Abstract

Reflection terahertz frequency modulated continuous waves scanner (300 GHz) has been proficiently optimized for imaging two easel paintings of different age. The information content of the obtained THz images has been fully inspected by selecting the appropriate THz image parameter. At the same time, a new data processing has been developed for improving the level of detail held by the axial parametric THz images by means of Gaussian fit of the reflected signals. By carefully weighting the reflected signals as a function of the optical path, the reflected amplitude has been corrected for the positioning of the object surface with respect to the beam focal point. The artifact affecting the THz images recorded from an uneven painting surface have been resolved and the obtained images fairly represent to the original painting.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Reflection terahertz time-domain imaging for analysis of an 18th century neoclassical easel painting

Corinna L. Koch-Dandolo, Troels Filtenborg, Kaori Fukunaga, Jacob Skou-Hansen, and Peter Uhd Jepsen
Appl. Opt. 54(16) 5123-5129 (2015)

Toward a multimodal fusion of layered cultural object images: complementarity of optical coherence tomography and terahertz time-domain imaging in the heritage field

Corinna L. Koch Dandolo, Maxime Lopez, Kaori Fukunaga, Yoshimi Ueno, Ruven Pillay, David Giovannacci, Yann Le Du, Xueshi Bai, Michel Menu, and Vincent Detalle
Appl. Opt. 58(5) 1281-1290 (2019)

TeraHertz imaging of hidden paint layers on canvas

Aurèle J. L. Adam, Paul C. M. Planken, Sabrina Meloni, and Joris Dik
Opt. Express 17(5) 3407-3416 (2009)

References

  • View by:
  • |
  • |
  • |

  1. K. Fukunaga, THz Technology Applied to Cultural Heritage in Practice (Springer, 2016).
  2. W. Köhler, M. Panzer, U. Klotzach, and S. Winner, “Non-destructive investigation of paintings with THz-radiation,” in 9th ECNDT (2006), pp. 1–7.
  3. D. Mittelman, Sensing with Terahertz Radiation (Springer Berlin Heidelberg, 2003).
  4. J. Bianca Jackson, R.M. Mourou, J. F. Whitaker, I. N. Duling, S. L. Williamson, M. Menu, and G. Mourou, “Terahertz Time-Domain Reflectometry Applied to the Investigation of Hidden Mural Paintings,” in Conf. Lasers Electro-Optics/Quantum Electron. Laser Sci. Conf. Photonic Appl. Syst. Technol. (2008), paper CThN3.
  5. C. L. Koch-Dandolo, T. Filtenborg, K. Fukunaga, J. Skou-Hansen, and P. U. Jepsen, “Reflection terahertz time-domain imaging for analysis of an 18th century neoclassical easel painting,” Appl. Opt. 54(16), 5123–5129 (2015).
    [Crossref] [PubMed]
  6. A. Younus, J. P. Caumes, S. Salort, B. Chassagne, C. Pradère, A. Dautant, A. Ziéglé, and E. Abraham, “A continuous millimeter-wave imaging scanner for art conservation science,” Adv. Opt. Technol. 2011, 1–9 (2011).
    [Crossref]
  7. H. Zhang, S. Sfarra, K. Saluja, J. Peeters, J. Fleuret, Y. Duan, H. Fernandes, N. Avdelidis, C. Ibarra-Castanedo, and X. Maldague, “Non-destructive Investigation of Paintings on Canvas by Continuous Wave Terahertz Imaging and Flash Thermography,” J. Nondestruct. Eval. 36(2), 34 (2017).
    [Crossref]
  8. L. Öhrström, B. M. Fischer, A. Bitzer, J. Wallauer, M. Walther, and F. Rühli, “Terahertz Imaging Modalities of Ancient Egyptian Mummified Objects and of a Naturally Mummified Rat,” Anat. Rec. (Hoboken) 298(6), 1135–1143 (2015).
    [Crossref] [PubMed]
  9. J. Guillet, K. Wang, M. Roux, F. Fauquet, F. Darracq, and P. Mounaix, “Frequency Modulated Continuous Wave Terahertz Imaging For Art Restoration,” in Proceedings of IEEE Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2016), pp. 1–2.
    [Crossref]
  10. J.-P. Guillet, M. Roux, K. Wang, X. Ma, F. Fauquet, H. Balacey, B. Recur, F. Darracq, and P. Mounaix, “Art Painting Diagnostic Before Restoration with Terahertz and Millimeter Waves,” J. Infrared Millim. Terahertz Waves 38(4), 369–379 (2017).
    [Crossref]
  11. D. E. Barriok, “FM/CW radar signal and digital processing,” NOAA Technical Reports ERL283–WPL20, (1973)
  12. C. A. Weg, W. V. Spiegel, R. Henneberger, R. Zimmermann, T. Loeffler, and H. G. Roskos, “Fast Active THz Cameras with Ranging Capabilities,” J. Infrared Millim. Terahertz Waves 30(12), 1281–1296 (2009).
  13. J.-J. Lin, Y.-P. Li, W.-C. Hsu, and T.-S. Lee, “Design of an FMCW radar baseband signal processing system for automotive application,” Springerplus 5(1), 42 (2016).
    [Crossref] [PubMed]
  14. N. Palka and D. Miedzinska, “Detailed non-destructive evaluation of UHMWPE composites in the terahertz range,” Opt. Quantum Electron. 46(4), 515–525 (2014).
    [Crossref]
  15. E. Cristofani, F. Friederich, S. Wohnsiedler, C. Matheis, J. Jonuscheit, M. Vandewal, and R. Beigang, “Nondestructive testing potential evaluation of a terahertz frequency-modulated continuous-wave imager for composite materials inspection,” Opt. Eng. 53(3), 31211 (2014).
    [Crossref]
  16. J. Dong, A. Locquet, M. Melis, and D. S. Citrin, “Global mapping of stratigraphy of an old-master painting using sparsity-based terahertz reflectometry,” Sci. Rep. 7(1), 15098 (2017).
    [Crossref] [PubMed]
  17. M. Stecher, et al., “14. Towards Industrial Inspection with THz Systems,” in Ultrashort Pulse Laser Technology, S. Nolte, F. Schrempel, F. Dausinger, eds (Springer, Cham, 2016)
  18. H. Quast and T. Loffler, “3D-terahertz-tomography for material inspection and security,” in Proceedings of IEEE Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2009), pp. 1–2.
  19. K. Zuiderveld, “Contrast Limited Adaptive Histogram Equalization,” in Graphics Gems IV (Elsevier Inc., 1994), pp. 474–485.

2017 (3)

H. Zhang, S. Sfarra, K. Saluja, J. Peeters, J. Fleuret, Y. Duan, H. Fernandes, N. Avdelidis, C. Ibarra-Castanedo, and X. Maldague, “Non-destructive Investigation of Paintings on Canvas by Continuous Wave Terahertz Imaging and Flash Thermography,” J. Nondestruct. Eval. 36(2), 34 (2017).
[Crossref]

J.-P. Guillet, M. Roux, K. Wang, X. Ma, F. Fauquet, H. Balacey, B. Recur, F. Darracq, and P. Mounaix, “Art Painting Diagnostic Before Restoration with Terahertz and Millimeter Waves,” J. Infrared Millim. Terahertz Waves 38(4), 369–379 (2017).
[Crossref]

J. Dong, A. Locquet, M. Melis, and D. S. Citrin, “Global mapping of stratigraphy of an old-master painting using sparsity-based terahertz reflectometry,” Sci. Rep. 7(1), 15098 (2017).
[Crossref] [PubMed]

2016 (1)

J.-J. Lin, Y.-P. Li, W.-C. Hsu, and T.-S. Lee, “Design of an FMCW radar baseband signal processing system for automotive application,” Springerplus 5(1), 42 (2016).
[Crossref] [PubMed]

2015 (2)

L. Öhrström, B. M. Fischer, A. Bitzer, J. Wallauer, M. Walther, and F. Rühli, “Terahertz Imaging Modalities of Ancient Egyptian Mummified Objects and of a Naturally Mummified Rat,” Anat. Rec. (Hoboken) 298(6), 1135–1143 (2015).
[Crossref] [PubMed]

C. L. Koch-Dandolo, T. Filtenborg, K. Fukunaga, J. Skou-Hansen, and P. U. Jepsen, “Reflection terahertz time-domain imaging for analysis of an 18th century neoclassical easel painting,” Appl. Opt. 54(16), 5123–5129 (2015).
[Crossref] [PubMed]

2014 (2)

N. Palka and D. Miedzinska, “Detailed non-destructive evaluation of UHMWPE composites in the terahertz range,” Opt. Quantum Electron. 46(4), 515–525 (2014).
[Crossref]

E. Cristofani, F. Friederich, S. Wohnsiedler, C. Matheis, J. Jonuscheit, M. Vandewal, and R. Beigang, “Nondestructive testing potential evaluation of a terahertz frequency-modulated continuous-wave imager for composite materials inspection,” Opt. Eng. 53(3), 31211 (2014).
[Crossref]

2011 (1)

A. Younus, J. P. Caumes, S. Salort, B. Chassagne, C. Pradère, A. Dautant, A. Ziéglé, and E. Abraham, “A continuous millimeter-wave imaging scanner for art conservation science,” Adv. Opt. Technol. 2011, 1–9 (2011).
[Crossref]

2009 (1)

C. A. Weg, W. V. Spiegel, R. Henneberger, R. Zimmermann, T. Loeffler, and H. G. Roskos, “Fast Active THz Cameras with Ranging Capabilities,” J. Infrared Millim. Terahertz Waves 30(12), 1281–1296 (2009).

Abraham, E.

A. Younus, J. P. Caumes, S. Salort, B. Chassagne, C. Pradère, A. Dautant, A. Ziéglé, and E. Abraham, “A continuous millimeter-wave imaging scanner for art conservation science,” Adv. Opt. Technol. 2011, 1–9 (2011).
[Crossref]

Avdelidis, N.

H. Zhang, S. Sfarra, K. Saluja, J. Peeters, J. Fleuret, Y. Duan, H. Fernandes, N. Avdelidis, C. Ibarra-Castanedo, and X. Maldague, “Non-destructive Investigation of Paintings on Canvas by Continuous Wave Terahertz Imaging and Flash Thermography,” J. Nondestruct. Eval. 36(2), 34 (2017).
[Crossref]

Balacey, H.

J.-P. Guillet, M. Roux, K. Wang, X. Ma, F. Fauquet, H. Balacey, B. Recur, F. Darracq, and P. Mounaix, “Art Painting Diagnostic Before Restoration with Terahertz and Millimeter Waves,” J. Infrared Millim. Terahertz Waves 38(4), 369–379 (2017).
[Crossref]

Beigang, R.

E. Cristofani, F. Friederich, S. Wohnsiedler, C. Matheis, J. Jonuscheit, M. Vandewal, and R. Beigang, “Nondestructive testing potential evaluation of a terahertz frequency-modulated continuous-wave imager for composite materials inspection,” Opt. Eng. 53(3), 31211 (2014).
[Crossref]

Bitzer, A.

L. Öhrström, B. M. Fischer, A. Bitzer, J. Wallauer, M. Walther, and F. Rühli, “Terahertz Imaging Modalities of Ancient Egyptian Mummified Objects and of a Naturally Mummified Rat,” Anat. Rec. (Hoboken) 298(6), 1135–1143 (2015).
[Crossref] [PubMed]

Caumes, J. P.

A. Younus, J. P. Caumes, S. Salort, B. Chassagne, C. Pradère, A. Dautant, A. Ziéglé, and E. Abraham, “A continuous millimeter-wave imaging scanner for art conservation science,” Adv. Opt. Technol. 2011, 1–9 (2011).
[Crossref]

Chassagne, B.

A. Younus, J. P. Caumes, S. Salort, B. Chassagne, C. Pradère, A. Dautant, A. Ziéglé, and E. Abraham, “A continuous millimeter-wave imaging scanner for art conservation science,” Adv. Opt. Technol. 2011, 1–9 (2011).
[Crossref]

Citrin, D. S.

J. Dong, A. Locquet, M. Melis, and D. S. Citrin, “Global mapping of stratigraphy of an old-master painting using sparsity-based terahertz reflectometry,” Sci. Rep. 7(1), 15098 (2017).
[Crossref] [PubMed]

Cristofani, E.

E. Cristofani, F. Friederich, S. Wohnsiedler, C. Matheis, J. Jonuscheit, M. Vandewal, and R. Beigang, “Nondestructive testing potential evaluation of a terahertz frequency-modulated continuous-wave imager for composite materials inspection,” Opt. Eng. 53(3), 31211 (2014).
[Crossref]

Darracq, F.

J.-P. Guillet, M. Roux, K. Wang, X. Ma, F. Fauquet, H. Balacey, B. Recur, F. Darracq, and P. Mounaix, “Art Painting Diagnostic Before Restoration with Terahertz and Millimeter Waves,” J. Infrared Millim. Terahertz Waves 38(4), 369–379 (2017).
[Crossref]

J. Guillet, K. Wang, M. Roux, F. Fauquet, F. Darracq, and P. Mounaix, “Frequency Modulated Continuous Wave Terahertz Imaging For Art Restoration,” in Proceedings of IEEE Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2016), pp. 1–2.
[Crossref]

Dautant, A.

A. Younus, J. P. Caumes, S. Salort, B. Chassagne, C. Pradère, A. Dautant, A. Ziéglé, and E. Abraham, “A continuous millimeter-wave imaging scanner for art conservation science,” Adv. Opt. Technol. 2011, 1–9 (2011).
[Crossref]

Dong, J.

J. Dong, A. Locquet, M. Melis, and D. S. Citrin, “Global mapping of stratigraphy of an old-master painting using sparsity-based terahertz reflectometry,” Sci. Rep. 7(1), 15098 (2017).
[Crossref] [PubMed]

Duan, Y.

H. Zhang, S. Sfarra, K. Saluja, J. Peeters, J. Fleuret, Y. Duan, H. Fernandes, N. Avdelidis, C. Ibarra-Castanedo, and X. Maldague, “Non-destructive Investigation of Paintings on Canvas by Continuous Wave Terahertz Imaging and Flash Thermography,” J. Nondestruct. Eval. 36(2), 34 (2017).
[Crossref]

Fauquet, F.

J.-P. Guillet, M. Roux, K. Wang, X. Ma, F. Fauquet, H. Balacey, B. Recur, F. Darracq, and P. Mounaix, “Art Painting Diagnostic Before Restoration with Terahertz and Millimeter Waves,” J. Infrared Millim. Terahertz Waves 38(4), 369–379 (2017).
[Crossref]

J. Guillet, K. Wang, M. Roux, F. Fauquet, F. Darracq, and P. Mounaix, “Frequency Modulated Continuous Wave Terahertz Imaging For Art Restoration,” in Proceedings of IEEE Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2016), pp. 1–2.
[Crossref]

Fernandes, H.

H. Zhang, S. Sfarra, K. Saluja, J. Peeters, J. Fleuret, Y. Duan, H. Fernandes, N. Avdelidis, C. Ibarra-Castanedo, and X. Maldague, “Non-destructive Investigation of Paintings on Canvas by Continuous Wave Terahertz Imaging and Flash Thermography,” J. Nondestruct. Eval. 36(2), 34 (2017).
[Crossref]

Filtenborg, T.

Fischer, B. M.

L. Öhrström, B. M. Fischer, A. Bitzer, J. Wallauer, M. Walther, and F. Rühli, “Terahertz Imaging Modalities of Ancient Egyptian Mummified Objects and of a Naturally Mummified Rat,” Anat. Rec. (Hoboken) 298(6), 1135–1143 (2015).
[Crossref] [PubMed]

Fleuret, J.

H. Zhang, S. Sfarra, K. Saluja, J. Peeters, J. Fleuret, Y. Duan, H. Fernandes, N. Avdelidis, C. Ibarra-Castanedo, and X. Maldague, “Non-destructive Investigation of Paintings on Canvas by Continuous Wave Terahertz Imaging and Flash Thermography,” J. Nondestruct. Eval. 36(2), 34 (2017).
[Crossref]

Friederich, F.

E. Cristofani, F. Friederich, S. Wohnsiedler, C. Matheis, J. Jonuscheit, M. Vandewal, and R. Beigang, “Nondestructive testing potential evaluation of a terahertz frequency-modulated continuous-wave imager for composite materials inspection,” Opt. Eng. 53(3), 31211 (2014).
[Crossref]

Fukunaga, K.

Guillet, J.

J. Guillet, K. Wang, M. Roux, F. Fauquet, F. Darracq, and P. Mounaix, “Frequency Modulated Continuous Wave Terahertz Imaging For Art Restoration,” in Proceedings of IEEE Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2016), pp. 1–2.
[Crossref]

Guillet, J.-P.

J.-P. Guillet, M. Roux, K. Wang, X. Ma, F. Fauquet, H. Balacey, B. Recur, F. Darracq, and P. Mounaix, “Art Painting Diagnostic Before Restoration with Terahertz and Millimeter Waves,” J. Infrared Millim. Terahertz Waves 38(4), 369–379 (2017).
[Crossref]

Henneberger, R.

C. A. Weg, W. V. Spiegel, R. Henneberger, R. Zimmermann, T. Loeffler, and H. G. Roskos, “Fast Active THz Cameras with Ranging Capabilities,” J. Infrared Millim. Terahertz Waves 30(12), 1281–1296 (2009).

Hsu, W.-C.

J.-J. Lin, Y.-P. Li, W.-C. Hsu, and T.-S. Lee, “Design of an FMCW radar baseband signal processing system for automotive application,” Springerplus 5(1), 42 (2016).
[Crossref] [PubMed]

Ibarra-Castanedo, C.

H. Zhang, S. Sfarra, K. Saluja, J. Peeters, J. Fleuret, Y. Duan, H. Fernandes, N. Avdelidis, C. Ibarra-Castanedo, and X. Maldague, “Non-destructive Investigation of Paintings on Canvas by Continuous Wave Terahertz Imaging and Flash Thermography,” J. Nondestruct. Eval. 36(2), 34 (2017).
[Crossref]

Jepsen, P. U.

Jonuscheit, J.

E. Cristofani, F. Friederich, S. Wohnsiedler, C. Matheis, J. Jonuscheit, M. Vandewal, and R. Beigang, “Nondestructive testing potential evaluation of a terahertz frequency-modulated continuous-wave imager for composite materials inspection,” Opt. Eng. 53(3), 31211 (2014).
[Crossref]

Koch-Dandolo, C. L.

Lee, T.-S.

J.-J. Lin, Y.-P. Li, W.-C. Hsu, and T.-S. Lee, “Design of an FMCW radar baseband signal processing system for automotive application,” Springerplus 5(1), 42 (2016).
[Crossref] [PubMed]

Li, Y.-P.

J.-J. Lin, Y.-P. Li, W.-C. Hsu, and T.-S. Lee, “Design of an FMCW radar baseband signal processing system for automotive application,” Springerplus 5(1), 42 (2016).
[Crossref] [PubMed]

Lin, J.-J.

J.-J. Lin, Y.-P. Li, W.-C. Hsu, and T.-S. Lee, “Design of an FMCW radar baseband signal processing system for automotive application,” Springerplus 5(1), 42 (2016).
[Crossref] [PubMed]

Locquet, A.

J. Dong, A. Locquet, M. Melis, and D. S. Citrin, “Global mapping of stratigraphy of an old-master painting using sparsity-based terahertz reflectometry,” Sci. Rep. 7(1), 15098 (2017).
[Crossref] [PubMed]

Loeffler, T.

C. A. Weg, W. V. Spiegel, R. Henneberger, R. Zimmermann, T. Loeffler, and H. G. Roskos, “Fast Active THz Cameras with Ranging Capabilities,” J. Infrared Millim. Terahertz Waves 30(12), 1281–1296 (2009).

Loffler, T.

H. Quast and T. Loffler, “3D-terahertz-tomography for material inspection and security,” in Proceedings of IEEE Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2009), pp. 1–2.

Ma, X.

J.-P. Guillet, M. Roux, K. Wang, X. Ma, F. Fauquet, H. Balacey, B. Recur, F. Darracq, and P. Mounaix, “Art Painting Diagnostic Before Restoration with Terahertz and Millimeter Waves,” J. Infrared Millim. Terahertz Waves 38(4), 369–379 (2017).
[Crossref]

Maldague, X.

H. Zhang, S. Sfarra, K. Saluja, J. Peeters, J. Fleuret, Y. Duan, H. Fernandes, N. Avdelidis, C. Ibarra-Castanedo, and X. Maldague, “Non-destructive Investigation of Paintings on Canvas by Continuous Wave Terahertz Imaging and Flash Thermography,” J. Nondestruct. Eval. 36(2), 34 (2017).
[Crossref]

Matheis, C.

E. Cristofani, F. Friederich, S. Wohnsiedler, C. Matheis, J. Jonuscheit, M. Vandewal, and R. Beigang, “Nondestructive testing potential evaluation of a terahertz frequency-modulated continuous-wave imager for composite materials inspection,” Opt. Eng. 53(3), 31211 (2014).
[Crossref]

Melis, M.

J. Dong, A. Locquet, M. Melis, and D. S. Citrin, “Global mapping of stratigraphy of an old-master painting using sparsity-based terahertz reflectometry,” Sci. Rep. 7(1), 15098 (2017).
[Crossref] [PubMed]

Miedzinska, D.

N. Palka and D. Miedzinska, “Detailed non-destructive evaluation of UHMWPE composites in the terahertz range,” Opt. Quantum Electron. 46(4), 515–525 (2014).
[Crossref]

Mounaix, P.

J.-P. Guillet, M. Roux, K. Wang, X. Ma, F. Fauquet, H. Balacey, B. Recur, F. Darracq, and P. Mounaix, “Art Painting Diagnostic Before Restoration with Terahertz and Millimeter Waves,” J. Infrared Millim. Terahertz Waves 38(4), 369–379 (2017).
[Crossref]

J. Guillet, K. Wang, M. Roux, F. Fauquet, F. Darracq, and P. Mounaix, “Frequency Modulated Continuous Wave Terahertz Imaging For Art Restoration,” in Proceedings of IEEE Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2016), pp. 1–2.
[Crossref]

Öhrström, L.

L. Öhrström, B. M. Fischer, A. Bitzer, J. Wallauer, M. Walther, and F. Rühli, “Terahertz Imaging Modalities of Ancient Egyptian Mummified Objects and of a Naturally Mummified Rat,” Anat. Rec. (Hoboken) 298(6), 1135–1143 (2015).
[Crossref] [PubMed]

Palka, N.

N. Palka and D. Miedzinska, “Detailed non-destructive evaluation of UHMWPE composites in the terahertz range,” Opt. Quantum Electron. 46(4), 515–525 (2014).
[Crossref]

Peeters, J.

H. Zhang, S. Sfarra, K. Saluja, J. Peeters, J. Fleuret, Y. Duan, H. Fernandes, N. Avdelidis, C. Ibarra-Castanedo, and X. Maldague, “Non-destructive Investigation of Paintings on Canvas by Continuous Wave Terahertz Imaging and Flash Thermography,” J. Nondestruct. Eval. 36(2), 34 (2017).
[Crossref]

Pradère, C.

A. Younus, J. P. Caumes, S. Salort, B. Chassagne, C. Pradère, A. Dautant, A. Ziéglé, and E. Abraham, “A continuous millimeter-wave imaging scanner for art conservation science,” Adv. Opt. Technol. 2011, 1–9 (2011).
[Crossref]

Quast, H.

H. Quast and T. Loffler, “3D-terahertz-tomography for material inspection and security,” in Proceedings of IEEE Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2009), pp. 1–2.

Recur, B.

J.-P. Guillet, M. Roux, K. Wang, X. Ma, F. Fauquet, H. Balacey, B. Recur, F. Darracq, and P. Mounaix, “Art Painting Diagnostic Before Restoration with Terahertz and Millimeter Waves,” J. Infrared Millim. Terahertz Waves 38(4), 369–379 (2017).
[Crossref]

Roskos, H. G.

C. A. Weg, W. V. Spiegel, R. Henneberger, R. Zimmermann, T. Loeffler, and H. G. Roskos, “Fast Active THz Cameras with Ranging Capabilities,” J. Infrared Millim. Terahertz Waves 30(12), 1281–1296 (2009).

Roux, M.

J.-P. Guillet, M. Roux, K. Wang, X. Ma, F. Fauquet, H. Balacey, B. Recur, F. Darracq, and P. Mounaix, “Art Painting Diagnostic Before Restoration with Terahertz and Millimeter Waves,” J. Infrared Millim. Terahertz Waves 38(4), 369–379 (2017).
[Crossref]

J. Guillet, K. Wang, M. Roux, F. Fauquet, F. Darracq, and P. Mounaix, “Frequency Modulated Continuous Wave Terahertz Imaging For Art Restoration,” in Proceedings of IEEE Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2016), pp. 1–2.
[Crossref]

Rühli, F.

L. Öhrström, B. M. Fischer, A. Bitzer, J. Wallauer, M. Walther, and F. Rühli, “Terahertz Imaging Modalities of Ancient Egyptian Mummified Objects and of a Naturally Mummified Rat,” Anat. Rec. (Hoboken) 298(6), 1135–1143 (2015).
[Crossref] [PubMed]

Salort, S.

A. Younus, J. P. Caumes, S. Salort, B. Chassagne, C. Pradère, A. Dautant, A. Ziéglé, and E. Abraham, “A continuous millimeter-wave imaging scanner for art conservation science,” Adv. Opt. Technol. 2011, 1–9 (2011).
[Crossref]

Saluja, K.

H. Zhang, S. Sfarra, K. Saluja, J. Peeters, J. Fleuret, Y. Duan, H. Fernandes, N. Avdelidis, C. Ibarra-Castanedo, and X. Maldague, “Non-destructive Investigation of Paintings on Canvas by Continuous Wave Terahertz Imaging and Flash Thermography,” J. Nondestruct. Eval. 36(2), 34 (2017).
[Crossref]

Sfarra, S.

H. Zhang, S. Sfarra, K. Saluja, J. Peeters, J. Fleuret, Y. Duan, H. Fernandes, N. Avdelidis, C. Ibarra-Castanedo, and X. Maldague, “Non-destructive Investigation of Paintings on Canvas by Continuous Wave Terahertz Imaging and Flash Thermography,” J. Nondestruct. Eval. 36(2), 34 (2017).
[Crossref]

Skou-Hansen, J.

Spiegel, W. V.

C. A. Weg, W. V. Spiegel, R. Henneberger, R. Zimmermann, T. Loeffler, and H. G. Roskos, “Fast Active THz Cameras with Ranging Capabilities,” J. Infrared Millim. Terahertz Waves 30(12), 1281–1296 (2009).

Vandewal, M.

E. Cristofani, F. Friederich, S. Wohnsiedler, C. Matheis, J. Jonuscheit, M. Vandewal, and R. Beigang, “Nondestructive testing potential evaluation of a terahertz frequency-modulated continuous-wave imager for composite materials inspection,” Opt. Eng. 53(3), 31211 (2014).
[Crossref]

Wallauer, J.

L. Öhrström, B. M. Fischer, A. Bitzer, J. Wallauer, M. Walther, and F. Rühli, “Terahertz Imaging Modalities of Ancient Egyptian Mummified Objects and of a Naturally Mummified Rat,” Anat. Rec. (Hoboken) 298(6), 1135–1143 (2015).
[Crossref] [PubMed]

Walther, M.

L. Öhrström, B. M. Fischer, A. Bitzer, J. Wallauer, M. Walther, and F. Rühli, “Terahertz Imaging Modalities of Ancient Egyptian Mummified Objects and of a Naturally Mummified Rat,” Anat. Rec. (Hoboken) 298(6), 1135–1143 (2015).
[Crossref] [PubMed]

Wang, K.

J.-P. Guillet, M. Roux, K. Wang, X. Ma, F. Fauquet, H. Balacey, B. Recur, F. Darracq, and P. Mounaix, “Art Painting Diagnostic Before Restoration with Terahertz and Millimeter Waves,” J. Infrared Millim. Terahertz Waves 38(4), 369–379 (2017).
[Crossref]

J. Guillet, K. Wang, M. Roux, F. Fauquet, F. Darracq, and P. Mounaix, “Frequency Modulated Continuous Wave Terahertz Imaging For Art Restoration,” in Proceedings of IEEE Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2016), pp. 1–2.
[Crossref]

Weg, C. A.

C. A. Weg, W. V. Spiegel, R. Henneberger, R. Zimmermann, T. Loeffler, and H. G. Roskos, “Fast Active THz Cameras with Ranging Capabilities,” J. Infrared Millim. Terahertz Waves 30(12), 1281–1296 (2009).

Wohnsiedler, S.

E. Cristofani, F. Friederich, S. Wohnsiedler, C. Matheis, J. Jonuscheit, M. Vandewal, and R. Beigang, “Nondestructive testing potential evaluation of a terahertz frequency-modulated continuous-wave imager for composite materials inspection,” Opt. Eng. 53(3), 31211 (2014).
[Crossref]

Younus, A.

A. Younus, J. P. Caumes, S. Salort, B. Chassagne, C. Pradère, A. Dautant, A. Ziéglé, and E. Abraham, “A continuous millimeter-wave imaging scanner for art conservation science,” Adv. Opt. Technol. 2011, 1–9 (2011).
[Crossref]

Zhang, H.

H. Zhang, S. Sfarra, K. Saluja, J. Peeters, J. Fleuret, Y. Duan, H. Fernandes, N. Avdelidis, C. Ibarra-Castanedo, and X. Maldague, “Non-destructive Investigation of Paintings on Canvas by Continuous Wave Terahertz Imaging and Flash Thermography,” J. Nondestruct. Eval. 36(2), 34 (2017).
[Crossref]

Ziéglé, A.

A. Younus, J. P. Caumes, S. Salort, B. Chassagne, C. Pradère, A. Dautant, A. Ziéglé, and E. Abraham, “A continuous millimeter-wave imaging scanner for art conservation science,” Adv. Opt. Technol. 2011, 1–9 (2011).
[Crossref]

Zimmermann, R.

C. A. Weg, W. V. Spiegel, R. Henneberger, R. Zimmermann, T. Loeffler, and H. G. Roskos, “Fast Active THz Cameras with Ranging Capabilities,” J. Infrared Millim. Terahertz Waves 30(12), 1281–1296 (2009).

Adv. Opt. Technol. (1)

A. Younus, J. P. Caumes, S. Salort, B. Chassagne, C. Pradère, A. Dautant, A. Ziéglé, and E. Abraham, “A continuous millimeter-wave imaging scanner for art conservation science,” Adv. Opt. Technol. 2011, 1–9 (2011).
[Crossref]

Anat. Rec. (Hoboken) (1)

L. Öhrström, B. M. Fischer, A. Bitzer, J. Wallauer, M. Walther, and F. Rühli, “Terahertz Imaging Modalities of Ancient Egyptian Mummified Objects and of a Naturally Mummified Rat,” Anat. Rec. (Hoboken) 298(6), 1135–1143 (2015).
[Crossref] [PubMed]

Appl. Opt. (1)

J. Infrared Millim. Terahertz Waves (2)

J.-P. Guillet, M. Roux, K. Wang, X. Ma, F. Fauquet, H. Balacey, B. Recur, F. Darracq, and P. Mounaix, “Art Painting Diagnostic Before Restoration with Terahertz and Millimeter Waves,” J. Infrared Millim. Terahertz Waves 38(4), 369–379 (2017).
[Crossref]

C. A. Weg, W. V. Spiegel, R. Henneberger, R. Zimmermann, T. Loeffler, and H. G. Roskos, “Fast Active THz Cameras with Ranging Capabilities,” J. Infrared Millim. Terahertz Waves 30(12), 1281–1296 (2009).

J. Nondestruct. Eval. (1)

H. Zhang, S. Sfarra, K. Saluja, J. Peeters, J. Fleuret, Y. Duan, H. Fernandes, N. Avdelidis, C. Ibarra-Castanedo, and X. Maldague, “Non-destructive Investigation of Paintings on Canvas by Continuous Wave Terahertz Imaging and Flash Thermography,” J. Nondestruct. Eval. 36(2), 34 (2017).
[Crossref]

Opt. Eng. (1)

E. Cristofani, F. Friederich, S. Wohnsiedler, C. Matheis, J. Jonuscheit, M. Vandewal, and R. Beigang, “Nondestructive testing potential evaluation of a terahertz frequency-modulated continuous-wave imager for composite materials inspection,” Opt. Eng. 53(3), 31211 (2014).
[Crossref]

Opt. Quantum Electron. (1)

N. Palka and D. Miedzinska, “Detailed non-destructive evaluation of UHMWPE composites in the terahertz range,” Opt. Quantum Electron. 46(4), 515–525 (2014).
[Crossref]

Sci. Rep. (1)

J. Dong, A. Locquet, M. Melis, and D. S. Citrin, “Global mapping of stratigraphy of an old-master painting using sparsity-based terahertz reflectometry,” Sci. Rep. 7(1), 15098 (2017).
[Crossref] [PubMed]

Springerplus (1)

J.-J. Lin, Y.-P. Li, W.-C. Hsu, and T.-S. Lee, “Design of an FMCW radar baseband signal processing system for automotive application,” Springerplus 5(1), 42 (2016).
[Crossref] [PubMed]

Other (9)

D. E. Barriok, “FM/CW radar signal and digital processing,” NOAA Technical Reports ERL283–WPL20, (1973)

M. Stecher, et al., “14. Towards Industrial Inspection with THz Systems,” in Ultrashort Pulse Laser Technology, S. Nolte, F. Schrempel, F. Dausinger, eds (Springer, Cham, 2016)

H. Quast and T. Loffler, “3D-terahertz-tomography for material inspection and security,” in Proceedings of IEEE Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2009), pp. 1–2.

K. Zuiderveld, “Contrast Limited Adaptive Histogram Equalization,” in Graphics Gems IV (Elsevier Inc., 1994), pp. 474–485.

J. Guillet, K. Wang, M. Roux, F. Fauquet, F. Darracq, and P. Mounaix, “Frequency Modulated Continuous Wave Terahertz Imaging For Art Restoration,” in Proceedings of IEEE Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2016), pp. 1–2.
[Crossref]

K. Fukunaga, THz Technology Applied to Cultural Heritage in Practice (Springer, 2016).

W. Köhler, M. Panzer, U. Klotzach, and S. Winner, “Non-destructive investigation of paintings with THz-radiation,” in 9th ECNDT (2006), pp. 1–7.

D. Mittelman, Sensing with Terahertz Radiation (Springer Berlin Heidelberg, 2003).

J. Bianca Jackson, R.M. Mourou, J. F. Whitaker, I. N. Duling, S. L. Williamson, M. Menu, and G. Mourou, “Terahertz Time-Domain Reflectometry Applied to the Investigation of Hidden Mural Paintings,” in Conf. Lasers Electro-Optics/Quantum Electron. Laser Sci. Conf. Photonic Appl. Syst. Technol. (2008), paper CThN3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 a. The contemporary painting, front. b. The contemporary painting, raking light image. c. The contemporary painting, back. The 18th century painting, front
Fig. 2
Fig. 2 a. Schematization of the parameters used for imaging the scanned subjects a. The maximum amplitude vale (blue dot). b. Integration of the signal amplitude between specific Z range (gray area bonded above the signal) and FWHM (dashed blue double-headed arrow). c. Amplitude at a given position along the Z axis (blue dots) or Z values at which the maximum of the signals is found (red crosses)
Fig. 3
Fig. 3 a. THz image of the contemporary painting after contrast enhancement, parameter: signal global maximum. b. Signals recorded at the (x, y) coordinates reported in the legend, corresponding to the colored dots of Fig. 3(a).
Fig. 4
Fig. 4 a. THz image of the contemporary painting after contrast enhancement, parameter: signal amplitude integrated between Z = −13 and Z = −8. b. Signals recorded at the different (x, y) coordinates reported in the Fig. 4(a) as colored dots. c. The same signals of Fig. 4(b), rescaled for enhancing the visibility of the second peak registered for the signals recorded at (x, y) coordinates at which the frame is present on the back of the painting.
Fig. 5
Fig. 5 a. Gaussian fit of the signal at pixel (x, y) = (400, 400). b. Residuals from the fitted model
Fig. 6
Fig. 6 a. THz image of the position of the maximum of the recorded signals. b. Image of the b coefficient (centroid) of the Gaussian model
Fig. 7
Fig. 7 a. Image of the FWHM of the signals. b. Image of the FWHM of the Gaussian model
Fig. 8
Fig. 8 a. Terahertz image of the 18th century painting, parameter: signal global maximum. b. Terahertz image of the 18th century painting, parameter: position of the signal maxima.
Fig. 9
Fig. 9 a. Signals acquired (colored solid curves) at distances 3.1 cm – 5.64 cm from the transceiver lenses at step of 2.54 mm; values of the signal maxima (black dots); Gaussian fit of signal maxima (dashed red line). b. Histogram of the distribution of the position of the maximum of the signals along the Z-axis for the investigated painting; the red curve shows the normal distribution fit.
Fig. 10
Fig. 10 a. Terahertz image of the 18th century painting, parameter: signal global maximum. b. Terahertz image after the signals correction

Tables (1)

Tables Icon

Table 1 Coefficients of the fitted model and goodness of fit for the signal at pixel (x, y) = (400, 400)

Metrics