Abstract

We present investigations into a narrow-linewidth, quasi-continuous-wave pulsed all-solid-state amplified spontaneous emission (ASE) source by use of a novel multiple-pass zigzag slab amplifier. The SE fluorescence emitted from a Nd:YAG slab active medium acts as the seed and is amplified back and forth 8 times through the same slab. Thanks to the angular multiplexing nature of the zigzag slab, high-intensity 1064-nm ASE output can be produced without unwanted self-lasing in this configuration. Experimentally, the output energy, optical conversion efficiency, pulse dynamics, spectral property, and beam quality of the ASE source are studied when the Nd:YAG slab end-pumped by two high-brightness laser diode arrays. The maximum single pulse energy of 347 mJ is generated with an optical efficiency of ~5.9% and a beam quality of 3.5/17 in the thickness/width direction of the slab. As expected, smooth pulses without relaxing spikes and continuous spectra are achieved. Moreover, the spectral width of the ASE source narrows versus the pump energy, getting a 3-dB linewidth of as narrow as 20 pm (i.e. 5.3 GHz). Via the sum frequency generation, high-intensity, smooth-pulse, and narrow-linewidth ASE sources are preferred for solving the major problem of saturation of the mesospheric sodium atoms and can create a much brighter sodium guide star to meet the needs of adaptive imaging applications in astronomy.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Compact, high-power, high-beam-quality quasi-CW microsecond five-pass zigzag slab 1319  nm amplifier

Chuan Guo, Junwei Zuo, Qi Bian, Chang Xu, Qinshuang Zong, Yong Bo, Yu Shen, Nan Zong, Hongwei Gao, Yanyong Lin, Lei Yuan, Yang Liu, Dafu Cui, Qinjun Peng, and Zuyan Xu
Appl. Opt. 56(12) 3445-3448 (2017)

8.2  kW high beam quality quasi-continuous-wave face-pumped Nd:YAG slab amplifier

Zhong-zheng Chen, Yi-ting Xu, Ya-ding Guo, Bao-shan Wang, Jian Xu, Jia-lin Xu, Hong-wei Gao, Lei Yuan, Hong-tao Yuan, Yan-yong Lin, Yun-sheng Xiao, Yong Bo, Qin-jun Peng, Wen-qiang Lei, Da-fu Cui, and Zu-yan Xu
Appl. Opt. 54(16) 5011-5015 (2015)

Diode-pumped 250-W zigzag slab Nd:YAG oscillator–amplifier system

Kazuyoku Tei, Masaaki Kato, Yoshito Niwa, Sayaka Harayama, Yoichiro Maruyama, Tohru Matoba, and Takashi Arisawa
Opt. Lett. 23(7) 514-516 (1998)

References

  • View by:
  • |
  • |
  • |

  1. A. Siegman, Lasers (University Science, 1986).
  2. C. G. Young, J. W. Kantorski, and E. O. Dixon, “Optical avalanche laser,” J. Appl. Phys. 37(12), 4319–4324 (1966).
    [Crossref]
  3. L. Lis, “Amplified spontaneous emission and mirrorless lasers: Theory and experiment,” Phys. Rev. A 52(1), 686–693 (1995).
    [Crossref] [PubMed]
  4. P. Ewart, “A modeless, variable bandwidth, tunable laser,” Opt. Commun. 55(2), 124–126 (1985).
    [Crossref]
  5. G. J. Pert, “The transition from uni-directional to bi-directional behaviour in amplified spontaneous emission lasers,” Opt. Commun. 191(1–2), 113–123 (2001).
    [Crossref]
  6. A. Hariri and S. Sarikhani, “Study of the amplified spontaneous emission spectral width and gain coefficient for a KrF laser in unsaturated and saturated conditions,” Laser Phys. Lett. 11(1), 015003 (2014).
    [Crossref]
  7. A. Yariv and R. C. C. Leite, “Super radiant narrowing in fluorescence radiation of inverted populations,” J. Appl. Phys. 34(11), 3410–3411 (1963).
    [Crossref]
  8. L. W. Casperson, “Threshold characteristics of mirrorless lasers,” J. Appl. Phys. 48(1), 256–262 (1977).
    [Crossref]
  9. G. A. Alphonse, D. B. Gilbert, M. Harvey, E. Depiano, and M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 24(12), 2454–2457 (1989).
    [Crossref]
  10. P. Wang and W. A. Clarkson, “High-power, single-mode, linearly polarized, ytterbium-doped fiber superfluorescent source,” Opt. Lett. 32(17), 2605–2607 (2007).
    [Crossref] [PubMed]
  11. X. Chen, Y. Lu, X. Xu, L. Zhang, H. Ren, H. Hu, L. Tong, Y. Pang, M. Wan, Y. Shi, and F. Liu, “A solid-state sodium guide star ASE source by the sum frequency generation,” China Patent in application (2018).
  12. J. P. Pique and S. Farinotti, “Efficient modeless laser for a mesospheric sodium laser guide star,” J. Opt. Soc. Am. B 20(10), 2093–2102 (2003).
    [Crossref]
  13. G. Smith, P. C. Shardlow, and M. J. Damzen, “High-power near-diffraction-limited solid-state amplified spontaneous emission laser devices,” Opt. Lett. 32(13), 1911–1913 (2007).
    [Crossref] [PubMed]
  14. X. Chen, L. Xu, H. Hu, T. Zhou, Y. Sun, H. Jiang, J. Lei, W. Lv, H. Su, Y. Shi, M. Li, Y. Wu, Z. Yao, N. Zhao, X. Xu, Q. Gao, X. Wang, and C. Tang, “High-efficiency, high-average-power, CW Yb:YAG zigzag slab master oscillator power amplifier at room temperature,” Opt. Express 24(21), 24517–24523 (2016).
    [Crossref] [PubMed]
  15. H. Jiang, X. Chen, L. Xu, Q. Gao, H. Hu, Y. Wu, and X. Xu, “Quasi-continuous-wave, laser-diode-end-pumped Yb:YAG zigzag slab oscillator with high brightness at room temperature,” Appl. Phys. Express 10(2), 022702 (2017).
    [Crossref]
  16. T. J. Kane, W. J. Kozlovsky, and R. L. Byer, “62-dB-gain multiple-pass slab geometry Nd:YAG amplifier,” Opt. Lett. 11(4), 216–218 (1986).
    [Crossref] [PubMed]
  17. E. L. Bolda, R. Y. Chiao, and J. C. Garrison, “Superfluorescence in a continuously pumped medium,” Phys. Rev. A 52(4), 3308–3315 (1995).
    [Crossref] [PubMed]
  18. M. S. Malcuit, J. J. Maki, D. J. Simkin, and R. Boyd, “Transition from superfluorescence to amplified spontaneous emission,” Phys. Rev. Lett. 59(11), 1189–1192 (1987).
    [Crossref] [PubMed]
  19. T. Kushida, “Linewidths and thermal shifts of spectral lines in neodymium-doped yttrium aluminum garnet and calcium fluorophosphate,” Phys. Rev. 185(2), 500–508 (1969).
    [Crossref]
  20. X. Chen, J. Collins, and B. D. Bartolo, “Thermal red and blue shifts of Nd ion spectral lines in laser garnet crystals,” J. Luminescence 60, 230–232 (1994).
  21. M. Gong, C. Lu, P. Yan, and H. Lei, “Investigations on acousto-optically Q-switched frequency-shifted feedback laser with Nd:YVO4 crystal,” Opt. Express 15(12), 7401–7406 (2007).
    [Crossref] [PubMed]
  22. B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
    [Crossref] [PubMed]
  23. R. J. Pierre, G. W. Holleman, M. Valley, H. Injeyan, J. G. Berg, G. M. Harpole, R. C. Hilyard, M. Mitchell, M. E. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, “Active tracker laser (ATLAS),” IEEE J. Sel. Top. Quantum Electron. 3(1), 64–70 (1997).
    [Crossref]
  24. F. Marc, H. Guillet de Chatellus, and J. P. Pique, “Effects of laser beam propagation and saturation on the spatial shape of sodium laser guide stars,” Opt. Express 17(7), 4920–4931 (2009).
    [Crossref] [PubMed]
  25. Q. Bian, Y. Bo, J. W. Zuo, C. Guo, C. Xu, W. Tu, Y. Shen, N. Zong, L. Yuan, H. W. Gao, Q. J. Peng, H. B. Chen, L. Feng, K. Jin, K. Wei, D. F. Cui, S. J. Xue, Y. D. Zhang, and Z. Y. Xu, “High-power QCW microsecond-pulse solid-state sodium beacon laser with spiking suppression and D2b re-pumping,” Opt. Lett. 41(8), 1732–1735 (2016).
    [Crossref] [PubMed]
  26. J. A. Hoffnagle, “Proposal for continuous white-light cooling of an atomic beam,” Opt. Lett. 13(2), 102–104 (1988).
    [Crossref] [PubMed]
  27. S. Gozzini, E. Mariotti, C. Gabbanini, A. Lucchesini, C. Marinelli, and L. Moi, “Atom cooling by white light,” Appl. Phys. B 54(5), 428–433 (1992).
    [Crossref]

2017 (1)

H. Jiang, X. Chen, L. Xu, Q. Gao, H. Hu, Y. Wu, and X. Xu, “Quasi-continuous-wave, laser-diode-end-pumped Yb:YAG zigzag slab oscillator with high brightness at room temperature,” Appl. Phys. Express 10(2), 022702 (2017).
[Crossref]

2016 (2)

2014 (1)

A. Hariri and S. Sarikhani, “Study of the amplified spontaneous emission spectral width and gain coefficient for a KrF laser in unsaturated and saturated conditions,” Laser Phys. Lett. 11(1), 015003 (2014).
[Crossref]

2012 (1)

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref] [PubMed]

2009 (1)

2007 (3)

2003 (1)

2001 (1)

G. J. Pert, “The transition from uni-directional to bi-directional behaviour in amplified spontaneous emission lasers,” Opt. Commun. 191(1–2), 113–123 (2001).
[Crossref]

1997 (1)

R. J. Pierre, G. W. Holleman, M. Valley, H. Injeyan, J. G. Berg, G. M. Harpole, R. C. Hilyard, M. Mitchell, M. E. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, “Active tracker laser (ATLAS),” IEEE J. Sel. Top. Quantum Electron. 3(1), 64–70 (1997).
[Crossref]

1995 (2)

L. Lis, “Amplified spontaneous emission and mirrorless lasers: Theory and experiment,” Phys. Rev. A 52(1), 686–693 (1995).
[Crossref] [PubMed]

E. L. Bolda, R. Y. Chiao, and J. C. Garrison, “Superfluorescence in a continuously pumped medium,” Phys. Rev. A 52(4), 3308–3315 (1995).
[Crossref] [PubMed]

1994 (1)

X. Chen, J. Collins, and B. D. Bartolo, “Thermal red and blue shifts of Nd ion spectral lines in laser garnet crystals,” J. Luminescence 60, 230–232 (1994).

1992 (1)

S. Gozzini, E. Mariotti, C. Gabbanini, A. Lucchesini, C. Marinelli, and L. Moi, “Atom cooling by white light,” Appl. Phys. B 54(5), 428–433 (1992).
[Crossref]

1989 (1)

G. A. Alphonse, D. B. Gilbert, M. Harvey, E. Depiano, and M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 24(12), 2454–2457 (1989).
[Crossref]

1988 (1)

1987 (1)

M. S. Malcuit, J. J. Maki, D. J. Simkin, and R. Boyd, “Transition from superfluorescence to amplified spontaneous emission,” Phys. Rev. Lett. 59(11), 1189–1192 (1987).
[Crossref] [PubMed]

1986 (1)

1985 (1)

P. Ewart, “A modeless, variable bandwidth, tunable laser,” Opt. Commun. 55(2), 124–126 (1985).
[Crossref]

1977 (1)

L. W. Casperson, “Threshold characteristics of mirrorless lasers,” J. Appl. Phys. 48(1), 256–262 (1977).
[Crossref]

1969 (1)

T. Kushida, “Linewidths and thermal shifts of spectral lines in neodymium-doped yttrium aluminum garnet and calcium fluorophosphate,” Phys. Rev. 185(2), 500–508 (1969).
[Crossref]

1966 (1)

C. G. Young, J. W. Kantorski, and E. O. Dixon, “Optical avalanche laser,” J. Appl. Phys. 37(12), 4319–4324 (1966).
[Crossref]

1963 (1)

A. Yariv and R. C. C. Leite, “Super radiant narrowing in fluorescence radiation of inverted populations,” J. Appl. Phys. 34(11), 3410–3411 (1963).
[Crossref]

Alphonse, G. A.

G. A. Alphonse, D. B. Gilbert, M. Harvey, E. Depiano, and M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 24(12), 2454–2457 (1989).
[Crossref]

Bartolo, B. D.

X. Chen, J. Collins, and B. D. Bartolo, “Thermal red and blue shifts of Nd ion spectral lines in laser garnet crystals,” J. Luminescence 60, 230–232 (1994).

Berg, J. G.

R. J. Pierre, G. W. Holleman, M. Valley, H. Injeyan, J. G. Berg, G. M. Harpole, R. C. Hilyard, M. Mitchell, M. E. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, “Active tracker laser (ATLAS),” IEEE J. Sel. Top. Quantum Electron. 3(1), 64–70 (1997).
[Crossref]

Bian, Q.

Bo, Y.

Bolda, E. L.

E. L. Bolda, R. Y. Chiao, and J. C. Garrison, “Superfluorescence in a continuously pumped medium,” Phys. Rev. A 52(4), 3308–3315 (1995).
[Crossref] [PubMed]

Boyd, R.

M. S. Malcuit, J. J. Maki, D. J. Simkin, and R. Boyd, “Transition from superfluorescence to amplified spontaneous emission,” Phys. Rev. Lett. 59(11), 1189–1192 (1987).
[Crossref] [PubMed]

Byer, R. L.

Cao, H.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref] [PubMed]

Casperson, L. W.

L. W. Casperson, “Threshold characteristics of mirrorless lasers,” J. Appl. Phys. 48(1), 256–262 (1977).
[Crossref]

Chen, H. B.

Chen, X.

H. Jiang, X. Chen, L. Xu, Q. Gao, H. Hu, Y. Wu, and X. Xu, “Quasi-continuous-wave, laser-diode-end-pumped Yb:YAG zigzag slab oscillator with high brightness at room temperature,” Appl. Phys. Express 10(2), 022702 (2017).
[Crossref]

X. Chen, L. Xu, H. Hu, T. Zhou, Y. Sun, H. Jiang, J. Lei, W. Lv, H. Su, Y. Shi, M. Li, Y. Wu, Z. Yao, N. Zhao, X. Xu, Q. Gao, X. Wang, and C. Tang, “High-efficiency, high-average-power, CW Yb:YAG zigzag slab master oscillator power amplifier at room temperature,” Opt. Express 24(21), 24517–24523 (2016).
[Crossref] [PubMed]

X. Chen, J. Collins, and B. D. Bartolo, “Thermal red and blue shifts of Nd ion spectral lines in laser garnet crystals,” J. Luminescence 60, 230–232 (1994).

Chiao, R. Y.

E. L. Bolda, R. Y. Chiao, and J. C. Garrison, “Superfluorescence in a continuously pumped medium,” Phys. Rev. A 52(4), 3308–3315 (1995).
[Crossref] [PubMed]

Choma, M. A.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref] [PubMed]

Clarkson, W. A.

Collins, J.

X. Chen, J. Collins, and B. D. Bartolo, “Thermal red and blue shifts of Nd ion spectral lines in laser garnet crystals,” J. Luminescence 60, 230–232 (1994).

Cui, D. F.

Damzen, M. J.

Depiano, E.

G. A. Alphonse, D. B. Gilbert, M. Harvey, E. Depiano, and M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 24(12), 2454–2457 (1989).
[Crossref]

Dixon, E. O.

C. G. Young, J. W. Kantorski, and E. O. Dixon, “Optical avalanche laser,” J. Appl. Phys. 37(12), 4319–4324 (1966).
[Crossref]

Engler, T.

R. J. Pierre, G. W. Holleman, M. Valley, H. Injeyan, J. G. Berg, G. M. Harpole, R. C. Hilyard, M. Mitchell, M. E. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, “Active tracker laser (ATLAS),” IEEE J. Sel. Top. Quantum Electron. 3(1), 64–70 (1997).
[Crossref]

Ettenberg, M.

G. A. Alphonse, D. B. Gilbert, M. Harvey, E. Depiano, and M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 24(12), 2454–2457 (1989).
[Crossref]

Ewart, P.

P. Ewart, “A modeless, variable bandwidth, tunable laser,” Opt. Commun. 55(2), 124–126 (1985).
[Crossref]

Farinotti, S.

Feng, L.

Gabbanini, C.

S. Gozzini, E. Mariotti, C. Gabbanini, A. Lucchesini, C. Marinelli, and L. Moi, “Atom cooling by white light,” Appl. Phys. B 54(5), 428–433 (1992).
[Crossref]

Gao, H. W.

Gao, Q.

H. Jiang, X. Chen, L. Xu, Q. Gao, H. Hu, Y. Wu, and X. Xu, “Quasi-continuous-wave, laser-diode-end-pumped Yb:YAG zigzag slab oscillator with high brightness at room temperature,” Appl. Phys. Express 10(2), 022702 (2017).
[Crossref]

X. Chen, L. Xu, H. Hu, T. Zhou, Y. Sun, H. Jiang, J. Lei, W. Lv, H. Su, Y. Shi, M. Li, Y. Wu, Z. Yao, N. Zhao, X. Xu, Q. Gao, X. Wang, and C. Tang, “High-efficiency, high-average-power, CW Yb:YAG zigzag slab master oscillator power amplifier at room temperature,” Opt. Express 24(21), 24517–24523 (2016).
[Crossref] [PubMed]

Garrison, J. C.

E. L. Bolda, R. Y. Chiao, and J. C. Garrison, “Superfluorescence in a continuously pumped medium,” Phys. Rev. A 52(4), 3308–3315 (1995).
[Crossref] [PubMed]

Gilbert, D. B.

G. A. Alphonse, D. B. Gilbert, M. Harvey, E. Depiano, and M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 24(12), 2454–2457 (1989).
[Crossref]

Gong, M.

Gozzini, S.

S. Gozzini, E. Mariotti, C. Gabbanini, A. Lucchesini, C. Marinelli, and L. Moi, “Atom cooling by white light,” Appl. Phys. B 54(5), 428–433 (1992).
[Crossref]

Guillet de Chatellus, H.

Guo, C.

Hall, D.

R. J. Pierre, G. W. Holleman, M. Valley, H. Injeyan, J. G. Berg, G. M. Harpole, R. C. Hilyard, M. Mitchell, M. E. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, “Active tracker laser (ATLAS),” IEEE J. Sel. Top. Quantum Electron. 3(1), 64–70 (1997).
[Crossref]

Hariri, A.

A. Hariri and S. Sarikhani, “Study of the amplified spontaneous emission spectral width and gain coefficient for a KrF laser in unsaturated and saturated conditions,” Laser Phys. Lett. 11(1), 015003 (2014).
[Crossref]

Harpole, G. M.

R. J. Pierre, G. W. Holleman, M. Valley, H. Injeyan, J. G. Berg, G. M. Harpole, R. C. Hilyard, M. Mitchell, M. E. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, “Active tracker laser (ATLAS),” IEEE J. Sel. Top. Quantum Electron. 3(1), 64–70 (1997).
[Crossref]

Harvey, M.

G. A. Alphonse, D. B. Gilbert, M. Harvey, E. Depiano, and M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 24(12), 2454–2457 (1989).
[Crossref]

Hilyard, R. C.

R. J. Pierre, G. W. Holleman, M. Valley, H. Injeyan, J. G. Berg, G. M. Harpole, R. C. Hilyard, M. Mitchell, M. E. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, “Active tracker laser (ATLAS),” IEEE J. Sel. Top. Quantum Electron. 3(1), 64–70 (1997).
[Crossref]

Hoffnagle, J. A.

Holleman, G. W.

R. J. Pierre, G. W. Holleman, M. Valley, H. Injeyan, J. G. Berg, G. M. Harpole, R. C. Hilyard, M. Mitchell, M. E. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, “Active tracker laser (ATLAS),” IEEE J. Sel. Top. Quantum Electron. 3(1), 64–70 (1997).
[Crossref]

Hu, H.

H. Jiang, X. Chen, L. Xu, Q. Gao, H. Hu, Y. Wu, and X. Xu, “Quasi-continuous-wave, laser-diode-end-pumped Yb:YAG zigzag slab oscillator with high brightness at room temperature,” Appl. Phys. Express 10(2), 022702 (2017).
[Crossref]

X. Chen, L. Xu, H. Hu, T. Zhou, Y. Sun, H. Jiang, J. Lei, W. Lv, H. Su, Y. Shi, M. Li, Y. Wu, Z. Yao, N. Zhao, X. Xu, Q. Gao, X. Wang, and C. Tang, “High-efficiency, high-average-power, CW Yb:YAG zigzag slab master oscillator power amplifier at room temperature,” Opt. Express 24(21), 24517–24523 (2016).
[Crossref] [PubMed]

Injeyan, H.

R. J. Pierre, G. W. Holleman, M. Valley, H. Injeyan, J. G. Berg, G. M. Harpole, R. C. Hilyard, M. Mitchell, M. E. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, “Active tracker laser (ATLAS),” IEEE J. Sel. Top. Quantum Electron. 3(1), 64–70 (1997).
[Crossref]

Jiang, H.

H. Jiang, X. Chen, L. Xu, Q. Gao, H. Hu, Y. Wu, and X. Xu, “Quasi-continuous-wave, laser-diode-end-pumped Yb:YAG zigzag slab oscillator with high brightness at room temperature,” Appl. Phys. Express 10(2), 022702 (2017).
[Crossref]

X. Chen, L. Xu, H. Hu, T. Zhou, Y. Sun, H. Jiang, J. Lei, W. Lv, H. Su, Y. Shi, M. Li, Y. Wu, Z. Yao, N. Zhao, X. Xu, Q. Gao, X. Wang, and C. Tang, “High-efficiency, high-average-power, CW Yb:YAG zigzag slab master oscillator power amplifier at room temperature,” Opt. Express 24(21), 24517–24523 (2016).
[Crossref] [PubMed]

Jin, K.

Kane, T. J.

Kantorski, J. W.

C. G. Young, J. W. Kantorski, and E. O. Dixon, “Optical avalanche laser,” J. Appl. Phys. 37(12), 4319–4324 (1966).
[Crossref]

Kozlovsky, W. J.

Kushida, T.

T. Kushida, “Linewidths and thermal shifts of spectral lines in neodymium-doped yttrium aluminum garnet and calcium fluorophosphate,” Phys. Rev. 185(2), 500–508 (1969).
[Crossref]

Lei, H.

Lei, J.

Leite, R. C. C.

A. Yariv and R. C. C. Leite, “Super radiant narrowing in fluorescence radiation of inverted populations,” J. Appl. Phys. 34(11), 3410–3411 (1963).
[Crossref]

Li, M.

Lis, L.

L. Lis, “Amplified spontaneous emission and mirrorless lasers: Theory and experiment,” Phys. Rev. A 52(1), 686–693 (1995).
[Crossref] [PubMed]

Lu, C.

Lucchesini, A.

S. Gozzini, E. Mariotti, C. Gabbanini, A. Lucchesini, C. Marinelli, and L. Moi, “Atom cooling by white light,” Appl. Phys. B 54(5), 428–433 (1992).
[Crossref]

Lv, W.

Machan, J.

R. J. Pierre, G. W. Holleman, M. Valley, H. Injeyan, J. G. Berg, G. M. Harpole, R. C. Hilyard, M. Mitchell, M. E. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, “Active tracker laser (ATLAS),” IEEE J. Sel. Top. Quantum Electron. 3(1), 64–70 (1997).
[Crossref]

Maki, J. J.

M. S. Malcuit, J. J. Maki, D. J. Simkin, and R. Boyd, “Transition from superfluorescence to amplified spontaneous emission,” Phys. Rev. Lett. 59(11), 1189–1192 (1987).
[Crossref] [PubMed]

Malcuit, M. S.

M. S. Malcuit, J. J. Maki, D. J. Simkin, and R. Boyd, “Transition from superfluorescence to amplified spontaneous emission,” Phys. Rev. Lett. 59(11), 1189–1192 (1987).
[Crossref] [PubMed]

Marc, F.

Marinelli, C.

S. Gozzini, E. Mariotti, C. Gabbanini, A. Lucchesini, C. Marinelli, and L. Moi, “Atom cooling by white light,” Appl. Phys. B 54(5), 428–433 (1992).
[Crossref]

Mariotti, E.

S. Gozzini, E. Mariotti, C. Gabbanini, A. Lucchesini, C. Marinelli, and L. Moi, “Atom cooling by white light,” Appl. Phys. B 54(5), 428–433 (1992).
[Crossref]

Mitchell, M.

R. J. Pierre, G. W. Holleman, M. Valley, H. Injeyan, J. G. Berg, G. M. Harpole, R. C. Hilyard, M. Mitchell, M. E. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, “Active tracker laser (ATLAS),” IEEE J. Sel. Top. Quantum Electron. 3(1), 64–70 (1997).
[Crossref]

Moi, L.

S. Gozzini, E. Mariotti, C. Gabbanini, A. Lucchesini, C. Marinelli, and L. Moi, “Atom cooling by white light,” Appl. Phys. B 54(5), 428–433 (1992).
[Crossref]

Peng, Q. J.

Pert, G. J.

G. J. Pert, “The transition from uni-directional to bi-directional behaviour in amplified spontaneous emission lasers,” Opt. Commun. 191(1–2), 113–123 (2001).
[Crossref]

Pierre, R. J.

R. J. Pierre, G. W. Holleman, M. Valley, H. Injeyan, J. G. Berg, G. M. Harpole, R. C. Hilyard, M. Mitchell, M. E. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, “Active tracker laser (ATLAS),” IEEE J. Sel. Top. Quantum Electron. 3(1), 64–70 (1997).
[Crossref]

Pique, J. P.

Redding, B.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref] [PubMed]

Sarikhani, S.

A. Hariri and S. Sarikhani, “Study of the amplified spontaneous emission spectral width and gain coefficient for a KrF laser in unsaturated and saturated conditions,” Laser Phys. Lett. 11(1), 015003 (2014).
[Crossref]

Shardlow, P. C.

Shen, Y.

Shi, Y.

Simkin, D. J.

M. S. Malcuit, J. J. Maki, D. J. Simkin, and R. Boyd, “Transition from superfluorescence to amplified spontaneous emission,” Phys. Rev. Lett. 59(11), 1189–1192 (1987).
[Crossref] [PubMed]

Smith, G.

Su, H.

Sun, Y.

Tang, C.

Tinti, R.

R. J. Pierre, G. W. Holleman, M. Valley, H. Injeyan, J. G. Berg, G. M. Harpole, R. C. Hilyard, M. Mitchell, M. E. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, “Active tracker laser (ATLAS),” IEEE J. Sel. Top. Quantum Electron. 3(1), 64–70 (1997).
[Crossref]

Tu, W.

Valley, M.

R. J. Pierre, G. W. Holleman, M. Valley, H. Injeyan, J. G. Berg, G. M. Harpole, R. C. Hilyard, M. Mitchell, M. E. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, “Active tracker laser (ATLAS),” IEEE J. Sel. Top. Quantum Electron. 3(1), 64–70 (1997).
[Crossref]

Wang, P.

Wang, X.

Weber, M. E.

R. J. Pierre, G. W. Holleman, M. Valley, H. Injeyan, J. G. Berg, G. M. Harpole, R. C. Hilyard, M. Mitchell, M. E. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, “Active tracker laser (ATLAS),” IEEE J. Sel. Top. Quantum Electron. 3(1), 64–70 (1997).
[Crossref]

Wei, K.

Wu, Y.

H. Jiang, X. Chen, L. Xu, Q. Gao, H. Hu, Y. Wu, and X. Xu, “Quasi-continuous-wave, laser-diode-end-pumped Yb:YAG zigzag slab oscillator with high brightness at room temperature,” Appl. Phys. Express 10(2), 022702 (2017).
[Crossref]

X. Chen, L. Xu, H. Hu, T. Zhou, Y. Sun, H. Jiang, J. Lei, W. Lv, H. Su, Y. Shi, M. Li, Y. Wu, Z. Yao, N. Zhao, X. Xu, Q. Gao, X. Wang, and C. Tang, “High-efficiency, high-average-power, CW Yb:YAG zigzag slab master oscillator power amplifier at room temperature,” Opt. Express 24(21), 24517–24523 (2016).
[Crossref] [PubMed]

Xu, C.

Xu, L.

H. Jiang, X. Chen, L. Xu, Q. Gao, H. Hu, Y. Wu, and X. Xu, “Quasi-continuous-wave, laser-diode-end-pumped Yb:YAG zigzag slab oscillator with high brightness at room temperature,” Appl. Phys. Express 10(2), 022702 (2017).
[Crossref]

X. Chen, L. Xu, H. Hu, T. Zhou, Y. Sun, H. Jiang, J. Lei, W. Lv, H. Su, Y. Shi, M. Li, Y. Wu, Z. Yao, N. Zhao, X. Xu, Q. Gao, X. Wang, and C. Tang, “High-efficiency, high-average-power, CW Yb:YAG zigzag slab master oscillator power amplifier at room temperature,” Opt. Express 24(21), 24517–24523 (2016).
[Crossref] [PubMed]

Xu, X.

H. Jiang, X. Chen, L. Xu, Q. Gao, H. Hu, Y. Wu, and X. Xu, “Quasi-continuous-wave, laser-diode-end-pumped Yb:YAG zigzag slab oscillator with high brightness at room temperature,” Appl. Phys. Express 10(2), 022702 (2017).
[Crossref]

X. Chen, L. Xu, H. Hu, T. Zhou, Y. Sun, H. Jiang, J. Lei, W. Lv, H. Su, Y. Shi, M. Li, Y. Wu, Z. Yao, N. Zhao, X. Xu, Q. Gao, X. Wang, and C. Tang, “High-efficiency, high-average-power, CW Yb:YAG zigzag slab master oscillator power amplifier at room temperature,” Opt. Express 24(21), 24517–24523 (2016).
[Crossref] [PubMed]

Xu, Z. Y.

Xue, S. J.

Yan, P.

Yao, Z.

Yariv, A.

A. Yariv and R. C. C. Leite, “Super radiant narrowing in fluorescence radiation of inverted populations,” J. Appl. Phys. 34(11), 3410–3411 (1963).
[Crossref]

Young, C. G.

C. G. Young, J. W. Kantorski, and E. O. Dixon, “Optical avalanche laser,” J. Appl. Phys. 37(12), 4319–4324 (1966).
[Crossref]

Yuan, L.

Zamel, J.

R. J. Pierre, G. W. Holleman, M. Valley, H. Injeyan, J. G. Berg, G. M. Harpole, R. C. Hilyard, M. Mitchell, M. E. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, “Active tracker laser (ATLAS),” IEEE J. Sel. Top. Quantum Electron. 3(1), 64–70 (1997).
[Crossref]

Zhang, Y. D.

Zhao, N.

Zhou, T.

Zong, N.

Zuo, J. W.

Appl. Phys. B (1)

S. Gozzini, E. Mariotti, C. Gabbanini, A. Lucchesini, C. Marinelli, and L. Moi, “Atom cooling by white light,” Appl. Phys. B 54(5), 428–433 (1992).
[Crossref]

Appl. Phys. Express (1)

H. Jiang, X. Chen, L. Xu, Q. Gao, H. Hu, Y. Wu, and X. Xu, “Quasi-continuous-wave, laser-diode-end-pumped Yb:YAG zigzag slab oscillator with high brightness at room temperature,” Appl. Phys. Express 10(2), 022702 (2017).
[Crossref]

IEEE J. Quantum Electron. (1)

G. A. Alphonse, D. B. Gilbert, M. Harvey, E. Depiano, and M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 24(12), 2454–2457 (1989).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

R. J. Pierre, G. W. Holleman, M. Valley, H. Injeyan, J. G. Berg, G. M. Harpole, R. C. Hilyard, M. Mitchell, M. E. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, “Active tracker laser (ATLAS),” IEEE J. Sel. Top. Quantum Electron. 3(1), 64–70 (1997).
[Crossref]

J. Appl. Phys. (3)

C. G. Young, J. W. Kantorski, and E. O. Dixon, “Optical avalanche laser,” J. Appl. Phys. 37(12), 4319–4324 (1966).
[Crossref]

A. Yariv and R. C. C. Leite, “Super radiant narrowing in fluorescence radiation of inverted populations,” J. Appl. Phys. 34(11), 3410–3411 (1963).
[Crossref]

L. W. Casperson, “Threshold characteristics of mirrorless lasers,” J. Appl. Phys. 48(1), 256–262 (1977).
[Crossref]

J. Luminescence (1)

X. Chen, J. Collins, and B. D. Bartolo, “Thermal red and blue shifts of Nd ion spectral lines in laser garnet crystals,” J. Luminescence 60, 230–232 (1994).

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

A. Hariri and S. Sarikhani, “Study of the amplified spontaneous emission spectral width and gain coefficient for a KrF laser in unsaturated and saturated conditions,” Laser Phys. Lett. 11(1), 015003 (2014).
[Crossref]

Nat. Photonics (1)

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref] [PubMed]

Opt. Commun. (2)

P. Ewart, “A modeless, variable bandwidth, tunable laser,” Opt. Commun. 55(2), 124–126 (1985).
[Crossref]

G. J. Pert, “The transition from uni-directional to bi-directional behaviour in amplified spontaneous emission lasers,” Opt. Commun. 191(1–2), 113–123 (2001).
[Crossref]

Opt. Express (3)

Opt. Lett. (5)

Phys. Rev. (1)

T. Kushida, “Linewidths and thermal shifts of spectral lines in neodymium-doped yttrium aluminum garnet and calcium fluorophosphate,” Phys. Rev. 185(2), 500–508 (1969).
[Crossref]

Phys. Rev. A (2)

E. L. Bolda, R. Y. Chiao, and J. C. Garrison, “Superfluorescence in a continuously pumped medium,” Phys. Rev. A 52(4), 3308–3315 (1995).
[Crossref] [PubMed]

L. Lis, “Amplified spontaneous emission and mirrorless lasers: Theory and experiment,” Phys. Rev. A 52(1), 686–693 (1995).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

M. S. Malcuit, J. J. Maki, D. J. Simkin, and R. Boyd, “Transition from superfluorescence to amplified spontaneous emission,” Phys. Rev. Lett. 59(11), 1189–1192 (1987).
[Crossref] [PubMed]

Other (2)

X. Chen, Y. Lu, X. Xu, L. Zhang, H. Ren, H. Hu, L. Tong, Y. Pang, M. Wan, Y. Shi, and F. Liu, “A solid-state sodium guide star ASE source by the sum frequency generation,” China Patent in application (2018).

A. Siegman, Lasers (University Science, 1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Spectra comparison between ASE sources and common laser oscillators, with ∆ν represented to the separation of longitudinal modes.
Fig. 2
Fig. 2 Schematic diagram for ASE in a multiple-pass Nd:YAG zigzag slab amplifier configuration.
Fig. 3
Fig. 3 Output energy and optical efficiency as a function of the pump energy.
Fig. 4
Fig. 4 Temporal waveforms of the quasi-CW ASE pulses.
Fig. 5
Fig. 5 Measured spectra.
Fig. 6
Fig. 6 Output through a scanning Fabry-Perot interferometer.
Fig. 7
Fig. 7 Far-field beam profile.

Tables (1)

Tables Icon

Table 1 Usable beam incidence angles for the designed slab.

Metrics