Mambro, R. Haïdar, N. Guérineau, and J. Primot, “Sharpness limitations in the projection of thin lines by use of the Talbot experiment,” J. Opt. Soc. Am. 21(12), 2276–2282 (2004).
[Crossref]

E. di Mambro, N. Guérineau, and J. Primot, “Modulation transfer function measurement of an infrared focal plane array using a Continuously Self-Imaging Grating,” J. Opt. Soc. Am. 11(24), 3310–3319(2003).

Druart, G.

F. de la Barrière, G. Druart, N. Guérineau, S. Rommeluère, L. Mugnier, O. Gravand, N. Baier, N. Lhermet, G. Destefanis, and S. Derelle, “Modulation Transfer Function Measurement of Infrared Focal-Plane Arrays with Small Fill Factors,” J. Electron. Mater. 41(10), 2730–2737 (2012).
[Crossref]

Estribeau, M.

M. Estribeau and P. Magnan, “Fast MTF measurement of CMOS imagers using ISO 12233 slanted-edge methodology,” Proc. SPIE 5251, 243–252 (2004).
[Crossref]

Fontanella, J.C.

J. Primot, G. Rousset, and J.C. Fontanella, “Deconvolution from wave-front sensing: a new technique for compensating turbulence-degraded images,” J. Opt. Soc. Am. 7(9), 1598–1608 (1990).
[Crossref]

Gravand, O.

F. de la Barrière, G. Druart, N. Guérineau, S. Rommeluère, L. Mugnier, O. Gravand, N. Baier, N. Lhermet, G. Destefanis, and S. Derelle, “Modulation Transfer Function Measurement of Infrared Focal-Plane Arrays with Small Fill Factors,” J. Electron. Mater. 41(10), 2730–2737 (2012).
[Crossref]

O. Gravand, J.C. Desplanches, C. Delbègue, G. Mathieu, and J. Rothman, “Study of the Spatial Response of reduced Pitch Hg1−xCdxTe Dual-Band Detector Array,” J. Electron. Mater. 35(6), 1159–1165 (2006).
[Crossref]

Gravrand, O.

J. Berthoz, R. Grille, L. Rubaldo, O. Gravrand, A. Kerlain, N. Pere-Laperne, L. Martineau, F. Chabuel, and D. Leclercq, “Modeling and Characterization of MTF an Spectral Response at Small Pitch on Mercury Cadmium Telluride,” J. Electron. Mater. 44(9), 3157–3162 (2015).
[Crossref]

Grille, R.

J. Berthoz, R. Grille, L. Rubaldo, O. Gravrand, A. Kerlain, N. Pere-Laperne, L. Martineau, F. Chabuel, and D. Leclercq, “Modeling and Characterization of MTF an Spectral Response at Small Pitch on Mercury Cadmium Telluride,” J. Electron. Mater. 44(9), 3157–3162 (2015).
[Crossref]

Guérineau, N.

F. de la Barrière, G. Druart, N. Guérineau, S. Rommeluère, L. Mugnier, O. Gravand, N. Baier, N. Lhermet, G. Destefanis, and S. Derelle, “Modulation Transfer Function Measurement of Infrared Focal-Plane Arrays with Small Fill Factors,” J. Electron. Mater. 41(10), 2730–2737 (2012).
[Crossref]

E. di Mambro, R. Haïdar, N. Guérineau, and J. Primot, “Sharpness limitations in the projection of thin lines by use of the Talbot experiment,” J. Opt. Soc. Am. 21(12), 2276–2282 (2004).
[Crossref]

E. di Mambro, N. Guérineau, and J. Primot, “Modulation transfer function measurement of an infrared focal plane array using a Continuously Self-Imaging Grating,” J. Opt. Soc. Am. 11(24), 3310–3319(2003).

N. Guérineau, B. Harchaoui, and J. Primot, “Generation of achromatic and propagation-invariant spot arrays by use of continuously self-imaging gratings,” Opt. Lett. 26(7), 411–413 (2001).
[Crossref]

Haïdar, R.

E. di Mambro, R. Haïdar, N. Guérineau, and J. Primot, “Sharpness limitations in the projection of thin lines by use of the Talbot experiment,” J. Opt. Soc. Am. 21(12), 2276–2282 (2004).
[Crossref]

Harchaoui, B.

Jeppson, K.

J. Robinson, M. Kinch, M. Marquis, D. Littlejohn, and K. Jeppson, “Case for small pixels: system perspective and FPA challenge,” Proc. SPIE. 9100, 91000I (2014).

Kerlain, A.

J. Berthoz, R. Grille, L. Rubaldo, O. Gravrand, A. Kerlain, N. Pere-Laperne, L. Martineau, F. Chabuel, and D. Leclercq, “Modeling and Characterization of MTF an Spectral Response at Small Pitch on Mercury Cadmium Telluride,” J. Electron. Mater. 44(9), 3157–3162 (2015).
[Crossref]

Kinch, M.

J. Robinson, M. Kinch, M. Marquis, D. Littlejohn, and K. Jeppson, “Case for small pixels: system perspective and FPA challenge,” Proc. SPIE. 9100, 91000I (2014).

Kinch, M. A.

M. A. Kinch, “The future of infrared; III–Vs or HgCdTe? ” J. Electron. Mater. 44(9), 2969–3162 (2015).
[Crossref]

J. M. Armstrong, M. R. Skokan, M. A. Kinch, and J. D. Luttmer, “HDVIP five-micron pitch HgCdTe focal plane arrays,” Proc. SPIE 9070, 907033 (2014).
[Crossref]

Kopytko, M.

A. Rogalski, P. Martyniuk, and M. Kopytko, “Challenges of small-pixel infrared detectors: a review,” Rep. Prog. Phys. 79(4), 046501 (2016).
[Crossref] [PubMed]

Leclercq, D.

J. Berthoz, R. Grille, L. Rubaldo, O. Gravrand, A. Kerlain, N. Pere-Laperne, L. Martineau, F. Chabuel, and D. Leclercq, “Modeling and Characterization of MTF an Spectral Response at Small Pitch on Mercury Cadmium Telluride,” J. Electron. Mater. 44(9), 3157–3162 (2015).
[Crossref]

Lhermet, N.

F. de la Barrière, G. Druart, N. Guérineau, S. Rommeluère, L. Mugnier, O. Gravand, N. Baier, N. Lhermet, G. Destefanis, and S. Derelle, “Modulation Transfer Function Measurement of Infrared Focal-Plane Arrays with Small Fill Factors,” J. Electron. Mater. 41(10), 2730–2737 (2012).
[Crossref]

Littlejohn, D.

J. Robinson, M. Kinch, M. Marquis, D. Littlejohn, and K. Jeppson, “Case for small pixels: system perspective and FPA challenge,” Proc. SPIE. 9100, 91000I (2014).

Luttmer, J. D.

J. M. Armstrong, M. R. Skokan, M. A. Kinch, and J. D. Luttmer, “HDVIP five-micron pitch HgCdTe focal plane arrays,” Proc. SPIE 9070, 907033 (2014).
[Crossref]

Magnan, P.

M. Estribeau and P. Magnan, “Fast MTF measurement of CMOS imagers using ISO 12233 slanted-edge methodology,” Proc. SPIE 5251, 243–252 (2004).
[Crossref]

Marquis, M.

J. Robinson, M. Kinch, M. Marquis, D. Littlejohn, and K. Jeppson, “Case for small pixels: system perspective and FPA challenge,” Proc. SPIE. 9100, 91000I (2014).

Martineau, L.

J. Berthoz, R. Grille, L. Rubaldo, O. Gravrand, A. Kerlain, N. Pere-Laperne, L. Martineau, F. Chabuel, and D. Leclercq, “Modeling and Characterization of MTF an Spectral Response at Small Pitch on Mercury Cadmium Telluride,” J. Electron. Mater. 44(9), 3157–3162 (2015).
[Crossref]

Martyniuk, P.

A. Rogalski, P. Martyniuk, and M. Kopytko, “Challenges of small-pixel infrared detectors: a review,” Rep. Prog. Phys. 79(4), 046501 (2016).
[Crossref] [PubMed]

Mathieu, G.

O. Gravand, J.C. Desplanches, C. Delbègue, G. Mathieu, and J. Rothman, “Study of the Spatial Response of reduced Pitch Hg1−xCdxTe Dual-Band Detector Array,” J. Electron. Mater. 35(6), 1159–1165 (2006).
[Crossref]

Mooney, J. M.

A. P. Tzannes and J. M. Mooney, “Measurement of the modulation transfer function of infrared cameras,” Opt. Eng. 34 (6), 1808–1817 (1995).
[Crossref]

Mugnier, L.

F. de la Barrière, G. Druart, N. Guérineau, S. Rommeluère, L. Mugnier, O. Gravand, N. Baier, N. Lhermet, G. Destefanis, and S. Derelle, “Modulation Transfer Function Measurement of Infrared Focal-Plane Arrays with Small Fill Factors,” J. Electron. Mater. 41(10), 2730–2737 (2012).
[Crossref]

Oman, M. E.

C.R. Vogel and M. E. Oman, “Fast, robust total variation-based reconstruction of noisy, blurred images,” IEEE Trans. Image Process. 7(6), 813–824 (1998).
[Crossref]

Pere-Laperne, N.

J. Berthoz, R. Grille, L. Rubaldo, O. Gravrand, A. Kerlain, N. Pere-Laperne, L. Martineau, F. Chabuel, and D. Leclercq, “Modeling and Characterization of MTF an Spectral Response at Small Pitch on Mercury Cadmium Telluride,” J. Electron. Mater. 44(9), 3157–3162 (2015).
[Crossref]

Primot, J.

E. di Mambro, R. Haïdar, N. Guérineau, and J. Primot, “Sharpness limitations in the projection of thin lines by use of the Talbot experiment,” J. Opt. Soc. Am. 21(12), 2276–2282 (2004).
[Crossref]

E. di Mambro, N. Guérineau, and J. Primot, “Modulation transfer function measurement of an infrared focal plane array using a Continuously Self-Imaging Grating,” J. Opt. Soc. Am. 11(24), 3310–3319(2003).

N. Guérineau, B. Harchaoui, and J. Primot, “Generation of achromatic and propagation-invariant spot arrays by use of continuously self-imaging gratings,” Opt. Lett. 26(7), 411–413 (2001).
[Crossref]

J. Primot, G. Rousset, and J.C. Fontanella, “Deconvolution from wave-front sensing: a new technique for compensating turbulence-degraded images,” J. Opt. Soc. Am. 7(9), 1598–1608 (1990).
[Crossref]

Rauchmiller, R. F.

R. F. Rauchmiller and R. A. Schowengerdt, “Measurement of the Landsat Thematic Mapper modulation transfer function using an array of point sources,” Opt. Eng. 27(4), 334–343 (April1988).
[Crossref]

Robinson, J.

J. Robinson, M. Kinch, M. Marquis, D. Littlejohn, and K. Jeppson, “Case for small pixels: system perspective and FPA challenge,” Proc. SPIE. 9100, 91000I (2014).

Rogalski, A.

A. Rogalski, P. Martyniuk, and M. Kopytko, “Challenges of small-pixel infrared detectors: a review,” Rep. Prog. Phys. 79(4), 046501 (2016).
[Crossref] [PubMed]

Rommeluère, S.

F. de la Barrière, G. Druart, N. Guérineau, S. Rommeluère, L. Mugnier, O. Gravand, N. Baier, N. Lhermet, G. Destefanis, and S. Derelle, “Modulation Transfer Function Measurement of Infrared Focal-Plane Arrays with Small Fill Factors,” J. Electron. Mater. 41(10), 2730–2737 (2012).
[Crossref]

Rothman, J.

O. Gravand, J.C. Desplanches, C. Delbègue, G. Mathieu, and J. Rothman, “Study of the Spatial Response of reduced Pitch Hg1−xCdxTe Dual-Band Detector Array,” J. Electron. Mater. 35(6), 1159–1165 (2006).
[Crossref]

Rousset, G.

J. Primot, G. Rousset, and J.C. Fontanella, “Deconvolution from wave-front sensing: a new technique for compensating turbulence-degraded images,” J. Opt. Soc. Am. 7(9), 1598–1608 (1990).
[Crossref]

Rubaldo, L.

J. Berthoz, R. Grille, L. Rubaldo, O. Gravrand, A. Kerlain, N. Pere-Laperne, L. Martineau, F. Chabuel, and D. Leclercq, “Modeling and Characterization of MTF an Spectral Response at Small Pitch on Mercury Cadmium Telluride,” J. Electron. Mater. 44(9), 3157–3162 (2015).
[Crossref]

Schowengerdt, R. A.

R. F. Rauchmiller and R. A. Schowengerdt, “Measurement of the Landsat Thematic Mapper modulation transfer function using an array of point sources,” Opt. Eng. 27(4), 334–343 (April1988).
[Crossref]

Skokan, M. R.

J. M. Armstrong, M. R. Skokan, M. A. Kinch, and J. D. Luttmer, “HDVIP five-micron pitch HgCdTe focal plane arrays,” Proc. SPIE 9070, 907033 (2014).
[Crossref]

Staunton, R. C.

C. D. Claxton and R. C. Staunton, “Measurement of the point-spread function of a noisy imaging system,” J. Opt. Soc. Am. 25(1), 159–170 (2008).
[Crossref]

Tzannes, A. P.

A. P. Tzannes and J. M. Mooney, “Measurement of the modulation transfer function of infrared cameras,” Opt. Eng. 34 (6), 1808–1817 (1995).
[Crossref]

Vogel, C.R.

C.R. Vogel and M. E. Oman, “Fast, robust total variation-based reconstruction of noisy, blurred images,” IEEE Trans. Image Process. 7(6), 813–824 (1998).
[Crossref]

IEEE Trans. Image Process. (1)

C.R. Vogel and M. E. Oman, “Fast, robust total variation-based reconstruction of noisy, blurred images,” IEEE Trans. Image Process. 7(6), 813–824 (1998).
[Crossref]

J. Electron. Mater. (4)

O. Gravand, J.C. Desplanches, C. Delbègue, G. Mathieu, and J. Rothman, “Study of the Spatial Response of reduced Pitch Hg1−xCdxTe Dual-Band Detector Array,” J. Electron. Mater. 35(6), 1159–1165 (2006).
[Crossref]

M. A. Kinch, “The future of infrared; III–Vs or HgCdTe? ” J. Electron. Mater. 44(9), 2969–3162 (2015).
[Crossref]

F. de la Barrière, G. Druart, N. Guérineau, S. Rommeluère, L. Mugnier, O. Gravand, N. Baier, N. Lhermet, G. Destefanis, and S. Derelle, “Modulation Transfer Function Measurement of Infrared Focal-Plane Arrays with Small Fill Factors,” J. Electron. Mater. 41(10), 2730–2737 (2012).
[Crossref]

J. Berthoz, R. Grille, L. Rubaldo, O. Gravrand, A. Kerlain, N. Pere-Laperne, L. Martineau, F. Chabuel, and D. Leclercq, “Modeling and Characterization of MTF an Spectral Response at Small Pitch on Mercury Cadmium Telluride,” J. Electron. Mater. 44(9), 3157–3162 (2015).
[Crossref]

J. Opt. Soc. Am. (4)

J. Primot, G. Rousset, and J.C. Fontanella, “Deconvolution from wave-front sensing: a new technique for compensating turbulence-degraded images,” J. Opt. Soc. Am. 7(9), 1598–1608 (1990).
[Crossref]

C. D. Claxton and R. C. Staunton, “Measurement of the point-spread function of a noisy imaging system,” J. Opt. Soc. Am. 25(1), 159–170 (2008).
[Crossref]

E. di Mambro, N. Guérineau, and J. Primot, “Modulation transfer function measurement of an infrared focal plane array using a Continuously Self-Imaging Grating,” J. Opt. Soc. Am. 11(24), 3310–3319(2003).

E. di Mambro, R. Haïdar, N. Guérineau, and J. Primot, “Sharpness limitations in the projection of thin lines by use of the Talbot experiment,” J. Opt. Soc. Am. 21(12), 2276–2282 (2004).
[Crossref]

Opt. Eng. (2)

R. F. Rauchmiller and R. A. Schowengerdt, “Measurement of the Landsat Thematic Mapper modulation transfer function using an array of point sources,” Opt. Eng. 27(4), 334–343 (April1988).
[Crossref]

A. P. Tzannes and J. M. Mooney, “Measurement of the modulation transfer function of infrared cameras,” Opt. Eng. 34 (6), 1808–1817 (1995).
[Crossref]

Opt. Lett. (1)

Proc. SPIE (2)

J. M. Armstrong, M. R. Skokan, M. A. Kinch, and J. D. Luttmer, “HDVIP five-micron pitch HgCdTe focal plane arrays,” Proc. SPIE 9070, 907033 (2014).
[Crossref]

M. Estribeau and P. Magnan, “Fast MTF measurement of CMOS imagers using ISO 12233 slanted-edge methodology,” Proc. SPIE 5251, 243–252 (2004).
[Crossref]

Proc. SPIE. (1)

J. Robinson, M. Kinch, M. Marquis, D. Littlejohn, and K. Jeppson, “Case for small pixels: system perspective and FPA challenge,” Proc. SPIE. 9100, 91000I (2014).

Rep. Prog. Phys. (1)

A. Rogalski, P. Martyniuk, and M. Kopytko, “Challenges of small-pixel infrared detectors: a review,” Rep. Prog. Phys. 79(4), 046501 (2016).
[Crossref] [PubMed]

Other (1)

J. Arines and S. Bara, “Optics and Deconvolution: Wavefront Sensing,” in Optical and Digital Image Processing: Fundamentals and Applications, G. Cristobal, P. Schelkens, and H. Thienpont, eds. (Wiley-VCH Verlag GmbH, Co. KGaA, 2011), Chap. 25.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Principle of a CSIG and examples of a 24 orders and 48 orders CSIGs.
Fig. 2
Fig. 2 Visualization of O ˜ * F w ˜ with different sizes of Fw.
Fig. 3
Fig. 3 1D projection of Tukey window : Fw(x, y = 0).
Fig. 4
Fig. 4 Interpolation conditions to get a non-zero denominator and an accurate MTF recovery.
Fig. 5
Fig. 5 Simulation : application of the method on the modeled TF and restitution of the PSF.
Fig. 6
Fig. 6 <σTF> as a function of <σI> and the number of thumbnails.
Fig. 7
Fig. 7 Linear oversampling (example with M = 1, N = 4).
Fig. 8
Fig. 8 Example of linear oversampling (example with M = 1, N = 6).
Fig. 9
Fig. 9 2D and 1D TFPIX of a 25 μm pitch InGaAs detector.
Fig. 10
Fig. 10 2D Pixel profile restitution (tilted with an angle of 9.5 °).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ) = O ( x , y ) * PSF pixel ( x , y )
I ˜ ( f x , f y ) = O ˜ ( f x , f y ) × TF PIX ( f x , f y ) TF PIX ( f x , f y ) = I ˜ ( f x , f y ) O ˜ ( f x , f y )
O w ( x , y ) = O w ( x , y ) × F w ( x , y ) O w ˜ ( x , y ) = O ˜ ( f x , f y ) * F w ˜ ( f x , f y )
I ( k ) = I × ( δ ( x k , y k ) * F w )
E = | f x 2 + f y 2 | < F max 2 k | I ( k ) ˜ ( f x , f y ) O ( k ) ˜ ( f x , f y ) × TF PIX ( f x , f y ) | 2 df x df y
TF PIX ( f x , f y ) = k I ( k ) ˜ × ( O ( k ) ˜ ) * k | O ( k ) ˜ | 2 ( f x , f y )
TF PIX ( k ) ( f x , f y ) = M ( k ) ( f x , f y ) × I ( k ) ˜ ( f x , f y )
TF PIX = k = 0 n TF PIX ( k ) .
{ I measure ( x , y ) = I mean ( x , y ) + δ I ( x , y ) TF measure ( f x , f y ) = TF mean ( f x , f y ) + δ TF ( f x , f y )
σ TF ( f x , f y ) M ( f x , f y ) n × σ I ( x , y )

Metrics