Abstract

The response of an optical cavity to incomplete extinction of nearly resonant incident light was experimentally examined. Measurements were performed using a Pound-Drever-Hall-locked frequency-stabilized cavity ring-down spectrometer (CRDS) that allowed the laser frequency detuning from the cavity resonance center to be controlled at Hz-level resolution. It is shown that an insufficient laser light extinction ratio combined with a phase shift and frequency detuning may lead to non-exponential cavity pumping and decay signals. The experimental results can be explained with a simple analytical model. The non-exponential decay can lead to a systematic shift as high as 0.5% in the ring-down time constants, dependent on the laser frequency detuning from the cavity mode center and on the extinction ratio. This can lead to appreciable systematic errors in the absorption coefficients determined with the CRDS technique.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Laser-locked, high-repetition-rate cavity ringdown spectrometer

R. Z. Martínez, Markus Metsälä, Olavi Vaittinen, Tommi Lantta, and Lauri Halonen
J. Opt. Soc. Am. B 23(4) 727-740 (2006)

Sensitivity improvement by optimized optical switching and curve fitting in a cavity ring-down spectrometer

Weipeng Zhang, Haoyun Wei, Xinyi Chen, and Yan Li
Appl. Opt. 57(29) 8487-8493 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
    [Crossref]
  2. A. Kastler, “Transmission of light pulse through a Fabry-Perot interferometer,” Nouv. Rev. Optique 5, 133–139 (1974).
    [Crossref]
  3. H. Huang and K. K. Lehmann, “Noise caused by a finite extinction ratio of the light modulator in CW cavity ring-down spectroscopy,” Appl. Phys. B 94, 355–366 (2009).
    [Crossref]
  4. D. A. Long, S. Wójtewicz, and J. T. Hodges, “Effects of incomplete light extinction in frequency-agile, rapid scanning spectroscopy,” Proc. SPIE 8726, 87260O (2013).
    [Crossref]
  5. H. Huang and K. K. Lehmann, “Noise in cavity ring-down spectroscopy caused by transverse mode coupling,” Opt. Express 15, 8745–8759 (2007).
    [Crossref] [PubMed]
  6. S. Wójtewicz, D. Lisak, A. Cygan, J. Domysławska, R. S. Trawiński, and R. Ciuryło, “Line-shape study of self-broadened O2 transitions measured by Pound-Drever-Hall-locked frequency-stabilized cavity ring-down spectroscopy,” Phys. Rev. A 84, 032511 (2011).
    [Crossref]
  7. C. E. Miller, L. R. Brown, R. A. Toth, D. Chris Benner, and V. Malathy Devi, “Spectroscopic challenges for high accuracy retrievals of atmospheric CO2 and the Orbiting Carbon Observatory (OCO) experiment,” C. R. Phys. 6, 876–887 (2005).
    [Crossref]
  8. D. R. Thompson, D. C. Benner, L. R. Brown, D. Crisp, V. M. Malathy Devi, Y. Jiang, V. Natraj, F. Oyafuso, K. Sung, D. Wunch, R. Castaño, and C. E. Miller, “Atmospheric validation of high accuracy CO2 absorption coefficients for the OCO-2 mission,” J. Quant. Spectrosc. Radiat. Transfer 113, 2265–2276 (2012).
  9. L. Gianfrani, “Linking the thermodynamic temperature to an optical frequency: recent advances in Doppler broadening thermometry,” Phil. Trans. R. Soc. A 374, 20150047 (2016).
    [Crossref] [PubMed]
  10. D. A. Long, M. Okumura, C. E. Miller, and J. T. Hodges, “Frequency-stabilized cavity ring-down spectroscopy measurements of carbon dioxide isotopic ratios,” Appl. Phys. B 105, 471–477 (2011).
    [Crossref]
  11. S. Yu, C. E. Miller, B. J. Drouin, and H. S. P. Müller, “High resolution spectral analysis of oxygen. I. Isotopically invariant Dunham fit for the XΣg−3, a 1Δg, bΣg+1 states,” J. Chem. Phys. 37, 024304 (2012).
    [Crossref]
  12. S. Kassi, A. Campargue, K. Pachucki, and J. Komasa, “The absorption spectrum of D2: Ultrasensitive cavity ring down spectroscopy of the (2–0) band near 1.7 μm and accurate ab initio line list up to 24000 cm−1,” J. Chem. Phys. 136, 184309 (2012).
    [Crossref]
  13. O. L. Polyansky, K. Bielska, M. Ghysels, L. Lodi, N. F. Zobov, J. T. Hodges, and J. Tennyson, “High-accuracy CO2 line intensities determined from theory and experiment,” Phys. Rev. Lett. 114, 243001 (2015).
    [Crossref]
  14. G. Zhao, T. Hausmaninger, W. Ma, and O. Axner, “Whispering-gallery-mode laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry,” Opt. Lett. 42, 3109–3112 (2017).
    [Crossref] [PubMed]
  15. G. Zhao, T. Hausmaninger, W. Ma, and O. Axner, “Differential noise-immune cavity-enhanced optical heterodyne molecular spectroscopy for improvement of the detection sensitivity by reduction of drifts from background signals,” Opt. Express 25, 29454–29471 (2017).
    [Crossref]
  16. A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, J. T. Hodges, R. S. Trawiński, and R. Ciuryło, “High-signal-to-noise-ratio laser technique for accurate measurements of spectral line parameters,” Phys. Rev. A 85, 022508 (2012).
    [Crossref]
  17. H. Lin, Z. D. Reed, V. T. Sironneau, and J. T. Hodges, “Cavity ring-down spectrometer for high-fidelity molecular absorption measurements,” J. Quant. Spectrosc. Radiat. Transfer 161, 11–20 (2015).
    [Crossref]
  18. J. Burkart and S. Kassi, “Absorption line metrology by optical feedback frequency-stabilized cavity ring-down spectroscopy,” Appl. Phys. B 119, 97–109 (2015).
    [Crossref]
  19. D. Mondelain, S. Kassi, T. Sala, D. Romanini, D. Gatti, and A. Campargue, “Sub-MHz accuracy measurement of the S(2) 2–0 transition frequency of D2 by Comb-Assisted Cavity Ring Down spectroscopy,” J. Mol. Spectrosc. 326, 5–8 (2016).
    [Crossref]
  20. P. Wcisło, F. Thibault, M. Zaborowski, S. Wójtewicz, A. Cygan, G. Kowzan, P. Masłowski, J. Komasa, M. Puchalski, K. Pachucki, R. Ciuryło, and D. Lisak, “Toward kilohertz spectroscopy of weakly interacting molecules,” will be submitted to J. Quant. Spectrosc. Radiat. Transfer.
  21. K. K. Lehmann and D. Romanini, “The superposition principle and cavity ring-down spectroscopy,” J. Chem. Phys. 105, 10263–10277 (1996).
    [Crossref]
  22. D. Romanini, I. Ventrillard, G. Méjean, J. Morville, and E. Kerstel, “Introduction to Cavity Enhanced Absorption Spectroscopy,” in Cavity-Enhanced Spectroscopy and Sensing, G. Gagliardi and H.-P. Loock, eds. (Springer, 2014).
    [Crossref]
  23. J. Morville, D. Romanini, M. Chenevier, and A. Kachanov, “Effects of laser phase noise on the injection of a high-finesse cavity,” Appl. Opt. 41, 6980–6990 (2002).
    [Crossref] [PubMed]
  24. A. Cygan, D. Lisak, P. Masłowski, K. Bielska, S. Wójtewicz, J. Domysławska, R. S. Trawiński, R. Ciuryło, H. Abe, and J. T. Hodges, “Pound-Drever-Hall-locked, frequency-stabilized cavity ring-down spectrometer,” Rev. Sci. Instrum. 82, 063107 (2011).
    [Crossref] [PubMed]
  25. G.-W. Truong, K. O. Douglass, S. E. Maxwell, R. D. van Zee, D. F. Plusquellic, J. T. Hodges, and D. A. Long, “Frequency-agile, rapid scanning spectroscopy,” Nature Photon. 7, 532–534 (2013).
    [Crossref]
  26. S. Rosenblum, Y. Lovsky, L. Arazi, F. Vollmer, and B. Dayan, “Cavity ring-up spectroscopy for ultrafast sensing with optical microresonators,” Nat. Commun. 6, 6788 (2015).
    [Crossref] [PubMed]
  27. Y. Yang, R. Madugani, S. Kasumie, J. M. Ward, and S. N. Chormaic, “Cavity ring-up spectroscopy for dissipative and dispersive sensing in a whispering gallery mode resonator,” Appl. Phys. B 122, 291 (2016).
    [Crossref]
  28. A. Cygan, S. Wójtewicz, M. Zaborowski, P. Wcisło, R. Guo, R. Ciuryło, and D. Lisak, “One-dimensional cavity mode-dispersion spectroscopy for validation of CRDS technique,” Meas. Sci. Technol. 27, 045501 (2016).
    [Crossref]
  29. A. Cygan, S. Wójtewicz, G. Kowzan, M. Zaborowski, P. Wcisło, J. Nawrocki, P. Krehlik, Ł. Śliwczyński, M. Lipiński, P. Masłowski, R. Ciuryło, and D. Lisak, “Absolute molecular transition frequencies measured by three cavity-enhanced spectroscopy techniques,” J. Chem. Phys. 144, 214202 (2016).
    [Crossref] [PubMed]
  30. J. T. Hodges, H. P. Layer, W. W. Miller, and G. E. Scace, “Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy,” Rev. Sci. Instrum. 75, 849–863 (2004).
    [Crossref]
  31. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
    [Crossref]
  32. C. Salomon, D. Hils, and J. L. Hall, “Laser stabilization at the millihertz level,” J. Opt. Soc. Am. B 5, 1576–1587 (1988).
    [Crossref]
  33. A. Cygan, P. Wcisło, S. Wójtewicz, P. Masłowski, J. T. Hodges, R. Ciuryło, and D. Lisak, “One-dimensional frequency-based spectroscopy,” Opt. Express 23, 14472–14486 (2015).
    [Crossref] [PubMed]
  34. D. Z. Anderson, J. C. Frisch, and C. S. Masser, “Mirror reflectometer based on optical cavity decay time,” Appl. Opt. 23, 1238–1245 (1984).
    [Crossref] [PubMed]
  35. J. Burkart, D. Romanini, and S. Kassi, “Optical feedback stabilized laser tuned by single-sideband modulation,” Opt. Express 28, 2062–2064 (2013).
  36. N. C. Wong and J. L. Hall, “Servo control of amplitude modulation in frequency-modulation spectroscopy: demonstration of shot-noise-limited detection,” J. Opt. Soc. Am. B 2, 1527–1533 (1985).
    [Crossref]
  37. A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, R. S. Trawiński, and R. Ciuryło, “Active control of the Pound-Drever-Hall error signal offset in high-repetition-rate cavity ring-down spectroscopy,” Meas. Sci. Technol. 22, 115303 (2011).
    [Crossref]
  38. J. T. Hodges and R. Ciuryło, “Automated high-resolution frequency-stabilized cavity ring-down absorption spectrometer,” Rev. Sci. Instrum. 76, 023112 (2005).
    [Crossref]
  39. D. Lisak, P. Masłowski, A. Cygan, K. Bielska, S. Wójtewicz, M. Piwiński, J. T. Hodges, R. S. Trawiński, and R. Ciuryło, “Line shapes and intensities of self-broadened O2b Σg+1(v=1)←XΣg−3(v=0) band transitions measured by cavity ring-down spectroscopy,” Phys. Rev. A 81, 042504 (2010).
    [Crossref]

2017 (2)

2016 (5)

L. Gianfrani, “Linking the thermodynamic temperature to an optical frequency: recent advances in Doppler broadening thermometry,” Phil. Trans. R. Soc. A 374, 20150047 (2016).
[Crossref] [PubMed]

D. Mondelain, S. Kassi, T. Sala, D. Romanini, D. Gatti, and A. Campargue, “Sub-MHz accuracy measurement of the S(2) 2–0 transition frequency of D2 by Comb-Assisted Cavity Ring Down spectroscopy,” J. Mol. Spectrosc. 326, 5–8 (2016).
[Crossref]

Y. Yang, R. Madugani, S. Kasumie, J. M. Ward, and S. N. Chormaic, “Cavity ring-up spectroscopy for dissipative and dispersive sensing in a whispering gallery mode resonator,” Appl. Phys. B 122, 291 (2016).
[Crossref]

A. Cygan, S. Wójtewicz, M. Zaborowski, P. Wcisło, R. Guo, R. Ciuryło, and D. Lisak, “One-dimensional cavity mode-dispersion spectroscopy for validation of CRDS technique,” Meas. Sci. Technol. 27, 045501 (2016).
[Crossref]

A. Cygan, S. Wójtewicz, G. Kowzan, M. Zaborowski, P. Wcisło, J. Nawrocki, P. Krehlik, Ł. Śliwczyński, M. Lipiński, P. Masłowski, R. Ciuryło, and D. Lisak, “Absolute molecular transition frequencies measured by three cavity-enhanced spectroscopy techniques,” J. Chem. Phys. 144, 214202 (2016).
[Crossref] [PubMed]

2015 (5)

O. L. Polyansky, K. Bielska, M. Ghysels, L. Lodi, N. F. Zobov, J. T. Hodges, and J. Tennyson, “High-accuracy CO2 line intensities determined from theory and experiment,” Phys. Rev. Lett. 114, 243001 (2015).
[Crossref]

S. Rosenblum, Y. Lovsky, L. Arazi, F. Vollmer, and B. Dayan, “Cavity ring-up spectroscopy for ultrafast sensing with optical microresonators,” Nat. Commun. 6, 6788 (2015).
[Crossref] [PubMed]

A. Cygan, P. Wcisło, S. Wójtewicz, P. Masłowski, J. T. Hodges, R. Ciuryło, and D. Lisak, “One-dimensional frequency-based spectroscopy,” Opt. Express 23, 14472–14486 (2015).
[Crossref] [PubMed]

H. Lin, Z. D. Reed, V. T. Sironneau, and J. T. Hodges, “Cavity ring-down spectrometer for high-fidelity molecular absorption measurements,” J. Quant. Spectrosc. Radiat. Transfer 161, 11–20 (2015).
[Crossref]

J. Burkart and S. Kassi, “Absorption line metrology by optical feedback frequency-stabilized cavity ring-down spectroscopy,” Appl. Phys. B 119, 97–109 (2015).
[Crossref]

2013 (3)

D. A. Long, S. Wójtewicz, and J. T. Hodges, “Effects of incomplete light extinction in frequency-agile, rapid scanning spectroscopy,” Proc. SPIE 8726, 87260O (2013).
[Crossref]

J. Burkart, D. Romanini, and S. Kassi, “Optical feedback stabilized laser tuned by single-sideband modulation,” Opt. Express 28, 2062–2064 (2013).

G.-W. Truong, K. O. Douglass, S. E. Maxwell, R. D. van Zee, D. F. Plusquellic, J. T. Hodges, and D. A. Long, “Frequency-agile, rapid scanning spectroscopy,” Nature Photon. 7, 532–534 (2013).
[Crossref]

2012 (4)

D. R. Thompson, D. C. Benner, L. R. Brown, D. Crisp, V. M. Malathy Devi, Y. Jiang, V. Natraj, F. Oyafuso, K. Sung, D. Wunch, R. Castaño, and C. E. Miller, “Atmospheric validation of high accuracy CO2 absorption coefficients for the OCO-2 mission,” J. Quant. Spectrosc. Radiat. Transfer 113, 2265–2276 (2012).

A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, J. T. Hodges, R. S. Trawiński, and R. Ciuryło, “High-signal-to-noise-ratio laser technique for accurate measurements of spectral line parameters,” Phys. Rev. A 85, 022508 (2012).
[Crossref]

S. Yu, C. E. Miller, B. J. Drouin, and H. S. P. Müller, “High resolution spectral analysis of oxygen. I. Isotopically invariant Dunham fit for the XΣg−3, a 1Δg, bΣg+1 states,” J. Chem. Phys. 37, 024304 (2012).
[Crossref]

S. Kassi, A. Campargue, K. Pachucki, and J. Komasa, “The absorption spectrum of D2: Ultrasensitive cavity ring down spectroscopy of the (2–0) band near 1.7 μm and accurate ab initio line list up to 24000 cm−1,” J. Chem. Phys. 136, 184309 (2012).
[Crossref]

2011 (4)

D. A. Long, M. Okumura, C. E. Miller, and J. T. Hodges, “Frequency-stabilized cavity ring-down spectroscopy measurements of carbon dioxide isotopic ratios,” Appl. Phys. B 105, 471–477 (2011).
[Crossref]

S. Wójtewicz, D. Lisak, A. Cygan, J. Domysławska, R. S. Trawiński, and R. Ciuryło, “Line-shape study of self-broadened O2 transitions measured by Pound-Drever-Hall-locked frequency-stabilized cavity ring-down spectroscopy,” Phys. Rev. A 84, 032511 (2011).
[Crossref]

A. Cygan, D. Lisak, P. Masłowski, K. Bielska, S. Wójtewicz, J. Domysławska, R. S. Trawiński, R. Ciuryło, H. Abe, and J. T. Hodges, “Pound-Drever-Hall-locked, frequency-stabilized cavity ring-down spectrometer,” Rev. Sci. Instrum. 82, 063107 (2011).
[Crossref] [PubMed]

A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, R. S. Trawiński, and R. Ciuryło, “Active control of the Pound-Drever-Hall error signal offset in high-repetition-rate cavity ring-down spectroscopy,” Meas. Sci. Technol. 22, 115303 (2011).
[Crossref]

2010 (1)

D. Lisak, P. Masłowski, A. Cygan, K. Bielska, S. Wójtewicz, M. Piwiński, J. T. Hodges, R. S. Trawiński, and R. Ciuryło, “Line shapes and intensities of self-broadened O2b Σg+1(v=1)←XΣg−3(v=0) band transitions measured by cavity ring-down spectroscopy,” Phys. Rev. A 81, 042504 (2010).
[Crossref]

2009 (1)

H. Huang and K. K. Lehmann, “Noise caused by a finite extinction ratio of the light modulator in CW cavity ring-down spectroscopy,” Appl. Phys. B 94, 355–366 (2009).
[Crossref]

2007 (1)

2005 (2)

C. E. Miller, L. R. Brown, R. A. Toth, D. Chris Benner, and V. Malathy Devi, “Spectroscopic challenges for high accuracy retrievals of atmospheric CO2 and the Orbiting Carbon Observatory (OCO) experiment,” C. R. Phys. 6, 876–887 (2005).
[Crossref]

J. T. Hodges and R. Ciuryło, “Automated high-resolution frequency-stabilized cavity ring-down absorption spectrometer,” Rev. Sci. Instrum. 76, 023112 (2005).
[Crossref]

2004 (1)

J. T. Hodges, H. P. Layer, W. W. Miller, and G. E. Scace, “Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy,” Rev. Sci. Instrum. 75, 849–863 (2004).
[Crossref]

2002 (1)

1996 (1)

K. K. Lehmann and D. Romanini, “The superposition principle and cavity ring-down spectroscopy,” J. Chem. Phys. 105, 10263–10277 (1996).
[Crossref]

1988 (2)

C. Salomon, D. Hils, and J. L. Hall, “Laser stabilization at the millihertz level,” J. Opt. Soc. Am. B 5, 1576–1587 (1988).
[Crossref]

A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[Crossref]

1985 (1)

1984 (1)

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

1974 (1)

A. Kastler, “Transmission of light pulse through a Fabry-Perot interferometer,” Nouv. Rev. Optique 5, 133–139 (1974).
[Crossref]

Abe, H.

A. Cygan, D. Lisak, P. Masłowski, K. Bielska, S. Wójtewicz, J. Domysławska, R. S. Trawiński, R. Ciuryło, H. Abe, and J. T. Hodges, “Pound-Drever-Hall-locked, frequency-stabilized cavity ring-down spectrometer,” Rev. Sci. Instrum. 82, 063107 (2011).
[Crossref] [PubMed]

Anderson, D. Z.

Arazi, L.

S. Rosenblum, Y. Lovsky, L. Arazi, F. Vollmer, and B. Dayan, “Cavity ring-up spectroscopy for ultrafast sensing with optical microresonators,” Nat. Commun. 6, 6788 (2015).
[Crossref] [PubMed]

Axner, O.

Benner, D. C.

D. R. Thompson, D. C. Benner, L. R. Brown, D. Crisp, V. M. Malathy Devi, Y. Jiang, V. Natraj, F. Oyafuso, K. Sung, D. Wunch, R. Castaño, and C. E. Miller, “Atmospheric validation of high accuracy CO2 absorption coefficients for the OCO-2 mission,” J. Quant. Spectrosc. Radiat. Transfer 113, 2265–2276 (2012).

Bielska, K.

O. L. Polyansky, K. Bielska, M. Ghysels, L. Lodi, N. F. Zobov, J. T. Hodges, and J. Tennyson, “High-accuracy CO2 line intensities determined from theory and experiment,” Phys. Rev. Lett. 114, 243001 (2015).
[Crossref]

A. Cygan, D. Lisak, P. Masłowski, K. Bielska, S. Wójtewicz, J. Domysławska, R. S. Trawiński, R. Ciuryło, H. Abe, and J. T. Hodges, “Pound-Drever-Hall-locked, frequency-stabilized cavity ring-down spectrometer,” Rev. Sci. Instrum. 82, 063107 (2011).
[Crossref] [PubMed]

D. Lisak, P. Masłowski, A. Cygan, K. Bielska, S. Wójtewicz, M. Piwiński, J. T. Hodges, R. S. Trawiński, and R. Ciuryło, “Line shapes and intensities of self-broadened O2b Σg+1(v=1)←XΣg−3(v=0) band transitions measured by cavity ring-down spectroscopy,” Phys. Rev. A 81, 042504 (2010).
[Crossref]

Brown, L. R.

D. R. Thompson, D. C. Benner, L. R. Brown, D. Crisp, V. M. Malathy Devi, Y. Jiang, V. Natraj, F. Oyafuso, K. Sung, D. Wunch, R. Castaño, and C. E. Miller, “Atmospheric validation of high accuracy CO2 absorption coefficients for the OCO-2 mission,” J. Quant. Spectrosc. Radiat. Transfer 113, 2265–2276 (2012).

C. E. Miller, L. R. Brown, R. A. Toth, D. Chris Benner, and V. Malathy Devi, “Spectroscopic challenges for high accuracy retrievals of atmospheric CO2 and the Orbiting Carbon Observatory (OCO) experiment,” C. R. Phys. 6, 876–887 (2005).
[Crossref]

Burkart, J.

J. Burkart and S. Kassi, “Absorption line metrology by optical feedback frequency-stabilized cavity ring-down spectroscopy,” Appl. Phys. B 119, 97–109 (2015).
[Crossref]

J. Burkart, D. Romanini, and S. Kassi, “Optical feedback stabilized laser tuned by single-sideband modulation,” Opt. Express 28, 2062–2064 (2013).

Campargue, A.

D. Mondelain, S. Kassi, T. Sala, D. Romanini, D. Gatti, and A. Campargue, “Sub-MHz accuracy measurement of the S(2) 2–0 transition frequency of D2 by Comb-Assisted Cavity Ring Down spectroscopy,” J. Mol. Spectrosc. 326, 5–8 (2016).
[Crossref]

S. Kassi, A. Campargue, K. Pachucki, and J. Komasa, “The absorption spectrum of D2: Ultrasensitive cavity ring down spectroscopy of the (2–0) band near 1.7 μm and accurate ab initio line list up to 24000 cm−1,” J. Chem. Phys. 136, 184309 (2012).
[Crossref]

Castaño, R.

D. R. Thompson, D. C. Benner, L. R. Brown, D. Crisp, V. M. Malathy Devi, Y. Jiang, V. Natraj, F. Oyafuso, K. Sung, D. Wunch, R. Castaño, and C. E. Miller, “Atmospheric validation of high accuracy CO2 absorption coefficients for the OCO-2 mission,” J. Quant. Spectrosc. Radiat. Transfer 113, 2265–2276 (2012).

Chenevier, M.

Chormaic, S. N.

Y. Yang, R. Madugani, S. Kasumie, J. M. Ward, and S. N. Chormaic, “Cavity ring-up spectroscopy for dissipative and dispersive sensing in a whispering gallery mode resonator,” Appl. Phys. B 122, 291 (2016).
[Crossref]

Chris Benner, D.

C. E. Miller, L. R. Brown, R. A. Toth, D. Chris Benner, and V. Malathy Devi, “Spectroscopic challenges for high accuracy retrievals of atmospheric CO2 and the Orbiting Carbon Observatory (OCO) experiment,” C. R. Phys. 6, 876–887 (2005).
[Crossref]

Ciurylo, R.

A. Cygan, S. Wójtewicz, M. Zaborowski, P. Wcisło, R. Guo, R. Ciuryło, and D. Lisak, “One-dimensional cavity mode-dispersion spectroscopy for validation of CRDS technique,” Meas. Sci. Technol. 27, 045501 (2016).
[Crossref]

A. Cygan, S. Wójtewicz, G. Kowzan, M. Zaborowski, P. Wcisło, J. Nawrocki, P. Krehlik, Ł. Śliwczyński, M. Lipiński, P. Masłowski, R. Ciuryło, and D. Lisak, “Absolute molecular transition frequencies measured by three cavity-enhanced spectroscopy techniques,” J. Chem. Phys. 144, 214202 (2016).
[Crossref] [PubMed]

A. Cygan, P. Wcisło, S. Wójtewicz, P. Masłowski, J. T. Hodges, R. Ciuryło, and D. Lisak, “One-dimensional frequency-based spectroscopy,” Opt. Express 23, 14472–14486 (2015).
[Crossref] [PubMed]

A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, J. T. Hodges, R. S. Trawiński, and R. Ciuryło, “High-signal-to-noise-ratio laser technique for accurate measurements of spectral line parameters,” Phys. Rev. A 85, 022508 (2012).
[Crossref]

S. Wójtewicz, D. Lisak, A. Cygan, J. Domysławska, R. S. Trawiński, and R. Ciuryło, “Line-shape study of self-broadened O2 transitions measured by Pound-Drever-Hall-locked frequency-stabilized cavity ring-down spectroscopy,” Phys. Rev. A 84, 032511 (2011).
[Crossref]

A. Cygan, D. Lisak, P. Masłowski, K. Bielska, S. Wójtewicz, J. Domysławska, R. S. Trawiński, R. Ciuryło, H. Abe, and J. T. Hodges, “Pound-Drever-Hall-locked, frequency-stabilized cavity ring-down spectrometer,” Rev. Sci. Instrum. 82, 063107 (2011).
[Crossref] [PubMed]

A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, R. S. Trawiński, and R. Ciuryło, “Active control of the Pound-Drever-Hall error signal offset in high-repetition-rate cavity ring-down spectroscopy,” Meas. Sci. Technol. 22, 115303 (2011).
[Crossref]

D. Lisak, P. Masłowski, A. Cygan, K. Bielska, S. Wójtewicz, M. Piwiński, J. T. Hodges, R. S. Trawiński, and R. Ciuryło, “Line shapes and intensities of self-broadened O2b Σg+1(v=1)←XΣg−3(v=0) band transitions measured by cavity ring-down spectroscopy,” Phys. Rev. A 81, 042504 (2010).
[Crossref]

J. T. Hodges and R. Ciuryło, “Automated high-resolution frequency-stabilized cavity ring-down absorption spectrometer,” Rev. Sci. Instrum. 76, 023112 (2005).
[Crossref]

P. Wcisło, F. Thibault, M. Zaborowski, S. Wójtewicz, A. Cygan, G. Kowzan, P. Masłowski, J. Komasa, M. Puchalski, K. Pachucki, R. Ciuryło, and D. Lisak, “Toward kilohertz spectroscopy of weakly interacting molecules,” will be submitted to J. Quant. Spectrosc. Radiat. Transfer.

Crisp, D.

D. R. Thompson, D. C. Benner, L. R. Brown, D. Crisp, V. M. Malathy Devi, Y. Jiang, V. Natraj, F. Oyafuso, K. Sung, D. Wunch, R. Castaño, and C. E. Miller, “Atmospheric validation of high accuracy CO2 absorption coefficients for the OCO-2 mission,” J. Quant. Spectrosc. Radiat. Transfer 113, 2265–2276 (2012).

Cygan, A.

A. Cygan, S. Wójtewicz, G. Kowzan, M. Zaborowski, P. Wcisło, J. Nawrocki, P. Krehlik, Ł. Śliwczyński, M. Lipiński, P. Masłowski, R. Ciuryło, and D. Lisak, “Absolute molecular transition frequencies measured by three cavity-enhanced spectroscopy techniques,” J. Chem. Phys. 144, 214202 (2016).
[Crossref] [PubMed]

A. Cygan, S. Wójtewicz, M. Zaborowski, P. Wcisło, R. Guo, R. Ciuryło, and D. Lisak, “One-dimensional cavity mode-dispersion spectroscopy for validation of CRDS technique,” Meas. Sci. Technol. 27, 045501 (2016).
[Crossref]

A. Cygan, P. Wcisło, S. Wójtewicz, P. Masłowski, J. T. Hodges, R. Ciuryło, and D. Lisak, “One-dimensional frequency-based spectroscopy,” Opt. Express 23, 14472–14486 (2015).
[Crossref] [PubMed]

A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, J. T. Hodges, R. S. Trawiński, and R. Ciuryło, “High-signal-to-noise-ratio laser technique for accurate measurements of spectral line parameters,” Phys. Rev. A 85, 022508 (2012).
[Crossref]

S. Wójtewicz, D. Lisak, A. Cygan, J. Domysławska, R. S. Trawiński, and R. Ciuryło, “Line-shape study of self-broadened O2 transitions measured by Pound-Drever-Hall-locked frequency-stabilized cavity ring-down spectroscopy,” Phys. Rev. A 84, 032511 (2011).
[Crossref]

A. Cygan, D. Lisak, P. Masłowski, K. Bielska, S. Wójtewicz, J. Domysławska, R. S. Trawiński, R. Ciuryło, H. Abe, and J. T. Hodges, “Pound-Drever-Hall-locked, frequency-stabilized cavity ring-down spectrometer,” Rev. Sci. Instrum. 82, 063107 (2011).
[Crossref] [PubMed]

A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, R. S. Trawiński, and R. Ciuryło, “Active control of the Pound-Drever-Hall error signal offset in high-repetition-rate cavity ring-down spectroscopy,” Meas. Sci. Technol. 22, 115303 (2011).
[Crossref]

D. Lisak, P. Masłowski, A. Cygan, K. Bielska, S. Wójtewicz, M. Piwiński, J. T. Hodges, R. S. Trawiński, and R. Ciuryło, “Line shapes and intensities of self-broadened O2b Σg+1(v=1)←XΣg−3(v=0) band transitions measured by cavity ring-down spectroscopy,” Phys. Rev. A 81, 042504 (2010).
[Crossref]

P. Wcisło, F. Thibault, M. Zaborowski, S. Wójtewicz, A. Cygan, G. Kowzan, P. Masłowski, J. Komasa, M. Puchalski, K. Pachucki, R. Ciuryło, and D. Lisak, “Toward kilohertz spectroscopy of weakly interacting molecules,” will be submitted to J. Quant. Spectrosc. Radiat. Transfer.

Dayan, B.

S. Rosenblum, Y. Lovsky, L. Arazi, F. Vollmer, and B. Dayan, “Cavity ring-up spectroscopy for ultrafast sensing with optical microresonators,” Nat. Commun. 6, 6788 (2015).
[Crossref] [PubMed]

Deacon, D. A. G.

A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[Crossref]

Domyslawska, J.

A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, J. T. Hodges, R. S. Trawiński, and R. Ciuryło, “High-signal-to-noise-ratio laser technique for accurate measurements of spectral line parameters,” Phys. Rev. A 85, 022508 (2012).
[Crossref]

S. Wójtewicz, D. Lisak, A. Cygan, J. Domysławska, R. S. Trawiński, and R. Ciuryło, “Line-shape study of self-broadened O2 transitions measured by Pound-Drever-Hall-locked frequency-stabilized cavity ring-down spectroscopy,” Phys. Rev. A 84, 032511 (2011).
[Crossref]

A. Cygan, D. Lisak, P. Masłowski, K. Bielska, S. Wójtewicz, J. Domysławska, R. S. Trawiński, R. Ciuryło, H. Abe, and J. T. Hodges, “Pound-Drever-Hall-locked, frequency-stabilized cavity ring-down spectrometer,” Rev. Sci. Instrum. 82, 063107 (2011).
[Crossref] [PubMed]

A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, R. S. Trawiński, and R. Ciuryło, “Active control of the Pound-Drever-Hall error signal offset in high-repetition-rate cavity ring-down spectroscopy,” Meas. Sci. Technol. 22, 115303 (2011).
[Crossref]

Douglass, K. O.

G.-W. Truong, K. O. Douglass, S. E. Maxwell, R. D. van Zee, D. F. Plusquellic, J. T. Hodges, and D. A. Long, “Frequency-agile, rapid scanning spectroscopy,” Nature Photon. 7, 532–534 (2013).
[Crossref]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Drouin, B. J.

S. Yu, C. E. Miller, B. J. Drouin, and H. S. P. Müller, “High resolution spectral analysis of oxygen. I. Isotopically invariant Dunham fit for the XΣg−3, a 1Δg, bΣg+1 states,” J. Chem. Phys. 37, 024304 (2012).
[Crossref]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Frisch, J. C.

Gatti, D.

D. Mondelain, S. Kassi, T. Sala, D. Romanini, D. Gatti, and A. Campargue, “Sub-MHz accuracy measurement of the S(2) 2–0 transition frequency of D2 by Comb-Assisted Cavity Ring Down spectroscopy,” J. Mol. Spectrosc. 326, 5–8 (2016).
[Crossref]

Ghysels, M.

O. L. Polyansky, K. Bielska, M. Ghysels, L. Lodi, N. F. Zobov, J. T. Hodges, and J. Tennyson, “High-accuracy CO2 line intensities determined from theory and experiment,” Phys. Rev. Lett. 114, 243001 (2015).
[Crossref]

Gianfrani, L.

L. Gianfrani, “Linking the thermodynamic temperature to an optical frequency: recent advances in Doppler broadening thermometry,” Phil. Trans. R. Soc. A 374, 20150047 (2016).
[Crossref] [PubMed]

Guo, R.

A. Cygan, S. Wójtewicz, M. Zaborowski, P. Wcisło, R. Guo, R. Ciuryło, and D. Lisak, “One-dimensional cavity mode-dispersion spectroscopy for validation of CRDS technique,” Meas. Sci. Technol. 27, 045501 (2016).
[Crossref]

Hall, J. L.

Hausmaninger, T.

Hils, D.

Hodges, J. T.

A. Cygan, P. Wcisło, S. Wójtewicz, P. Masłowski, J. T. Hodges, R. Ciuryło, and D. Lisak, “One-dimensional frequency-based spectroscopy,” Opt. Express 23, 14472–14486 (2015).
[Crossref] [PubMed]

O. L. Polyansky, K. Bielska, M. Ghysels, L. Lodi, N. F. Zobov, J. T. Hodges, and J. Tennyson, “High-accuracy CO2 line intensities determined from theory and experiment,” Phys. Rev. Lett. 114, 243001 (2015).
[Crossref]

H. Lin, Z. D. Reed, V. T. Sironneau, and J. T. Hodges, “Cavity ring-down spectrometer for high-fidelity molecular absorption measurements,” J. Quant. Spectrosc. Radiat. Transfer 161, 11–20 (2015).
[Crossref]

G.-W. Truong, K. O. Douglass, S. E. Maxwell, R. D. van Zee, D. F. Plusquellic, J. T. Hodges, and D. A. Long, “Frequency-agile, rapid scanning spectroscopy,” Nature Photon. 7, 532–534 (2013).
[Crossref]

D. A. Long, S. Wójtewicz, and J. T. Hodges, “Effects of incomplete light extinction in frequency-agile, rapid scanning spectroscopy,” Proc. SPIE 8726, 87260O (2013).
[Crossref]

A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, J. T. Hodges, R. S. Trawiński, and R. Ciuryło, “High-signal-to-noise-ratio laser technique for accurate measurements of spectral line parameters,” Phys. Rev. A 85, 022508 (2012).
[Crossref]

D. A. Long, M. Okumura, C. E. Miller, and J. T. Hodges, “Frequency-stabilized cavity ring-down spectroscopy measurements of carbon dioxide isotopic ratios,” Appl. Phys. B 105, 471–477 (2011).
[Crossref]

A. Cygan, D. Lisak, P. Masłowski, K. Bielska, S. Wójtewicz, J. Domysławska, R. S. Trawiński, R. Ciuryło, H. Abe, and J. T. Hodges, “Pound-Drever-Hall-locked, frequency-stabilized cavity ring-down spectrometer,” Rev. Sci. Instrum. 82, 063107 (2011).
[Crossref] [PubMed]

D. Lisak, P. Masłowski, A. Cygan, K. Bielska, S. Wójtewicz, M. Piwiński, J. T. Hodges, R. S. Trawiński, and R. Ciuryło, “Line shapes and intensities of self-broadened O2b Σg+1(v=1)←XΣg−3(v=0) band transitions measured by cavity ring-down spectroscopy,” Phys. Rev. A 81, 042504 (2010).
[Crossref]

J. T. Hodges and R. Ciuryło, “Automated high-resolution frequency-stabilized cavity ring-down absorption spectrometer,” Rev. Sci. Instrum. 76, 023112 (2005).
[Crossref]

J. T. Hodges, H. P. Layer, W. W. Miller, and G. E. Scace, “Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy,” Rev. Sci. Instrum. 75, 849–863 (2004).
[Crossref]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Huang, H.

H. Huang and K. K. Lehmann, “Noise caused by a finite extinction ratio of the light modulator in CW cavity ring-down spectroscopy,” Appl. Phys. B 94, 355–366 (2009).
[Crossref]

H. Huang and K. K. Lehmann, “Noise in cavity ring-down spectroscopy caused by transverse mode coupling,” Opt. Express 15, 8745–8759 (2007).
[Crossref] [PubMed]

Jiang, Y.

D. R. Thompson, D. C. Benner, L. R. Brown, D. Crisp, V. M. Malathy Devi, Y. Jiang, V. Natraj, F. Oyafuso, K. Sung, D. Wunch, R. Castaño, and C. E. Miller, “Atmospheric validation of high accuracy CO2 absorption coefficients for the OCO-2 mission,” J. Quant. Spectrosc. Radiat. Transfer 113, 2265–2276 (2012).

Kachanov, A.

Kassi, S.

D. Mondelain, S. Kassi, T. Sala, D. Romanini, D. Gatti, and A. Campargue, “Sub-MHz accuracy measurement of the S(2) 2–0 transition frequency of D2 by Comb-Assisted Cavity Ring Down spectroscopy,” J. Mol. Spectrosc. 326, 5–8 (2016).
[Crossref]

J. Burkart and S. Kassi, “Absorption line metrology by optical feedback frequency-stabilized cavity ring-down spectroscopy,” Appl. Phys. B 119, 97–109 (2015).
[Crossref]

J. Burkart, D. Romanini, and S. Kassi, “Optical feedback stabilized laser tuned by single-sideband modulation,” Opt. Express 28, 2062–2064 (2013).

S. Kassi, A. Campargue, K. Pachucki, and J. Komasa, “The absorption spectrum of D2: Ultrasensitive cavity ring down spectroscopy of the (2–0) band near 1.7 μm and accurate ab initio line list up to 24000 cm−1,” J. Chem. Phys. 136, 184309 (2012).
[Crossref]

Kastler, A.

A. Kastler, “Transmission of light pulse through a Fabry-Perot interferometer,” Nouv. Rev. Optique 5, 133–139 (1974).
[Crossref]

Kasumie, S.

Y. Yang, R. Madugani, S. Kasumie, J. M. Ward, and S. N. Chormaic, “Cavity ring-up spectroscopy for dissipative and dispersive sensing in a whispering gallery mode resonator,” Appl. Phys. B 122, 291 (2016).
[Crossref]

Kerstel, E.

D. Romanini, I. Ventrillard, G. Méjean, J. Morville, and E. Kerstel, “Introduction to Cavity Enhanced Absorption Spectroscopy,” in Cavity-Enhanced Spectroscopy and Sensing, G. Gagliardi and H.-P. Loock, eds. (Springer, 2014).
[Crossref]

Komasa, J.

S. Kassi, A. Campargue, K. Pachucki, and J. Komasa, “The absorption spectrum of D2: Ultrasensitive cavity ring down spectroscopy of the (2–0) band near 1.7 μm and accurate ab initio line list up to 24000 cm−1,” J. Chem. Phys. 136, 184309 (2012).
[Crossref]

P. Wcisło, F. Thibault, M. Zaborowski, S. Wójtewicz, A. Cygan, G. Kowzan, P. Masłowski, J. Komasa, M. Puchalski, K. Pachucki, R. Ciuryło, and D. Lisak, “Toward kilohertz spectroscopy of weakly interacting molecules,” will be submitted to J. Quant. Spectrosc. Radiat. Transfer.

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Kowzan, G.

A. Cygan, S. Wójtewicz, G. Kowzan, M. Zaborowski, P. Wcisło, J. Nawrocki, P. Krehlik, Ł. Śliwczyński, M. Lipiński, P. Masłowski, R. Ciuryło, and D. Lisak, “Absolute molecular transition frequencies measured by three cavity-enhanced spectroscopy techniques,” J. Chem. Phys. 144, 214202 (2016).
[Crossref] [PubMed]

P. Wcisło, F. Thibault, M. Zaborowski, S. Wójtewicz, A. Cygan, G. Kowzan, P. Masłowski, J. Komasa, M. Puchalski, K. Pachucki, R. Ciuryło, and D. Lisak, “Toward kilohertz spectroscopy of weakly interacting molecules,” will be submitted to J. Quant. Spectrosc. Radiat. Transfer.

Krehlik, P.

A. Cygan, S. Wójtewicz, G. Kowzan, M. Zaborowski, P. Wcisło, J. Nawrocki, P. Krehlik, Ł. Śliwczyński, M. Lipiński, P. Masłowski, R. Ciuryło, and D. Lisak, “Absolute molecular transition frequencies measured by three cavity-enhanced spectroscopy techniques,” J. Chem. Phys. 144, 214202 (2016).
[Crossref] [PubMed]

Layer, H. P.

J. T. Hodges, H. P. Layer, W. W. Miller, and G. E. Scace, “Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy,” Rev. Sci. Instrum. 75, 849–863 (2004).
[Crossref]

Lehmann, K. K.

H. Huang and K. K. Lehmann, “Noise caused by a finite extinction ratio of the light modulator in CW cavity ring-down spectroscopy,” Appl. Phys. B 94, 355–366 (2009).
[Crossref]

H. Huang and K. K. Lehmann, “Noise in cavity ring-down spectroscopy caused by transverse mode coupling,” Opt. Express 15, 8745–8759 (2007).
[Crossref] [PubMed]

K. K. Lehmann and D. Romanini, “The superposition principle and cavity ring-down spectroscopy,” J. Chem. Phys. 105, 10263–10277 (1996).
[Crossref]

Lin, H.

H. Lin, Z. D. Reed, V. T. Sironneau, and J. T. Hodges, “Cavity ring-down spectrometer for high-fidelity molecular absorption measurements,” J. Quant. Spectrosc. Radiat. Transfer 161, 11–20 (2015).
[Crossref]

Lipinski, M.

A. Cygan, S. Wójtewicz, G. Kowzan, M. Zaborowski, P. Wcisło, J. Nawrocki, P. Krehlik, Ł. Śliwczyński, M. Lipiński, P. Masłowski, R. Ciuryło, and D. Lisak, “Absolute molecular transition frequencies measured by three cavity-enhanced spectroscopy techniques,” J. Chem. Phys. 144, 214202 (2016).
[Crossref] [PubMed]

Lisak, D.

A. Cygan, S. Wójtewicz, G. Kowzan, M. Zaborowski, P. Wcisło, J. Nawrocki, P. Krehlik, Ł. Śliwczyński, M. Lipiński, P. Masłowski, R. Ciuryło, and D. Lisak, “Absolute molecular transition frequencies measured by three cavity-enhanced spectroscopy techniques,” J. Chem. Phys. 144, 214202 (2016).
[Crossref] [PubMed]

A. Cygan, S. Wójtewicz, M. Zaborowski, P. Wcisło, R. Guo, R. Ciuryło, and D. Lisak, “One-dimensional cavity mode-dispersion spectroscopy for validation of CRDS technique,” Meas. Sci. Technol. 27, 045501 (2016).
[Crossref]

A. Cygan, P. Wcisło, S. Wójtewicz, P. Masłowski, J. T. Hodges, R. Ciuryło, and D. Lisak, “One-dimensional frequency-based spectroscopy,” Opt. Express 23, 14472–14486 (2015).
[Crossref] [PubMed]

A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, J. T. Hodges, R. S. Trawiński, and R. Ciuryło, “High-signal-to-noise-ratio laser technique for accurate measurements of spectral line parameters,” Phys. Rev. A 85, 022508 (2012).
[Crossref]

S. Wójtewicz, D. Lisak, A. Cygan, J. Domysławska, R. S. Trawiński, and R. Ciuryło, “Line-shape study of self-broadened O2 transitions measured by Pound-Drever-Hall-locked frequency-stabilized cavity ring-down spectroscopy,” Phys. Rev. A 84, 032511 (2011).
[Crossref]

A. Cygan, D. Lisak, P. Masłowski, K. Bielska, S. Wójtewicz, J. Domysławska, R. S. Trawiński, R. Ciuryło, H. Abe, and J. T. Hodges, “Pound-Drever-Hall-locked, frequency-stabilized cavity ring-down spectrometer,” Rev. Sci. Instrum. 82, 063107 (2011).
[Crossref] [PubMed]

A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, R. S. Trawiński, and R. Ciuryło, “Active control of the Pound-Drever-Hall error signal offset in high-repetition-rate cavity ring-down spectroscopy,” Meas. Sci. Technol. 22, 115303 (2011).
[Crossref]

D. Lisak, P. Masłowski, A. Cygan, K. Bielska, S. Wójtewicz, M. Piwiński, J. T. Hodges, R. S. Trawiński, and R. Ciuryło, “Line shapes and intensities of self-broadened O2b Σg+1(v=1)←XΣg−3(v=0) band transitions measured by cavity ring-down spectroscopy,” Phys. Rev. A 81, 042504 (2010).
[Crossref]

P. Wcisło, F. Thibault, M. Zaborowski, S. Wójtewicz, A. Cygan, G. Kowzan, P. Masłowski, J. Komasa, M. Puchalski, K. Pachucki, R. Ciuryło, and D. Lisak, “Toward kilohertz spectroscopy of weakly interacting molecules,” will be submitted to J. Quant. Spectrosc. Radiat. Transfer.

Lodi, L.

O. L. Polyansky, K. Bielska, M. Ghysels, L. Lodi, N. F. Zobov, J. T. Hodges, and J. Tennyson, “High-accuracy CO2 line intensities determined from theory and experiment,” Phys. Rev. Lett. 114, 243001 (2015).
[Crossref]

Long, D. A.

D. A. Long, S. Wójtewicz, and J. T. Hodges, “Effects of incomplete light extinction in frequency-agile, rapid scanning spectroscopy,” Proc. SPIE 8726, 87260O (2013).
[Crossref]

G.-W. Truong, K. O. Douglass, S. E. Maxwell, R. D. van Zee, D. F. Plusquellic, J. T. Hodges, and D. A. Long, “Frequency-agile, rapid scanning spectroscopy,” Nature Photon. 7, 532–534 (2013).
[Crossref]

D. A. Long, M. Okumura, C. E. Miller, and J. T. Hodges, “Frequency-stabilized cavity ring-down spectroscopy measurements of carbon dioxide isotopic ratios,” Appl. Phys. B 105, 471–477 (2011).
[Crossref]

Lovsky, Y.

S. Rosenblum, Y. Lovsky, L. Arazi, F. Vollmer, and B. Dayan, “Cavity ring-up spectroscopy for ultrafast sensing with optical microresonators,” Nat. Commun. 6, 6788 (2015).
[Crossref] [PubMed]

Ma, W.

Madugani, R.

Y. Yang, R. Madugani, S. Kasumie, J. M. Ward, and S. N. Chormaic, “Cavity ring-up spectroscopy for dissipative and dispersive sensing in a whispering gallery mode resonator,” Appl. Phys. B 122, 291 (2016).
[Crossref]

Malathy Devi, V.

C. E. Miller, L. R. Brown, R. A. Toth, D. Chris Benner, and V. Malathy Devi, “Spectroscopic challenges for high accuracy retrievals of atmospheric CO2 and the Orbiting Carbon Observatory (OCO) experiment,” C. R. Phys. 6, 876–887 (2005).
[Crossref]

Malathy Devi, V. M.

D. R. Thompson, D. C. Benner, L. R. Brown, D. Crisp, V. M. Malathy Devi, Y. Jiang, V. Natraj, F. Oyafuso, K. Sung, D. Wunch, R. Castaño, and C. E. Miller, “Atmospheric validation of high accuracy CO2 absorption coefficients for the OCO-2 mission,” J. Quant. Spectrosc. Radiat. Transfer 113, 2265–2276 (2012).

Maslowski, P.

A. Cygan, S. Wójtewicz, G. Kowzan, M. Zaborowski, P. Wcisło, J. Nawrocki, P. Krehlik, Ł. Śliwczyński, M. Lipiński, P. Masłowski, R. Ciuryło, and D. Lisak, “Absolute molecular transition frequencies measured by three cavity-enhanced spectroscopy techniques,” J. Chem. Phys. 144, 214202 (2016).
[Crossref] [PubMed]

A. Cygan, P. Wcisło, S. Wójtewicz, P. Masłowski, J. T. Hodges, R. Ciuryło, and D. Lisak, “One-dimensional frequency-based spectroscopy,” Opt. Express 23, 14472–14486 (2015).
[Crossref] [PubMed]

A. Cygan, D. Lisak, P. Masłowski, K. Bielska, S. Wójtewicz, J. Domysławska, R. S. Trawiński, R. Ciuryło, H. Abe, and J. T. Hodges, “Pound-Drever-Hall-locked, frequency-stabilized cavity ring-down spectrometer,” Rev. Sci. Instrum. 82, 063107 (2011).
[Crossref] [PubMed]

D. Lisak, P. Masłowski, A. Cygan, K. Bielska, S. Wójtewicz, M. Piwiński, J. T. Hodges, R. S. Trawiński, and R. Ciuryło, “Line shapes and intensities of self-broadened O2b Σg+1(v=1)←XΣg−3(v=0) band transitions measured by cavity ring-down spectroscopy,” Phys. Rev. A 81, 042504 (2010).
[Crossref]

P. Wcisło, F. Thibault, M. Zaborowski, S. Wójtewicz, A. Cygan, G. Kowzan, P. Masłowski, J. Komasa, M. Puchalski, K. Pachucki, R. Ciuryło, and D. Lisak, “Toward kilohertz spectroscopy of weakly interacting molecules,” will be submitted to J. Quant. Spectrosc. Radiat. Transfer.

Masser, C. S.

Maxwell, S. E.

G.-W. Truong, K. O. Douglass, S. E. Maxwell, R. D. van Zee, D. F. Plusquellic, J. T. Hodges, and D. A. Long, “Frequency-agile, rapid scanning spectroscopy,” Nature Photon. 7, 532–534 (2013).
[Crossref]

Méjean, G.

D. Romanini, I. Ventrillard, G. Méjean, J. Morville, and E. Kerstel, “Introduction to Cavity Enhanced Absorption Spectroscopy,” in Cavity-Enhanced Spectroscopy and Sensing, G. Gagliardi and H.-P. Loock, eds. (Springer, 2014).
[Crossref]

Miller, C. E.

D. R. Thompson, D. C. Benner, L. R. Brown, D. Crisp, V. M. Malathy Devi, Y. Jiang, V. Natraj, F. Oyafuso, K. Sung, D. Wunch, R. Castaño, and C. E. Miller, “Atmospheric validation of high accuracy CO2 absorption coefficients for the OCO-2 mission,” J. Quant. Spectrosc. Radiat. Transfer 113, 2265–2276 (2012).

S. Yu, C. E. Miller, B. J. Drouin, and H. S. P. Müller, “High resolution spectral analysis of oxygen. I. Isotopically invariant Dunham fit for the XΣg−3, a 1Δg, bΣg+1 states,” J. Chem. Phys. 37, 024304 (2012).
[Crossref]

D. A. Long, M. Okumura, C. E. Miller, and J. T. Hodges, “Frequency-stabilized cavity ring-down spectroscopy measurements of carbon dioxide isotopic ratios,” Appl. Phys. B 105, 471–477 (2011).
[Crossref]

C. E. Miller, L. R. Brown, R. A. Toth, D. Chris Benner, and V. Malathy Devi, “Spectroscopic challenges for high accuracy retrievals of atmospheric CO2 and the Orbiting Carbon Observatory (OCO) experiment,” C. R. Phys. 6, 876–887 (2005).
[Crossref]

Miller, W. W.

J. T. Hodges, H. P. Layer, W. W. Miller, and G. E. Scace, “Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy,” Rev. Sci. Instrum. 75, 849–863 (2004).
[Crossref]

Mondelain, D.

D. Mondelain, S. Kassi, T. Sala, D. Romanini, D. Gatti, and A. Campargue, “Sub-MHz accuracy measurement of the S(2) 2–0 transition frequency of D2 by Comb-Assisted Cavity Ring Down spectroscopy,” J. Mol. Spectrosc. 326, 5–8 (2016).
[Crossref]

Morville, J.

J. Morville, D. Romanini, M. Chenevier, and A. Kachanov, “Effects of laser phase noise on the injection of a high-finesse cavity,” Appl. Opt. 41, 6980–6990 (2002).
[Crossref] [PubMed]

D. Romanini, I. Ventrillard, G. Méjean, J. Morville, and E. Kerstel, “Introduction to Cavity Enhanced Absorption Spectroscopy,” in Cavity-Enhanced Spectroscopy and Sensing, G. Gagliardi and H.-P. Loock, eds. (Springer, 2014).
[Crossref]

Müller, H. S. P.

S. Yu, C. E. Miller, B. J. Drouin, and H. S. P. Müller, “High resolution spectral analysis of oxygen. I. Isotopically invariant Dunham fit for the XΣg−3, a 1Δg, bΣg+1 states,” J. Chem. Phys. 37, 024304 (2012).
[Crossref]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Natraj, V.

D. R. Thompson, D. C. Benner, L. R. Brown, D. Crisp, V. M. Malathy Devi, Y. Jiang, V. Natraj, F. Oyafuso, K. Sung, D. Wunch, R. Castaño, and C. E. Miller, “Atmospheric validation of high accuracy CO2 absorption coefficients for the OCO-2 mission,” J. Quant. Spectrosc. Radiat. Transfer 113, 2265–2276 (2012).

Nawrocki, J.

A. Cygan, S. Wójtewicz, G. Kowzan, M. Zaborowski, P. Wcisło, J. Nawrocki, P. Krehlik, Ł. Śliwczyński, M. Lipiński, P. Masłowski, R. Ciuryło, and D. Lisak, “Absolute molecular transition frequencies measured by three cavity-enhanced spectroscopy techniques,” J. Chem. Phys. 144, 214202 (2016).
[Crossref] [PubMed]

O’Keefe, A.

A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[Crossref]

Okumura, M.

D. A. Long, M. Okumura, C. E. Miller, and J. T. Hodges, “Frequency-stabilized cavity ring-down spectroscopy measurements of carbon dioxide isotopic ratios,” Appl. Phys. B 105, 471–477 (2011).
[Crossref]

Oyafuso, F.

D. R. Thompson, D. C. Benner, L. R. Brown, D. Crisp, V. M. Malathy Devi, Y. Jiang, V. Natraj, F. Oyafuso, K. Sung, D. Wunch, R. Castaño, and C. E. Miller, “Atmospheric validation of high accuracy CO2 absorption coefficients for the OCO-2 mission,” J. Quant. Spectrosc. Radiat. Transfer 113, 2265–2276 (2012).

Pachucki, K.

S. Kassi, A. Campargue, K. Pachucki, and J. Komasa, “The absorption spectrum of D2: Ultrasensitive cavity ring down spectroscopy of the (2–0) band near 1.7 μm and accurate ab initio line list up to 24000 cm−1,” J. Chem. Phys. 136, 184309 (2012).
[Crossref]

P. Wcisło, F. Thibault, M. Zaborowski, S. Wójtewicz, A. Cygan, G. Kowzan, P. Masłowski, J. Komasa, M. Puchalski, K. Pachucki, R. Ciuryło, and D. Lisak, “Toward kilohertz spectroscopy of weakly interacting molecules,” will be submitted to J. Quant. Spectrosc. Radiat. Transfer.

Piwinski, M.

D. Lisak, P. Masłowski, A. Cygan, K. Bielska, S. Wójtewicz, M. Piwiński, J. T. Hodges, R. S. Trawiński, and R. Ciuryło, “Line shapes and intensities of self-broadened O2b Σg+1(v=1)←XΣg−3(v=0) band transitions measured by cavity ring-down spectroscopy,” Phys. Rev. A 81, 042504 (2010).
[Crossref]

Plusquellic, D. F.

G.-W. Truong, K. O. Douglass, S. E. Maxwell, R. D. van Zee, D. F. Plusquellic, J. T. Hodges, and D. A. Long, “Frequency-agile, rapid scanning spectroscopy,” Nature Photon. 7, 532–534 (2013).
[Crossref]

Polyansky, O. L.

O. L. Polyansky, K. Bielska, M. Ghysels, L. Lodi, N. F. Zobov, J. T. Hodges, and J. Tennyson, “High-accuracy CO2 line intensities determined from theory and experiment,” Phys. Rev. Lett. 114, 243001 (2015).
[Crossref]

Puchalski, M.

P. Wcisło, F. Thibault, M. Zaborowski, S. Wójtewicz, A. Cygan, G. Kowzan, P. Masłowski, J. Komasa, M. Puchalski, K. Pachucki, R. Ciuryło, and D. Lisak, “Toward kilohertz spectroscopy of weakly interacting molecules,” will be submitted to J. Quant. Spectrosc. Radiat. Transfer.

Reed, Z. D.

H. Lin, Z. D. Reed, V. T. Sironneau, and J. T. Hodges, “Cavity ring-down spectrometer for high-fidelity molecular absorption measurements,” J. Quant. Spectrosc. Radiat. Transfer 161, 11–20 (2015).
[Crossref]

Romanini, D.

D. Mondelain, S. Kassi, T. Sala, D. Romanini, D. Gatti, and A. Campargue, “Sub-MHz accuracy measurement of the S(2) 2–0 transition frequency of D2 by Comb-Assisted Cavity Ring Down spectroscopy,” J. Mol. Spectrosc. 326, 5–8 (2016).
[Crossref]

J. Burkart, D. Romanini, and S. Kassi, “Optical feedback stabilized laser tuned by single-sideband modulation,” Opt. Express 28, 2062–2064 (2013).

J. Morville, D. Romanini, M. Chenevier, and A. Kachanov, “Effects of laser phase noise on the injection of a high-finesse cavity,” Appl. Opt. 41, 6980–6990 (2002).
[Crossref] [PubMed]

K. K. Lehmann and D. Romanini, “The superposition principle and cavity ring-down spectroscopy,” J. Chem. Phys. 105, 10263–10277 (1996).
[Crossref]

D. Romanini, I. Ventrillard, G. Méjean, J. Morville, and E. Kerstel, “Introduction to Cavity Enhanced Absorption Spectroscopy,” in Cavity-Enhanced Spectroscopy and Sensing, G. Gagliardi and H.-P. Loock, eds. (Springer, 2014).
[Crossref]

Rosenblum, S.

S. Rosenblum, Y. Lovsky, L. Arazi, F. Vollmer, and B. Dayan, “Cavity ring-up spectroscopy for ultrafast sensing with optical microresonators,” Nat. Commun. 6, 6788 (2015).
[Crossref] [PubMed]

Sala, T.

D. Mondelain, S. Kassi, T. Sala, D. Romanini, D. Gatti, and A. Campargue, “Sub-MHz accuracy measurement of the S(2) 2–0 transition frequency of D2 by Comb-Assisted Cavity Ring Down spectroscopy,” J. Mol. Spectrosc. 326, 5–8 (2016).
[Crossref]

Salomon, C.

Scace, G. E.

J. T. Hodges, H. P. Layer, W. W. Miller, and G. E. Scace, “Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy,” Rev. Sci. Instrum. 75, 849–863 (2004).
[Crossref]

Sironneau, V. T.

H. Lin, Z. D. Reed, V. T. Sironneau, and J. T. Hodges, “Cavity ring-down spectrometer for high-fidelity molecular absorption measurements,” J. Quant. Spectrosc. Radiat. Transfer 161, 11–20 (2015).
[Crossref]

Sliwczynski, L.

A. Cygan, S. Wójtewicz, G. Kowzan, M. Zaborowski, P. Wcisło, J. Nawrocki, P. Krehlik, Ł. Śliwczyński, M. Lipiński, P. Masłowski, R. Ciuryło, and D. Lisak, “Absolute molecular transition frequencies measured by three cavity-enhanced spectroscopy techniques,” J. Chem. Phys. 144, 214202 (2016).
[Crossref] [PubMed]

Sung, K.

D. R. Thompson, D. C. Benner, L. R. Brown, D. Crisp, V. M. Malathy Devi, Y. Jiang, V. Natraj, F. Oyafuso, K. Sung, D. Wunch, R. Castaño, and C. E. Miller, “Atmospheric validation of high accuracy CO2 absorption coefficients for the OCO-2 mission,” J. Quant. Spectrosc. Radiat. Transfer 113, 2265–2276 (2012).

Tennyson, J.

O. L. Polyansky, K. Bielska, M. Ghysels, L. Lodi, N. F. Zobov, J. T. Hodges, and J. Tennyson, “High-accuracy CO2 line intensities determined from theory and experiment,” Phys. Rev. Lett. 114, 243001 (2015).
[Crossref]

Thibault, F.

P. Wcisło, F. Thibault, M. Zaborowski, S. Wójtewicz, A. Cygan, G. Kowzan, P. Masłowski, J. Komasa, M. Puchalski, K. Pachucki, R. Ciuryło, and D. Lisak, “Toward kilohertz spectroscopy of weakly interacting molecules,” will be submitted to J. Quant. Spectrosc. Radiat. Transfer.

Thompson, D. R.

D. R. Thompson, D. C. Benner, L. R. Brown, D. Crisp, V. M. Malathy Devi, Y. Jiang, V. Natraj, F. Oyafuso, K. Sung, D. Wunch, R. Castaño, and C. E. Miller, “Atmospheric validation of high accuracy CO2 absorption coefficients for the OCO-2 mission,” J. Quant. Spectrosc. Radiat. Transfer 113, 2265–2276 (2012).

Toth, R. A.

C. E. Miller, L. R. Brown, R. A. Toth, D. Chris Benner, and V. Malathy Devi, “Spectroscopic challenges for high accuracy retrievals of atmospheric CO2 and the Orbiting Carbon Observatory (OCO) experiment,” C. R. Phys. 6, 876–887 (2005).
[Crossref]

Trawinski, R. S.

A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, J. T. Hodges, R. S. Trawiński, and R. Ciuryło, “High-signal-to-noise-ratio laser technique for accurate measurements of spectral line parameters,” Phys. Rev. A 85, 022508 (2012).
[Crossref]

S. Wójtewicz, D. Lisak, A. Cygan, J. Domysławska, R. S. Trawiński, and R. Ciuryło, “Line-shape study of self-broadened O2 transitions measured by Pound-Drever-Hall-locked frequency-stabilized cavity ring-down spectroscopy,” Phys. Rev. A 84, 032511 (2011).
[Crossref]

A. Cygan, D. Lisak, P. Masłowski, K. Bielska, S. Wójtewicz, J. Domysławska, R. S. Trawiński, R. Ciuryło, H. Abe, and J. T. Hodges, “Pound-Drever-Hall-locked, frequency-stabilized cavity ring-down spectrometer,” Rev. Sci. Instrum. 82, 063107 (2011).
[Crossref] [PubMed]

A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, R. S. Trawiński, and R. Ciuryło, “Active control of the Pound-Drever-Hall error signal offset in high-repetition-rate cavity ring-down spectroscopy,” Meas. Sci. Technol. 22, 115303 (2011).
[Crossref]

D. Lisak, P. Masłowski, A. Cygan, K. Bielska, S. Wójtewicz, M. Piwiński, J. T. Hodges, R. S. Trawiński, and R. Ciuryło, “Line shapes and intensities of self-broadened O2b Σg+1(v=1)←XΣg−3(v=0) band transitions measured by cavity ring-down spectroscopy,” Phys. Rev. A 81, 042504 (2010).
[Crossref]

Truong, G.-W.

G.-W. Truong, K. O. Douglass, S. E. Maxwell, R. D. van Zee, D. F. Plusquellic, J. T. Hodges, and D. A. Long, “Frequency-agile, rapid scanning spectroscopy,” Nature Photon. 7, 532–534 (2013).
[Crossref]

van Zee, R. D.

G.-W. Truong, K. O. Douglass, S. E. Maxwell, R. D. van Zee, D. F. Plusquellic, J. T. Hodges, and D. A. Long, “Frequency-agile, rapid scanning spectroscopy,” Nature Photon. 7, 532–534 (2013).
[Crossref]

Ventrillard, I.

D. Romanini, I. Ventrillard, G. Méjean, J. Morville, and E. Kerstel, “Introduction to Cavity Enhanced Absorption Spectroscopy,” in Cavity-Enhanced Spectroscopy and Sensing, G. Gagliardi and H.-P. Loock, eds. (Springer, 2014).
[Crossref]

Vollmer, F.

S. Rosenblum, Y. Lovsky, L. Arazi, F. Vollmer, and B. Dayan, “Cavity ring-up spectroscopy for ultrafast sensing with optical microresonators,” Nat. Commun. 6, 6788 (2015).
[Crossref] [PubMed]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Ward, J. M.

Y. Yang, R. Madugani, S. Kasumie, J. M. Ward, and S. N. Chormaic, “Cavity ring-up spectroscopy for dissipative and dispersive sensing in a whispering gallery mode resonator,” Appl. Phys. B 122, 291 (2016).
[Crossref]

Wcislo, P.

A. Cygan, S. Wójtewicz, M. Zaborowski, P. Wcisło, R. Guo, R. Ciuryło, and D. Lisak, “One-dimensional cavity mode-dispersion spectroscopy for validation of CRDS technique,” Meas. Sci. Technol. 27, 045501 (2016).
[Crossref]

A. Cygan, S. Wójtewicz, G. Kowzan, M. Zaborowski, P. Wcisło, J. Nawrocki, P. Krehlik, Ł. Śliwczyński, M. Lipiński, P. Masłowski, R. Ciuryło, and D. Lisak, “Absolute molecular transition frequencies measured by three cavity-enhanced spectroscopy techniques,” J. Chem. Phys. 144, 214202 (2016).
[Crossref] [PubMed]

A. Cygan, P. Wcisło, S. Wójtewicz, P. Masłowski, J. T. Hodges, R. Ciuryło, and D. Lisak, “One-dimensional frequency-based spectroscopy,” Opt. Express 23, 14472–14486 (2015).
[Crossref] [PubMed]

P. Wcisło, F. Thibault, M. Zaborowski, S. Wójtewicz, A. Cygan, G. Kowzan, P. Masłowski, J. Komasa, M. Puchalski, K. Pachucki, R. Ciuryło, and D. Lisak, “Toward kilohertz spectroscopy of weakly interacting molecules,” will be submitted to J. Quant. Spectrosc. Radiat. Transfer.

Wójtewicz, S.

A. Cygan, S. Wójtewicz, G. Kowzan, M. Zaborowski, P. Wcisło, J. Nawrocki, P. Krehlik, Ł. Śliwczyński, M. Lipiński, P. Masłowski, R. Ciuryło, and D. Lisak, “Absolute molecular transition frequencies measured by three cavity-enhanced spectroscopy techniques,” J. Chem. Phys. 144, 214202 (2016).
[Crossref] [PubMed]

A. Cygan, S. Wójtewicz, M. Zaborowski, P. Wcisło, R. Guo, R. Ciuryło, and D. Lisak, “One-dimensional cavity mode-dispersion spectroscopy for validation of CRDS technique,” Meas. Sci. Technol. 27, 045501 (2016).
[Crossref]

A. Cygan, P. Wcisło, S. Wójtewicz, P. Masłowski, J. T. Hodges, R. Ciuryło, and D. Lisak, “One-dimensional frequency-based spectroscopy,” Opt. Express 23, 14472–14486 (2015).
[Crossref] [PubMed]

D. A. Long, S. Wójtewicz, and J. T. Hodges, “Effects of incomplete light extinction in frequency-agile, rapid scanning spectroscopy,” Proc. SPIE 8726, 87260O (2013).
[Crossref]

A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, J. T. Hodges, R. S. Trawiński, and R. Ciuryło, “High-signal-to-noise-ratio laser technique for accurate measurements of spectral line parameters,” Phys. Rev. A 85, 022508 (2012).
[Crossref]

S. Wójtewicz, D. Lisak, A. Cygan, J. Domysławska, R. S. Trawiński, and R. Ciuryło, “Line-shape study of self-broadened O2 transitions measured by Pound-Drever-Hall-locked frequency-stabilized cavity ring-down spectroscopy,” Phys. Rev. A 84, 032511 (2011).
[Crossref]

A. Cygan, D. Lisak, P. Masłowski, K. Bielska, S. Wójtewicz, J. Domysławska, R. S. Trawiński, R. Ciuryło, H. Abe, and J. T. Hodges, “Pound-Drever-Hall-locked, frequency-stabilized cavity ring-down spectrometer,” Rev. Sci. Instrum. 82, 063107 (2011).
[Crossref] [PubMed]

A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, R. S. Trawiński, and R. Ciuryło, “Active control of the Pound-Drever-Hall error signal offset in high-repetition-rate cavity ring-down spectroscopy,” Meas. Sci. Technol. 22, 115303 (2011).
[Crossref]

D. Lisak, P. Masłowski, A. Cygan, K. Bielska, S. Wójtewicz, M. Piwiński, J. T. Hodges, R. S. Trawiński, and R. Ciuryło, “Line shapes and intensities of self-broadened O2b Σg+1(v=1)←XΣg−3(v=0) band transitions measured by cavity ring-down spectroscopy,” Phys. Rev. A 81, 042504 (2010).
[Crossref]

P. Wcisło, F. Thibault, M. Zaborowski, S. Wójtewicz, A. Cygan, G. Kowzan, P. Masłowski, J. Komasa, M. Puchalski, K. Pachucki, R. Ciuryło, and D. Lisak, “Toward kilohertz spectroscopy of weakly interacting molecules,” will be submitted to J. Quant. Spectrosc. Radiat. Transfer.

Wong, N. C.

Wunch, D.

D. R. Thompson, D. C. Benner, L. R. Brown, D. Crisp, V. M. Malathy Devi, Y. Jiang, V. Natraj, F. Oyafuso, K. Sung, D. Wunch, R. Castaño, and C. E. Miller, “Atmospheric validation of high accuracy CO2 absorption coefficients for the OCO-2 mission,” J. Quant. Spectrosc. Radiat. Transfer 113, 2265–2276 (2012).

Yang, Y.

Y. Yang, R. Madugani, S. Kasumie, J. M. Ward, and S. N. Chormaic, “Cavity ring-up spectroscopy for dissipative and dispersive sensing in a whispering gallery mode resonator,” Appl. Phys. B 122, 291 (2016).
[Crossref]

Yu, S.

S. Yu, C. E. Miller, B. J. Drouin, and H. S. P. Müller, “High resolution spectral analysis of oxygen. I. Isotopically invariant Dunham fit for the XΣg−3, a 1Δg, bΣg+1 states,” J. Chem. Phys. 37, 024304 (2012).
[Crossref]

Zaborowski, M.

A. Cygan, S. Wójtewicz, M. Zaborowski, P. Wcisło, R. Guo, R. Ciuryło, and D. Lisak, “One-dimensional cavity mode-dispersion spectroscopy for validation of CRDS technique,” Meas. Sci. Technol. 27, 045501 (2016).
[Crossref]

A. Cygan, S. Wójtewicz, G. Kowzan, M. Zaborowski, P. Wcisło, J. Nawrocki, P. Krehlik, Ł. Śliwczyński, M. Lipiński, P. Masłowski, R. Ciuryło, and D. Lisak, “Absolute molecular transition frequencies measured by three cavity-enhanced spectroscopy techniques,” J. Chem. Phys. 144, 214202 (2016).
[Crossref] [PubMed]

P. Wcisło, F. Thibault, M. Zaborowski, S. Wójtewicz, A. Cygan, G. Kowzan, P. Masłowski, J. Komasa, M. Puchalski, K. Pachucki, R. Ciuryło, and D. Lisak, “Toward kilohertz spectroscopy of weakly interacting molecules,” will be submitted to J. Quant. Spectrosc. Radiat. Transfer.

Zhao, G.

Zobov, N. F.

O. L. Polyansky, K. Bielska, M. Ghysels, L. Lodi, N. F. Zobov, J. T. Hodges, and J. Tennyson, “High-accuracy CO2 line intensities determined from theory and experiment,” Phys. Rev. Lett. 114, 243001 (2015).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (5)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Y. Yang, R. Madugani, S. Kasumie, J. M. Ward, and S. N. Chormaic, “Cavity ring-up spectroscopy for dissipative and dispersive sensing in a whispering gallery mode resonator,” Appl. Phys. B 122, 291 (2016).
[Crossref]

J. Burkart and S. Kassi, “Absorption line metrology by optical feedback frequency-stabilized cavity ring-down spectroscopy,” Appl. Phys. B 119, 97–109 (2015).
[Crossref]

H. Huang and K. K. Lehmann, “Noise caused by a finite extinction ratio of the light modulator in CW cavity ring-down spectroscopy,” Appl. Phys. B 94, 355–366 (2009).
[Crossref]

D. A. Long, M. Okumura, C. E. Miller, and J. T. Hodges, “Frequency-stabilized cavity ring-down spectroscopy measurements of carbon dioxide isotopic ratios,” Appl. Phys. B 105, 471–477 (2011).
[Crossref]

C. R. Phys. (1)

C. E. Miller, L. R. Brown, R. A. Toth, D. Chris Benner, and V. Malathy Devi, “Spectroscopic challenges for high accuracy retrievals of atmospheric CO2 and the Orbiting Carbon Observatory (OCO) experiment,” C. R. Phys. 6, 876–887 (2005).
[Crossref]

J. Chem. Phys. (4)

S. Yu, C. E. Miller, B. J. Drouin, and H. S. P. Müller, “High resolution spectral analysis of oxygen. I. Isotopically invariant Dunham fit for the XΣg−3, a 1Δg, bΣg+1 states,” J. Chem. Phys. 37, 024304 (2012).
[Crossref]

S. Kassi, A. Campargue, K. Pachucki, and J. Komasa, “The absorption spectrum of D2: Ultrasensitive cavity ring down spectroscopy of the (2–0) band near 1.7 μm and accurate ab initio line list up to 24000 cm−1,” J. Chem. Phys. 136, 184309 (2012).
[Crossref]

K. K. Lehmann and D. Romanini, “The superposition principle and cavity ring-down spectroscopy,” J. Chem. Phys. 105, 10263–10277 (1996).
[Crossref]

A. Cygan, S. Wójtewicz, G. Kowzan, M. Zaborowski, P. Wcisło, J. Nawrocki, P. Krehlik, Ł. Śliwczyński, M. Lipiński, P. Masłowski, R. Ciuryło, and D. Lisak, “Absolute molecular transition frequencies measured by three cavity-enhanced spectroscopy techniques,” J. Chem. Phys. 144, 214202 (2016).
[Crossref] [PubMed]

J. Mol. Spectrosc. (1)

D. Mondelain, S. Kassi, T. Sala, D. Romanini, D. Gatti, and A. Campargue, “Sub-MHz accuracy measurement of the S(2) 2–0 transition frequency of D2 by Comb-Assisted Cavity Ring Down spectroscopy,” J. Mol. Spectrosc. 326, 5–8 (2016).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Quant. Spectrosc. Radiat. Transfer (2)

H. Lin, Z. D. Reed, V. T. Sironneau, and J. T. Hodges, “Cavity ring-down spectrometer for high-fidelity molecular absorption measurements,” J. Quant. Spectrosc. Radiat. Transfer 161, 11–20 (2015).
[Crossref]

D. R. Thompson, D. C. Benner, L. R. Brown, D. Crisp, V. M. Malathy Devi, Y. Jiang, V. Natraj, F. Oyafuso, K. Sung, D. Wunch, R. Castaño, and C. E. Miller, “Atmospheric validation of high accuracy CO2 absorption coefficients for the OCO-2 mission,” J. Quant. Spectrosc. Radiat. Transfer 113, 2265–2276 (2012).

Meas. Sci. Technol. (2)

A. Cygan, S. Wójtewicz, M. Zaborowski, P. Wcisło, R. Guo, R. Ciuryło, and D. Lisak, “One-dimensional cavity mode-dispersion spectroscopy for validation of CRDS technique,” Meas. Sci. Technol. 27, 045501 (2016).
[Crossref]

A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, R. S. Trawiński, and R. Ciuryło, “Active control of the Pound-Drever-Hall error signal offset in high-repetition-rate cavity ring-down spectroscopy,” Meas. Sci. Technol. 22, 115303 (2011).
[Crossref]

Nat. Commun. (1)

S. Rosenblum, Y. Lovsky, L. Arazi, F. Vollmer, and B. Dayan, “Cavity ring-up spectroscopy for ultrafast sensing with optical microresonators,” Nat. Commun. 6, 6788 (2015).
[Crossref] [PubMed]

Nature Photon. (1)

G.-W. Truong, K. O. Douglass, S. E. Maxwell, R. D. van Zee, D. F. Plusquellic, J. T. Hodges, and D. A. Long, “Frequency-agile, rapid scanning spectroscopy,” Nature Photon. 7, 532–534 (2013).
[Crossref]

Nouv. Rev. Optique (1)

A. Kastler, “Transmission of light pulse through a Fabry-Perot interferometer,” Nouv. Rev. Optique 5, 133–139 (1974).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Phil. Trans. R. Soc. A (1)

L. Gianfrani, “Linking the thermodynamic temperature to an optical frequency: recent advances in Doppler broadening thermometry,” Phil. Trans. R. Soc. A 374, 20150047 (2016).
[Crossref] [PubMed]

Phys. Rev. A (3)

S. Wójtewicz, D. Lisak, A. Cygan, J. Domysławska, R. S. Trawiński, and R. Ciuryło, “Line-shape study of self-broadened O2 transitions measured by Pound-Drever-Hall-locked frequency-stabilized cavity ring-down spectroscopy,” Phys. Rev. A 84, 032511 (2011).
[Crossref]

A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, J. T. Hodges, R. S. Trawiński, and R. Ciuryło, “High-signal-to-noise-ratio laser technique for accurate measurements of spectral line parameters,” Phys. Rev. A 85, 022508 (2012).
[Crossref]

D. Lisak, P. Masłowski, A. Cygan, K. Bielska, S. Wójtewicz, M. Piwiński, J. T. Hodges, R. S. Trawiński, and R. Ciuryło, “Line shapes and intensities of self-broadened O2b Σg+1(v=1)←XΣg−3(v=0) band transitions measured by cavity ring-down spectroscopy,” Phys. Rev. A 81, 042504 (2010).
[Crossref]

Phys. Rev. Lett. (1)

O. L. Polyansky, K. Bielska, M. Ghysels, L. Lodi, N. F. Zobov, J. T. Hodges, and J. Tennyson, “High-accuracy CO2 line intensities determined from theory and experiment,” Phys. Rev. Lett. 114, 243001 (2015).
[Crossref]

Proc. SPIE (1)

D. A. Long, S. Wójtewicz, and J. T. Hodges, “Effects of incomplete light extinction in frequency-agile, rapid scanning spectroscopy,” Proc. SPIE 8726, 87260O (2013).
[Crossref]

Rev. Sci. Instrum. (4)

A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[Crossref]

J. T. Hodges, H. P. Layer, W. W. Miller, and G. E. Scace, “Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy,” Rev. Sci. Instrum. 75, 849–863 (2004).
[Crossref]

A. Cygan, D. Lisak, P. Masłowski, K. Bielska, S. Wójtewicz, J. Domysławska, R. S. Trawiński, R. Ciuryło, H. Abe, and J. T. Hodges, “Pound-Drever-Hall-locked, frequency-stabilized cavity ring-down spectrometer,” Rev. Sci. Instrum. 82, 063107 (2011).
[Crossref] [PubMed]

J. T. Hodges and R. Ciuryło, “Automated high-resolution frequency-stabilized cavity ring-down absorption spectrometer,” Rev. Sci. Instrum. 76, 023112 (2005).
[Crossref]

Other (2)

P. Wcisło, F. Thibault, M. Zaborowski, S. Wójtewicz, A. Cygan, G. Kowzan, P. Masłowski, J. Komasa, M. Puchalski, K. Pachucki, R. Ciuryło, and D. Lisak, “Toward kilohertz spectroscopy of weakly interacting molecules,” will be submitted to J. Quant. Spectrosc. Radiat. Transfer.

D. Romanini, I. Ventrillard, G. Méjean, J. Morville, and E. Kerstel, “Introduction to Cavity Enhanced Absorption Spectroscopy,” in Cavity-Enhanced Spectroscopy and Sensing, G. Gagliardi and H.-P. Loock, eds. (Springer, 2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Amplitude and phase of the incident cavity electric field Ei as a function of time t.
Fig. 2
Fig. 2 Example cavity mode profile with a half width at half maximum γ = 6.196(3) kHz. Color dots indicate the frequency detunings Δν from the mode center at which measurements were performed.
Fig. 3
Fig. 3 (a) Scheme of the experimental setup with an acousto-optic modulator (AOM) as the light switch and various RF switching systems: (b) single-switch system, (c) double-switch system, and (d) variable attenuation and phase shifting switching system. PBS – polarizing beam splitter, PZT – piezo-electric transducer, DetI – incident cavity light photodetector, DetT – transmitted light photodetector.
Fig. 4
Fig. 4 Incident cavity light signal (upper panel) and experimental (dots) and simulated (lines) transmitted signal (lower panel) for different frequency detunings Δν from the mode center obtained with the single-switch system which provides an optical extinction ratio of (58 ± 2) dB. The transmitted signals obtained in different experimental conditions are normalized to unity during the stationary state when the AOM in ON. For clarity every 100th experimental point is shown.
Fig. 5
Fig. 5 Incident cavity light signals (upper panels) as well as experimental (dots) and simulated (lines) transmitted signals (lower panels) for different frequency detunings Δν from the mode center obtained with the variable attenuation and phase shifting switching system. The data correspond to an optical extinction ratio of 3 dB and a phase shift Δϕ of (a) 0, (b) π/2, (c) π, and (d) 3π/2. The transmitted signals obtained in different experimental conditions are normalized to unity during the stationary state when the AOM in ON. For clarity every 100th experimental point is shown.
Fig. 6
Fig. 6 (a) Example ring-down decay signal obtained with the single-switch system. Residuals from fits of an exponential decay function to experimental (dots) and simulated (lines) data for different frequency detunings Δν from the mode center obtained with (b–d) single-switch system and (e–g) double-switch system. For clarity every 20th experimental point is shown.
Fig. 7
Fig. 7 Experimental (symbols) and simulated (lines) fractional differences between ring-down time constants τ, and the reference time constant τref shown for different frequency detunings Δν from the mode center. The presented values correspond to single-switch system (blue) and double-switch system (red).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E o ( t ) = m = 0 𝒯 2 2 m exp ( ( m + 1 2 ) α L ) E i ( t ( m + 1 2 ) t r ) ,
E i ( t ) = { θ ( t p t ) ζ + θ ( t t p ) θ ( t d t ) [ 1 ( 1 ζ ) exp ( t t p 2 τ s ) ] + θ ( t t d ) [ ζ + ( 1 ζ ) exp ( t t d 2 τ s ) ] } exp ( 2 π i ν L t + i θ ( t t p ) θ ( t d t ) Δ ϕ ) ,
θ ( t ) = { 0 t < 0 1 t 0 .

Metrics