Abstract

Surface plasmon polaritons (SPPs) have been attracting tremendous attention in application of enhanced optoelectronic devices owing to their capability of localizing electromagnetic waves in deep subwavelength scale. We propose a plasmonic mid-infrared InAsSb-based n-i-p photodiode with electrically-controlled photocurrent enhancement achieved by controlling the overlap between SPP depth and the absorption layer, from which maximum electrically controlled enhancement factors of ~5x and ~6x have been achieved for room temperature (293 K) and 77 K operation, respectively, corresponding to electrical tuning factors of 11.9 and 26. The maximum detectivities obtained at the two temperatures are 0.8 × 1010 Jones and 5 × 1011 Jones, respectively. This electrically controlled enhancement expands the application capability of plasmonic photodiodes.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photovoltaic Ge/SiGe quantum dot mid-infrared photodetector enhanced by surface plasmons

A. I. Yakimov, V. V. Kirienko, A. A. Bloshkin, V. A. Armbrister, A. V. Dvurechenskii, and J.-M. Hartmann
Opt. Express 25(21) 25602-25611 (2017)

Room temperature operation of mid-infrared InAs0.81Sb0.19 based photovoltaic detectors with an In0.2Al0.8Sb barrier layer grown on GaAs substrates

Dae-Myeong Geum, SangHyeon Kim, SooSeok Kang, Hosung Kim, Hwanyeol Park, Il Pyo Rho, Seung Yeop Ahn, Jindong Song, Won Jun Choi, and Euijoon Yoon
Opt. Express 26(5) 6249-6259 (2018)

Active tuning of mid-infrared metamaterials by electrical control of carrier densities

Young Chul Jun, Edward Gonzales, John L. Reno, Eric A. Shaner, Alon Gabbay, and Igal Brener
Opt. Express 20(2) 1903-1911 (2012)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  2. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
    [Crossref]
  3. C. Stehle, H. Bender, C. Zimmermann, D. Kern, M. Fleischer, and S. Slama, “Plasmonically tailored micropotentials for ultracold atoms,” Nat. Photonics 5(8), 494–498 (2011).
    [Crossref]
  4. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [Crossref] [PubMed]
  5. J. Tong, W. Zhou, Y. Qu, Z. Xu, Z. Huang, and D. H. Zhang, “Surface plasmon induced direct detection of long wavelength photons,” Nat. Commun. 8(1), 1660 (2017).
    [Crossref] [PubMed]
  6. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
    [Crossref]
  7. L. Y. M. Tobing and D. H. Zhang, “Preferential excitation of the hybrid magnetic-electric mode as a limiting mechanism for achievable fundamental magnetic resonance in planar aluminum nanostructures,” Adv. Mater. 28(5), 889–896 (2016).
    [Crossref] [PubMed]
  8. S. S. Kou, G. Yuan, Q. Wang, L. Du, E. Balaur, D. Zhang, D. Tang, B. Abbey, X.-C. Yuan, and J. Lin, “On-chip photonic Fourier transform with surface plasmon polaritons,” Light Sci. Appl. 5, e16034 (2016).
    [Crossref]
  9. R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photonics 6(7), 409–411 (2012).
    [Crossref]
  10. A. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
    [Crossref]
  11. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  12. J. A. Nolde, M. Kim, C. S. Kim, E. M. Jackson, C. T. Ellis, J. Abell, O. J. Glembocki, C. L. Canedy, J. G. Tischler, I. Vurgaftman, J. R. Meyer, and E. H. Aifer, “Resonant quantum efficiency enhancement of midwave infrared nBn photodetectors using one-dimensional plasmonic gratings,” Appl. Phys. Lett. 106(26), 261109 (2015).
    [Crossref]
  13. Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579 (2011).
    [Crossref] [PubMed]
  14. C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
    [Crossref] [PubMed]
  15. P. Guo, R. D. Schaller, J. B. Ketterson, and R. P. H. Chang, “Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude,” Nat. Photonics 10(4), 267–273 (2016).
    [Crossref]
  16. X. Liu, J. Park, J. Kang, H. Yuan, Y. Cui, and H. Y. Hwang, “Quantification and impact of nonparabolicity of the conduction band of indium tin oxide on its plasmonic properties,” Appl. Phys. 105, 181117 (2014).
  17. E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
    [Crossref] [PubMed]
  18. Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Lett. 14(1), 214–219 (2014).
    [Crossref] [PubMed]
  19. S. Kim, M. S. Jang, V. W. Brar, Y. Tolstova, K. W. Mauser, and H. A. Atwater, “Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays,” Nat. Commun. 7, 12323 (2016).
    [Crossref] [PubMed]
  20. E. A. Shaner, J. G. Cederberg, and D. Wasserman, “Electrically tunable extraordinary optical transmission gratings,” Appl. Phys. Lett. 91(18), 181110 (2007).
    [Crossref]
  21. P. P. Iyer, M. Pendharkar, C. J. Palmstrøm, and J. A. Schuller, “Ultrawide thermal free-carrier tuning of dielectric antennas coupled to epsilon-near-zero substrates,” Nat. Commun. 8(1), 472 (2017).
    [Crossref] [PubMed]
  22. J. C. Tong, L. Y. M. Tobing, S. P. Qiu, D. H. Zhang, and A. G. U. Perera, “Room temperature plasmon-enhanced InAsSb-based heterojunction n-i-p mid-wave infrared photodetector,” (submitted).
  23. H. Raether, Surface Plasmons (Springer, 1988), p5–6.
  24. Palik, Handbook of Optical Constants of Solids II (Academic Press, 1991).
  25. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24(24), 4493–4499 (1985).
    [Crossref] [PubMed]
  26. C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
    [Crossref] [PubMed]
  27. W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt. 8(4), S87–S93 (2006).
    [Crossref]
  28. J. A. Kong, Electromagnetic Wave Theory (E. M. W., 2000).
  29. M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67(8), 85415 (2003).
    [Crossref]
  30. C. Genet, M. P. Van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003).
    [Crossref]
  31. V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. 22(43), 4794–4808 (2010).
    [Crossref] [PubMed]
  32. G. Hernandez, Fabry–Pérot Interferometers (Cambridge University Press, 1986).
  33. F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97(20), 206806 (2006).
    [Crossref] [PubMed]
  34. G. Marre, B. Vinter, and V. Berger, “Strategy for the design of a non-cryogenic,” Semicond. Sci. Technol. 18(4), 284–291 (2003).
    [Crossref]
  35. E. Stern, R. Wagner, F. J. Sigworth, R. Breaker, T. M. Fahmy, and M. A. Reed, “Importance of the debye screening length on nanowire field effect transistor sensors,” Nano Lett. 7(11), 3405–3409 (2007).
    [Crossref] [PubMed]
  36. S. M. Sze, Physics of Semiconductor Devices (Wiley, 1981).
  37. http://www.hamamatsu.com/resources/pdf/ssd/p13243_series_kird1130e.pdf , accessed on 09/02/2018.
  38. A. Soibel, C. J. Hill, S. A. Keo, L. Hoglund, R. Rosenberg, R. Kowalczyk, A. Khoshakhlagh, A. Fisher, D. Z. Y. Ting, and S. D. Gunapala, “Room temperature performance of mid-wavelength infrared InAsSb nBn detectors,” Appl. Phys. Lett. 105(2), 23512 (2014).
    [Crossref]
  39. B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 um,” IEEE Photonics Technol. Lett. 23(4), 218–220 (2011).
    [Crossref]

2017 (2)

J. Tong, W. Zhou, Y. Qu, Z. Xu, Z. Huang, and D. H. Zhang, “Surface plasmon induced direct detection of long wavelength photons,” Nat. Commun. 8(1), 1660 (2017).
[Crossref] [PubMed]

P. P. Iyer, M. Pendharkar, C. J. Palmstrøm, and J. A. Schuller, “Ultrawide thermal free-carrier tuning of dielectric antennas coupled to epsilon-near-zero substrates,” Nat. Commun. 8(1), 472 (2017).
[Crossref] [PubMed]

2016 (4)

P. Guo, R. D. Schaller, J. B. Ketterson, and R. P. H. Chang, “Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude,” Nat. Photonics 10(4), 267–273 (2016).
[Crossref]

S. Kim, M. S. Jang, V. W. Brar, Y. Tolstova, K. W. Mauser, and H. A. Atwater, “Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays,” Nat. Commun. 7, 12323 (2016).
[Crossref] [PubMed]

L. Y. M. Tobing and D. H. Zhang, “Preferential excitation of the hybrid magnetic-electric mode as a limiting mechanism for achievable fundamental magnetic resonance in planar aluminum nanostructures,” Adv. Mater. 28(5), 889–896 (2016).
[Crossref] [PubMed]

S. S. Kou, G. Yuan, Q. Wang, L. Du, E. Balaur, D. Zhang, D. Tang, B. Abbey, X.-C. Yuan, and J. Lin, “On-chip photonic Fourier transform with surface plasmon polaritons,” Light Sci. Appl. 5, e16034 (2016).
[Crossref]

2015 (1)

J. A. Nolde, M. Kim, C. S. Kim, E. M. Jackson, C. T. Ellis, J. Abell, O. J. Glembocki, C. L. Canedy, J. G. Tischler, I. Vurgaftman, J. R. Meyer, and E. H. Aifer, “Resonant quantum efficiency enhancement of midwave infrared nBn photodetectors using one-dimensional plasmonic gratings,” Appl. Phys. Lett. 106(26), 261109 (2015).
[Crossref]

2014 (3)

X. Liu, J. Park, J. Kang, H. Yuan, Y. Cui, and H. Y. Hwang, “Quantification and impact of nonparabolicity of the conduction band of indium tin oxide on its plasmonic properties,” Appl. Phys. 105, 181117 (2014).

Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Lett. 14(1), 214–219 (2014).
[Crossref] [PubMed]

A. Soibel, C. J. Hill, S. A. Keo, L. Hoglund, R. Rosenberg, R. Kowalczyk, A. Khoshakhlagh, A. Fisher, D. Z. Y. Ting, and S. D. Gunapala, “Room temperature performance of mid-wavelength infrared InAsSb nBn detectors,” Appl. Phys. Lett. 105(2), 23512 (2014).
[Crossref]

2012 (2)

R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photonics 6(7), 409–411 (2012).
[Crossref]

A. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

2011 (3)

C. Stehle, H. Bender, C. Zimmermann, D. Kern, M. Fleischer, and S. Slama, “Plasmonically tailored micropotentials for ultracold atoms,” Nat. Photonics 5(8), 494–498 (2011).
[Crossref]

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579 (2011).
[Crossref] [PubMed]

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 um,” IEEE Photonics Technol. Lett. 23(4), 218–220 (2011).
[Crossref]

2010 (6)

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. 22(43), 4794–4808 (2010).
[Crossref] [PubMed]

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

2009 (1)

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

2007 (3)

E. A. Shaner, J. G. Cederberg, and D. Wasserman, “Electrically tunable extraordinary optical transmission gratings,” Appl. Phys. Lett. 91(18), 181110 (2007).
[Crossref]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

E. Stern, R. Wagner, F. J. Sigworth, R. Breaker, T. M. Fahmy, and M. A. Reed, “Importance of the debye screening length on nanowire field effect transistor sensors,” Nano Lett. 7(11), 3405–3409 (2007).
[Crossref] [PubMed]

2006 (2)

W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt. 8(4), S87–S93 (2006).
[Crossref]

F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97(20), 206806 (2006).
[Crossref] [PubMed]

2003 (4)

G. Marre, B. Vinter, and V. Berger, “Strategy for the design of a non-cryogenic,” Semicond. Sci. Technol. 18(4), 284–291 (2003).
[Crossref]

M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67(8), 85415 (2003).
[Crossref]

C. Genet, M. P. Van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

1985 (1)

Abbey, B.

S. S. Kou, G. Yuan, Q. Wang, L. Du, E. Balaur, D. Zhang, D. Tang, B. Abbey, X.-C. Yuan, and J. Lin, “On-chip photonic Fourier transform with surface plasmon polaritons,” Light Sci. Appl. 5, e16034 (2016).
[Crossref]

Abell, J.

J. A. Nolde, M. Kim, C. S. Kim, E. M. Jackson, C. T. Ellis, J. Abell, O. J. Glembocki, C. L. Canedy, J. G. Tischler, I. Vurgaftman, J. R. Meyer, and E. H. Aifer, “Resonant quantum efficiency enhancement of midwave infrared nBn photodetectors using one-dimensional plasmonic gratings,” Appl. Phys. Lett. 106(26), 261109 (2015).
[Crossref]

Aifer, E. H.

J. A. Nolde, M. Kim, C. S. Kim, E. M. Jackson, C. T. Ellis, J. Abell, O. J. Glembocki, C. L. Canedy, J. G. Tischler, I. Vurgaftman, J. R. Meyer, and E. H. Aifer, “Resonant quantum efficiency enhancement of midwave infrared nBn photodetectors using one-dimensional plasmonic gratings,” Appl. Phys. Lett. 106(26), 261109 (2015).
[Crossref]

Alexander, R. W.

Atwater, H. A.

S. Kim, M. S. Jang, V. W. Brar, Y. Tolstova, K. W. Mauser, and H. A. Atwater, “Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays,” Nat. Commun. 7, 12323 (2016).
[Crossref] [PubMed]

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. 22(43), 4794–4808 (2010).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Bai, J.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579 (2011).
[Crossref] [PubMed]

Balaur, E.

S. S. Kou, G. Yuan, Q. Wang, L. Du, E. Balaur, D. Zhang, D. Tang, B. Abbey, X.-C. Yuan, and J. Lin, “On-chip photonic Fourier transform with surface plasmon polaritons,” Light Sci. Appl. 5, e16034 (2016).
[Crossref]

Barnard, E.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

Barnes, W. L.

W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt. 8(4), S87–S93 (2006).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Bell, R. J.

Bender, H.

C. Stehle, H. Bender, C. Zimmermann, D. Kern, M. Fleischer, and S. Slama, “Plasmonically tailored micropotentials for ultracold atoms,” Nat. Photonics 5(8), 494–498 (2011).
[Crossref]

Berger, V.

G. Marre, B. Vinter, and V. Berger, “Strategy for the design of a non-cryogenic,” Semicond. Sci. Technol. 18(4), 284–291 (2003).
[Crossref]

Brar, V. W.

S. Kim, M. S. Jang, V. W. Brar, Y. Tolstova, K. W. Mauser, and H. A. Atwater, “Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays,” Nat. Commun. 7, 12323 (2016).
[Crossref] [PubMed]

Breaker, R.

E. Stern, R. Wagner, F. J. Sigworth, R. Breaker, T. M. Fahmy, and M. A. Reed, “Importance of the debye screening length on nanowire field effect transistor sensors,” Nano Lett. 7(11), 3405–3409 (2007).
[Crossref] [PubMed]

Brolo, A.

A. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

Brongersma, M. L.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

Bur, J. A.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

Canedy, C. L.

J. A. Nolde, M. Kim, C. S. Kim, E. M. Jackson, C. T. Ellis, J. Abell, O. J. Glembocki, C. L. Canedy, J. G. Tischler, I. Vurgaftman, J. R. Meyer, and E. H. Aifer, “Resonant quantum efficiency enhancement of midwave infrared nBn photodetectors using one-dimensional plasmonic gratings,” Appl. Phys. Lett. 106(26), 261109 (2015).
[Crossref]

Capasso, F.

Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Lett. 14(1), 214–219 (2014).
[Crossref] [PubMed]

Cederberg, J. G.

E. A. Shaner, J. G. Cederberg, and D. Wasserman, “Electrically tunable extraordinary optical transmission gratings,” Appl. Phys. Lett. 91(18), 181110 (2007).
[Crossref]

Chang, C.-C.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

Chang, R. P. H.

P. Guo, R. D. Schaller, J. B. Ketterson, and R. P. H. Chang, “Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude,” Nat. Photonics 10(4), 267–273 (2016).
[Crossref]

Chen, B.

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 um,” IEEE Photonics Technol. Lett. 23(4), 218–220 (2011).
[Crossref]

Cheng, R.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579 (2011).
[Crossref] [PubMed]

Cui, Y.

X. Liu, J. Park, J. Kang, H. Yuan, Y. Cui, and H. Y. Hwang, “Quantification and impact of nonparabolicity of the conduction band of indium tin oxide on its plasmonic properties,” Appl. Phys. 105, 181117 (2014).

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Diest, K.

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

Du, L.

S. S. Kou, G. Yuan, Q. Wang, L. Du, E. Balaur, D. Zhang, D. Tang, B. Abbey, X.-C. Yuan, and J. Lin, “On-chip photonic Fourier transform with surface plasmon polaritons,” Light Sci. Appl. 5, e16034 (2016).
[Crossref]

Duan, X.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579 (2011).
[Crossref] [PubMed]

Ebbesen, T. W.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Ellis, C. T.

J. A. Nolde, M. Kim, C. S. Kim, E. M. Jackson, C. T. Ellis, J. Abell, O. J. Glembocki, C. L. Canedy, J. G. Tischler, I. Vurgaftman, J. R. Meyer, and E. H. Aifer, “Resonant quantum efficiency enhancement of midwave infrared nBn photodetectors using one-dimensional plasmonic gratings,” Appl. Phys. Lett. 106(26), 261109 (2015).
[Crossref]

Fahmy, T. M.

E. Stern, R. Wagner, F. J. Sigworth, R. Breaker, T. M. Fahmy, and M. A. Reed, “Importance of the debye screening length on nanowire field effect transistor sensors,” Nano Lett. 7(11), 3405–3409 (2007).
[Crossref] [PubMed]

Feigenbaum, E.

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

Ferry, V. E.

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. 22(43), 4794–4808 (2010).
[Crossref] [PubMed]

Fisher, A.

A. Soibel, C. J. Hill, S. A. Keo, L. Hoglund, R. Rosenberg, R. Kowalczyk, A. Khoshakhlagh, A. Fisher, D. Z. Y. Ting, and S. D. Gunapala, “Room temperature performance of mid-wavelength infrared InAsSb nBn detectors,” Appl. Phys. Lett. 105(2), 23512 (2014).
[Crossref]

Fleischer, M.

C. Stehle, H. Bender, C. Zimmermann, D. Kern, M. Fleischer, and S. Slama, “Plasmonically tailored micropotentials for ultracold atoms,” Nat. Photonics 5(8), 494–498 (2011).
[Crossref]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

C. Genet, M. P. Van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003).
[Crossref]

Glembocki, O. J.

J. A. Nolde, M. Kim, C. S. Kim, E. M. Jackson, C. T. Ellis, J. Abell, O. J. Glembocki, C. L. Canedy, J. G. Tischler, I. Vurgaftman, J. R. Meyer, and E. H. Aifer, “Resonant quantum efficiency enhancement of midwave infrared nBn photodetectors using one-dimensional plasmonic gratings,” Appl. Phys. Lett. 106(26), 261109 (2015).
[Crossref]

Gunapala, S. D.

A. Soibel, C. J. Hill, S. A. Keo, L. Hoglund, R. Rosenberg, R. Kowalczyk, A. Khoshakhlagh, A. Fisher, D. Z. Y. Ting, and S. D. Gunapala, “Room temperature performance of mid-wavelength infrared InAsSb nBn detectors,” Appl. Phys. Lett. 105(2), 23512 (2014).
[Crossref]

Guo, P.

P. Guo, R. D. Schaller, J. B. Ketterson, and R. P. H. Chang, “Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude,” Nat. Photonics 10(4), 267–273 (2016).
[Crossref]

Hill, C. J.

A. Soibel, C. J. Hill, S. A. Keo, L. Hoglund, R. Rosenberg, R. Kowalczyk, A. Khoshakhlagh, A. Fisher, D. Z. Y. Ting, and S. D. Gunapala, “Room temperature performance of mid-wavelength infrared InAsSb nBn detectors,” Appl. Phys. Lett. 105(2), 23512 (2014).
[Crossref]

Hoglund, L.

A. Soibel, C. J. Hill, S. A. Keo, L. Hoglund, R. Rosenberg, R. Kowalczyk, A. Khoshakhlagh, A. Fisher, D. Z. Y. Ting, and S. D. Gunapala, “Room temperature performance of mid-wavelength infrared InAsSb nBn detectors,” Appl. Phys. Lett. 105(2), 23512 (2014).
[Crossref]

Holmes, A. L.

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 um,” IEEE Photonics Technol. Lett. 23(4), 218–220 (2011).
[Crossref]

Huang, D.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

Huang, Y.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579 (2011).
[Crossref] [PubMed]

Huang, Z.

J. Tong, W. Zhou, Y. Qu, Z. Xu, Z. Huang, and D. H. Zhang, “Surface plasmon induced direct detection of long wavelength photons,” Nat. Commun. 8(1), 1660 (2017).
[Crossref] [PubMed]

Hwang, H. Y.

X. Liu, J. Park, J. Kang, H. Yuan, Y. Cui, and H. Y. Hwang, “Quantification and impact of nonparabolicity of the conduction band of indium tin oxide on its plasmonic properties,” Appl. Phys. 105, 181117 (2014).

Iyer, P. P.

P. P. Iyer, M. Pendharkar, C. J. Palmstrøm, and J. A. Schuller, “Ultrawide thermal free-carrier tuning of dielectric antennas coupled to epsilon-near-zero substrates,” Nat. Commun. 8(1), 472 (2017).
[Crossref] [PubMed]

Jackson, E. M.

J. A. Nolde, M. Kim, C. S. Kim, E. M. Jackson, C. T. Ellis, J. Abell, O. J. Glembocki, C. L. Canedy, J. G. Tischler, I. Vurgaftman, J. R. Meyer, and E. H. Aifer, “Resonant quantum efficiency enhancement of midwave infrared nBn photodetectors using one-dimensional plasmonic gratings,” Appl. Phys. Lett. 106(26), 261109 (2015).
[Crossref]

Jang, M. S.

S. Kim, M. S. Jang, V. W. Brar, Y. Tolstova, K. W. Mauser, and H. A. Atwater, “Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays,” Nat. Commun. 7, 12323 (2016).
[Crossref] [PubMed]

Jiang, W. Y.

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 um,” IEEE Photonics Technol. Lett. 23(4), 218–220 (2011).
[Crossref]

Kang, J.

X. Liu, J. Park, J. Kang, H. Yuan, Y. Cui, and H. Y. Hwang, “Quantification and impact of nonparabolicity of the conduction band of indium tin oxide on its plasmonic properties,” Appl. Phys. 105, 181117 (2014).

Kats, M. A.

Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Lett. 14(1), 214–219 (2014).
[Crossref] [PubMed]

Keo, S. A.

A. Soibel, C. J. Hill, S. A. Keo, L. Hoglund, R. Rosenberg, R. Kowalczyk, A. Khoshakhlagh, A. Fisher, D. Z. Y. Ting, and S. D. Gunapala, “Room temperature performance of mid-wavelength infrared InAsSb nBn detectors,” Appl. Phys. Lett. 105(2), 23512 (2014).
[Crossref]

Kern, D.

C. Stehle, H. Bender, C. Zimmermann, D. Kern, M. Fleischer, and S. Slama, “Plasmonically tailored micropotentials for ultracold atoms,” Nat. Photonics 5(8), 494–498 (2011).
[Crossref]

Ketterson, J. B.

P. Guo, R. D. Schaller, J. B. Ketterson, and R. P. H. Chang, “Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude,” Nat. Photonics 10(4), 267–273 (2016).
[Crossref]

Khoshakhlagh, A.

A. Soibel, C. J. Hill, S. A. Keo, L. Hoglund, R. Rosenberg, R. Kowalczyk, A. Khoshakhlagh, A. Fisher, D. Z. Y. Ting, and S. D. Gunapala, “Room temperature performance of mid-wavelength infrared InAsSb nBn detectors,” Appl. Phys. Lett. 105(2), 23512 (2014).
[Crossref]

Kim, C. S.

J. A. Nolde, M. Kim, C. S. Kim, E. M. Jackson, C. T. Ellis, J. Abell, O. J. Glembocki, C. L. Canedy, J. G. Tischler, I. Vurgaftman, J. R. Meyer, and E. H. Aifer, “Resonant quantum efficiency enhancement of midwave infrared nBn photodetectors using one-dimensional plasmonic gratings,” Appl. Phys. Lett. 106(26), 261109 (2015).
[Crossref]

Kim, M.

J. A. Nolde, M. Kim, C. S. Kim, E. M. Jackson, C. T. Ellis, J. Abell, O. J. Glembocki, C. L. Canedy, J. G. Tischler, I. Vurgaftman, J. R. Meyer, and E. H. Aifer, “Resonant quantum efficiency enhancement of midwave infrared nBn photodetectors using one-dimensional plasmonic gratings,” Appl. Phys. Lett. 106(26), 261109 (2015).
[Crossref]

Kim, S.

S. Kim, M. S. Jang, V. W. Brar, Y. Tolstova, K. W. Mauser, and H. A. Atwater, “Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays,” Nat. Commun. 7, 12323 (2016).
[Crossref] [PubMed]

Kim, Y.-S.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

Kong, J.

Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Lett. 14(1), 214–219 (2014).
[Crossref] [PubMed]

Kou, S. S.

S. S. Kou, G. Yuan, Q. Wang, L. Du, E. Balaur, D. Zhang, D. Tang, B. Abbey, X.-C. Yuan, and J. Lin, “On-chip photonic Fourier transform with surface plasmon polaritons,” Light Sci. Appl. 5, e16034 (2016).
[Crossref]

Kowalczyk, R.

A. Soibel, C. J. Hill, S. A. Keo, L. Hoglund, R. Rosenberg, R. Kowalczyk, A. Khoshakhlagh, A. Fisher, D. Z. Y. Ting, and S. D. Gunapala, “Room temperature performance of mid-wavelength infrared InAsSb nBn detectors,” Appl. Phys. Lett. 105(2), 23512 (2014).
[Crossref]

Krishna, S.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

Kuipers, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

Liao, L.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579 (2011).
[Crossref] [PubMed]

Lin, J.

S. S. Kou, G. Yuan, Q. Wang, L. Du, E. Balaur, D. Zhang, D. Tang, B. Abbey, X.-C. Yuan, and J. Lin, “On-chip photonic Fourier transform with surface plasmon polaritons,” Light Sci. Appl. 5, e16034 (2016).
[Crossref]

Lin, S.-Y.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

Liu, G.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579 (2011).
[Crossref] [PubMed]

Liu, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

Liu, L.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579 (2011).
[Crossref] [PubMed]

Liu, X.

X. Liu, J. Park, J. Kang, H. Yuan, Y. Cui, and H. Y. Hwang, “Quantification and impact of nonparabolicity of the conduction band of indium tin oxide on its plasmonic properties,” Appl. Phys. 105, 181117 (2014).

Liu, Y.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579 (2011).
[Crossref] [PubMed]

Loncar, M.

Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Lett. 14(1), 214–219 (2014).
[Crossref] [PubMed]

Long, L. L.

Marre, G.

G. Marre, B. Vinter, and V. Berger, “Strategy for the design of a non-cryogenic,” Semicond. Sci. Technol. 18(4), 284–291 (2003).
[Crossref]

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

Mauser, K. W.

S. Kim, M. S. Jang, V. W. Brar, Y. Tolstova, K. W. Mauser, and H. A. Atwater, “Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays,” Nat. Commun. 7, 12323 (2016).
[Crossref] [PubMed]

Meyer, J. R.

J. A. Nolde, M. Kim, C. S. Kim, E. M. Jackson, C. T. Ellis, J. Abell, O. J. Glembocki, C. L. Canedy, J. G. Tischler, I. Vurgaftman, J. R. Meyer, and E. H. Aifer, “Resonant quantum efficiency enhancement of midwave infrared nBn photodetectors using one-dimensional plasmonic gratings,” Appl. Phys. Lett. 106(26), 261109 (2015).
[Crossref]

Munday, J. N.

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. 22(43), 4794–4808 (2010).
[Crossref] [PubMed]

Nolde, J. A.

J. A. Nolde, M. Kim, C. S. Kim, E. M. Jackson, C. T. Ellis, J. Abell, O. J. Glembocki, C. L. Canedy, J. G. Tischler, I. Vurgaftman, J. R. Meyer, and E. H. Aifer, “Resonant quantum efficiency enhancement of midwave infrared nBn photodetectors using one-dimensional plasmonic gratings,” Appl. Phys. Lett. 106(26), 261109 (2015).
[Crossref]

Onat, B. M.

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 um,” IEEE Photonics Technol. Lett. 23(4), 218–220 (2011).
[Crossref]

Ordal, M. A.

Pala, R. A.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

Palmstrøm, C. J.

P. P. Iyer, M. Pendharkar, C. J. Palmstrøm, and J. A. Schuller, “Ultrawide thermal free-carrier tuning of dielectric antennas coupled to epsilon-near-zero substrates,” Nat. Commun. 8(1), 472 (2017).
[Crossref] [PubMed]

Park, J.

X. Liu, J. Park, J. Kang, H. Yuan, Y. Cui, and H. Y. Hwang, “Quantification and impact of nonparabolicity of the conduction band of indium tin oxide on its plasmonic properties,” Appl. Phys. 105, 181117 (2014).

Pendharkar, M.

P. P. Iyer, M. Pendharkar, C. J. Palmstrøm, and J. A. Schuller, “Ultrawide thermal free-carrier tuning of dielectric antennas coupled to epsilon-near-zero substrates,” Nat. Commun. 8(1), 472 (2017).
[Crossref] [PubMed]

Perera, A. G. U.

J. C. Tong, L. Y. M. Tobing, S. P. Qiu, D. H. Zhang, and A. G. U. Perera, “Room temperature plasmon-enhanced InAsSb-based heterojunction n-i-p mid-wave infrared photodetector,” (submitted).

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Qiu, S. P.

J. C. Tong, L. Y. M. Tobing, S. P. Qiu, D. H. Zhang, and A. G. U. Perera, “Room temperature plasmon-enhanced InAsSb-based heterojunction n-i-p mid-wave infrared photodetector,” (submitted).

Qu, Y.

J. Tong, W. Zhou, Y. Qu, Z. Xu, Z. Huang, and D. H. Zhang, “Surface plasmon induced direct detection of long wavelength photons,” Nat. Commun. 8(1), 1660 (2017).
[Crossref] [PubMed]

Querry, M. R.

Reed, M. A.

E. Stern, R. Wagner, F. J. Sigworth, R. Breaker, T. M. Fahmy, and M. A. Reed, “Importance of the debye screening length on nanowire field effect transistor sensors,” Nano Lett. 7(11), 3405–3409 (2007).
[Crossref] [PubMed]

Rosenberg, R.

A. Soibel, C. J. Hill, S. A. Keo, L. Hoglund, R. Rosenberg, R. Kowalczyk, A. Khoshakhlagh, A. Fisher, D. Z. Y. Ting, and S. D. Gunapala, “Room temperature performance of mid-wavelength infrared InAsSb nBn detectors,” Appl. Phys. Lett. 105(2), 23512 (2014).
[Crossref]

Sarrazin, M.

M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67(8), 85415 (2003).
[Crossref]

Schaller, R. D.

P. Guo, R. D. Schaller, J. B. Ketterson, and R. P. H. Chang, “Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude,” Nat. Photonics 10(4), 267–273 (2016).
[Crossref]

Schuller, J. A.

P. P. Iyer, M. Pendharkar, C. J. Palmstrøm, and J. A. Schuller, “Ultrawide thermal free-carrier tuning of dielectric antennas coupled to epsilon-near-zero substrates,” Nat. Commun. 8(1), 472 (2017).
[Crossref] [PubMed]

Shaner, E. A.

E. A. Shaner, J. G. Cederberg, and D. Wasserman, “Electrically tunable extraordinary optical transmission gratings,” Appl. Phys. Lett. 91(18), 181110 (2007).
[Crossref]

Shankar, R.

Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Lett. 14(1), 214–219 (2014).
[Crossref] [PubMed]

Sharma, Y. D.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

Shen, Y. R.

F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97(20), 206806 (2006).
[Crossref] [PubMed]

Shenoi, R. V.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

Sigworth, F. J.

E. Stern, R. Wagner, F. J. Sigworth, R. Breaker, T. M. Fahmy, and M. A. Reed, “Importance of the debye screening length on nanowire field effect transistor sensors,” Nano Lett. 7(11), 3405–3409 (2007).
[Crossref] [PubMed]

Slama, S.

C. Stehle, H. Bender, C. Zimmermann, D. Kern, M. Fleischer, and S. Slama, “Plasmonically tailored micropotentials for ultracold atoms,” Nat. Photonics 5(8), 494–498 (2011).
[Crossref]

Soibel, A.

A. Soibel, C. J. Hill, S. A. Keo, L. Hoglund, R. Rosenberg, R. Kowalczyk, A. Khoshakhlagh, A. Fisher, D. Z. Y. Ting, and S. D. Gunapala, “Room temperature performance of mid-wavelength infrared InAsSb nBn detectors,” Appl. Phys. Lett. 105(2), 23512 (2014).
[Crossref]

Song, Y.

Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Lett. 14(1), 214–219 (2014).
[Crossref] [PubMed]

Stanley, R.

R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photonics 6(7), 409–411 (2012).
[Crossref]

Stehle, C.

C. Stehle, H. Bender, C. Zimmermann, D. Kern, M. Fleischer, and S. Slama, “Plasmonically tailored micropotentials for ultracold atoms,” Nat. Photonics 5(8), 494–498 (2011).
[Crossref]

Stern, E.

E. Stern, R. Wagner, F. J. Sigworth, R. Breaker, T. M. Fahmy, and M. A. Reed, “Importance of the debye screening length on nanowire field effect transistor sensors,” Nano Lett. 7(11), 3405–3409 (2007).
[Crossref] [PubMed]

Tang, D.

S. S. Kou, G. Yuan, Q. Wang, L. Du, E. Balaur, D. Zhang, D. Tang, B. Abbey, X.-C. Yuan, and J. Lin, “On-chip photonic Fourier transform with surface plasmon polaritons,” Light Sci. Appl. 5, e16034 (2016).
[Crossref]

Ting, D. Z. Y.

A. Soibel, C. J. Hill, S. A. Keo, L. Hoglund, R. Rosenberg, R. Kowalczyk, A. Khoshakhlagh, A. Fisher, D. Z. Y. Ting, and S. D. Gunapala, “Room temperature performance of mid-wavelength infrared InAsSb nBn detectors,” Appl. Phys. Lett. 105(2), 23512 (2014).
[Crossref]

Tischler, J. G.

J. A. Nolde, M. Kim, C. S. Kim, E. M. Jackson, C. T. Ellis, J. Abell, O. J. Glembocki, C. L. Canedy, J. G. Tischler, I. Vurgaftman, J. R. Meyer, and E. H. Aifer, “Resonant quantum efficiency enhancement of midwave infrared nBn photodetectors using one-dimensional plasmonic gratings,” Appl. Phys. Lett. 106(26), 261109 (2015).
[Crossref]

Tobing, L. Y. M.

L. Y. M. Tobing and D. H. Zhang, “Preferential excitation of the hybrid magnetic-electric mode as a limiting mechanism for achievable fundamental magnetic resonance in planar aluminum nanostructures,” Adv. Mater. 28(5), 889–896 (2016).
[Crossref] [PubMed]

J. C. Tong, L. Y. M. Tobing, S. P. Qiu, D. H. Zhang, and A. G. U. Perera, “Room temperature plasmon-enhanced InAsSb-based heterojunction n-i-p mid-wave infrared photodetector,” (submitted).

Tolstova, Y.

S. Kim, M. S. Jang, V. W. Brar, Y. Tolstova, K. W. Mauser, and H. A. Atwater, “Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays,” Nat. Commun. 7, 12323 (2016).
[Crossref] [PubMed]

Tong, J.

J. Tong, W. Zhou, Y. Qu, Z. Xu, Z. Huang, and D. H. Zhang, “Surface plasmon induced direct detection of long wavelength photons,” Nat. Commun. 8(1), 1660 (2017).
[Crossref] [PubMed]

Tong, J. C.

J. C. Tong, L. Y. M. Tobing, S. P. Qiu, D. H. Zhang, and A. G. U. Perera, “Room temperature plasmon-enhanced InAsSb-based heterojunction n-i-p mid-wave infrared photodetector,” (submitted).

Van Exter, M. P.

C. Genet, M. P. Van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003).
[Crossref]

Vigneron, J.-P.

M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67(8), 85415 (2003).
[Crossref]

Vigoureux, J.-M.

M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67(8), 85415 (2003).
[Crossref]

Vinter, B.

G. Marre, B. Vinter, and V. Berger, “Strategy for the design of a non-cryogenic,” Semicond. Sci. Technol. 18(4), 284–291 (2003).
[Crossref]

Vurgaftman, I.

J. A. Nolde, M. Kim, C. S. Kim, E. M. Jackson, C. T. Ellis, J. Abell, O. J. Glembocki, C. L. Canedy, J. G. Tischler, I. Vurgaftman, J. R. Meyer, and E. H. Aifer, “Resonant quantum efficiency enhancement of midwave infrared nBn photodetectors using one-dimensional plasmonic gratings,” Appl. Phys. Lett. 106(26), 261109 (2015).
[Crossref]

Wagner, R.

E. Stern, R. Wagner, F. J. Sigworth, R. Breaker, T. M. Fahmy, and M. A. Reed, “Importance of the debye screening length on nanowire field effect transistor sensors,” Nano Lett. 7(11), 3405–3409 (2007).
[Crossref] [PubMed]

Wang, F.

F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97(20), 206806 (2006).
[Crossref] [PubMed]

Wang, Q.

S. S. Kou, G. Yuan, Q. Wang, L. Du, E. Balaur, D. Zhang, D. Tang, B. Abbey, X.-C. Yuan, and J. Lin, “On-chip photonic Fourier transform with surface plasmon polaritons,” Light Sci. Appl. 5, e16034 (2016).
[Crossref]

Wasserman, D.

E. A. Shaner, J. G. Cederberg, and D. Wasserman, “Electrically tunable extraordinary optical transmission gratings,” Appl. Phys. Lett. 91(18), 181110 (2007).
[Crossref]

White, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

Woerdman, J. P.

C. Genet, M. P. Van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003).
[Crossref]

Xu, Z.

J. Tong, W. Zhou, Y. Qu, Z. Xu, Z. Huang, and D. H. Zhang, “Surface plasmon induced direct detection of long wavelength photons,” Nat. Commun. 8(1), 1660 (2017).
[Crossref] [PubMed]

Yao, Y.

Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Lett. 14(1), 214–219 (2014).
[Crossref] [PubMed]

Yuan, G.

S. S. Kou, G. Yuan, Q. Wang, L. Du, E. Balaur, D. Zhang, D. Tang, B. Abbey, X.-C. Yuan, and J. Lin, “On-chip photonic Fourier transform with surface plasmon polaritons,” Light Sci. Appl. 5, e16034 (2016).
[Crossref]

Yuan, H.

X. Liu, J. Park, J. Kang, H. Yuan, Y. Cui, and H. Y. Hwang, “Quantification and impact of nonparabolicity of the conduction band of indium tin oxide on its plasmonic properties,” Appl. Phys. 105, 181117 (2014).

Yuan, J.

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 um,” IEEE Photonics Technol. Lett. 23(4), 218–220 (2011).
[Crossref]

Yuan, X.-C.

S. S. Kou, G. Yuan, Q. Wang, L. Du, E. Balaur, D. Zhang, D. Tang, B. Abbey, X.-C. Yuan, and J. Lin, “On-chip photonic Fourier transform with surface plasmon polaritons,” Light Sci. Appl. 5, e16034 (2016).
[Crossref]

Zhang, D.

S. S. Kou, G. Yuan, Q. Wang, L. Du, E. Balaur, D. Zhang, D. Tang, B. Abbey, X.-C. Yuan, and J. Lin, “On-chip photonic Fourier transform with surface plasmon polaritons,” Light Sci. Appl. 5, e16034 (2016).
[Crossref]

Zhang, D. H.

J. Tong, W. Zhou, Y. Qu, Z. Xu, Z. Huang, and D. H. Zhang, “Surface plasmon induced direct detection of long wavelength photons,” Nat. Commun. 8(1), 1660 (2017).
[Crossref] [PubMed]

L. Y. M. Tobing and D. H. Zhang, “Preferential excitation of the hybrid magnetic-electric mode as a limiting mechanism for achievable fundamental magnetic resonance in planar aluminum nanostructures,” Adv. Mater. 28(5), 889–896 (2016).
[Crossref] [PubMed]

J. C. Tong, L. Y. M. Tobing, S. P. Qiu, D. H. Zhang, and A. G. U. Perera, “Room temperature plasmon-enhanced InAsSb-based heterojunction n-i-p mid-wave infrared photodetector,” (submitted).

Zhou, H.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579 (2011).
[Crossref] [PubMed]

Zhou, W.

J. Tong, W. Zhou, Y. Qu, Z. Xu, Z. Huang, and D. H. Zhang, “Surface plasmon induced direct detection of long wavelength photons,” Nat. Commun. 8(1), 1660 (2017).
[Crossref] [PubMed]

Zimmermann, C.

C. Stehle, H. Bender, C. Zimmermann, D. Kern, M. Fleischer, and S. Slama, “Plasmonically tailored micropotentials for ultracold atoms,” Nat. Photonics 5(8), 494–498 (2011).
[Crossref]

Adv. Mater. (3)

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

L. Y. M. Tobing and D. H. Zhang, “Preferential excitation of the hybrid magnetic-electric mode as a limiting mechanism for achievable fundamental magnetic resonance in planar aluminum nanostructures,” Adv. Mater. 28(5), 889–896 (2016).
[Crossref] [PubMed]

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. 22(43), 4794–4808 (2010).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. (1)

X. Liu, J. Park, J. Kang, H. Yuan, Y. Cui, and H. Y. Hwang, “Quantification and impact of nonparabolicity of the conduction band of indium tin oxide on its plasmonic properties,” Appl. Phys. 105, 181117 (2014).

Appl. Phys. Lett. (3)

J. A. Nolde, M. Kim, C. S. Kim, E. M. Jackson, C. T. Ellis, J. Abell, O. J. Glembocki, C. L. Canedy, J. G. Tischler, I. Vurgaftman, J. R. Meyer, and E. H. Aifer, “Resonant quantum efficiency enhancement of midwave infrared nBn photodetectors using one-dimensional plasmonic gratings,” Appl. Phys. Lett. 106(26), 261109 (2015).
[Crossref]

E. A. Shaner, J. G. Cederberg, and D. Wasserman, “Electrically tunable extraordinary optical transmission gratings,” Appl. Phys. Lett. 91(18), 181110 (2007).
[Crossref]

A. Soibel, C. J. Hill, S. A. Keo, L. Hoglund, R. Rosenberg, R. Kowalczyk, A. Khoshakhlagh, A. Fisher, D. Z. Y. Ting, and S. D. Gunapala, “Room temperature performance of mid-wavelength infrared InAsSb nBn detectors,” Appl. Phys. Lett. 105(2), 23512 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (1)

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 um,” IEEE Photonics Technol. Lett. 23(4), 218–220 (2011).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt. 8(4), S87–S93 (2006).
[Crossref]

Light Sci. Appl. (1)

S. S. Kou, G. Yuan, Q. Wang, L. Du, E. Balaur, D. Zhang, D. Tang, B. Abbey, X.-C. Yuan, and J. Lin, “On-chip photonic Fourier transform with surface plasmon polaritons,” Light Sci. Appl. 5, e16034 (2016).
[Crossref]

Nano Lett. (5)

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time,” Nano Lett. 14(1), 214–219 (2014).
[Crossref] [PubMed]

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

E. Stern, R. Wagner, F. J. Sigworth, R. Breaker, T. M. Fahmy, and M. A. Reed, “Importance of the debye screening length on nanowire field effect transistor sensors,” Nano Lett. 7(11), 3405–3409 (2007).
[Crossref] [PubMed]

Nat. Commun. (4)

P. P. Iyer, M. Pendharkar, C. J. Palmstrøm, and J. A. Schuller, “Ultrawide thermal free-carrier tuning of dielectric antennas coupled to epsilon-near-zero substrates,” Nat. Commun. 8(1), 472 (2017).
[Crossref] [PubMed]

S. Kim, M. S. Jang, V. W. Brar, Y. Tolstova, K. W. Mauser, and H. A. Atwater, “Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays,” Nat. Commun. 7, 12323 (2016).
[Crossref] [PubMed]

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579 (2011).
[Crossref] [PubMed]

J. Tong, W. Zhou, Y. Qu, Z. Xu, Z. Huang, and D. H. Zhang, “Surface plasmon induced direct detection of long wavelength photons,” Nat. Commun. 8(1), 1660 (2017).
[Crossref] [PubMed]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Nat. Photonics (4)

R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photonics 6(7), 409–411 (2012).
[Crossref]

A. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

C. Stehle, H. Bender, C. Zimmermann, D. Kern, M. Fleischer, and S. Slama, “Plasmonically tailored micropotentials for ultracold atoms,” Nat. Photonics 5(8), 494–498 (2011).
[Crossref]

P. Guo, R. D. Schaller, J. B. Ketterson, and R. P. H. Chang, “Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude,” Nat. Photonics 10(4), 267–273 (2016).
[Crossref]

Nature (2)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

C. Genet, M. P. Van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003).
[Crossref]

Phys. Rev. B (1)

M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67(8), 85415 (2003).
[Crossref]

Phys. Rev. Lett. (1)

F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97(20), 206806 (2006).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

Semicond. Sci. Technol. (1)

G. Marre, B. Vinter, and V. Berger, “Strategy for the design of a non-cryogenic,” Semicond. Sci. Technol. 18(4), 284–291 (2003).
[Crossref]

Other (7)

G. Hernandez, Fabry–Pérot Interferometers (Cambridge University Press, 1986).

J. A. Kong, Electromagnetic Wave Theory (E. M. W., 2000).

J. C. Tong, L. Y. M. Tobing, S. P. Qiu, D. H. Zhang, and A. G. U. Perera, “Room temperature plasmon-enhanced InAsSb-based heterojunction n-i-p mid-wave infrared photodetector,” (submitted).

H. Raether, Surface Plasmons (Springer, 1988), p5–6.

Palik, Handbook of Optical Constants of Solids II (Academic Press, 1991).

S. M. Sze, Physics of Semiconductor Devices (Wiley, 1981).

http://www.hamamatsu.com/resources/pdf/ssd/p13243_series_kird1130e.pdf , accessed on 09/02/2018.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic of the plasmonic InAsSb-based n-i-p photodiode. Transmittance mapping as functions of (b) gold thickness, (c) incident light angle, and (d) hole width at different wavelength with specific constant parameters.
Fig. 2
Fig. 2 Normalized |E|-field distribution of nanohole arrays with different hole periods at 3.5 µm. In all simulations, the width of the hole is designed as half of the period.
Fig. 3
Fig. 3 Measured (blue lines) and simulated (black lines) reflectance spectra for gold nanohole arrays with different periods on n-i-p sample.
Fig. 4
Fig. 4 (a) Photocurrent spectra of plasmonic n-i-p photodiodes with different hole periods under zero bias. The top panel is a typical SEM image of the plasmonic device with p = 900 nm and the scale bar represents 100 µm. Photocurrent mapping of the devices at different temperatures and bias situations (b) T = 293 K, reference device, (c) T = 293 K, plasmonic devices, (d) T = 77 K, reference device, (e) T = 77 K, plasmonic devices.
Fig. 5
Fig. 5 (a) Electrically controlled enhancement of the plasmonic device at 293 K and 77 K. (b) RA product of the plasmonic device at 293 K and 77 K under different applied biases. Schematics of the energy band diagram of the plasmonic photodiode at (c) 293 K, zero bias, (d) 293 K, reverse bias, and (e) 77 K, slight forward bias.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λ i,j = p i 2 + j 2 Re( ε m ε d ε m + ε d ) ,
ε m (ω)= ε ω p 2 ω(ω+i ω τ ) ,
δ d = 1 k 0 ε m ' + ε d ε d 2 ,

Metrics